
Vinay Kulkarni · Sreedhar Reddy
Tony Clark · Henderik A. Proper

The Enterprise Engineering Series

The AI-Enabled
Enterprise

The Enterprise Engineering Series
Founding Editors
Jan L. G. Dietz, Technical University of Delft, Delft, The Netherlands
José Tribolet, Instituto Superior Tecnico, Technical University of Lisbon,
Lisboa, Portugal

Editors-in-Chief

David Aveiro , Faculty of Exact Sciences and Engineering, University of Madeira,
Funchal, Portugal

Robert Pergl, Faculty of Information Technologies, Czech Technical University in Prague,
Praha 6, Czech Republic

Henderik A. Proper , TU Wien Informatics, Vienna, Austria

Editorial Board Members

Joseph Barjis, Institute of Engineering and Management, San Francisco, USA

Giancarlo Guizzardi , Free University of Bozen-Bolzano, Bolzano, Italy

Jan A. P. Hoogervorst, Antwerp Management School, Antwerp, Belgium

Hans B. F. Mulder , University of Antwerp, Antwerp, Belgium

Martin Op't Land, Antwerp Management School, Antwerp, Belgium

Marné de Vries, Industrial and Systems Engineering, University of Pretoria, Pretoria,
South Africa

Robert Winter, Institute for Information Management, University of St. Gallen, St. Gallen,
Switzerland

https://orcid.org/0000-0001-6453-3648
https://orcid.org/0000-0002-7318-2496
https://orcid.org/0000-0002-3452-553X
https://orcid.org/0000-0002-3304-9711

Enterprise Engineering is an emerging discipline for coping with the challenges (agility,
adaptability, etc.) and the opportunities (new markets, new technologies, etc.) faced by
contemporary enterprises, including commercial, nonprofit and governmental institutions.
It is based on the paradigm that such enterprises are purposefully designed systems, and
thus they can be redesigned in a systematic and controlled way. Such enterprise engineer-
ing projects typically involve architecture, design, and implementation aspects.

The Enterprise Engineering series thus explores a design-oriented approach that
combines the information systems sciences and organization sciences into a new field
characterized by rigorous theories and effective practices. Books in this series should
critically engage the enterprise engineering paradigm, by providing sound evidence that
either underpins it or that challenges its current version. To this end, two branches are
distinguished: Foundations, containing theoretical elaborations and their practical
applications, and Explorations, covering various approaches and experiences in the field
of enterprise engineering. With this unique combination of theory and practice, the books
in this series are aimed at both academic students and advanced professionals.

Vinay Kulkarni • Sreedhar Reddy • Tony Clark •
Henderik A. Proper

The AI-Enabled Enterprise

Vinay Kulkarni
Tata Consultancy Services Research
Pune, Maharashtra
India

Sreedhar Reddy
Tata Consultancy Services Research
Pune, Maharashtra
India

Tony Clark
School of Engineering & Applied Science
Aston University
Birmingham, UK

Henderik A. Proper
TU Wien
Vienna, Austria

ISSN 1867-8920 ISSN 1867-8939 (electronic)
The Enterprise Engineering Series
ISBN 978-3-031-29052-7 ISBN 978-3-031-29053-4 (eBook)
https://doi.org/10.1007/978-3-031-29053-4

The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the
whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a
warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that
may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-1570-1339
https://orcid.org/0000-0002-6990-1662
https://orcid.org/0000-0003-3167-0739
https://orcid.org/0000-0002-7318-2496
https://doi.org/10.1007/978-3-031-29053-4

Preface

A future enterprise will be a complex ecosystem (or system of systems) that operates in a
dynamic uncertain environment. It will need to continue delivering the stated goals while
dealing with unforeseen changes along multiple dimensions such as events opening up new
opportunities or constraining the existing ones, competitor actions, regulatory regime, law
of the land and technology advance/obsolescence. Customers increasingly demand highly
personalized services and user experiences that can change depending on market trends.
The goals that drive the operation of an enterprise can change over time. Businesses are
increasingly regulated. Given the increased dynamics, existing regulations will keep
changing frequently, and new regulations will get introduced at a faster rate. Responsive
compliance management with minimal exposure to risk will therefore be a universal key
requirement that will be felt increasingly acutely across business domains. Increasingly,
enterprises are pledging to the sustainable development goals proposed by the UN. Quite a
few domains are witnessing stiff competition from new entrants such as FinTech
companies in banking. Enterprises need to significantly reduce the costs to continue to
be viable in the face of this technology-centric agile competition. Moreover, as the Covid-
19 pandemic has revealed, enterprises need to be prepared to quickly adapt in the face of
black swan events.

These dynamics will play out equally significantly across the three planes of an
enterprise: intent dealing with the purpose of the enterprise, leading to its goals and
associated strategies; process dealing with the operationalization of the strategy in terms
of business processes, roles and responsibilities; and organizational dealing with the
organization of the socio-cyber-physical actors and infrastructures that enact the different
processes. Changes may originate in one plane and ripple through to the other planes.
Given the increased rate of change, the time window available for bringing the three planes
back in sync will continue to shrink. This will put hitherto unseen demands on enterprises,
namely, responsive decision-making, in the face of uncertainty and swift adaptation so as to
support continuous transformation without compromising on certainty. This calls for
integration of “running the business” and “changing the business” objectives, leading to
continuous enterprise engineering.

v

vi Preface

Enterprises have always dealt with change. While they do leverage technology, such as
enterprise modelling and decision-making techniques, there is heavy reliance on human
expertise and past experience. Large size, system of systems nature and increasing dynam-
ics seem to have stretched this practice to its limits. Incomplete information and inherent
uncertainty coupled with the law of bounded rationality further exacerbate the problem. As
business becomes more dynamic with rapidly evolving goals of stakeholders accompanied
by unforeseen and uncertain environment factors, the supporting software systems too need
to dynamically evolve in a uniquely non-invasive way so as to meet the requirements and
goals of every stakeholder. With increasing pervasiveness of software, this need will be felt
ever more acutely and across all business verticals. While considerable progress has been
made by [self-]adaptive software community in meeting the adaptation needs pertaining to
executing machinery, there is little work reported on the adaptation of business functional-
ity and processes. However, as knowledge driving the adaptation stays static, the enterprise
tends to continue slipping further over time.

The book argues that challenges faced by an enterprise defined above are rooted in
uncertainty. At any given time, the knowledge that an enterprise has about its environment
is termed its knowledge boundary. Given that this boundary is limited, can never be
complete and may be inconsistent with reality, it is not always possible to know that the
strategy or operation is correct. Furthermore, given the scale and complexity of an
enterprise, it is not always possible to define the correct behaviour or even know the effect
of combining the behaviours of complex subsystems. Uncertainty arises from constant
changes in the environment, regulations, policies and resources. Uncertainty can be
addressed through making an enterprise intelligent.

An intelligent enterprise uses knowledge-based learning in various ways to improve the
performance or to adapt. Traditionally, such knowledge and learning has been based
around human experts who are in control of various subsystems and use levers to improve
performance and adapt to changes. However, relying on humans in this way is expensive,
difficult to quality assure and introduces a knowledge management problem in terms of
staff retention.

An AI-Enabled Enterprise uses technology to implement the knowledge-based learning
that enables an enterprise to exhibit intelligence. The technology allows the intelligent
enterprise to scale up by reducing the reliance on human experts. Learning is achieved by
monitoring the behaviour of the enterprise and its environment in order to take fully or
partially automated operating decisions. This learning is augmented by continuously
monitoring external knowledge sources too.

The book discusses the key challenges that need to be overcome in achieving
AI-Enabled Enterprises, namely, the role of Digital Twin(s) in evidence-backed design,
enterprise cartography that’s far beyond process mining, decision-making in the face of
uncertainty, software architecture for continuous adaptation and democratized knowledge-
guided software development together enabling coordinated and coherent design of a

continuously adapting enterprise. For each challenge, the book proposes a line of attack
along with the associated enabling technology and illustrates the same through a near-real-
world use case.

Preface vii

Pune, Maharashtra, India Vinay Kulkarni
Pune, Maharashtra, India Sreedhar Reddy
Birmingham, UK Tony Clark
Vienna, Austria Henderik A. Proper

Contents

1 The AI-Enabled Enterprise 1
Vinay Kulkarni, Sreedhar Reddy, Tony Clark, and Henderik Proper

2 Decision-Making in the Face of Uncertainty 13
Vinay Kulkarni

3 Regulatory Compliance at Optimal Cost with Minimum
Exposure to Risk 35
Vinay Kulkarni

4 Continuously Adapting Software 57
Tony Clark

5 Democratized Hyper-automated Software Development 85
Sreedhar Reddy

6 Coordinated Continuous Digital Transformation . 101
Henderik Proper and Bas van Gils

7 A Case Study: Wellness Ecosystem 121
Vinay Kulkarni and Sreedhar Reddy

ix

About the Authors

Tony Clark is a Professor of Computer Science and Deputy Dean in the College of
Engineering and Physical Sciences at Aston University. He has experience of working in
both academia and industry on a range of software projects and consultancies. His current
interests are using adaptation and model-based techniques to create Digital Twin(s).
Further information can be found at https://research.aston.ac.uk/en/persons/tony-clark.

Bas van Gils is a driven and experienced consultant, trainer and researcher. In the last few
years, he has helped professionals and organizations in realizing their digital aspirations:
from strategy to realization. The core disciplines in his work are (1) digital transformation,
(2) enterprise architecture and (3) data management. He has worked in different industries,
both in Europe and the United States, as a teacher and consultant. His academic work
(teaching, research) is grounded in the scientific community at Antwerp Management
School. Further information can be found at https://www.linkedin.com/in/basvg/.

Vinay Kulkarni is Distinguished Chief Scientist at TCS Research where he heads
Software Systems and Services Research. His research interests include enterprise Digital
Twin(s), learning-native software systems, multi-agent systems, model-driven software
engineering and enterprise modelling. At present, exploring feasibility of imparting
learning-aided adaptation to enterprises at strategy, process and system level through use
of modelling, simulation and analytics. The vision is to integrate modelling, AI and control
theory to support the dynamic adaptation of complex systems of systems using Digital
Twin(s). Further information can be found at https://in.linkedin.com/in/vinayvkulkarni.

Henderik A. Proper, Erik for friends, is a Full Professor in Enterprise and Process
Engineering in the Business Informatics Group at the TU Wien. His general research
interest concerns the foundations and applications of domain modelling in an enterprise
context. He has experience of working in academia and industry. Further information can
be found at https://www.erikproper.eu/about.html.

xi

https://research.aston.ac.uk/en/persons/tony-clark
https://www.linkedin.com/in/basvg/
https://in.linkedin.com/in/vinayvkulkarni
https://www.erikproper.eu/about.html

xii About the Authors

Sreedhar Reddy is a Distinguished Chief Scientist at TCS Research. His research
interests include model-driven engineering, databases, knowledge engineering, natural
language processing and Machine Learning. His recent work includes development of a
computational platform to support decision-making in the manufacturing industry using
modelling and simulation, knowledge and Machine Learning. His current interest is in
intelligent software systems that bring together knowledge, learning and Digital Twin(s) to
intelligently adapt to changes in their requirements, goals and operating environments.
Further information can be found at https://www.linkedin.com/in/sreedhar-reddy-
96a83326/.

https://www.linkedin.com/in/sreedhar-reddy-96a83326/
https://www.linkedin.com/in/sreedhar-reddy-96a83326/

,

The AI-Enabled Enterprise 1
Vinay Kulkarni , Sreedhar Reddy , Tony Clark
and Henderik Proper

Motivation

A future enterprise will be a complex ecosystem (or system of systems) of socio-cyber-
physical actors that operates in a dynamic uncertain environment. It will need to continue
delivering its goals while dealing with unforeseen changes along multiple dimensions such
as customer needs, competitor actions, regulatory regime, law of the land and technology
advance/obsolescence. Also, goals themselves may change with opening up of new
opportunities, constraining the existing ones, disruptions like pandemics, etc. These
dynamics will play out equally significantly across the three planes of an enterprise:

– Strategy dealing with the purpose of the enterprise leading to its goals and associated
strategies

– Process dealing with operationalization of the strategy in terms of business processes,
roles and responsibilities

– Systems dealing with the automation of business processes to the extent possible
involving socio-cyber-physical actors

Important considerations at the system plane are the assignment of work to actual socio-
cyber-physical actors and the needed balance between the work that can be done by

V. Kulkarni (✉) · S. Reddy
Tata Consultancy Services Research, Pune, Maharashtra, India
e-mail: vinay.vkulkarni@tcs.com

T. Clark
Aston University, Birmingham, UK

H. Proper
TU Wien, Vienna, Austria

The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kulkarni et al., The AI-Enabled Enterprise, The Enterprise Engineering Series,
https://doi.org/10.1007/978-3-031-29053-4_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29053-4_1&domain=pdf
https://orcid.org/0000-0003-1570-1339
https://orcid.org/0000-0002-6990-1662
https://orcid.org/0000-0003-3167-0739
https://orcid.org/0000-0002-7318-2496
mailto:vinay.vkulkarni@tcs.com
https://doi.org/10.1007/978-3-031-29053-4_1#DOI

computer-based actors and what can best be done by human actors. Another consideration
is the trade-off involving multiple factors, such as efficiency, predictability, health (robots
can be sent to places where humans should not go), ethics, etc.

2 V. Kulkarni et al.

Changes may originate in any of the enterprise planes and ripple through to the other
planes. Given the increased rate of change, the time window available for bringing the three
planes back in sync will continue to shrink. This will put hitherto unseen demands on
enterprises, namely, responsive decision-making in the face of uncertainty and swift
adaptation so as to support continuous transformation without compromising on certainty.
This need will be felt along all three planes of the enterprise, thus necessitating that
corresponding software be adaptive “by design”. This calls for new software architecture
that supports adaptation as a “first class” concern. These new needs coupled with increas-
ing pervasiveness of software will lead to an exploding demand for software. Traditional
software development processes rely on large teams of skilled workforce. This approach is
increasingly found wanting due to the large cycle times involved and severe shortage of
skilled workforce. Keeping pace with rapidly advancing implementation technologies
further exacerbates this problem. As a result, there is a need for reducing the current
heavy dependence on developers possibly by enabling business domain experts play a
greater role in software development. Rapidly advancing AI technologies coupled with
model-driven engineering can be exploited to address this need.

With enterprises getting increasingly regulated, new regulations need to be complied
with, and these regulations themselves will keep changing due to the enhanced dynamics.
As a result, there is a need to continually stay compliant at optimal cost with minimal
exposure to risk.

Moreover, enterprises are no more islands; instead, they are fast evolving into an
ecosystem with complex interdependencies, thus further accentuating the need for rapid
adaptation along multiple dimensions. The adaptation needs to ensure that objectives of all
stakeholders are achieved in a balanced manner.

Current State

Typically, enterprise devises its strategies assuming a largely static environment. These
strategies are then implemented using a set of business processes which in turn are
automated using software systems. Both business processes and software systems are
designed to deliver fixed set of goals while operating in a largely static environment.

Even in static world assumption, some questions remain inadequately addressed, for
instance, “Is the bar set too low as regards the goals?”, “Is the strategy optimal?”, “What’s
the optimal process?”, “How to effect the right adaptation?” and so on.

With the world becoming more dynamic, these questions recur frequently and become
even more difficult to address. For example, these questions need to be suitably addressed all
over again with changes in competitor behaviour, customer needs, regulatory regime, etc.

Figure 1.1 depicts this current state.

1 The AI-Enabled Enterprise 3

Goal

Goal Goal
Strategy

Business Processes

Software Systems

Channels

Automation of static workflows

Is the bar set too low?
Is the strategy optimal?
What’s the optimal strategy?

Is the process optimal?
What’s the optimal process?
What are the adaptations?

What’s the right adaptation?
How to effect the adaptation?

Some questions remain

Competitor actions
Regulatory changes

Geo-political events…

Re-engineering
Policy changes
Tech advance…

Rationalization
Re-engineering
Tech advance…

Multiple change drivers

Reality is dynamic

Fig. 1.1 Current state

Decision-Making in the Face of Uncertainty

Current practice relies on the following decision-making approaches:

Optimization Here, the idea is to formulate decision-making as an optimization problem
solved using rigorous mathematical techniques to arrive at the desired behaviour. This
approach requires possible behaviours of the enterprise and its operating environment to be
known a priori and expressed in pure analytical terms. However, this is possible only when
the behaviour is governed by laws of nature, physics, thermodynamics, chemistry, etc., for
instance, controlling the boiler of a captive power plant [1], scheduling the crude arrival
and mixing for a refinery [2]. Complexity and uncertainty arising from issues such as
human behaviour, cyber-physical interactions and communications with a changing envi-
ronment lead to an enterprise exhibiting emergent behaviour that is difficult or impossible
to represent in terms of mathematical equations.

Machine Learning Build statistical models from past data of enterprise. The model is
then used to answer questions relating to issues such as:

– The reasons for specific desirable or undesirable behaviour
– The results of applying a specific perturbation to the enterprise
– Is there a more effective way to achieve the stated goals?

In the light of recent advances in Machine Learning, this approach holds a lot of
promise. The approach relies on two key conditions:

4 V. Kulkarni et al.

Past data used to learn a model must be a representative set of all behaviours of the
enterprise.

–

– The future behaviour of interest must be an extrapolation of the past as represented by
the historical data.

Given these two conditions, Machine Learning can produce effective results [3, 4]. How-
ever, the intrinsic uncertainty and incompleteness of historical enterprise behavioural data
mean the learnt model is likely to be incomplete and uncertain when faced with new
situations. As a result, the decisions thus arrived can be sub-optimal at best and incorrect at
worst.

Human-Centric Traditionally, decision-making in large-scale enterprises has relied solely
on human experts [5, 6]. While experts are able to come up with the right intervention in the
localized context (i.e. a system or a subsystem they have expertise of), they find it difficult to
justify what made them choose this intervention over other candidates [7]. Typically, experts
are not able to state possible repercussions of an intervention on the rest of the system. Also,
human experts are vulnerable to the law of bounded rationality [8].

Thus, it can be said that current practice falls short of effectively addressing the problem
of decision-making in the face of uncertainty. A new approach seems called for. This is
discussed in detail in Chap. 2.

Software Architecture for Continuous Adaptation

Just identifying the right decision (policy or strategy) is not enough. It also needs to be
implemented effectively. Given the pervasiveness of software in enterprises, implementa-
tion of the decision will mean modifying the relevant set of software systems across the
three planes. In order to achieve this, software must be designed to adapt to unforeseen
changes along dimensions such as functionality, business processes, technology infrastruc-
ture, user experience, goals and operating environment. Moreover, it should do so while
being aligned with the enterprise goals and conforming to internal policies and external
regulations.

Considerable progress has been made by [self-]adaptive software community [8–10] to
achieve software adaptation at run-time, e.g. MAPE-K architecture shown in Fig. 1.2.
Several conceptual architectures are proposed [11, 12] to support adaptation with respect to
computing resources. However, there is little work reported on adaptation of business
functionality and processes that scales to effectively address real-life industry problems.
Moreover, state of the art of [self]-adaptive software only addresses known knowns and
known unknowns leaving out unknown knowns and unknown unknowns. Clearly, a new
architecture to support continuous adaptation is needed which is discussed in detail in
Chap. 4.

1 The AI-Enabled Enterprise 5

Fig. 1.2 MAPE-K architecture

Automated Compliance with Minimal Exposure to Risk

Businesses are increasingly regulated. Regulatory compliance is a board-level concern and
one of the top-3 CEO-level concerns across business verticals.1 Regulatory compliance at
optimal cost with minimal exposure to risk is a critical need faced by modern enterprises
across business domains. Failure to comply not only leads to heavy fines but also reputa-
tional risk. Enterprises need to be cognizant of compliance vs risk trade-off as exorbitantly
high cost of compliance can make the enterprise unviable.2 Given the increased dynamics,
existing regulations will keep changing frequently, e.g. recent changes in Know Your
Customer (KYC) regulation; and new regulations will get introduced at a faster rate,
e.g. General Data Protection Regulation (GDPR). Responsive compliance management
with minimal exposure to risk will therefore be a key universal requirement that will be felt
increasingly acutely across business domains.

Effective compliance management requires legal, domain and IT expertise to come
together in a coordinated manner facilitated by sophisticated tool support. With expertise
already in short supply, document-centric compliance management tools such as GRC3

frameworks put heavy analysis and synthesis burden on human experts exacerbating the
problem further. Lack of automation means these tools are vulnerable to cognitive limit and
fatigue-induced errors of commission and omission. Given the increasing stress on
regulated businesses, high dynamics and complexity, enterprises will want to be “compli-
ant by design”. The current document-centric manual process of compliance management
is turning out to be ineffective2 . Clearly, there is a need for new technology to help
enterprises stay compliant with minimal exposure to risk in a responsive manner.
Chapter 3 presents a solution to this need.

1 http://www.smbceo.com/2020/02/08/what-is-the-role-of-the-ceo-in-regulatory-compliance/
2 https://www.bankingexchange.com/bsa-aml/item/8202-cost-of-compliance-expected-to-hit-181bn
3 https://www.ibm.com/learn/cloud/grc

http://www.smbceo.com/2020/02/08/what-is-the-role-of-the-ceo-in-regulatory-compliance/
https://www.bankingexchange.com/bsa-aml/item/8202-cost-of-compliance-expected-to-hit-181bn
https://www.ibm.com/learn/cloud/grc

6 V. Kulkarni et al.

Democratized Knowledge-Guided Software Development

The increasing pervasiveness of large, complex enterprise-wide software systems and the
need for dynamic adaptation will make new demands on software development life cycle
(SDLC). Tools and technologies exist for the latter stages of the SDLC; however, the early
stages (i.e. requirements elicitation, requirements engineering and design) continue to be
document-centric and manual.

With software increasingly being used to drive growth (as opposed to bookkeeping) and
to aid decision-making, the quantum of software development effort will significantly
increase, and it is fair to conclude that there will not be a sufficiently trained workforce
of software developers to meet this surge in demand. Moreover, development of this
software will require reasonably deep domain knowledge which software developers are
unlikely to possess.

Therefore, there is a clear need for new software development method and technology to
co-opt domain experts into SDLC. It is safe to assume that a large part of the information
required for SDLC will exist in semi-/unstructured form. Recent advances in Natural
Language Processing (NLP) and Machine Learning (ML) provide a promising line of
attack to extract requirements [13, 14] and domain knowledge from semi-/unstructured
information sources into model and/or knowledge form [15, 16]. Moreover, this should
take place continuously. Some of these challenges are being individually addressed by
several communities. There is a need to integrate and build further upon them to come up
with a new SDLC method and supporting toolset. Chapter 5 discusses in detail a line of
attack to meet this need.

Continuously Adapting Software

A complex system such as an AI-Enabled Enterprise differs from standard systems in that it
cannot be created with a single fixed behaviour. Such a system is complex and must either
adapt to find an optimum behaviour or must modify its behaviour as the behaviour of its
environment changes or the business goals are redefined. One way of achieving such
adaptation is to embed a Digital Twin in the AI-Enabled Enterprise in such a way that the
twin monitors the behaviour of the enterprise, compares the measurements against
idealized behaviour and then issues controls in order to adapt the enterprise towards the
required activity.

The creation of Digital Twin(s) for adaptive behaviour is problematic because of the
scale and complexity of the behaviour that is to be monitored and controlled. Such
behaviour (where it is known) can be viewed as a search space where the twin is responsi-
ble for exploration and navigation of the search space to ensure that an acceptable path
through the system states is selected. For all non-trivial enterprises, such a state space is
vast and cannot be completely navigated: approximation must be used.

1 The AI-Enabled Enterprise 7

Approximate solutions to finding a path through the search space exist. A typical
example of such approximate solution technologies is deep learning implemented in the
form of neural networks. While this approach produces results, the solution for encoding,
fine-tuning and verification of the resulting deep learning network can be a problem due to
the loss of information and the scale of the data that is processed.

This chapter provides an overview to the key features of using such a learning approach
to achieving continuously adapting software and then shows how modelling and prototype
simulation can be used to develop a complete but limited scale digital twin in order to
understand the key features and gain confidence that appropriate adaptation will be
achieved. This chapter introduces the TwinSim technology and demonstrates its features
with respect to a range of case studies. Finally, the chapter provides an overview of a
research roadmap for engineering Digital Twin(s) for adaptive software.

Coordinated Continuous Digital Transformation

The overall focus of this book is on the transformation of enterprises towards AI-Enabled
Enterprises, involving a strong role for both AI and digital twin technologies. At the same
time, for enterprises, the transformation towards AI-Enabled Enterprises is “just” a logical,
albeit important, next phase in the continuous flow of digital transformations which
enterprises are (and need to be) engaged in. Accordingly, in this chapter, we zoom in on
both the challenges facing enterprises regarding digital transformations in general and the
transition to AI-Enabled Enterprises in particular.

We will start by defining more precisely what we mean by digital transformation. We
will see how these transformations have a profound impact on the structure of an enterprise.
This also implies that it is important to ensure that such (enterprise) transformations are
well-coordinated. What is even more challenging regarding the coordination of digital
transformations is that the continual progress, and wide organizational impact, of digital
technologies also implies that digital transformation should be seen as a continuous
process.

Enterprise (architecture) models are traditionally regarded as an effective way to enable
informed coordination and decision-making regarding enterprise (and digital)
transformations. In line with this, this chapter will take a model-enabled perspective on
the needed coordination. In doing so, we will argue for the need to identify (and manage)
so-called enterprise design dialogues, where enterprise models are positioned as a key
artefact in support of these enterprise design dialogues. Before concluding, we also review
some of the challenges and opportunities towards future research.

8 V. Kulkarni et al.

The AI-Enabled Enterprise

The point solutions listed above are individually useful; however, they need to be
integrated in order to address the scale of the challenges faced by modern enterprises.
There is a clear need to develop a holistic approach, architecture, method and toolset so as
to be able to use intelligence at all levels of an enterprise system that addresses its design,
construction, deployment and adaptive maintenance.

An enterprise is:

A complex system of systems that can be viewed along three planes, namely, Intent, Process
and Systems. An enterprise uses its systems to automate its processes in order to implement a
strategy so as to achieve its stated goals. An enterprise must ensure that the strategy, processes
and systems are valid, complete and consistent and must ensure that the various planes are
commensurately updated in response to changes in a dynamic operating environment. An
enterprise does not operate in isolation and must interact with its environment that includes
enterprise stakeholders. An enterprise must maintain knowledge about its environment
including the behaviour and motivation of its stakeholders which allows it to operate
effectively.

The challenges faced by an enterprise in meeting the objectives stated above are rooted in
uncertainty. At any given time, the knowledge that an enterprise has about its environment
is termed its knowledge boundary. Given that this boundary is limited, can never be
complete and may be inconsistent with reality, it is not always possible to know that the
strategy or operation is correct. Furthermore, given the scale and complexity of an
enterprise, it is not always possible to define the correct behaviour or even know the effect
of combining the behaviours of complex subsystems. Uncertainty arises from constant
changes in the environment, regulations, policies and resources.

Uncertainty can be addressed through making an enterprise intelligent:

An intelligent enterprise continuously learns in order to address the challenges arising from
uncertainty. Learning may occur in order to ensure that the enterprise continuously improves
the alignment of its behaviour with its strategic goals. Learning may be necessary in order to
adapt the enterprise to changes that occur across any of its planes or in its environment.
Learning will also be necessary in order to discover information at its knowledge boundary in
order to interact more effectively with its environment.

An intelligent enterprise uses the learnt knowledge in various ways to improve the
performance or to adapt. Traditionally, such knowledge and learning has been based
around human experts who are in control of various subsystems and use levers to improve
performance and adapt to changes. However, relying on humans in this way is expensive, is
difficult to quality assure and introduces a knowledge management problem in terms of
staff retention.

This leads to a proposal that uses Artificial Intelligence to automate parts of the learning
and decision-making processes:

1 The AI-Enabled Enterprise 9

An AI-Enabled Enterprise uses technology to implement learning and knowledge-based
reasoning that enables an enterprise to exhibit intelligence. The technology allows the intelli-
gent enterprise to scale up by reducing the reliance on human experts. Learning is achieved by
monitoring the behaviour of the enterprise and its environment in order to take fully or partially
automated operating decisions. This learning is augmented by continuously monitoring
external knowledge sources too.

Artificial intelligence techniques may be used in a number of ways with respect to an
AI-Enabled Enterprise:

Knowledge Acquisition
An AI-Enabled Enterprise will rely on multiple data sources that must be processed and
consolidated in order to create a repository of knowledge that can be used to predict the
required behaviour, observe the consequences of actions, form a basis for intelligent
decision support and control and adapt dynamic behaviour.

Decision Support An AI-Enabled Enterprise may rely on strategies that have been
devised using knowledge-based decision support techniques. Such techniques may be
used prior to system construction in order to decide on the correct operating policies or
may be used dynamically to assist human experts in decision-making when a system needs
to adapt or to address unforeseen situations. Digital Twin(s) may be used to perform in
silico decision support activities that are then transferred to the enterprise.

Policy Development An AI-Enabled enterprise will follow a knowledge-based operating
policy that allows it to reason dynamically about complex situations. For example, the
policy may have been constructed using knowledge acquisition in order to construct a
collection of rules to follow or may have been constructed using Machine Learning
techniques applied to historic enterprise data. Digital Twin(s) may be used to create a
policy by experimenting with various execution strategies or by creating synthetic execu-
tion histories from which policies can be learned.

Control An AI-Enabled Enterprise will employ knowledge-based control. This may take
the form of a digital twin that uses domain knowledge to compare the current enterprise
state with a “perfect state” and to reason about actions that are required in order to bring the
enterprise back on track and in line with its goals. Control may also be achieved through the
use of a knowledge-based policy that has been created statically or using dynamic Machine
Learning techniques. Due to the complexity of the behaviour of a large-scale enterprise, it
is likely that knowledge and control is decentralized.

Adaptation An AI-enabled enterprise will employ knowledge-based adaptation to ensure
that it achieves its goals despite the operating policy for the enterprise being uncertain. Due
to uncertainty, such an enterprise may be designed to have sub-optimal performance

initially and to use knowledge-based techniques in order to learn adaptation strategies that
will increase the alignment with goals, policies, etc. Given the nature of large complex
enterprises, it is likely that unforeseen situations will arise and an AI-enabled enterprise
will use learning and domain knowledge to adapt to these unknowns in order to maintain
goals. Furthermore, it is likely that goals may need to change and an AI-enabled enterprise
will be able to gracefully modify its behaviour to achieve re-alignment.

10 V. Kulkarni et al.

Goal

Goal Goal
Strategy

Business Processes

Software Systems

Channels

Sync up

Learning

Digital Twin

Learning
Agent

Experimentation

simulation

Formal
Model

Learning
Agent

Experimentation

simulation

Domain and Solution
Knowledge

Learning

Ext Info
Source

Environment

Data,
Information,
Problem

Insight,
Intervention,
Strategy

Fig. 1.3 An AI-Enabled Enterprise

AI-enabled enterprises are not limited in terms of the technologies that are used to
achieve them. However, given the current state of the art in AI, the following is a list of
techniques that might be employed across a range of AI-enabled enterprises: knowledge
acquisition, rule-based systems, multi-agent systems, model-driven development, model
checking, probabilistic reasoning, Machine Learning, deep neural networks, Bayesian
networks, data analytics, pattern recognition, Digital Twin(s), control theory, decision
support systems, adaptive systems, distributed AI, explainable AI, etc.

Figure 1.3 shows an example of an AI-enabled enterprise that uses a digital twin
connected to a learning agent to compare the idealized behaviour of a formal model with
the real-world behaviour of an enterprise. The formal model encodes the desired goals and
operating policies of the enterprise and allows the real-world behaviour to be compared with
an idealized behaviour. The comparison provides the learning agent with a dynamically
evolving historical trace that is the basis of an intervention strategy for the enterprise.

Illustrative Example

We illustrate the AI-enabled enterprise through a prototypical consumer-producer ecosys-
tem. Dynamic nature of the ecosystem demands an adaptive response from stakeholders to
the changes in their environment such that goals of all stakeholders continue to be fulfilled
over time even when the goals themselves change.

1 The AI-Enabled Enterprise 11

Hospital

Food Store

Nutrition
plan

GymInsurance
Company

Leisure

Wellness Plan

Wellness
Buddy App

Customer

Wearables

Leisure
plan

Healthcare
plan

Insurance
policy

Fitness
plan

Fig. 1.4 Wellness use case

We present a use case revolving around the wellness needs of individuals and families
serviced by a set of providers such as fitness centres, food stores, hospitals, insurance
companies, resorts, etc. as shown in Fig. 1.4. Typically, the service providers have only
partial information about their customers and competitors. They begin by classifying their
clientele into a broad set of buckets and designing services keeping in mind prototypical
customer for each bucket. Services thus designed end up delivering sub-optimal value to
specific individuals in a bucket and also result in sub-optimal return on investment for the
provider.

Today, wellness seeker needs to select the right set of services on the offer and stitch
them together to construct a plan that meets his wellness needs. This need can be better
served through a value integrator who has access to the relevant information about all
stakeholders and can provide services to each stakeholder that help meet their needs.

In today’s fast-paced world where customer needs as well as competitor landscape keep
changing rapidly, the services need to suitably keep pace with these changes. This calls for
quick identification of correct response to a change and quick and effective implementation
of the response. This need too can be better served through a value integrator that
continuously monitors the changes to recommend suitable adaptations to the stakeholders.

Chapter 7 discusses this use case in detail.

12 V. Kulkarni et al.

References

1. Biswas, J., Kumar, R., Mynam, M., Nistala, S., Panda, A., Pandya, R., Rathore, R., & Runkana,
V. (2017). Method and system for data based optimization of performance indicators in process
and manufacturing industries. Patent No. US10636007B2.

2. Wagle, S., & Paranjape, A. A. (2020). Use of simulation-aided reinforcement learning for optimal
scheduling of operations in industrial plants. WSC, 572–583.

3. Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition.
4. Tüfekci, P. (2014). Prediction of full load electrical power output of a base load operated

combined cycle power plant using machine learning methods. International Journal of Electrical
Power & Energy Systems, 60, 126–140.

5. March, J. G. (1994). Primer on decision making: How decisions happen. Simon and Schuster.
6. Hutton, R. J. B., & Klein, G. (1999). Expert decision making. Systems Engineering: The Journal

of The International Council on Systems Engineering, 2(1), 32–45.
7. Simon, H. A. (1990). Bounded rationality. In Utility and probability (pp. 15–18). Palgrave

Macmillan.
8. Salehie, M., & Tahvildari, L. (2009). Self-adaptive software: Landscape and research challenges.

ACM Transactions on Autonomous and Adaptive Systems (TAAS), 4(2), 1–42.
9. Lemos, D., Rogério, H. G., Müller, H. A., Shaw, M., Andersson, J., Litoiu, M., Schmerl, B., et al.

(2013). Software engineering for self-adaptive systems: A second research roadmap. In Software
Engineering for Self-Adaptive Systems II (pp. 1–32). Springer.

10. Calinescu, R., Ghezzi, C., Kwiatkowska, M., & Mirandola, R. (2012). Self-adaptive software
needs quantitative verification at runtime. Communications of the ACM, 55(9), 69–77.

11. Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimhigner, D., Johnson, G., Medvidovic, N., Quilici,
A., Rosenblum, D. S., & Wolf, A. L. (1999). An architecture-based approach to self-adaptive
software. IEEE Intelligent Systems and Their Applications, 14(3), 54–62.

12. Iglesia, D. G., La, D., & Weyns, D. (2015). MAPE-K formal templates to rigorously design
behaviors for self-adaptive systems. ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 10(3), 1–31.

13. Mu, Y., Wang, Y., & Guo, J. (2009). Extracting software functional requirements from free text
documents. In 2009 International Conference on Information and Multimedia Technology (pp.
194–198). IEEE.

14. Casamayor, A., Godoy, D., & Campo, M. (2010). Identification of non-functional requirements in
textual specifications: A semi-supervised learning approach. Information and Software Technol-
ogy, 52(4), 436–445.

15. Saxena, K., Patil, A., Sunkle, S., & Kulkarni, V. Mining heterogeneous data for formulation
design. In 1st Multi-Source Data Mining (MSDM 2020). Workshop of 20th IEEE International
Conference on Data Mining (ICDM 2020), 17–20 Nov 2020, Sorrento, Italy. Online Event.

16. Wadhwa, N., Sarath, S., Shah, S., Reddy, S., Mitra, P., Jain, D., & Rai, B. (2021). Device
fabrication knowledge extraction from materials science literature. AAAI-IAAI.

Decision-Making in the Face of Uncertainty 2
Vinay Kulkarni

Introduction

We live in a hyperconnected world characterized by complex system of systems that
comprise a large number of interconnected socio-cyber-physical agents. These systems
often need to change/adapt/transform in order to stay relevant while operating in a dynamic
and uncertain environment where unforeseen changes can occur along multiple
dimensions, such as regulations regime, technology advance/obsolescence, mergers and
acquisitions, law of the land and black swan events like Covid-19 pandemic. These
changes may open new opportunities or pose serious threats. Introducing the right inter-
vention in the right system at the right time in response to a change is therefore critical in
order to benefit from an opportunity or to mitigate a threat. The ever-shortening window of
opportunity provides little room for later course correction.

A large number of these complex systems are techno-socio-economic systems where
human actors, software systems and cyber-physical systems interact with each other in a
complex manner. Typically, information about such large complex systems exists in a
fragmented and distributed manner, and that too is rarely kept up to date. It is humanly
impossible to get a holistic understanding of the complex system from these information
fragments. Instead, the complex system is comprehended in terms of subsystems that are
well-understood in isolation and interactions between these subsystems. While structure of
these subsystems can be discerned in detail, understanding of the behaviour remains
somewhat fuzzy as it does not conform to the laws of physics/chemistry/thermodynamics.

V. Kulkarni (✉)
Tata Consultancy Services Research, Pune, Maharashtra, India
e-mail: vinay.vkulkarni@tcs.com

The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kulkarni et al., The AI-Enabled Enterprise, The Enterprise Engineering Series,
https://doi.org/10.1007/978-3-031-29053-4_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29053-4_2&domain=pdf
https://orcid.org/0000-0003-1570-1339
mailto:vinay.vkulkarni@tcs.com
https://doi.org/10.1007/978-3-031-29053-4_2#DOI

14 V. Kulkarni

Intervention

Output

Input

Sense & Making sense

Goals

Environment

System of systems, Complex interactions, Non-linearities

Fast dynamics, Partial information, Uncertainty

Fig. 2.1 Decision-making in complex systems

Deciding an effective intervention for a complex system (of systems) in response to a
change in its environment (or goal) and introducing it within short opportune time is a
difficult task. This requires a deep understanding of aspects such as structural decomposi-
tion of complex system into subsystems, relationships between these subsystems and
emergent behaviour of systems and subsystems. The scale of complex system, its socio-
technical characteristics and the dynamic and uncertain nature of its operating environment
make decision-making a challenging endeavour.

For decision-making, the system can be viewed as a transfer function from Input value
space to Output value space as shown in Fig. 2.1. Designing a suitable transfer function is a
challenging task in itself. The transfer function needs to be continually modified in
response to changes in the environment and/or goals which is further exacerbated when
the available information about the system is incomplete and distributed in fragments and
the environment is uncertain. This in a nutshell is the decision-making problem.

Current Practice

Three broad approaches are used for decision-making in the face of uncertainty. They are
(1) treating the decision-making problem as an optimization problem, (2) model-based
approaches and (3) expertise-driven human-centric approaches.

2 Decision-Making in the Face of Uncertainty 15

Decision-Making as an Optimization Problem

This approach works best when system behaviour is known a priori, the desired goals are
defined precisely and system behaviour is amenable to precise analytical specification
that’s capable of rigorous analysis using automated means. System behaviour is specified
in terms of a system of equations such as ordinary or partial differential equations. The
goals constitute a computable objective function. Technique such as Linear Programming
[1] can be used to solve the system of equations with the objective function as maximiza-
tion or minimization criterion. This approach can produce globally optimal solution
modulo problem formulation.

This approach to decision-making works well for physical systems such as power
plants, boilers, assembly lines, etc. However, it is found inadequate for techno-socio-
economic systems where the system behaviour is not known (rather, knowable) a priori
and cannot be specified in purely analytical terms. This approach begins to lose effective-
ness when system behaviour is probabilistic and subject to high dynamics. The same is true
when system goals change over time.

Model-Based Decision-Making

This is arguably the most widely explored approach to decision-making. In essence, this is
a quantitative approach [2] that involves precise interpretation of system data, structure and
behaviours. The quantitative approach is further classified into three categories: (1) infer-
ential approach, (2) experimental approach and (3) modelling and simulation approach [3].

The inferential approach [4] analyses the existing system data (i.e. trace or historical
data) to infer the characteristics of a system or an enterprise. This approach is effective
when the operating environment is static.

The experimental approach analyses the system by manipulating the system variables
and observing their effects on system output in a controlled environment. This approach is
often infeasible or not an economical option for large business critical enterprises.

The modelling and simulation approach imitates the system using a purposive model,
explores a range of scenarios by simulating the possible interventions to be incorporated
into the model and interprets the simulation results to check whether the desired goals are
met. This approach exists in several avatars based on how the model is constructed
(i.e. top-down or bottom-up) [5], kind of the model (i.e. data-centric or domain-centric)
and nature of the modelling language (i.e. rigorous or enterprise).

Top-down approach models the system as a whole and adopts the reductionist view to
decompose it into parts that can further be decomposed ad infinitum till reaching the
granularity where the part is either atomic or understood completely. The key concerns
with top-down approach are that it can’t support emergent behaviour and needs to have
complete information about the whole system a priori. As a result, top-down approach
typically fails for large systems.

16 V. Kulkarni

Bottom-up approach starts from atomic or well-understood parts and arrives at a holistic
view of a system through composition. While bottom-up approach is capable of observing
emergent behaviour, it is found wanting in representing complex structure and handling
uncertainty.

Data-centric approach uses statistical models (e.g. ARIMA [6]), Artificial Intelligence
(AI) and Machine Learning (ML) techniques to analyse the historical data to identify the
appropriate interventions, i.e. Lever. This approach is extremely effective for systems for
which comprehensive and relevant data is available. However, this exclusively data-reliant
approach works only when the available data represents all possible behaviours of the
system and the future is linear extrapolation of the past.

Domain model-centric approach, in contrast, represents the transfer function and
environment of the system using a variety of analysable models that can broadly be
classified into two types: mathematical models and enterprise models (EM). Mathematical
models, such as linear programming [1] and integer programming [7], can specify the
complex system of systems in terms of lumped-up mathematical formulae, thus enabling
the formulation of decision-making problem as a multi-variate optimization problem.
However, this approach is vulnerable to data inadequacy, i.e. survival bias [8]. Over the
years, Simulink and MATLAB are extensively used for modelling and analysing systems
where relevant data is inadequate, domain understanding is less ambiguous and objective
function is well formed, i.e. devoid of conflicting goals. These techniques can be used to
derive optimal solution in a local context (i.e. for a system within a system of systems).
However, they are found inadequate in predicting system-wide ramifications of introducing
intervention in a locality and hence incapable of guaranteeing global robustness of the
solution.

Enterprise Models (EMs) fall into two broad categories, top-down coarse-grained and
bottom-up fine-grained, with the former outnumbering the latter [9]. Enterprise models are
spread across a wide spectrum. For example, some focus on capturing the enterprise in a
manner that’s amenable for human-centric analysis, e.g. Zachman Framework [10]; some
provide sophisticated graphical representation of enterprise that’s also somewhat amenable
to automated analysis, e.g. ArchiMate [11]; and some support machine interpretable and/or
simulatable specifications that help analyse a range of system aspects, for instance, BPMN
[12] for modelling the process aspect, i* [13] for modelling enterprise goals and system
dynamic [14] model for modelling enterprise behaviour in an aggregated form. The multi-
modelling and co-simulation environments, such as DEVS [15] and MEMO [16], demon-
strate further advancement that supports the analysis of multiple aspects. The bottom-up
fine-grained EMs start from the parts or micro-behaviours and derive macro-behaviour of a
system through composition, e.g. Erlang [17] and actor [18].

In summary, coarse-grained models are good for macro-level analysis but fail to capture
the notion of system of systems characterized by conflicting goals, individualistic
behaviour of fine-grained units and emergent behaviour. While fine-grained models are
useful in supporting a constructionist view of modelling complex system of systems, they
often fail to scale so as to be able to analyse large business and social systems. The state-of-

the-art enterprise modelling techniques are capable of addressing situations that are
characterized by limited uncertainty and limited number of conflicting goals; however,
they are found wanting on uncertainty and trade-off dimensions [19].

2 Decision-Making in the Face of Uncertainty 17

Human-Centric Decision-Making

The qualitative approach [20] is concerned with the subjective assessment of the complex
system through a range of management techniques such as interviews, discussions and field
studies. The state of the practice of organizational decision-making [21] is predominantly
qualitative where decision-makers intuitively analyse various performance indicators,
i.e. Measures, compare them with the desired Goals and reflect on their experience to
arrive at the required change/interventions. Business systems try to mitigate the risk of such
intuition-driven decisions by enabling controlled experimentation in a sandbox environ-
ment, i.e. A/B testing [22]. However, any experimentation involving real system is a time-,
effort- and cost-intensive endeavour requiring iterations over multiple unsuccessful
attempts before reaching a “good-enough solution”. Enhanced dynamics, shortening win-
dow of opportunity and increasing uncertainty are making this intuition-based ideate-build-
experiment approach risky and ineffective.

Thus, it can be said that current practice of decision-making in the face of uncertainty
seems inadequate.

Solution

We envisage a line of attack that borrows proven ideas from modelling and simulation,
control theory and artificial intelligence and builds upon further to be able to use them in an
integrated manner as shown in Fig. 2.2. At the heart of this line of attack is the concept of
enterprise digital twin – a virtual high-fidelity machine-processable representation of
enterprise. It is amenable to solution space exploration through what-if/if-what analysis.
Thus, it can be used as an “in silico” experimentation aid where experts subject the digital
twin to a variety of perturbations. As the digital twin is a high-fidelity representation of the
system, its response to a perturbation is in the ballpark of actual system response. Experts
can interpret this response in the light of their knowledge and experience to arrive at a
candidate set of suitable interventions. The set can be validated for correctness and efficacy
using the digital twin itself by running appropriate simulations, thus leading to the
identification of the most suitable intervention. Thus, digital twin considerably reduces
the need for real-life experimentation with the system and leads to significant savings in
time, cost and effort.

Though highly useful as an “in silico” experimentation aid, the digital twin does not
reduce intellectual burden on human experts. To this end, we use an AI technique known as
Reinforcement Learning [23]. Basically, we use digital twin as an “experience generator”

from which the Reinforcement Learning agent (RL agent) learns what action to perform
when to achieve the overall objective. We bring the system, digital twin and RL agent
together in an adaptation architecture based on the Model Reference Adaptive Control
(MRAC) paradigm [24]. We have ideas to extend this architecture to support dynamic
adaptation where even the goals can change over time.

18 V. Kulkarni

System

Digital
Twin

Human
ExpertInput

Simulation

Intervention

Exploration

“In silico” experimentation
and intervention validation aid Reducing intellectual burden on SME

System

Digital
Twin

Learning
Agent

Input

Simulation

Intervention

Training

Human
Expert

Modeling &
Simulation
Digital Twin

Artificial
Intelligence

ML & RL

Control
Theory

MRAC

Predictive model from past data
+ Art of the possible

Model learnt from past data
Off-line training of RL agent

Integrating System,
EDT and RL agent for
Dynamic adaptation

Fig. 2.2 Digital twin-centric simulation-based approach to decision-making

Fig. 2.3 Decision-making meta-model

Decision-Making Meta-Model

Figure 2.3 depicts a meta-model for decision-making. A system can be viewed as a transfer
function from Input value space to Output value space. A Measure constitutes possibly
derived projection of interest on output. System exists to meet the stated Goals while
operating in a dynamic and uncertain Environment that may constrain inputs and/or system

behaviour. System goal is an objective function over output value space and system
execution Trace when goal has temporal characteristics. Moreover, the goals can have a
complex decomposition structure with inter-dependent and cross-cutting goals as shown in
Fig. 2.4. The former imposes an order on meeting the goals, and the latter usually leads to
trade-offs. The Levers represent a set of candidate interventions that can be introduced to
nudge the system. Applying a lever brings about a discernible change in system output or a
derivation thereof of interest, i.e. a Measure. Goal is an objective function on measures and
thus computable. A goal, after evaluation, can be viewed as a measure. Thus, an iterative
process of analyse measures ! identify lever ! apply lever ! check satisfiability of goal
helps traverse the goal decomposition structure (of Fig. 2.4) in a bottom-up manner. This
could be a possible solution to the decision-making problem.

2 Decision-Making in the Face of Uncertainty 19

Fig. 2.4 System goals, measures and levers

This process is typically carried out with the real system albeit in a sandbox environ-
ment. As a result, it’s a time-, cost- and effort-intensive endeavour relying extensively on
human experts for the design of experiments as well as analysis and synthesis of results of
the experiments. Moreover, time constant of this iterative process is rather large, thus
putting a question mark on its efficacy when the system is operating in a dynamic
environment. Supporting a different manifestation of the iterative process is clearly a
critical need. This is where Digital Twin(s) can help.

Digital Twin

Digital Twin (DT) is a purposive virtual high-fidelity representation of a complex system of
systems that is amenable to rigorous quantitative analysis through what-if and if-what

!

scenario playing. Thus, Digital Twin(s) can be helpful in supporting the “in silico”
realization of the iterative process, i.e. analyse measures ! identify lever ! apply lever

check satisfiability of goal.

20 V. Kulkarni

A purposive DT for supporting quantitative decision-making models the complex
system as a set of intentional autonomous interacting agents. Each agent operates to
achieve its own goals (i.e. intentional) in a pro-active manner (i.e. autonomous) wherein
it may use other agents (i.e. interacting). These interactions could be collaborative or
competitive or co-opetitive. Typically, majority of the interactions are collaborative
(or sometimes co-opetitive) for a complex system driven by a single goal. For instance,
while Marketing and Products units collaborate to deliver better sales, they also compete
for resources. Ecosystems such as markets exhibit competitive interactions. Here, the
desirable fixed point of decision-making process is pareto-optimality [25] if not Nash
equilibrium [26].

An agent observes the environment, makes sense of the observations and performs
actions to achieve its objectives. Knowledge and reasoning play a role in making sense of
observations. If this knowledge is uncertain, then the inferences/conclusions drawn from
the observations have a stochastic nature. It is these inferences (i.e. sense made of the
observations) that determine the action to be performed. The action could be changing the
local state of agent or sending a message to other agents. These actions can be stochastic to
model uncertainty. Agents can exist at different levels of granularity, i.e. an agent can be a
composition of a set of next-level agents as shown in Fig. 2.5.

Fig. 2.5 Composable smart agent

2 Decision-Making in the Face of Uncertainty 21

An agent can adapt its behaviour in response to the changes in its environment.
Essentially, an agent has a set of situation-specific behaviours, and it can switch from
one behaviour to another depending on the situation it finds itself in. An agent adapts its
behaviour not only to achieve local goals but also to help achieve system goals. Augmented
with knowledge acquisition machinery, an agent can also learn new behaviours in a human-
in-control manner.

Such Digital Twin(s) can serve as an “in silico” experimentation aid to support data-
driven evidence-backed decision-making in the face of uncertainty.

“In Silico” Experimentation Aid for Decision-Making

Digital Twin(s) support a knowledge-guided tool-assisted approach to decision-making for
complex systems as shown in Fig. 2.6. The key tenets of the approach are:

Holding a mirror: Domain experts recreate the current state by subjecting the purposive
digital twin to the same input (as that of real system) in an identical environment setting.
The simulated output helps explain why things are the way they are. In case the current
state does not meet the desired goals, suitable intervention is necessary.

Analyse measures: Domain experts interpret the simulation results to ascertain if the goals
are met. This activity may involve computing measures from the raw simulation results.
In essence, domain experts identify how far the current state is from the desired state.

Identify levers: Domain experts use the distance measure and their expertise to arrive at a
candidate set of agent-centric interventions such as changing the behaviour of an agent

Fig. 2.6 Knowledge-guided decision-making aid

22 V. Kulkarni

or changing the interaction between two agents. Any likely change in the environment is
also explored.

Apply lever: The modified digital twin and environment are then subjected to appropriate
what-if scenario thus in a new simulation run. The resultant output is examined for
satisfaction of goals. If goals are not met, the process repeats till the candidate set of
interventions is exhausted. If still unmet, the goals need to be appropriately attenuated,
and the whole process is repeated.

Though highly useful as an “in silico” experimentation aid, the digital twin does not
reduce the intellectual burden on human experts. To this end, we use Reinforcement
Learning (RL) techniques to train a controller through interactions with the digital twin
that acts as an “experience generator”. Also, domain knowledge can help guide solution
space exploration by RL agent, thus leading to faster and better learning. The controller
may nudge the system directly or through a human agent.

We now discuss technology support necessary to implement the proposed digital twin-
centric approach.

Technology Infrastructure

Specification Language
We have developed an actor-based language called ESL [27] by extending the “actor”
concept from [28] to specify the digital twin of a complex system (of systems) as shown in
Fig. 2.7. We use the term “agent” synonymously with “actor”. ESL helps represent the

Learnable

Fig. 2.7 Agent-based realization of digital twin

complex system as a set of intentional (i.e. there is a well-defined goal to be achieved)
autonomous (i.e. capability to achieve the goal in a pro-active manner) composable (i.e. an
agent can be realized in terms of a set of fine-grained interacting agents) agents. Agent
listens to Events of interest and responds either by performing an Activity or sending a
Message to some other agent. Agent behaviour can be Deterministic (i.e. there is only one
Activity to perform in response to an event occurrence), Stochastic (i.e. one from the set of
candidate activities is performed in response to an event occurrence – usually guided by a
probability distribution) and Learnable (i.e. a model learnt from past data). Agent has a set
of Attributes representing its state and special characteristics. StateVariable denotes the
former and CharacteristicVariable the latter. Values of StateVariables are singleton,
whereas those of CharacteristicVariables could be ranges. Measure can be a StateVariable
or a computation involving StateVariables. Goal is an objective function over Measures.
Agents might be hierarchically composed of agents. Environment is also modelled as an
agent.

2 Decision-Making in the Face of Uncertainty 23

Thus, one can represent a complex system virtually as a digital twin which can be
suitably initialized and where desired what-if simulations can be performed. In case the
goal is unmet, domain experts identify the appropriate interventions based on expertise and
experience. The Levers to introduce these interventions are change of CValues, change of
Activity and change of probability distribution over Activities.

DT Construction
Construction of purposive digital twin for decision-making follows a top-down as well as
bottom-up approach. Using a top-down approach, the complex system is successively
decomposed till the behaviour of leaf-level subsystem is reasonably well-understood.
These leaf-level subsystems are implemented as atomic actors having well-defined goals
they aim to achieve. The next higher-level subsystems are implemented as composite
actors. Actor composition relationship leads to dependency relationship between their
respective goals. The bottom-up pass also reveals goal interference if any. This relationship
can lead to trade-offs. Domain uncertainties are captured in the form of stochastic
behaviour of actors.

The required domain information to be captured in a purposive DT comes from a wide
spectrum of semi-/un-/structured sources including databases, execution logs, standard
operational procedure notes, policy documents and understanding of domain experts. As
a result, an army of experts from wide-ranging fields of expertise is required to manually
create the digital twin specification – clearly a time-, cost-, effort- and intellect-intensive
endeavour. The purposive meta-model serves as a lens to mine/author appropriate model
fragments, corresponding to a view of the purposive meta-model, from these information
sources. The meta-model also serves as an aid to integrate these model fragments, thus
ensuring correctness and internal consistency. Knowledge of the problem domain and
system helps construct the purposive digital twin from the integrated model. Figure 2.8
presents a pictorial overview of the framework we have developed for the accelerated
creation of digital twin models from information available in semi-/un-/structured form

[29]. It comprises automation aids based on (1) Natural Language Processing (NLP) and
Machine Learning (ML) techniques for gathering the desired information from a given
information source, (2) meta-model-driven techniques for the integration and reconciliation
of the model fragments and (3) model validation-based techniques for identifying the
missing model fragments.

24 V. Kulkarni

Fig. 2.8 Knowledge-guided tool-assisted construction of Digital Twin(s)

DT Validation
The utility and efficacy of a constructed digital are largely dependent on how rich it is in
terms of analyses supported and how closely does it represent the real system. We provide
two established ways of validating the digital twin, namely, conceptual validity and
operational validity [30]. In conceptual validity, the domain experts certify how compre-
hensive the constructed actor topology is from domain perspective. We ensure operational
validity through simulation wherein constructed digital twin is subjected to known past
events leading to a simulation trace which is then examined to ascertain if the resultant
behaviours are identical to the ones from the past. Our simulation engine generates rich

execution traces containing detailed information necessary for analysis. We have devel-
oped a pattern language to specify the desired behaviour and a pattern-matching engine to
look for the specified patterns in the simulation trace [31]. This generic solution to ascertain
correctness can be further augmented by manual validation of the input and output and
control variables of the simulation.

2 Decision-Making in the Face of Uncertainty 25

Illustrative Real-World Applications

The proposed approach and supporting tools are validated for utility and efficacy on a set of
real-world problems spanning a wide spectrum of business verticals. A representative
sample is presented below.

Case Study from Telecom

Telecom space can be viewed along two broad dimensions, namely, physical system of
telecom network infrastructure and business system that offers products to customers
through various processes. We focused on the business system where the key objective
is to assist Sales, Product and Customer Care heads to fulfil their respective goals using
digital twin technology.

The principal goal of Head of Sales is to acquire as many right customers as possible for
the existing product portfolio and customer care processes. The principal objective of Head
of Products is to create and maintain a product portfolio that will best meet the communi-
cation needs of the existing (and prospective) customer base and customer care processes.
The principal objective of Head of Processes is to help acquire new customers and retain
existing customers at a minimum cost for the existing customer base and product portfolio.

Current practice is for the three heads to operate in silos to independently arrive at
strategies aimed at achieving their stated goals. These strategies are evaluated in a sandbox
environment using A/B testing. This is a time-, cost- and effort-intensive approach.
Moreover, while the strategy could be the most suitable for achieving the local objective
(i.e. Sales, Product or Process), there is no way to check if its introduction may have
adverse ripple effect on the other two aspects. As telecom is arguably the most dynamic of
business verticals, telecom service providers end up operating in a reactive (or catch-up)
mode for most of the time with little a priori assurance of meeting the desired goals. As a
result, this domain is characterized by high customer churn, long tail of inactive products,
low customer satisfaction and poor Customer Lifetime Value (CLV).

We addressed several problems for a large CSP having tens of millions of customers,
hundreds of active products and hundreds of processes. We constructed a purposive digital
twin [32] that encapsulates the knowledge of Products, Processes and Individual customers
(e.g. age, gender, station of life, early adaptor/laggard, etc.) leading to a good estimate of
product and services expectations. A simulation-based iterative process helped us arrive at
the right configuration of Products (features, launch strategy, price point, etc.), Processes

(SLAs, technology investment, price point, etc.) and Customers (who will opt for which
product at what price point, what’s the best way to sell/upsell/cross-sell, how best to retain
at what cost, etc.) as shown in Fig. 2.9. The measures we focused on were average monthly
revenue, average cost of servicing customers, number of new customers added and number
of customers left.

26 V. Kulkarni

Fig. 2.9 Fine-grained digital twin for a large telecom service provider

Specifically, we used this DT to solve these problems:

CLV optimization: The problem in a nutshell is as follows: Given the set of products and
engagement services, what’s the best Customer Lifecycle Value (CLV) possible for the
given customer base? What changes need to be introduced in products and/or engage-
ment services in order to further improve CLV? With capital expenditure and operating
expenditure as non-negotiable constraints, we focused on a few products
(e.g. international plan, family plan, etc.) to identify improvements in customer engage-
ment and care to significantly improve CLV.

Better product launch: The telecom provider had come up with a launch strategy based on
segment-wise experimentation promising 5.7% Take rate and 84% Retention rate. We used
the fine-grained DT to come upwith a product launch strategy promising 2.1% Take rate and
17% retention rate. In reality, Take rate was 2.5% and Retention rate was 16%. Furthermore,
DT was used to fine-tune the product launch strategy, thus delivering 2× improvement.

Response to onset of Covid-19 pandemic: Onset of Covid-19 pandemic in February 2020
led to significant surge in demand for internet connectivity as the world shifted to work
from home mode. Telecom service providers were keen on meeting this demand
through Unlimited Plan (i.e. fixed pay regardless of use) products as opposed to Metered
Plan (i.e. pay per use) products as the former have significantly less post-sell cost. There
were a range of Unlimited Plan products each catering to a customer segment. Impact of
Covid-19 pandemic on the communication needs of these segments was a big unknown.
As a result, defining the product in terms of features and price point was a big challenge.
Moreover, the goal was to help all Unlimited Plans do well but not at the cost of other

2 Decision-Making in the Face of Uncertainty 27

Unlimited Plan products. The DT was used to arrive at product configurations for the
key Unlimited Plan products.

Maximizing Throughput of Sorting Terminals

Sorting of packages is one of the most critical activities in package delivery industry.
Sorting terminal is a cyber-physical system that aims to maximize its throughput.
Figure 2.10 depicts the schematic of a typical sorting terminal comprising the conveyor
belt (called Sorter) that carries the packages to be sorted, Infeed to introduce the packages
from carriers to the conveyor belt, Scanner for identifying the destination delivery zone
from the address written on the package, Chutes to collect the packages and Robotic arm
(in front of every chute) to push the package into the chute. Each chute is assigned a team
that collects the packages to be taken to designated loading stations. The sorting terminal
can be configured along several parameters, such as the number and types of operational
chutes, sorter speed, placement of scanner, assignment of destination delivery zones to a
chute, assignment of collecting team to a chute and possible schedule of collecting-team-to-
chute assignment. Some of these parameters are relatively more static than others,
e.g. placement of scanner. For maximal throughput of the sorting terminal:

1. The package should spend as less time on the sorter as possible.
2. The package should get collected in the right chute.
3. Chutes should get emptied as quickly as possible.
4. No chute should ever be without a collecting team.
5. No package should remain unsorted beyond the prescribed rotations on the sorter, thus

leading to manual handling of the package which is time- and cost-expensive.

Current practice is to predict the workload for a shift from past workloads using
statistical prediction algorithm. Knowledge of workload is then used to define a suitable

Sorting Terminal Digital Twin

Sorter
configuration

Resource allocation
to chutes

Candidate
configurations

Candidate
strategies

Predicted Workload Simulated output

Avg time to
chute

Unassigned
packages

Avg chute
clearing time

Corrective
actions

Fig. 2.10 Digital twin of a sorting terminal for maximizing the throughput

sorting terminal configuration that includes a sorting plan (package type to chute assign-
ment), number of active chutes and collecting team size allocated to each chute. This step is
part estimate part art. Significant uncertainty in shift workloads, high variance in the
temporal order of the workload and varying skills of collecting team are the principal
sources for deviation from business-as-usual operation during the shift. These outliers are
addressed by the shift manager in an ad hoc manner. As a result, there is little a priori
assurance forthcoming as regards throughput of sorting terminal for a shift.

28 V. Kulkarni

To overcome this problem, we constructed a digital twin of the sorting terminal [33]. We
experimented with a wide range of what-if simulations to arrive at the right configuration
and to be prepared for possible outlier conditions. The parameters we focused on were
average time to chute, average chute clearing time, number of unassigned packages and
number of corrective actions introduced. We also ran the digital twin in parallel with the
actual sorting terminal in a shift to serve as an early warning system. Moreover, plausible
solutions to mitigate the outlier condition were worked out “in silico” – the proverbial
“forewarned is forearmed” situation.

Optimizing Shop Stock Replenishment for a Retail Chain

Optimum stock replenishment for shops is a critical need faced by the retail industry. The
goal of replenishment is to regulate the availability of the entire product range in each store,
subject to the spatio-temporal constraints imposed by (1) available stocks in the
warehouses, (2) labour capacity for picking and packaging products in the warehouses,
(3) the volume and weight carrying capacity of the trucks, (4) the transportation times
between warehouses and stores, (5) the product receiving capacity of each store and
(6) available shelf space for each product in each store. Probabilistic behaviours of the
individual elements lead to the uncertainties that emerge in the replenishment process, for
example, unavailability and varying productivity of the labours, unavailability and unac-
counted delays of the trucks and customer footfall leading to eventual purchase at stores.

Current practice is to construct a predictive model based on the past data pertaining to
shop stock replenishment. Given the scale of the problem, i.e. number of warehouses,
number of stores, number of trucks, number of product types and number of products,
purely analytical specification gets too large and hence vulnerable to the errors of omission
and commission. As a result, an aggregated lumped-up model is used to train a Reinforce-
ment Learning (RL) agent to learn a policy, i.e. a sequence of actions to be performed by
the various stakeholders for shop stock replenishment. The coarseness of model leads to
RL agent learning a sub-optimal policy.

We constructed a fine-grained model of the supply chain [34] where each warehouse,
shop, truck, container, shelf, product, customer, etc. is modelled as an actor having well-
defined (though probabilistic) behaviour. We can model the individual characteristics such
as buying propensity of a customer, breakdown vulnerability of a truck, packing errors of a
packer, etc. at the finest level of detail. This fine-grained model of the supply chain is used

to train RL algorithm to learn a policy for shop stock replenishment. Our approach led to
fine-grained learning with faster convergence (refer to Fig. 2.11).

2 Decision-Making in the Face of Uncertainty 29

Fig. 2.11 Digital twin for optimal shop stock replenishment

Prediction and Control of Covid-19 Pandemic in a City

During a pandemic like Covid-19, one of the key priorities of the public health administra-
tion is to understand the dynamics of the transmission of virus [35] and use that knowledge
to design effective control measures to keep its impact on public health within manageable
and tolerable limits. While the dynamics of Covid-19 virus transmission and spread in a
heterogeneous population is not fully understood, it is known, though, that the spread of
infection is related to people’s movement, the nature of the area where people congregate
and number and frequency of proximal contacts. It is also known the demographic factors
and comorbidity play a role in the lethality. Therefore, public health authorities have
primarily focused on restricting people movement to varying degrees by imposing
lockdowns. In addition to saving lives, lockdowns have been the primary instruments for
managing the load on local healthcare systems.

Unfortunately, lockdowns have a serious downside in the form of impact on economy
[36]. Until the pandemic is brought under control through large-scale availability of
medication or vaccines, one is resigned to pay this price. Having accepted that, one
would like to strike a balance between load on healthcare system and revival of the
economy. As the dynamics of the spread of Covid-19 depend heavily on individual

o

localities, devising effective means to help administrators take local decisions is a
critical need.

30 V. Kulkarni

Time epoch

Movements

Places

City Digital Twin

Simulated
output

Virus spread

Quarantining load

Load on hospitals

Load on testing

Testing

Fig. 2.12 City Digital Twin for the prediction and control of Covid-19 pandemic

We believe that devising a universal model to predict evolution of Covid-19 at varying
levels of granularity such as city localities, cities, counties and countries is a difficult
proposition. Instead, a purpose-specific, locality-based, fine-grained model addressing a set
of relevant aspects of interest can play a crucial role in decision-making for controlling the
pandemic. Therefore, we developed a novel agent-based digital twin of a city [37] t
support simulation-based approach to predict and control Covid-19 epidemic as shown in
Fig. 2.12. The defining characteristic of the city digital twin is a set of suitable agent types
necessary to capture heterogeneity in terms of people, places, transport infrastructure,
healthcare infrastructure, etc. As a result, we are able to construct a fine-grained model
of the city that is amenable to what-if and if-what scenario playing. We populated the city
digital twin using data from the city administration, together with suitable augmentation.
The fine-grained nature of digital twin enabled us to address the critical concerns such as
the rate and the extent of the spread of the epidemic, demographic and comorbidity
characteristics of the infected people, load on the healthcare infrastructure in terms of
specific needs such as number of admissions requiring critical care (supplementary oxygen,
ventilator support, intensive care, etc.), load on institutional quarantine centres and so
on. We set up appropriate what-if scenarios to identify the most effective intervention from
the candidate set to control epidemic as well as bring back normalcy. We vetted the
simulation results against epidemic-related data released by an Indian city.

Helping Organizations Transition from Work from Home to Work from
Office Mode

Organizations are struggling to ensure business continuity without compromising on
delivery excellence in the face of Covid-19 pandemic-related uncertainties. The uncertainty

exists along multiple dimensions such as virus mutations, infectivity and severity of new
mutants, efficacy of vaccines against new mutants, waning of vaccine-induced immunity
over time and lockdown/opening-up policies effected by city authorities. Moreover, this
uncertainty plays out in a non-uniform manner across nations, states and cities and even
within the cities, thus leading to highly heterogeneous evolution of pandemic. While work
from home (WFH) strategy has served well to meet ever-increasing business demands
without compromising on individual health safety, there has been an undeniable reduction
in social capital. With Covid-19 pandemic showing definite waning trends and employees
beginning to miss the office environment, several organizations are considering the possi-
bility of safe transition from WFH to work from office (WFO) or a hybrid mode of
operation. An effective strategy needs to score equally well on possibly interfering
dimensions such as risk of infection, project delivery and employee (and their dependents)
wellness. As large organizations will typically have a large number of offices spread across
a geography, the problem of arriving at office-specific strategies becomes non-trivial.
Moreover, the strategies need to adapt over time to changes that cannot be deduced upfront.
This calls for an approach that’s amenable to quick and easy adaptation.

2 Decision-Making in the Face of Uncertainty 31

We developed a digital twin-centric approach (refer to Fig. 2.13) that (1) leverages pure
data-centric statistical model, coarse-grained system dynamic model and fine-grained
agent-based model, (2) helps human experts arrive at pragmatic strategies to effect WFH
to WFO transition keeping the key stakeholders satisfied and (3) easily adapts the strategies
over time. We have validated the approach with a large organization, and the results are
encouraging.

Fig. 2.13 Organization digital twin for WFH to WFO transition

32 V. Kulkarni

Summary and Future Work

We live in a world comprising a complex system of systems that changes along multiple
dimensions in a manner that cannot be deduced upfront. Therefore, decision-making in the
face of uncertainty is a critical need. We argued that the state of the art and current practice
do not address this need to the desired level of satisfaction and sophistication.

We proposed a simulation-based approach that innovatively integrates and builds
further upon proven ideas from modelling and simulation, artificial intelligence and control
theory. At the heart of the approach is the concept of digital twin – a purposive virtual high-
fidelity simulatable representation of the reality that’s amenable to what-if and if-what
scenario playing. We described the core technology infrastructure necessary to implement
the proposed approach in a “human-in-the-loop” manner.

We discussed the utility and efficacy of the approach on real-world industry-scale use
cases spanning across business (telecom case study and retail case study), cyber-physical
(sorting terminal case study) and societal (Covid-19 case studies) domains. Almost every-
where, the proposed approach has fared better than current practice.

We believe the city digital twin can be repurposed to address emerging socio-techno-
economic challenges such as sustainable enterprise, smart city and wellness and healthcare.
While we seem to be on the right track, there is a lot that needs to be done as regards multi-
paradigm Digital Twin(s), multi-objective Reinforcement Learning, agents that are
composable “first class”, adaptive Digital Twin(s), method support for construction and
use of Digital Twin(s) and leveraging reasoning and knowledge. We also see the possibility
of taking the idea of digital twin to the software systems to support dynamic adaptation in
the face of uncertainty. The combined ability of arriving at the right decisions and effecting
them in an efficacious way will help realize an adaptive enterprise where adaptations are
justification-backed.

References

1. Ignizio, J. P., & Cavalier, T. M. (1994). Linear programming. Prentice-Hall.
2. Currall, S. C., & Towler, A. J. (2003). Research methods in management and organizational

research: Toward integration of qualitative and quantitative techniques. Sage Publications.
3. Kothari, C. R. (2004). Research methodology: Methods and techniques. New Age International.
4. Michalski, R. S. (1993). Inferential theory of learning as a conceptual basis for multi strategy

learning.
5. Thomas, M., & McGarry, F. (1994). Top-down vs. bottom-up process improvement. IEEE

Software, 11(4), 12–13.
6. Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and practice. OTexts.
7. Schrijver, A. (1998). Theory of linear and integer programming. Wiley.
8. Mangel, M., & Samaniego, F. J. (1984). Abraham Wald’s work on aircraft survivability. Journal

of the American Statistical Association, 79(386), 259–267.

2 Decision-Making in the Face of Uncertainty 33

9. Sandkuhl, K., et al. (2016). Enterprise modelling for the masses–from elitist discipline to common
practice. In IFIP Working Conference on The Practice of Enterprise Modeling (pp. 225–240).
Springer.

10. Zachman, J. A. (2003). The Zachman framework for enterprise architecture. Primer for Enter-
prise Engineering and Manufacturing. Zachman International.

11. Iacob, M. E., Jonkers, H., Lankhorst, M., Proper, E., & Quartel, D. A. C. (2012). ArchiMate 2.0
specification.

12. White, S. A. (2004). Introduction to BPMN. Ibm Cooperation, 2(0), 0.
13. Horkoff, J., & Yu, E. (2010). Visualizations to support interactive goal model analysis. In 2010

Fifth International Workshop on Requirements Engineering Visualization (pp. 1–10). IEEE.
14. Meadows, D. H. (2008). Thinking in systems: A primer. Chelsea Green.
15. Camus, B., Bourjot, C., & Chevrier, V. (2015). Combining devs with multi-agent concepts to

design and simulate multi-models of complex systems.
16. Frank, U. (2011). The MEMO meta modelling language (MML) and language architecture (No.

43). ICB-research report.
17. Armstrong, J. (2013). Programming Erlang: Software for a concurrent world. Pragmatic

Bookshelf.
18. Hewitt, C. (2010). Actor model of computation: Scalable robust information systems. arXiv

preprint arXiv:1008.1459.
19. Vernadat, F. (2020). Enterprise modelling: Research review and outlook. Computers in Industry,

122, 103265.
20. Mcmillan, C. J. (1980). Qualitative models of organisational decision-making. Journal of Gen-

eral Management, 5(4), 22–39.
21. Daft, R. L. (2015). Organization theory and design. Cengage Learning.
22. Kohavi, R., & Longbotham, R. (2017). Online controlled experiments and A/B testing. Encyclo-

pedia of Machine Learning and Data Mining, 7(8), 922–929.
23. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
24. Butler, H. (1992). Model reference adaptive control: From theory to practice. Prentice-Hall.
25. Stiglitz, J. E. (1981). Pareto optimality and competition. The Journal of Finance, 36(2), 235–251.
26. Nash, J. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of

Sciences, 36(1), 48–49.
27. Clark, T., Kulkarni, V., Barat, S., & Barn, B. (2017, June). ESL: An actor-based platform for

developing emergent behaviour organisation simulations. In International conference on practi-
cal applications of agents and multi-agent systems (pp. 311–315). Springer.

28. Agha, G. A., Mason, I. A., Smith, S. F., & Talcott, C. L. (1997). A foundation for actor
computation. Journal of Functional Programming, 7(1), 1–72.

29. Sunkle, S., Saxena, K., Patil, A., & Kulkarni, V. (2022). AI-driven streamlined modeling:
Experiences and lessons learned from multiple domains. Software and Systems Modeling, 21
(3), 1–23.

30. Sargent, R. G. (2004, December). Validation and verification of simulation models. In
Proceedings of the 2004 Winter Simulation Conference (Vol. 1). IEEE.

31. Clark, T., Barn, B., Kulkarni, V., & Barat, S. (2017). Querying histories of organisation
simulations. ISD 2017.

32. Barat, S., Kulkarni, V., Kumar, P., Bhattacharya, K., Natarajan, S., & Viswanathan, S. (2020,
July). Towards effective design and adaptation of CSP using modelling and simulation based
digital twin approach. In Proceedings of the 2020 summer simulation conference (pp. 1–12).

33. Ghosh, S., Pal, A., Kumar, P., Ojha, A., Paranjape, A., Barat, S., & Khadilkar, H. (2021). A
simulation driven optimization algorithm for scheduling sorting center operations. In In 2021
Winter Simulation Conference (WSC) (pp. 1–12). IEEE.

34 V. Kulkarni

34. Barat, S., Khadilkar, H., Meisheri, H., Kulkarni, V., Baniwal, V., Kumar, P., & Gajrani, M.
(2019, May). Actor based simulation for closed loop control of supply chain using reinforcement
learning. In Proceedings of the 18th international conference on autonomous agents and
multiagent systems (pp. 1802–1804).

35. World Health Organization, et al. (2020). Modes of transmission of virus causing Covid-19:
Implications for IPC precaution recommendations. Scientific brief, 27 March 2020 (Technical
Report). World Health Organization.

36. Fernandes, N. (2020). Economic effects of coronavirus outbreak (Covid-19) on the world
economy. Available at SSRN 3557504.

37. Barat, S., Parchure, R., Darak, S., Kulkarni, V., Paranjape, A., Gajrani, M., & Yadav, A. (2021).
An agent-based digital twin for exploring localized non-pharmaceutical interventions to control
COVID-19 pandemic. Transactions of the Indian National Academy of Engineering, 6(2), 323–
353.

Regulatory Compliance at Optimal Cost
with Minimum Exposure to Risk 3
Vinay Kulkarni

Introduction

Businesses are getting increasingly regulated. Regulatory compliance is a board-level
concern and one of the top-3 CEO-level concerns across business verticals.1 Failure to
comply not only leads to heavy fines and reputational risk but may also make top
management personally liable. Enterprises need to be cognizant of compliance vs risk
trade-off as exorbitantly high cost of compliance can make the enterprise unviable.2 Thus,
regulatory compliance at optimal cost with minimal exposure to risk is a critical need faced
by modern enterprises across business domains. The same problem manifests as regards
internal policies with auditors playing the role of regulating body.

As modern enterprises operate in a dynamic environment, e.g. a bank typically receives
about 200 regulatory alerts every day,3 the compliance management process needs to be
suitably responsive to ensure the cost of compliance is proportional to the change being
introduced. The change can also originate within the enterprise due to business events such
as merger and acquisition, organizational restructuring, system integration, business pro-
cess reengineering, technology obsolescence/advance, etc. Modern enterprises typically
operate in several geographies which may have different regulations and/or geography-
specific variants of a regulation. The compliance management process needs to be

1 http://www.smbceo.com/2020/02/08/what-is-the-role-of-the-ceo-in-regulatory-compliance/
2 https://www.bankingexchange.com/bsa-aml/item/8202-cost-of-compliance-expected-to-hit-181bn
3 https://thefinanser.com/2017/01/bank-regulations-change-every-12-minutes.html/

V. Kulkarni (✉)
Tata Consultancy Services Research, Pune, Maharashtra, India
e-mail: vinay.vkulkarni@tcs.com

The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kulkarni et al., The AI-Enabled Enterprise, The Enterprise Engineering Series,
https://doi.org/10.1007/978-3-031-29053-4_3

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29053-4_3&domain=pdf
https://orcid.org/0000-0003-1570-1339
mailto:vinay.vkulkarni@tcs.com
http://www.smbceo.com/2020/02/08/what-is-the-role-of-the-ceo-in-regulatory-compliance/
https://www.bankingexchange.com/bsa-aml/item/8202-cost-of-compliance-expected-to-hit-181bn
https://thefinanser.com/2017/01/bank-regulations-change-every-12-minutes.html/
https://doi.org/10.1007/978-3-031-29053-4_3#DOI

cognizant of these variations to address the geography-specific needs without duplication
of effort.

36 V. Kulkarni

Effective compliance management requires legal, domain and IT systems expertise – all
of which are in scarce supply. Ideally, the process should be able to call upon each of this
expertise only when needed and in a manner not to impede the other two, thus leading to
smooth coordinated compliance management. With enterprises rapidly evolving into a
dynamic system of systems or ecosystem, the compliance problem gets further
complicated.

Regulatory Compliance

Enterprise is driven by its stated goals. It defines strategies aimed at achieving these goals
in the best possible manner. Operating processes and IT systems come up to implement
these strategies. To ensure a level playing field, it’s critical to ascertain that objectives of all
key stakeholders are satisfied and no specific enterprise enjoys an unfair advantage over its
competitors. To this effect, the regulating authority (or regulator) issues commensurate
regulations that all enterprises must comply with. Regulator seeks a report from its
regulatees at a pre-defined frequency asking for specific information that’s capable of
identifying whether any regulation is violated as the enterprise goes about executing its
operating processes and IT systems. Figure 3.1 depicts the conceptual model of regulatory
compliance.

The uncluttered conceptual view of regulatory compliance depicted in Fig. 3.1 gets
complex and tangled in implementation. For example, regulations are rarely orthogonal;
instead, they overlap, and this overlap is one of the principal contributors to complexity as
explained below.

Enterprise

Goals Strategies

Regulation Processes &
Systems

meet

implement

Data footprint
produce

conformsTo

boundBy

Regulator issues

Compliance
Report

submitschecks

Fig. 3.1 Regulatory compliance – conceptual view

3 Regulatory Compliance at Optimal Cost with Minimum Exposure to Risk 37

Policies Controls

Regulation
Text (RT)

Contextualized
RT

Process

Functional
Specs

IT System

Info
footprint

Obligation as a
query

Compliance
report

Fig. 3.2 Regulatory compliance – implementation view

Figure 3.2 provides a pictorial description of implementation view of regulatory com-
pliance. Regulators issue guidelines aimed at providing a level playing field for all players
in a business domain. These guidelines constitute the content of a specific regulation. This
articulation is typically generic to be able to relate equally with the several regulatees in the
domain. A regulatee enterprise details out this generic articulation suitably keeping in view
the specific context of regulatee enterprise. The regulatee enterprise then puts in place
internal policies to enforce regulatory guidelines and to implement these policies through
appropriate controls. This is typically a manual endeavour resulting in a set of documents,
namely, regulation document, policy document, control document, process document and
functional specifications document. IT system experts then develop the necessary software
system taking the functional specifications document as input. Enterprise information
footprint comprises data manipulated by its IT systems, trace information generated as a
result of execution of business processes and information in natural language (NL) text
pertaining to interactions between humans taking part in business processes. In essence, a
regulation document describes a set of obligations and data elements that obligations refer

to. Therefore, checking for compliance is analogous to querying the enterprise information
footprint where the query corresponds to an obligation.

38 V. Kulkarni

As enterprise operates in a dynamic environment, the five documents need to be kept in
sync for every alert received from the regulators. Also, the process and functional
specifications documents may undergo a change in the light of business events such as
technology change/obsolescence, process reengineering, mergers and acquisitions, etc.
Therefore, regulatory compliance problem can be seen to comprise five sub-problems:
hygiene (policy, control and process documents are consistent with each other and with
regulation document), checking (the relevant subset of enterprise information footprint
conforms to the obligations specified by a regulation), change management (identify the
change in regulation and perform hygiene and checking tasks in a change-driven manner),
risk (compute the risk of non-compliance and devise means to reduce it to the extent
possible) and make compliant (identify the changes required to eliminate non-compliance
and effect the changes appropriately).

Current Practice

The key challenges that need to be overcome for effective regulatory compliance manage-
ment are identifying obligations from the regulation document; fetching relevant data to be
examined from enterprise information footprint; checking whether the obligations hold;
tracing non-compliant data to the relevant obligation, i.e. the text statement in regulation
document; addressing non-compliance by introducing appropriate changes in process and
software systems; and risk assessment and management. Effective compliance manage-
ment requires legal, domain and IT experts to work together in a coordinated manner. For
example, legal and domain experts need to work together to produce contextualized
regulation document, and correct interpretation of the regulation into policies and controls
in the enterprise context and their implementation in enterprise processes and systems
requires teams of legal, domain and IT systems experts working together. With expertise
already in short supply, this coordination calls for sophisticated tool support. However,
current practice of compliance management is essentially document-centric and therefore
largely manual. Generic and document-centric compliance management tools such as
GRC4 frameworks put heavy analysis and synthesis burden on human experts exacerbating
the supply problem further. Lack of sophisticated automation means use of GRC frame-
work is vulnerable to cognitive limit of its users and fatigue-induced errors of commission
and omission.

Several regulation-specific offerings exist that produce compliance reports out of the
box. However, the onus of providing the right data of right veracity is solely on the user. As
a result, these compliance solutions are vulnerable to garbage in garbage out. Furthermore,

4 https://www.ibm.com/learn/cloud/grc

https://www.ibm.com/learn/cloud/grc

these point solutions designed strictly for standalone use present a formidable system
integration challenge for using them in a cohesive integrated manner. This is a serious
shortcoming especially given the large portfolio of regulations an enterprise needs to
comply with. With regulators issuing frequent amendments and new regulations, this
lack of responsiveness of the present compliance management technology is turning out
to be untenable.

3 Regulatory Compliance at Optimal Cost with Minimum Exposure to Risk 39

There is hardly any sophisticated support available for managing compliance-related
risks. This critical need is today addressed relying solely on human experts.

Regulatory compliance problem has attracted research community as well. In contrast to
manual document-oriented industry practices, research approaches have focused on rigor
and automation using formal techniques to check compliance [1, 2]. These have seen poor
adoption in industry due to the difficulty of manually coming up with formal specifications
of regulation rules from the regulation document in NL text [3, 4]. Also, research
approaches do not address the entire compliance management process.

Thus, it can be said that current practice falls short of effectively addressing the problem
of complying at optimal cost with minimal exposure to risk. A new approach seems
called for.

Tenets of a Desirable Line of Attack

Here is the intuition leading to key tenets.
Can a regulation be viewed as a logic program? The obligations can now be specified as

Horn clauses [5] in terms of variables that correspond to the appropriate data elements from
enterprise data footprint. One can choose from a variety of logics such as deontic [6] and
defeasible [7] for specifying regulations as a logic program which can be analysed using
sophisticated machinery available. Thus, it seems possible to automate the compliance
checking aspect. However, the abstraction gap between regulation described in natural
language (NL) text and an equivalent logic program needs to be bridged. This gap is
typically too large to be bridged in a single leap. Instead, successive refinements need to be
adhered to. Moreover, this refinement process needs to be amenable to a change-driven
implementation as regulations as well as enterprise IT systems tend to change over time and
the rate of change is continually increasing.

Can the refinement process be automation aided so as to reduce the heavy analysis and
synthesis burden on human experts? A proven technique to achieve this objective is to
leverage purposive structure underlying the problem, i.e. a purposive model. Figure 3.3
shows a subset of a purposive model for regulatory compliance management. Regulation is
viewed as a set of obligations that the enterprise must provide evidence of having complied
with. Obligation is best viewed as a rule comprising a condition to be met and an action to
be performed when the condition is met. Condition can be a complex logical expression
over variables which must come from enterprise data footprint. Antecedent of a rule refers
to several kinds of actions – changing the value of a variable being one of the simplest. The

structure of Fig. 3.3 can serve as a lens to look at the regulation document in NL text.
Existing NLP techniques can be used to populate this model from NL text document in a
human-in-the-loop automated manner. Moreover, the resultant shift from document-centric
to model-based operation not only brings in significant automation but also reduces
intellectual overload on human experts as the formal model is amenable to rigorous
analysis (and transformation) in an automated manner.

40 V. Kulkarni

Rule

Precedent

Value

Obligation

LogicOperator

from

Variable

produces

traceableTo

boundBy

Regulation 0..*

LogicExpr

1

Anticedent

1

0..* 0..*

1

0..*

Action

1

0..*

1

0..* 0..*0..*

1

0..*

Section

Paragraph

Sentence

0..*

1

0..*

1

0..*

1

DataFootprint

ValueSpace DataModel

1 1

1

from

Enterprise

0..*

1

1

1

Fig. 3.3 Regulatory compliance – a subset meta-model

Can the refinement process be change-driven so as to ensure the cost of compliance is
proportional to the change in regulation and/or enterprise? Shift to a model-based compli-
ance management process can bring in this benefit too. Information about regulations,
policies, controls, processes, obligations, variables, etc. is no longer spread across multiple
NL text documents but at one place as a formal model. As a result, various kinds of
relationships between the content of these documents can now be captured in the form of
associations between these models. With such interconnected models, it is now possible to
precisely compute the impact of a change in one model onto other models and that too
automatically.

Can the refinement process enable coordinated involvement of legal, business and IT
experts so as to ensure optimal use of scarce resources? Refinement of the generic text in
regulation document issued by regulatory authorities involves legal and business experts
with the latter bringing specifics of regulatee enterprise to the table. While it is possible to
provide automation help, it is probably better to perform this task at NL text document

level. This is largely because legal experts are typically not very comfortable with sophis-
ticated computing technologies. Subsequent steps of the refinement process (refer to
Fig. 3.2) are characterized by the principle of separation of concerns and hence enable
business and IT experts to work independently and yet in a coordinated manner. Shift from
document-centric to model-based compliance management is the key. Moreover, if IT
systems and business processes are architected for easy configuration using say feature
modelling and variability modelling techniques, then model-based compliance manage-
ment process can also deliver value towards making these business processes and IT
systems compliant in an automated change-driven manner.

3 Regulatory Compliance at Optimal Cost with Minimum Exposure to Risk 41

Can the compliance management process benefit from what-if simulations so as to be
aware of likely risks in the future and be adequately prepared in advance for
mitigating them? Moreover, can there be a simulation machinery that can serve as an
early warning system by predicting outlier situations? Shift to model-based regulatory
compliance seems to be the first step to achieve these objectives. However, the models need
to be richer (i.e. capable of more sophisticated analysis) and more detailed (i.e. capturing
information that helps in risk management).

AI-Aided Model-Based Automated Regulatory Compliance

We take a holistic approach to implement the tenets discussed above by changing current
document-centric focus of compliance practice to a model-driven approach. Models
capture information explicitly in a structured form, thus making relationships explicit.
Moreover, models (1) are easy to navigate, (2) enable precise computation of change
impact, (3) are machine-processable and (4) are amenable to automated analysis and
transformation. We provide assistance for authoring these models from NL text documents
using Natural Language Processing (NLP)- and Machine Learning (ML)-based extraction
techniques and a near-natural language interface. We use the concept model generator
(CMG) which enables human-in-the-loop modelling of the domain under consideration
[8]. The construction of domain model uses text ranking (alternatively, clustering) and
open information extraction to obtain key concepts and relations from which a base model
is constructed automatically [9]. The text ranking implementation used by CMG is based
on Google PageRank algorithm adapted to text. The domain expert refines the base model
using a graphical user interface that provides facilities to explore the key concepts and their
mentions and relations within the underlying text (of regulations, policies and controls)
[10]. Legal and domain experts together author models of the regulation, policies, controls
and business processes from their respective source documents to create a purposive digital
twin of the enterprise as depicted in Fig. 3.4.

We provide technology support for domain experts to validate these models for consis-
tency and correctness, thus enabling the early detection of errors. Logic programming and

automated reasoning techniques are used to generate key representative scenarios to be
presented to experts for further validation. The validated models are automatically
transformed into an executable form with clear identification of the necessary and sufficient
data for compliance checking. We provide technology to pull this data from wherever it
exists in the enterprise. Proven technology is used to automatically check whether the data
conforms to regulation rules. In case of non-compliance, we clearly identify the
non-compliant data element and provide traceability links to the regulation text being
violated.

42 V. Kulkarni

Policies Controls

Regulation
Text (RT)

Contextualize
RT

Process

Functional
Specs

IT System

Info
footprint Compliance

report

Data Population
and Extraction

Exe specs
Rules + Data

Controls
Model

Policy
Model

Process
Model

Regulation
Model

Digital Twin

Rule Engine

AI-aided model

authoring

Fig. 3.4 AI-aided model-based approach to automated regulatory compliance

The proposed approach leads to several advantages. Shifting the focus from text
documents to models helps bring agility to compliance management process. Impact of a
change in regulation can now be computed automatically and with precision. Further
downstream process of compliance checking is cognizant of the change and hence more
efficient. Analysis and synthesis burden on human experts is considerably reduced as
models can be automatically checked for internal consistency, correctness and complete-
ness. Furthermore, automatic transformation of these models to an executable form and
subsequent automated checking results in highly responsive compliance process.
Automated nature of our approach can eliminate the present need to resort to sample-
based compliance, thus improving the reliability of compliance process. Furthermore, the
compliance checking process can be always running in the background to enable the
identification of deviation from compliance state as soon as it takes place, thus minimizing
its ripple effects within the enterprise.

3 Regulatory Compliance at Optimal Cost with Minimum Exposure to Risk 43

Technology Infrastructure to Support the Line of Attack

AI-Based Model Authoring

We use AI techniques to author model of a regulation from its NL text as shown in Fig. 3.5.
As the first step, we help Subject Matter Eexpert (SME) author Concept Model,
i.e. concepts being referred to in the regulation text and relationships between them. The
concept model serves as a lens to focus on the relevant NL text containing obligations and
data. As the same concept may get mentioned in multiple ways in the regulation document,
these sets of mentions are constructed to eliminate redundancy. We provide a Controlled
Natural Language (CNL) for SMEs to specify the obligations found. The CNL serves as an
intermediate representation that’s closer to the business domain (and hence intuitive to
SME) but with well-defined syntax and semantics (and hence amenable to machine
processing). We provide syntax-driven editing support for SME to organize the obligations
and data in CNL which can be automatically checked for syntactic and semantic well-
formedness. As CNL has well-defined syntax and semantics, it is possible to construct a
translator from CNL to other languages using the principle of syntactic transformation
under semantic in variance. We use the Semantics of Business Vocabulary and Business
Rules (SBVR5) as the modelling language to specify regulations. We have chosen CNL
such that it’s quite close to the linearized representation of SBVR. As a result, text in CNL
can be automatically transformed to a model in SBVR.

We author models for policies, controls and processes along similar lines. However,
their languages are different yet relatable to each other and to the regulation model in

Regulation in NL
Text

SE text Regulation Model

Concept Model
Model Authoring

Model
Construction

Fig. 3.5 AI-aided model authoring

5 https://www.omg.org/spec/SBVR

https://www.omg.org/spec/SBVR

SBVR. We thus shift the focus of regulatory compliance from text documents to formal
models leading to several benefits [11].

44 V. Kulkarni

Automation: Being in model form as opposed to NL text, it is now possible to ensure that
policies, controls and processes are consistent with each other and with the regulation.
Automation aids for validating the authored model help capture inconsistency in regula-
tion. Also, it is possible to check if any aspect of regulation is not being captured in policies
and controls. Moreover, this assurance comes with automation, thus eliminating fatigue-
induced errors of omission and commission that are so prevalent in manual process.

Separation of concerns: SME having cursory knowledge of legalese text is independently
able to author models from NL text. CNL provides an intuitive interface, thus hiding the
technical complexities of NLP as well as modelling languages.

Completeness: Ensuring that no obligation is missed in authoring regulation model from its
NL text is a hard problem. In concept model, SMEs get a lens that helps them focus on
the relevant sections of regulation document only, thus reducing fatigue as regulation
documents are typically rather large. In addition, our tool highlights the text from which
obligations are extracted. These aids go some distance in helping ensure that no
obligation is missed.

Therefore, it can be said that the proposed approach fares better on the counts of hygiene
and change management.

Validating the Authored Model

Model-driven engineering (MDE) approach necessitates verification and validation (V&V)
of the models used. Model verification seeks to check that the model does what it is
expected to do, usually through an implementing program.6 We propose inconsistency
checking, scenario generation and testing using a standard set of test cases and test data as
verification techniques in our approach. The objective of model validation is to ascertain
that the model is a faithful representation of the problem space it represents.3 We imple-
ment validation by having SMEs certify scenarios generated from the model for validity
and coverage. Figure 3.6 depicts the overall approach.

We use SBVR as modelling notation and Answer Set Programming (ASP) as the logic
paradigm for the verification of regulation model authored by SMEs [12].

SBVR is a fact-oriented modelling notation [13] that encodes rules as logical
formulations over fact types that are relations between concepts.7 Rules are stated in
SBVR SE to populate the model.

6 http://www.inf.ed.ac.uk/teaching/courses/pm/Note16.pdf
7 https://www.omg.org/spec/SBVR/1.3

http://www.inf.ed.ac.uk/teaching/courses/pm/Note16.pdf
https://www.omg.org/spec/SBVR/1.3

3 Regulatory Compliance at Optimal Cost with Minimum Exposure to Risk 45

Fig. 3.6 Model validation and verification

We choose ASP for automated verification since (1) it is a logic programming paradigm
that maps directly onto SBVR’s fact-oriented model and underlying first-order logic
formalism and (2) it is a powerful, highly expressive notation supporting aggregates,
functions and optimizations. We translate rules in SBVR to ASP rules and constraints.

We use the DLV system [14] as the solver for our generated ASP programs. The solver
performs consistency checking between rules, constraints and ground facts, indicating
conflicting rules or constraints and generating answer sets for paths where no conflicts
exist. Answer sets, by definition, are minimal, i.e. no answer set can be contained in another
[15], and represent the minimal set of scenarios for the input model. These are presented to
SMEs to check whether the generated scenarios are valid and whether all important
scenarios have been covered.

Automating Compliance Checking

Figure 3.7 depicts our automation infrastructure for compliance checking. We transform
the validated regulation model in SBVR to an executable form by using model transfor-
mation techniques.8,9 We support two executable specifications, namely, DR-Prolog [16]
and Drools.10 For ease of adoption, we prefer generating rules. A rule is an executable
specification of an obligation – a Horn clause over a set of variables.

8 https://www.omg.org/spec/MOFM2T/
9 https://www.omg.org/spec/QVT/
10 https://www.drools.org/

https://www.omg.org/spec/MOFM2T/
https://www.omg.org/spec/QVT/
https://www.drools.org/

46 V. Kulkarni

Fig. 3.7 Automated
compliance checking Regulation Model

Data Rules

Enterprise Data
Footprint

Rule Engine

Compliance Report

For populating values of rule variables from structured data, we rely on the schema
mapping, to identify the right record from appropriate relational tables [17]. For populating
these values from the unstructured data, we use text mining techniques [8–10, 18].

With the rule variables populated, we use a rule engine to check whether the Horn clause
is satisfied. If not, it’s easy to figure out which variable is leading to non-satisfaction,
i.e. non-compliance with respect to the obligation. We maintain traceability from variable
all the way back to the NL text in the regulation text.

Benefits of the Proposed Approach

Purposive meta-model serves as a lens for looking at regulation text, thus helping filter out
text unrelated to obligations. The modified PageRank algorithm extracts first-cut domain
model that can be extended by SME if required. With domain model as a lens over NL text,
NLP techniques help identify obligations in NL text. These obligations are presented in
Controlled Natural Language (CNL) to be refined further by SMEs on a need basis. A
formal model (SBVR) is automatically constructed from CNL using standard model
authoring techniques. Answer Set Programming helps SMEs to validate the constructed
model of regulation using a minimal set of scenarios. Validated regulation model is
automatically transformed to executable form, say rules, using standard model-to-text
transformation techniques. Extracted data model helps automatically pick the relevant
data from enterprise information footprint. Rule engine checks if the data conforms to
the rule, thus completing the compliance checking process.

Shift to model-based regulatory compliance also helps in hygiene (as the models are
amenable to automated checking for consistency, completeness and adherence to domain
constraints) and change management (as regulations, policies, controls and system specs
exist in model form, it is possible to precisely compute the impact of a change in one model

onto others, thus facilitating change-driven compliance process where the cost of compli-
ance management is proportional to the change). Where business processes and IT systems
are architected for easy configuration, model-based compliance management also helps in
making them compliant. Moreover, making these models simulatable addresses risk
management task through scenario playing. Also, such a compliance-specific digital twin
can serve as an Early Warning System to help enterprise prepare better for outlier
situations.

3 Regulatory Compliance at Optimal Cost with Minimum Exposure to Risk 47

Illustrative Use Cases of Automated Regulatory Compliance

We describe a representative sample of use cases that illustrate utility and efficacy of the
proposed approach in industry context.

Assurance of Hygiene

A compliance hygiene solution was used to demonstrate P&C regulation rationalization for
a US insurance company.

Business Problem
The insurer needed to create a centralized and rationalized obligation library of the code
books across all the US jurisdictions to stay compliant to obligations. This needed
processing of all the code books across state jurisdiction in order to classify citation/law/
obligations as per categories of insurer’s business functions. Current practice involves legal
and domain experts scanning documents manually, which is time- and effort-intensive,
without assurance of full coverage, completeness and consistency.

Scope
There are more than 250 categories associated with the insurer’s business functions.
Definitions of these categories constitute input text. Obligations as per laws, statutes and
regulations of 55 diverse states were to be mapped to these business categories and
rationalized.

Approach
As shown in Fig. 3.8, the regulation/law text was mapped to the pre-defined category and
sub-category definitions using the navigable ontologies extracted from the inputs using the
Automated Regulatory Compliance toolset supporting the proposed approach (ARC). ARC
enabled category definitions to be used as query text to search across all the input
regulations, laws and statutes for each jurisdiction. This enabled experts to map obligations
that were relevant to the category definitions and capture citations that confirm this
mapping.

48 V. Kulkarni

Regulatory docs in NL
(Regulation, Law, Statute,

Circular etc.)

NLP+ML
extraction

NL Query
• Compliance query
• Category query
• Others…

Dictionary
Concept: {mentions}

Regulation Ontology
<concept, relation, concept>

Automated
Regulatory

Compliance (ARC)
framework

Citations
KYC Reg : Sentence p
US law : Code q
RBI Circular: Obligation r
Policy: s
Category match
And so on…

Scan across regulations
over a unified ontology

Automated
extraction

Generate
citations

Unified
navigable
ontology

Node represen�ng a ‘Concept’ in ontology
Edge represen�ng a ‘Rela�on’ in ontology

Query implicit hierarchical notions
Drill-down and roll-up with
breadcrumb trails
Query across multiple regulations

Fig. 3.8 P&C regulation rationalization

Benefits

The following benefits were observed:

– Comprehensive coverage – using ARC, the categorization and mapping of citations for
55 states in the USA was completed in less than 6 months’ time frame.

– Over 90% accuracy in suggested mappings of obligations and its categorization.
– Effort and time savings resulting in estimated 90% cost savings (USD450K vs

USD4.5Mi projected).
– Reduced burden on SMEs and reduction in human errors in the process.
– One-time effort for categorization enables the management of regulatory, legal changes

as a delta.

Compliance Hygiene and Change Impact Management

Business Problem
A large EU bank initiated an effort to redesign the target operating model for their
compliance function and was looking to leverage “RegTech” designs to drive increased
automation in compliance management value chain. The focus area for PoC was regulatory
intelligence.

Objectives
The principal objectives were (1) to establish lineage from any given regulation to bank’s
policy and control documents and (2) to identify the impact of specific regulatory changes
on policy and control documents.

3 Regulatory Compliance at Optimal Cost with Minimum Exposure to Risk 49

Scope
ARC solution was leveraged to drive human-guided automation in regulatory intelligence and
policy/control lineage aligned to target operating model. Regulation covering Basel Commit-
tee on Banking Supervision guidelines related to Anti Money Laundering (AML)/Counter
Financing of Terrorism (CFT) was used for the proof-of-concept (PoC) exercise. Anti-Money
Laundering Client Onboarding Policy and Internal Control libraries associated to Know Your
Customer (KYC)/AML functions were received as in-scope documents from the bank.

Approach
Broad approach used was to apply ARC to identify obligations from the regulatory
guidelines and establish lineage from obligations to policy and operating controls. Baseline
ontology for the documents in scope was created automatically. Then ontology was
extended for the regulation, policy and control documents sequentially as in Fig. 3.9, to
prepare navigable ontologies. Obligations were automatically extracted from the regulation
document and subsequently reviewed by SMEs. ARC aids allowed the identification of a
ranked list of matched sentences in the target document (policy or control) which are
similar to a selected sentence in the source (regulation) document. Such aids also helped to
establish a reason for their similarity as displayed in Figs. 3.10 and 3.11.

Benefits
The following benefits were observed:

– Human-guided automation in measuring the compliance implementations through pol-
icy and controls leading to 25% savings in efforts compared to similar endeavours in the
past

Fig. 3.9 Sequential model building

50 V. Kulkarni

Account residesAt Bank.

Bank requiredToApply Risk management.

Risk management involves Customer Identification Procedure.

Customer Identification Procedure carriesOut Identification and Verification.

Identification and Verification basedOn Identity Information.

Identity Information verfiedUsing Document.

Bank mitigates Risk.

Risk has Risk Level.

Due diligence event merits Risk management.

Risk management requiredToManage Risk.

Fig. 3.10 Model/ontology walking for the sentences selected in two documents

Fig. 3.11 Subset model for the sentences selected in two documents

Provides evidence of compliance and evidence of gap for timely management
interventions

–

– Seamless integration possible with the bank’s landscape for regulatory intelligence and
change management

– AI-driven, model-centric automation to reduce burden on experts
– Reusable ontology models that can be extended to new documents and revised for

changes in documents

3 Regulatory Compliance at Optimal Cost with Minimum Exposure to Risk 51

Compliance Checking

Business Problem
A large bank was spending considerable time, effort and money in staying compliant. Its
large size and multi-geography operation made use of off-the-shelf RegTech tools difficult.
A purposive regulation-agnostic solution that can be tailored to the bank’s specific need
seemed the right solution.

Current Practice
Legal and domain experts tag specific interpretation of a regulation connecting rules to
enterprise artefacts and data that are identified by IT and domain experts in collaboration.
This process is manual with untagged rules at 50% and incorrectly tagged rules at 50%,
resulting in high degree of gaps in tagging. Process of checking for compliance is manual.
As a result, the process fares poorly in terms of correctness, completeness, agility and
scalability.

Objectives
Demonstrate utility and efficacy of proposed approach on MIFID11 regulation.

Scope
Money Market Statistical Reporting (MMSR) regulation

Approach
MMSR regulation and the relations between these concepts were extracted using ARC.
SMEs review and extend the ontology to capture additional concepts and relations. The
concepts and relations in the ontology serve as a vocabulary for authoring Structured
English (SE) rules which is a controlled natural language and an OMG standard for
capturing business rules. These rules were automatically converted into an SBVR (Seman-
tics of Business Vocabulary and Business Rules) model, another OMG standard. This
model is automatically transformed to generate Drools rules and a conceptual model of data
to be checked for compliance. Using TCS EDI (Enterprise Data Integration) framework,
the enterprise data is mapped to the conceptual model generated by ARC. Finally, the data
is checked against the rules, and a final validation/compliance report is generated which
contains the full traceability from NL text, to authored rules, and the data.

Benefits
The following benefits were observed:

11 https://www.esma.europa.eu/policy-rules/mifid-ii-and-mifir

https://www.esma.europa.eu/policy-rules/mifid-ii-and-mifir

52 V. Kulkarni

The framework provides enhanced controls for compliance breach monitoring and
breach management to reduce the incidents while reducing analysis and synthesis
burden on experts:

•

– Autogeneration of 49 database tables + 97 SQL queries
– Autogeneration of 36,000+ LoC fact code, 2700+ LoC POJO and ~700 LoC rules

code
• Identification of right data to be checked for compliance.
• Human-guided process for automated compliance checking (100 MMSR messages

checked for PoC).
• Full traceability in compliance reports.
• Quantitative benefits can be stated precisely only when the same compliance checking

situation is addressed “with automation” and “without automation”. As such, a compar-
ison is rather difficult, while working in real-life situation, we think the effort savings for
“similar” situations are likely to be around 25% with the use of automation aids.

Change Management

Business Problem
A large MEA bank was interested in exploring automation mechanisms that could help
identify the impact of a regulation or a regulatory circular on the banks’ internal policies.

Scope
Identify changes in policy document such as Access Management Policy due to RBI
Circular RBI/2018-19/63 DCBS.CO.PCB.Cir.No.1/18.01.000/2018-19 and Cyber Secu-
rity Framework regulation.

Approach
Baseline ontology and corresponding dictionaries were automatically extracted from the
documents in scope. Ontology for the regulation was extended by the expert. This was
further extended to capture concepts and relations from circular and policy sequentially.
This resulted in a unified, navigable ontology covering all the documents, backed by a
dictionary.

Reference to a concept in any two documents indicated conceptual correlations in the
content. Concepts present in regulation or circular but missing in policy document
indicated potential gaps. Common references to relation <concept, relation, concept>
indicated a higher likelihood of correlation between sentences. A traceability report on
sentences corresponding to common/uncommon concepts and their relations enabled the
identification of policy statements impacted by obligations listed in the regulation/circular.

3 Regulatory Compliance at Optimal Cost with Minimum Exposure to Risk 53

Results
PoT approach was effectively able to detect if the regulation and circular had an impact on
policy document. It was also able to correlate content from the regulation/circular to policy
document on the basis of common and uncommon concepts and identify relevant policy
content for selected regulatory sentences.

Benefits
The following benefits were observed:

– Automated detection of enterprise policies impacted by regulatory changes eliminating
the need for manual scanning of regulation, circular and policy content.

– The solution enables the effective management of internal control environment by
identifying new obligations missing appropriate controls or existing obligations with
weakness in control for driving timely management intervention.

– Helps fasten the process of obligation/risk taxonomy creation through automations.
– Reusable ontology models that can be extended for new regulations, circulars, policies

and other documents and revised for changes in these documents.
– Quantitative benefits can be stated precisely only when the same change management

situation is addressed “with automation” and “without automation”. As such, a compar-
ison is rather difficult, while working in real-life situation, we think the effort savings for
“similar” situations are likely to be around 25% with the use of automation aids.

Summary and Future Work

Regulatory compliance is a critical need faced by enterprises today. With enterprises likely
to operate in an increasingly regulated regime, this need will be felt even more acutely as
the time window continues to shrink. We argued the current document-centric manual
practice of regulatory compliance that relies on human experts is falling short of helping
enterprises achieve the goal of staying compliant at optimal cost and with minimal
exposure to risk. We also stated the limitations of existing RegTech like GRC frameworks
and regulation-specific point solutions.

We proposed an AI-aided model-driven approach to regulatory compliance. The key
intuition is to shift the focus from documents to models so as to bring in automation, thus
reducing the analysis and synthesis burden on human experts. We presented automation
support for authoring regulation model from regulation document in NL text, validating the
authored model, transforming the regulation model to executable rules, populating the rule
variables from enterprise data footprint and compliance checking. We showed the efficacy
of the proposed approach and the associated technology infrastructure to address the needs
of hygiene, compliance checking and change management in real-world industry-scale
contexts.

54 V. Kulkarni

Thus, it can be argued that the proposed approach is a significant step towards achieving
the goal of “staying compliant with minimal risk exposure and optimal cost”. However,
some challenges remain unaddressed.

Risk management: Cost of compliance needs to be weighed against the risk of
non-compliance. This calls for a means to quantify risk. With policies, controls,
processes and regulations available in model form, they can be simulated to play out
what-if scenarios to quantify risk using real-world data [16].

Addressing non-compliance: Can AI techniques like Machine Learning [17] and Rein-
forcement Learning [18] help suggest measures to fix a specific non-compliance? This
seems a far-away goal as of now.

Staying compliant: Given the high pervasiveness of computing in modern enterprises, the
compliance remediation decision results in the modification of software systems.
Model-centric nature of the proposed approach can help identify the software systems
that need to undergo a change. Even the exact place where the change needs to be
introduced can be identified if detailed model of software system is available. Proven
MDE techniques can be used to effect these changes in an automated manner [19, 20].

Compliance dashboard and early warning system: By keeping the compliance checking
process continuously running in the background, it will be easy to present a compre-
hensive view of compliance. Moreover, compliance digital twin, through what-if
simulation, can predict an undesirable state ahead of time. Alerts can then be issued to
the relevant stakeholders, thus helping them be prepared to handle the situation.

References

1. Sergot, M. J., Sadri, F., Kowalski, R. A., Kriwaczek, F., Hammond, P., & Cory, H. T. (1986). The
British Nationality Act as a logic program. Communications of the ACM, 29(5), 370–386.

2. Antoniou, G., Dimaresis, N., & Governatori, G. (2007). A system for modal and deontic
defeasible reasoning. In AI 2007: Advances in Artificial Intelligence, 20th Australian Joint
Conference on Artificial Intelligence, Gold Coast, Australia, December 2–6, 2007, Proceedings.

3. Kerrigan, S., & Law, K. H. (2003). Logic-based regulation compliance-assistance. In
Proceedings of the 9th International Conference on Artificial Intelligence and Law, ICAIL
2003, Edinburgh, Scotland, UK, June 24–28, 2003 (pp. 126–135).

4. Zeni, N., Kiyavitskaya, N., Mich, L., Cordy, J. R., & Mylopoulos, J. (2015). GaiusT supporting
the extraction of rights and obligations for regulatory compliance. Requirements Engineering, 20
(1), 1–22.

5. Smullyan, R. M. (1995). First-order logic. Courier Corporation.
6. Wright, V., & Henrik, G. (1951). Deontic logic. Mind, 60(237), 1–15.
7. Nute, D. (2001). Defeasible logic. In International Conference on Applications of Prolog (pp.

151–169). Springer.
8. Sunkle, S., Kholkar, D., & Kulkarni, V. (2016). Informed active learning to aid domain experts in

modeling compliance. In 2016 IEEE 20th International Enterprise Distributed Object Computing
Conference (EDOC). IEEE.

3 Regulatory Compliance at Optimal Cost with Minimum Exposure to Risk 55

9. Sunkle, S., Kholkar, D., & Kulkarni, V. (2016). Comparison and synergy between fact-orienta-
tion and relation extraction for domain model generation in regulatory compliance (International
Conference on Conceptual Modeling). Springer.

10. Roychoudhury, S., et al. (2018). A case study on modeling and validating financial regulations
using (semi-) automated compliance framework. In IFIP Working Conference on The Practice of
Enterprise Modeling. Springer.

11. Sunkle, S., Kholkar, D., & Kulkarni, V. (2015). Model-driven regulatory compliance: A case
study of “Know Your Customer” regulations. In 18th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, MoDELS 2015, Ottawa, ON, Canada,
September 30 – October 2, 2015 (pp. 436–445).

12. Kholkar, D., Mulpuru, D., & Kulkarni, V. (2018). Balancing model usability and verifiability
with SBVR and answer set programming. In MODELS Workshops (pp. 570–573).

13. Sjir Nijssen. SBVR: Semantics for business. 2007.
14. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., & Scarcello, F. (2006). The

DLV system for knowledge representation and reasoning. ACM Transactions on Computational
Logic, 7(3), 499–562.

15. Lifschitz, V. 2008. What is answer set programming? In Proceedings of the Twenty Third AAAI
Conference on Artificial Intelligence, AAAI 2008, Chicago, IL, July 13–17.

16. Dimaresis, N. (2007). A system for modal and deontic defeasible reasoning. International
Journal of Cooperative Information Systems, 14(2–3), 181–216.

17. Yeddula, R. R., Das, P., & Reddy, S. (2015). A model-driven approach to enterprise data
migration. In J. Zdravkovic, M. Kirikova, & P. Johannesson (Eds.), Conference on Advanced
Information Systems Engineering (CAISE), Stockholm, Sweden (Lecture Notes in Computer
Science) (Vol. 9097, pp. 230–243). Springer.

18. Feldman, R., & Sanger, J. (2007). The text mining handbook: Advanced approaches in analyzing
unstructured data. Cambridge University Press.

19. Kulkarni, V., Barat, S., & Clark, T. (2019). Towards adaptive enterprises using digital twins. In
2019 Winter Simulation Conference (WSC) (pp. 60–74). IEEE.

20. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects.
Science, 349(6245), 255–260.

Continuously Adapting Software 4
Tony Clark

Introduction

An AI-Enabled Enterprise relies on Digital Twin(s) to achieve adaptation. In most cases, it
is useful to be able to model the digital twin system to understand the key features and gain
confidence that appropriate adaptation will be achieved. This chapter reviews different
types of digital twin and associated implementation technology before introducing a
modelling approach for Digital Twin(s) in terms of several case studies.

Digital Twin(s)

Figure 4.1 shows a typical digital twin architecture. There are several variations depending
on the level of detail; however, most architectures involve a real system with an interface to
a digital twin. The twin measures the system using sensors and controls it using actuators.
Both the measurement and control are often partial meaning that the twin does not have
complete knowledge of the state of the system and does not have complete control over its
behaviour.

The twin is associated with a goal and tries to achieve the goal in terms of its
measurements of the real system. Often, the goal may be to achieve optimal behaviour
but may also be to achieve some sort of desirable final state. An interesting situation occurs
when an algorithm is not available that will allow the twin to achieve the goal in terms of
the controls. In this case, the twin must adapt.

T. Clark (✉)
Aston University, Birmingham, UK
e-mail: tony.clark@aston.ac.uk

The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kulkarni et al., The AI-Enabled Enterprise, The Enterprise Engineering Series,
https://doi.org/10.1007/978-3-031-29053-4_4

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29053-4_4&domain=pdf
https://orcid.org/0000-0003-3167-0739
mailto:tony.clark@aston.ac.uk
https://doi.org/10.1007/978-3-031-29053-4_4#DOI

58 T. Clark

Fig. 4.1 Digital twin
architecture DigitalTwinSystem

System

Sensor

Twin

GoalActuator

goalactuator

twinsystem

senscr twin

system

In most cases, it is not possible to obtain historical data from the real system to adapt.
This may be because the real system is not well understood (a black box) or because it is
just too complex. In this situation, the twin must adapt dynamically as the real system
executes.

Figure 4.1 is a very high-level conceptual view of a digital twin, and there may be many
different variations on the terminology used and the activities of the key concepts. For
example, the system may be a physical system, a digital system, a human system or a mix.
Sensors and actuators may be automated or involve human intervention. A digital twin
system may involve multiple Digital Twin(s) for the same system or multiple systems with
their own collection of twins. The entire system may be tightly integrated or federated
across a network and cloud-based technologies.

In all cases, a twin will contain a model of some aspect of the real system. The extent to
which the model is in correspondence with the real system depends on the role of the twin
system. Further, the information provided by the sensors and the level of control provided
by the actuators will depend on what is offered by the real system. In extreme situations, the
real system may not expose the detail of its inner workings, and a twin may have to build up
a picture of the system incrementally from noisy and incomplete information.

4 Continuously Adapting Software 59

There are several variations on the theme of Digital Twin(s) depending on the level of
integration and automation:

Simulating A simulation does not connect the twin to a real system. There may be several
reasons for this. A typical motivation for a simulation twin is to resolve design issues when
building the real system. Another reason may be to try to understand the as-is or to-be states
of the real system, particularly when maintaining or making system modifications. A
simulation can be used to determine whether a particular system configuration will achieve
the desired goals and to investigate configuration variations.

Shadowing A shadow receives sensor information from the real system to monitor its
behaviour. A shadowing twin may be used to raise issues when the real system diverges
from the expected behaviour; in this sense, it can advise when situations arise but cannot
act on the basis of the advice.

Controlling A twin that monitors the real system via the sensors and performs control via
the actuators is a controlling twin. Such a twin can be used to nudge a system back on track
when it diverges from desirable behaviour. If the actuation involves a human, then the
controlling twin can be used for decision support where several options for control are
presented for the user to choose from. Typically, a controlling twin will have a fixed
behaviour (often the ideal behaviour) which is measured against the information from the
real system available via the sensors.

Adapting A twin that changes its behaviour to achieve a goal is an adapting twin. In
comparison with a controlling twin, the adapting twin need not have a fixed behaviour – it
may not know what the system should do. In such situations, we will refer to the behaviour
of the twin as its policy. The twin must dynamically adapt in order to develop a policy that
can be used to control the real system.

The variations above form a broad spectrum of sophistication in terms of twin
behaviour. They are not intended to be entirely distinct, for example, a simulation may
also adapt. However, the level of difficulty increases depending on the level of integration
with a real system; the level of fidelity between the real system and the twin; the quality,
quantity and frequency of communication between the twin and the system; whether the
twin system is fully automated or relies on human intervention; and whether the twin policy
is fixed and known in advance [3].

60 T. Clark

State of the Art

Adaptation in software systems relies on a feedback loop that monitors the system and, its
environment and adapts the system against some specified goals [4]. The autonomic
control loop shown in Fig. 4.2 [5] is equivalent to the MAPE (or MAPE-K) loop shown
in Fig. 4.3 [6] since it collects data, compares data against expectations, decides how to
intervene, and then applies actions. The specific technologies that are used to achieve these
activities will depend on the application and the level of sophistication. The loop in Fig. 4.2
was designed by merging standard approaches from engineering control theory with
knowledge-based control used in fields such as intelligent robotics and planning systems.

Fig. 4.2 Autonomic control loop [1]

Fig. 4.3 MAPE-K loop [2]

4 Continuously Adapting Software 61

The engineering approaches of MIAC and MRAC both use models to implement the
loop [4] which is key to a model-driven approach to Digital Twin(s) where a twin builds
(MIAC) or maintains (MRAC) a model of the real system. Several types of model used in
Digital Twin(s) are identified in MODA [7] in order to separate out the goals (prescriptive),
the expectations (predictive) and the mirror of the system (descriptive). From this work, it is
clear that there is scope for separating out the different types of models required by adaptive
systems and Digital Twin(s) at both design time (when designing and prototyping twins)
and at run-time (by processing the model dynamically).

Adaptation can be achieved through several technologies. Recent advances in Machine
Learning provide an obvious choice for many types of non-trivial adaptation against goals
[8]. Since Digital Twin(s) model aspects of real systems, the size of any state space
associated with a twin policy is likely to be huge, and therefore, deep learning would
seem appropriate. The MAPE-K architecture can be extended using Machine Learning
techniques [9] as the adaptation mechanism leading to a variety of design and implementa-
tion questions regarding the correct ML technology to use.

A key feature of an adaptable digital twin is that it will typically adapt dynamically
meaning that techniques for learning from existing data are not appropriate. Recent
advances in Reinforcement Learning [10] are demonstrating that incremental learning
techniques are appropriate for twins that need to discover policies. Reinforcement Learning
can easily be included in the autonomic control loop [11] as shown in Fig. 4.4 where an
additional reward stream provided by an oracle is added to the twin. The oracle monitors
the controls and effects produced by the twin and measured from the system and associates
the effects with a reward. The reward is used to fine-tune the choices made by the twin and
thereby improve the internal policy.

Although there has been progress in identifying the architecture of Digital Twin(s), their
control features, the types of models to be used and the technologies that might be used to
achieve adaptation, little has been developed in terms of languages to express Digital
Twin(s). As described in [12], such languages need to have explicit support for the

Fig. 4.4 Twin Reinforcement Learning

feedback loop that is intrinsic to adaptable systems and to provide explicit support for
representing key features such as goals and adaptation mechanisms.

62 T. Clark

The rest of this chapter provides an approach to this challenge in the form of a language
and associated toolset called TwinSim that provides dedicated support for Reinforcement
Learning-based adaptation features that are required when designing and prototyping
Digital Twin(s).

Modelling Twin Systems

The previous section has motivated the need for adaptive Digital Twin(s) within an
AI-Enabled Enterprise. Several twin architectures are available together with adaptation
technologies. However, there is a need for an approach for twin design. This section
introduces an approach to the design of Digital Twin(s) leading to an executable twin
simulation that can be used to provide confidence prior to implementation.

Case Study

Consider a system that processes jobs. Each job must be allocated to a bucket for
processing. The processing takes a specific amount of time, and each bucket has a
maximum capacity.

The system is dumb in the sense that it has no intrinsic knowledge of how to allocate
jobs so that no bucket overflows. Our challenge is to construct a digital twin of the system
to control it. In terms of the architecture shown in Fig. 4.1, we have:

Sensor The system informs the twin as to whether a bucket has exceeded capacity.

Actuators The twin allocates a new job to a bucket.

The task of the twin is to use the sensors and actuators to adapt to achieve the goal of
preventing any overflow. The twin uses a model of the system to achieve this goal by
learning two system parameters:

Capacity The capacity of each bucket

Duration The duration of processing for any job at a given bucket

The digital twin system can be modelled as shown in Fig. 4.5. A state of the digital twin
system is either in sensor or actuator mode depending on whether the twin is receiving data
from the system or controlling it. The twin system has a reference to the real system (which
we need to model the real behaviour). However, the twin is separate and has no internal

knowledge of the system. The system has a collection of buckets, each of which has a
name, a capacity and a duration. The task of the twin is to learn the capacity and duration
values of each bucket through behavioural adaptation. The twin contains a collection of
duration guesses and bucket names to choose from when allocating jobs. It receives a
measure of OK or FAIL from the sensor based on the state of the real system. At any time, it
has a sequence of actions which describe the current state of job allocation. The system is
informed of each new job allocation via the actuator.

4 Continuously Adapting Software 63

Fig. 4.5 Allocating packages: model

Each time the actuator requests an action from the twin, a new job is allocated. While the
twin does not have a policy that is consistent with the goal, it must choose actions at
random based on knowledge of the names of available buckets and the possible job
duration.

Twin System Execution

Execution involves making transitions based on the model shown in Fig. 4.5 and proceeds
by alternating two phases:

Actuator Create an action based on the current policy defined by the twin. At the start of
the execution, the policy is unknown; therefore, actions are created at random. Therefore,
many of the actions will violate the goal, although some will be OK. As the twin adapts, the
policy starts to develop, and the actions are more likely to satisfy the goal.

64 T. Clark

: TwinSystem

:Twin
:System : Actuator

: Bucket

: OK

twin system mode

measure

durationGuesses= [1, 2, 3, 4]

buckets[0]

bucketNames = [A]

name = A
capacity = 2
duration = 2

Fig. 4.6 Allocating packages: a simple starting state

Sensor Actions that are sent to the system may cause the system constraint to be violated
either by allocating a job to a bucket with an inappropriate duration or by allocating a job to
a bucket that is already full. The twin receives either OK or FAIL from the system via the
sensor.

The simplest twin system involves a single bucket as shown in Fig. 4.6 where bucket A
has a capacity of two jobs and a duration of two for each job. The twin knows that there is a
single bucket but does not know the capacity or duration. It will guess the duration by
selecting numbers from 1 to 4.

Figure 4.7 shows what happens when the twin is used without any training. Step 0 is the
initial state of the system. At step 1, an action is allocated, and the mode of the twin system
is set to Sensor. The system feeds back that the action is acceptable in step 2. Steps 3 and
4 repeat this where a second action is created which is acceptable. However, at step 5, a
new action is created which has a duration of four which the sensor reports as unacceptable
in step 6.

The twin can make some observations about the execution shown in Fig. 4.7. Firstly,
several actions were allocated that the system reported as being acceptable. The twin can
record these successful actions as being more likely to achieve success in the future.
Secondly, step 6 shows an action that is unacceptable. The twin can record this and
avoid making the same choice in the future. Over time, this will lead to a twin policy
where the choices tend towards success and tend to avoid failure.

The twin system has arrived at an undesirable state in step 6. Depending on whether we
are training the twin before deployment or dynamically training it will determine the next

steps. In certain twin systems, creating an undesirable state is terminal, and the whole
system must be reset. This is likely to be the case where the twin is trained a priori.
Alternatively, the real system may fail-safe (perhaps we are trying to adapt to optimize
something) in which case execution continues.

4 Continuously Adapting Software 65

Fig. 4.7 A digital twin with adaptation

Twin Policies

Adaptation in the twin occurs by building up a policy. The policy is a graph that consists of
nodes labelled by twin states and edges that are labelled with numbers. The policy can be

used by finding the node labelled with the current state of the twin and then selecting the
edge with the highest value. The next state of the twin is the label of the target node.

66 T. Clark

Fig. 4.8 A partial policy

The nodes of the policy have three modes: initial which is coloured green, intermediate
which is coloured yellow and terminal which is coloured red.

A policy is constructed incrementally. Figure 4.8 shows the policy of the job allocation
twin as it is constructed. The initial node is labelled with the names, guesses and mode of
the twin. All other nodes are labelled with the current actions.

Figure 4.9 shows a fully trained policy for the twin. Note that it contains a cycle and can
therefore support twin system that runs forever.

Consider a twin system that contains four buckets as shown in Fig. 4.10. The twin can
choose to create an action that allocated to any bucket each step. In addition, there are seven
different job durations to choose from each time.

After the twin has adapted to the hidden parameters, it produces a policy as shown in
Fig. 4.11. The interesting thing about this policy is that it satisfies the goal: all jobs are
allocated, and no bucket ever overflows, but the system does not require all four buckets. In
this case, the adaptation performed by the twin has achieved two things: (1) found a
suitable policy and (2) caused the system to be optimized with respect to the number of
buckets needed.

A technology that implements an adaptable twin is not limited to finding an appropriate
policy. The technology can be used to perform experiments, by varying the system
parameters in order to find a system configuration for which a policy exists and which
satisfies some goal.

4 Continuously Adapting Software 67

Fig. 4.9 A complete policy

: TwinSystem

:System : Actuator
:Twin

: Bucket : Bucket : Bucket : Bucket

: OK

twin system mode

measure buckets[0] buckets[1] buckets[2] buckets[3]

name = A
capacity = 2

duration = 2

name = B
capacity = 3

duration = 4

name = C
capacity = 2

duration = 4

name = D
capacity = 2

duration = 3

durationGuesses= [1, 2, 3, 4,5,6,7]
bucketNames = [A,B,C,D]

Fig. 4.10 Allocating packages: a starting state with four buckets

68 T. Clark

Fig. 4.11 A twin policy for four buckets

Implementation: TwinSim

TwinSim is a domain-specific language for modelling digital twin systems. The diagrams
in the chapter have all been produced by TwinSim.

As noted above, Reinforcement Learning is a suitable technology that can be used to
achieve twin adaptation. This is because it is not often possible to produce training data
from the real system; therefore, the data used to adapt the twin is incrementally produced by
sensors attached to the real system as shown in Fig. 4.1. A domain-specific language
provides the following features:

State Model The execution of the digital twin system proceeds in using state transitions.
Each state is an instance of a state model. An example of a state model is given in Fig. 4.5.
The TwinSim language offers two constructs to define the state model:

4 Continuously Adapting Software 69

Terms A term-definition is like a class in a UML model or a Java program. It introduces a
data type with associated fields. A term-definition has the form:

term n(field-name:field-type,...) {
fun fun-name(fun-arg,...) = fun-body;...

}

The short form of a term-definition omits the functions and the curly braces. The very
short form can omit the field definitions if the term-definition has only one instance. An
example of a term-definition is:

term Action(bucket:str,maxd:int,duration:int);

A term-value is created using the name of the term-definition and supplying arguments
of the appropriate type:

a = Action("A",3,3)

The fields of a term value can be referenced using pattern-matching or using “.”, for
example s.buckets where s is a term of type System.

Unions A union-definition introduces a data type and a collection of term-definitions. An
instance of any of the term-definitions can be used when a value of the union data type is
expected. A union-definition has the form:

union n { term-name(field-name:field-type,...); ...
}

An example of a union-definition is:

union Mode { Sensor; Actuator; }

Levers A lever is a value that controls the digital twin system and which may be changed

val name:type = value;
at the start of the simulation or at any time during the simulation. Typically, a lever will be
specified as a value definition in the form:

The following are two examples of value definitions:

val theBuckets:[Bucket] = [bucketA,bucketB,bucketC,bucketD];

val theDurations:[int] = [1,2,3,4,5,6,7];
val theBucketNames:[str] = [b.name | b ← theBuckets];

70 T. Clark

fun-name:(arg-type,...) → result-type fun n(arg-pattern,...) = fun-body; ...

Functions Functions are defined in order to perform tasks as part of the simulation. A
function-definition has the form:

The first line introduces the type of the function, and the subsequent lines provide
pattern-directed cases for its definition. When the function is applied to argument values,
each of the cases is tried in turn until all of the arg-patterns match the values, in which case
the function body provides the return value. An example is shown below:

sensor:(TwinSystem) → TwinSystem;
fun sensor(TwinSystem(Twin(as,_,g,ns),s,m)) =
TwinSystem(Twin(as,OK,g,ns),s,m) when actionsOK(as); fun

sensor(TwinSystem(Twin(as,_,g,ns),s,m)) =
TwinSystem(Twin(as,FAIL,g,ns),s,m);

State Machine A digital twin system executes using a state machine. The states are
instances of term-definitions, and the transitions are defined by rules. A state machine
has the form:

name:(type) → type;
machine name:type { rewardClause... terminalClause...

constraintClause... ruleClause... initialClause
learnClause training-parameter...

}

A state machine can be thought of as a function that maps a term-value to a term-value.
The mapping is defined by the machine’s policy which is initially empty. The various
clauses within the machine definition (explained below) define how the policy is populated
using Reinforcement Learning.

Rewards A reward is a mapping from a term-value to a real number that describes how
well the value matches the goal of the machine. Typically, attractive values (machine
states) will be mapped to higher values than less attractive values. The reward clauses of a
machine definition are implemented to cover the goal of the digital twin. A reward clause
has the form:

reward name {
pattern → real-value

}

The following are examples of reward clause definitions:

reward ok {
TwinSystem(Twin(_,OK,_,_),_,_) → 1.0

}
reward fail {

TwinSystem(Twin(_,FAIL,_,_),_,_) → 0.0
}

4 Continuously Adapting Software 71

constraint name { pattern}

Constraints The state model of the twin system has semantics that are defined
by constraints which are conditions that hold at any time for the machine state. A
constraint-clause is a pattern that must match the state:

The following constraint requires the system to be correct, i.e. no bucket has exceeded
capacity, and all jobs are allocated to buckets for the appropriate duration:

constraint legal {
TwinSystem(Twin(_,OK,_,_),_,_)

}

learn set-expression

Initial States Execution of a machine starts in one of a number of initial states. Once
started, the execution may be intended to go on forever or may aim to reach a terminal state.
The initial states are specified as a set:

learn {
TwinSystem(

Twin([],OK,theDurations,theBucketNames),
System(theBuckets),Actuator)

}

For example, the following specifies a single starting state for the case study:

Terminal States The machine may have terminal states which, if reached, cause the
machine to stop. There are two situations where this might occur: (1) when the state
becomes illegal or (2) when the state becomes a target state. Terminal states are defined
using terminal clauses of the form:

terminal name {
pattern

}

For example, there is no point in continuing past the point when the system has failed:

terminal bad {
TwinSystem(Twin(_,FAIL,_,_),_,_)

}

Transition Rules The machine is executed using pattern-directed transition rules. At
any time, the machine is in a current state. An execution step is performed by matching
the current state against all transition rules that are satisfied and creating a new state based
on the target of the rule. This occurs for all possible rules that are satisfied. For each rule
that is satisfied, there may be multiple ways in which the rule can apply to the current state
and the rule may specify multiple possible target states. In that case, all target states are

created and added to the current policy, and the best choice is made. If the policy does not
specify the best choice, then a target state is chosen at random. A rule has the
following form:

72 T. Clark

rule name {
pattern →exp

}

The following two rules define the sensor phase of a machine. They are mutually
exclusive, so just one of them will apply:

rule sensorOK {
TwinSystem(Twin(as,s,g,ns),sys,Sensor) →

TwinSystem(Twin(as,OK,g,ns),sys,Actuator) when actionsOK(as)
}
rule sensorFAIL {

TwinSystem(Twin(as,s,g,ns),sys,Sensor) →
TwinSystem(Twin(as,FAIL,g,ns),sys,Actuator) when not(actionsOK(as)) }

The following example uses select to select an element at random from the bucket
names and the durations. Therefore, an actuator phase of the machine will allocate a job to a
bucket at random and for a randomly selected duration:

rule actuator {
TwinSystem(Twin(as,_,guesses,ns),s,Actuator) → let b = select(ns) d =

select(guesses) in
let as = [Action(b,m,n-1) | Action(b,m,n) ← as, ?n > 1]
in TwinSystem(Twin([Action(b,d,d)] ++ as,OK,guesses,ns),s,Sensor) }

When the actuator rule is used, the policy is expanded with all the possible state
transitions, and the best is chosen based on the constraints and rewards defined for the
machine.

Training Parameters Where a policy is created a priori, the machine must be configured
and executed multiple times. Each execution consolidates the machine’s policy. The
training parameters are used to control how long each execution should last (steps)
and how many executions there should be (epochs). The policy can be sampled during
the executions to display a graph (trace). Reinforcement Learning is performed in terms
of exploration and exploitation, which is controlled using decay, and in terms of
parameters alpha and gamma.

Figure 4.12 shows the result of training the case study machine. The y-axis shows
cumulative rewards for each epoch which is represented on the x-axis. It demonstrates a
typical profile arising from the trade-off between exploration and exploitation. The rewards

are low towards the left of the graph where the machine is performing a high degree of
exploration and often getting it wrong. Towards the right of the graph, the machine is
exploiting the policy that is emerging and therefore tending to get it right. After a certain
point, the policy has reached a fixed point (although a limited amount of exploration still
occurs).

4 Continuously Adapting Software 73

Fig. 4.12 A training profile

74 T. Clark

The complete implementation of the bucket case study is shown below:

import "Lists.sys";
term System(buckets:[Bucket]); term Twin(actions:[Action],measure:Measure,
durationGuesses:[int],bucketNames:[str]) {

fun toString() = actions;
}
term TwinSystem(twin:Twin,system:System,mode:Mode) {

fun toString() =
case twin.actions {

[] → "names = " + twin.bucketNames +
" guesses = " + twin.durationGuesses +
", " + mode;

_ → twin + ", " + mode;
};

}

term Action(bucket:str,maxd:int,duration:int) {
fun toString() = bucket + " for " + duration;

}
Union Measure { OK; FAIL; }
union Mode { Sensor; Actuator; }
term Bucket(name:str,capacity:int,duration:int);

val bucketA:Bucket = Bucket("A",2,2);
val bucketB:Bucket = Bucket("B",3,4);
val bucketC:Bucket = Bucket("C",2,4);
val bucketD:Bucket = Bucket("D",2,3);

val theBuckets:[Bucket] = [bucketA,bucketB,bucketC,bucketD];
val theDurations:[int] = [1,2,3,4,5,6,7]; v
al theBucketNames:[str] = [b.name | b ← theBuckets];
val theSystem:System = System(theBuckets);
val theTwin:Twin = Twin([],OK,theDurations,theBucketNames);
val theTwinSystem:TwinSystem = TwinSystem(theTwin,theSystem,Actuator);
getBucket:(str) → Bucket;
fun getBucket(name) =

find b ← theBuckets { b.name = name } then b
else "no bucket named " + name;

actionsOK:([Action]) → bool;
fun actionsOK(actions) =

forall a ← actions {
a.maxd = getBucket(a.bucket).duration } and forall b ← theBuckets {

bucketOK(b,actions) };

bucketOK:(Bucket,[Action]) → bool; fun bucketOK(b,actions) = #([1 | Action(n,m,_) ← actions,?n = b.name])
<= b.capacity;

4 Continuously Adapting Software 75

perform:([Action]) → [Action]; fun perform(as) = [Action(b,m,n-1) | Action(b,m,n) ← as, ?n > 1];

allocator:(TwinSystem) → TwinSystem;
machine allocator:TwinSystem {

reward ok {
"stay OK."
TwinSystem(Twin(_,OK,_,_),_,_) → 1.0

}

reward fail {
"avoid fail."
TwinSystem(Twin(_,FAIL,_,_),_,_) → 0.0

}

terminal bad {
TwinSystem(Twin(_,FAIL,_,_),_,_)

}

constraint legal {
TwinSystem(Twin(_,OK,_,_),_,_)

}

rule actuator {
TwinSystem(Twin(as,_,gs,ns),s,Actuator) → let b = select(ns) d =

select(guesses)
in TwinSystem(Twin([Action(b,d,d)] ++ perform(as),OK,gs,ns),s,Sensor)

}

rule sensorOK {
TwinSystem(Twin(as,s,g,ns),sys,Sensor) →

TwinSystem(Twin(as,OK,g,ns),sys,Actuator) when actionsOK(as)
}

rule sensorFAIL {
TwinSystem(Twin(as,s,g,ns),sys,Sensor) →

TwinSystem(Twin(as,FAIL,g,ns),sys,Actuator) when not(actionsOK(as))
}

learn {
TwinSystem(Twin([],OK,theDurations,theBucketNames),theSystem,Actuator)

}

train decay = 0.9999; train steps = 100; train epochs =
7000; train trace = 50; train gamma = 1.0; train alpha
= 1.0;

}

Training for Multiple Eventualities

A twin may have a goal to ensure that a system maintains a state within given parameters.
The twin cannot directly update the state of the system and must use the actuator controls in
order to nudge the system in the right direction. The twin must adapt in order to achieve a
policy that uses the controls in the right way.

Consider a self-driving car (Fig. 4.13) system whose aim is to stay in the centre of a lane.
If the road is straight and flat, then the car simply continues in its current direction.
However, the road may bend and may present physical issues that must be addressed by
modifying the current direction. A digital twin can learn a policy that controls the car.
Sensors are used to measure the current distance to the centre of the lane, and actuators are
used to change the position of the steering wheel. A simple digital twin system for the car is
shown in Fig. 4.14. The twin can set the position of the driving wheel which in turn will
affect the change in lane position.

76 T. Clark

Fig. 4.13 A self-driving car

Unlike the job-processing twin, the car twin must deal with changes in the car state that
are not controlled by the actuator. These changes occur when the car encounters bends in
the road or other physical challenges. In this case, the environment forces changes to the
system state that must be addressed by the twin through adaptation.

Fig. 4.14 A car digital twin

4 Continuously Adapting Software 77

term System(wheel:Direction,position:int); union Direction { Left;
Right; Centre; } term Twin(position:int);
term TwinSystem(twin:Twin,system:System,mode:Mode); union Mode { Sensor; Actuator;
}

val maxPosition:int = 2;
val thePositions:[int] = (0-maxPosition)..(maxPosition+1);
val theDirections:[Direction] = [Left,Right,Centre];

selfDrive:(TwinSystem) → TwinSystem;
machine selfDrive:TwinSystem {

reward stayCentral { TwinSystem(Twin(0),_,_) → 1.0 }
reward avoidNonCentral { TwinSystem(Twin(_),_,_) → -1.0 }
terminal bad { TwinSystem(Twin(pos),_,_) when abs(pos) > maxPosition }
constraint legal {

TwinSystem(Twin(pos),_,_) when abs(pos) <= maxPosition
}

rule actuator {
TwinSystem(Twin(pos),System(_,pos),Actuator) →

TwinSystem(Twin(pos),System(select(theDirections),pos),Sensor)

}
rule sensorRight {

TwinSystem(Twin(_),System(Right,pos),Sensor) →
TwinSystem(Twin(pos+1),System(Right,pos+1),Actuator)

}
rule sensorLeft {

TwinSystem(Twin(_),System(Left,pos),Sensor) →
TwinSystem(Twin(pos-1),System(Left,pos-1),Actuator)

}
rule sensorCentre {

TwinSystem(Twin(_),System(Centre,pos),Sensor) →
TwinSystem(Twin(pos),System(Centre,pos),Actuator)

}

learn {
TwinSystem(Twin(pos),System(dir,pos),Actuator) | pos ← thePositions, dir ←

theDirections
}

}

Fig. 4.15 A car digital twin system

To deal with such changes, Reinforcement Learning must be presented with all possible
states that could be encountered. The resulting policy will contain all the possible states,
and we can jump around the resulting state machine at will because of the values received
from the sensor.

A digital twin system for a car is modelled in TwinSim as shown in Fig. 4.15. This is
clearly a highly simplified model which elides many physical measurements provided by
car sensors and represents the single measure of position in a simple discrete form where
the real system would provide measures from a continuous data domain.

The key phases of the machine are:

Actuator The twin can command the car to move the steering wheel Right, Left or
Centre. The twin will adapt by learning a policy that chooses the correct command.

Sensor The twin is provided with the current position of the car. The position is
represented as an integer on a scale of –maxPosition to maxPosition where 0 is
the centre of the lane.

78 T. Clark

Fig. 4.16 Training the car twin

The machine is rewarded positively when the twin senses that the car is in the centre of
the lane and is rewarded negatively otherwise. Training will stop when the car leaves the
lane as defined by the terminal and the constraint-clauses.

In order to deal with all eventualities, the machine is trained using starting states that
cover all possible car positions:

learn {
TwinSystem(Twin(pos),System(dir,pos),Actuator) | pos ← thePositions, dir ←

theDirections
}

Figure 4.16 shows the result of training against all the initial states leading to the policy
shown in Fig. 4.17. Note that the policy guides all states towards the centre and then keeps
it there. Of course, the car system may cause the twin to jump around the states as physical

challenges are encountered, but the twin will ensure that the car always tends towards the
centre of the lane no matter which state it ends up in.

4 Continuously Adapting Software 79

Fig. 4.17 Car twin policy

Prototyping as Part of the Development Process

The AI-Enabled Enterprise relies on dynamic adaptation using knowledge about the
domain and goals. Figure 4.18 shows the adaptive architecture for such an enterprise
which relies on a model of that part of the system that is used to compare the current
state with the ideal state as represented by the model.

To achieve an AI-Enabled Enterprise based on the architecture shown in Fig. 4.18, the
learning must operate at scale since the state space of the model is likely to be huge. Perfect

adaptation at such a scale is not possible due to the state space explosion: it is equivalent to
learning a complete state machine that represents a function.

80 T. Clark

Fig. 4.18 Adaptation architecture

In order to be realistic, the state machine (and therefore the function) must be
approximated using techniques such as deep learning based on neural networks. In this
case, the function is approximated using feedback loops and weights within a network.
However, direct use of this approach raises significant problems developing the resulting
AI-Enabled Enterprise:

Semantics In order to use deep learning, the domain must be encoded in a way that is
suitable for the network. This inherently loses information which is difficult to recover
except in terms of the outputs of the network.

Verification Given the loss of semantics, it is difficult to analyse the resulting adaptive
system in terms of completeness and consistency with respect to the goal. Furthermore,
intermediate states of neural networks are not particularly useful and cannot be mapped
onto intermediate state machines.

4 Continuously Adapting Software 81

Explanation Explainable Machine Learning is an active research area which aims to
provide feedback on why a given situation has arisen. The loss of semantics means that
this is difficult for neural networks.

Given these drawbacks, it is useful to be able to prototype the key features of adaptation
that will be used to drive the AI-Enabled Enterprise. TwinSim, as described in this chapter,
is an approach that can be used to address the issue. TwinSim uses an algebraic represen-
tation of system states and pattern-directed rules to perform system execution. The
resulting system is therefore complete in the sense that no information is intrinsically lost
and is amenable to analysis including consistency checking. The system can be run to
produce intermediate state machine that can be inspected and interrogated using queries.
Execution runs from different initial states can be compared.

A drawback of the TwinSim approach is that it does not scale. However, our proposal is
that many applications can be decomposed and reduced in terms of their complexity so that
they can be expressed as a collection of representative independent adaptable subsystems,
each of which can usefully be prototyped and analysed using the TwinSim approach.

Research Roadmap

As software systems grow in sophistication and connectivity, it is increasingly challenging
to dictate a fixed behaviour prior to deployment. Thus, systems must adapt post-
deployment against goals that may be fixed, but also may change over time. The main-
stream engineering of adaptable software systems is a relatively recent topic as described in
[13] where the authors conclude by listing key challenges that must be addressed.

A suitable architecture must be chosen when designing for adaptation that is supported
by a suitable adaptation technology. The leading architecture is MAPE-K associated with
Machine Learning; however, this raises questions about language support for MAPE-K,
dealing with heterogeneity in large systems, and which style of Machine Learning to adopt.
As systems become large and complex, agent-based architectures might be more appropri-
ate leading to issues about distributed Machine Learning including game theory including
adversarial approaches [9].

Given that adaptive software tends to address issues of uncertainty, there is a challenge
regarding achieving the appropriate level of quality and in particular verification of such
systems [14]. Digital Twin(s) typically involve some level of simulation which must be
validated through analysis. The construction of adaptive systems lacks a methodology.
Figure 4.18 shows the key concepts that are required at the heart of an AI-Enabled
Enterprise; the question arises: how are these concepts acquired and developed into a
system? Therefore, within the context of an AI-Enabled Enterprise, the following key
research questions should be addressed to achieve adaptation:

82 T. Clark

Conceptual model What are the underlying concepts that must be represented to build
such a system?

Application variations What is the space of purposes to which the adaptation can be
applied? Decision support and error identification are examples of such variations. Can
these variations be represented as a product line?

Architecture What is the architecture space for such adaptive systems? The MAPE-K
architecture is an example.

Method What is the method by which such a system can be designed, built and deployed?
Given the application area, there is likely to be heavy reliance on human knowledge;
therefore, are there specific roles and knowledge acquisition techniques to be used?

Scale How to manage the state space associated with real-world adaptive systems?

Validation How to check that the model relates to the real-world system? How to check
that the model of the goal is that which we want to achieve?

Verification How to check that the adaptive system will converge on the goal? Can
executions of the system be interrogated and is there a way of determining if the system
is complete?

Technology What are the appropriate technology platforms that can be used to implement
the adaptive system?

References

1. Dobson, S., Denazis, S., Fernandez, A., Gaiti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre, F.,
Schmidt, N., & Zambonelli, F. (2006). A survey of autonomic communications. ACM
Transactions on Autonomous and Adaptive Systems (TAAS), 1(2), 223–259.

2. Rutten, E., Marchand, N., & Simon, D. (2017). Feedback control as MAPEK loop in autonomic
computing. In Software engineering for self-adaptive systems III (pp. 349–373). Assurances.

3. Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising the digital twin: A
systematic literature review. CIRP Journal of Manufacturing Science and Technology, 29, 36–52.

4. Brun, Y., Di Marzo, G., Serugendo, C. G., Giese, H., Kienle, H., Litoiu, M., Muller, H., Pezze,
M., & Shaw, M. (2009). Engineering self-adaptive systems through feedback loops. In Software
engineering for self-adaptive systems (pp. 48–70). Springer.

5. de Lemos, R., Giese, H., Bencomo, N., Cukic, B., Muller, H., & Weyns, D. (2009). Software
engineering for self-adaptive systems: A research roadmap. In B. H. Cheng, R. Lemos, H. Giese,
P. Inverardi, & J. Magee (Eds.), Software engineering for self-adaptive systems (Lecture Notes in
Computer Science) (Vol. 5525).

4 Continuously Adapting Software 83

6. Autonomic Computing, et al. (2006). An architectural blueprint for autonomic computing. IBM
White Paper, 31(2006), 1–6.

7. Eramo, R., Bordeleau, F., Combemale, B., van den Brand, M., Wimmer, M., & Wortmann, A.
(2022). Conceptualizing digital twins. IEEE Software, 39(2), 39–46.

8. Almasan, P., Ferriol-Galmes, M., Paillisse, J., Suarez-Varela, J., Perino, D., Lopez, D., Perales, A.
A. P., Harvey, P., Ciavaglia, L., Wong, L., et al. (2022). Digital twin network: Opportunities and
challenges. arXiv preprint arXiv:2201.01144.

9. Gheibi, O., Weyns, D., & Quin, F. (2021). Applying machine learning in self-adaptive systems: A
systematic literature review. ACM Transactions on Autonomous and Adaptive Systems (TAAS),
15(3), 1–37.

10. Cronrath, C., Aderiani, A. R., & Lennartson, B. (2019). Enhancing digital twins through
reinforcement learning. In 2019 IEEE 15th International Conference on Automation Science
and Engineering (CASE) (pp. 293–298). IEEE.

11. Francois-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., Pineau, J., et al. (2018). An
introduction to deep reinforcement learning. Foundations and Trends® in Machine Learning, 11
(3–4), 219–354.

12. Jouneaux, G., Barais, O., Combemale, B., & Mussbacher, G. (2021). Towards self-adaptable
languages. In Proceedings of the 2021 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (pp. 97–113).

13. Salama, M., Bahsoon, R., & Bencomo, N. (2017). Managing trade-offs in self-adaptive software
architectures: A systematic mapping study (pp. 249–297).

14. de Lemos, R., Giese, H., Muller, H. A., Shaw, M., Andersson, J., Litoiu, M., Schmerl, B.,
Tamura, G., Villegas, N. M., Vogel, T., et al. (2013). Software engineering for self-adaptive
systems: A second research roadmap. In Software engineering for self-adaptive systems II (pp. 1–
32). Springer.

Democratized Hyper-automated Software
Development 5
Sreedhar Reddy

Introduction

Enterprises are fast becoming complex system of systems that increasingly need to operate
in dynamic operating environments while dealing with unforeseen changes along multiple
dimensions. They must constantly innovate to survive and stay ahead in this environment,
be it new products, services or business models. Moreover, enterprises are increasingly part
of connected ecosystems, with offerings cutting across multiple ecosystem players. Soft-
ware is central not only to the operationalization and integration of these products and
services but, in many cases, central to the business models themselves. With increased
pervasiveness of computing, the role of IT systems will not just be limited to deriving
mechanical advantage through business process automation. Instead, these systems would
be the key driver of the growth story. With the availability of exploding volumes and
varieties of data, there is a growing demand for sophisticated applications that are capable
of deriving business insights, predicting future trends, planning and decision-making.
Enterprises are fast moving towards an “everything is software” scenario wherein a variety
of information processing needs (as shown in Fig. 5.1) will have to be met in a short
window of opportunity. The ever-changing technology landscape adds to this, with more
and more sophisticated platforms, frameworks and libraries coming up all the time, which
enterprises want to exploit to stay ahead. All these factors are expected to lead to an
explosion in demand for the development and evolution of software across business
verticals. This exploding demand is impossible to be met relying solely on trained
manpower. Even today, we experience an acute shortage of STEM skills, and this shortage
is expected to increase even further over the next decade. A new approach to software

S. Reddy (✉)
Tata Consultancy Services Research, Pune, Maharashtra, India
e-mail: sreedhar.reddy@tcs.com

The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kulkarni et al., The AI-Enabled Enterprise, The Enterprise Engineering Series,
https://doi.org/10.1007/978-3-031-29053-4_5

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29053-4_5&domain=pdf
https://orcid.org/0000-0002-6990-1662
mailto:sreedhar.reddy@tcs.com
https://doi.org/10.1007/978-3-031-29053-4_5#DOI

development is required that will enable significantly higher automation by leveraging
recent advances in AI such as NLP, ML, AI-powered code completion and AI-powered
testing and debugging. The approach should reduce dependencies on human expertise in
capturing and using of knowledge in all phases of SDLC. Additionally, the approach
should innovatively integrate relevant concepts from model-driven engineering (MDE) for
code generation, formal methods for validation and verification, Digital Twin(s) for risk-
free experimentation and control theory for dynamic adaptation.

86 S. Reddy

Fig. 5.1 Information processing needs of an enterprise

Current Practice

Typical SDLC Today

Figure 5.2 depicts a typical software development life cycle (SDLC) today. The process
starts with a business need. Domain experts analyse this need and come up with a set of
software requirements. Key concerns here are the following: Is the requirements specifica-
tion fit for purpose? Does it meet the business need? Is it complete? Consistent? This is
domain knowledge-intensive where domain experts spend considerable amount of time
getting the requirements specification right. Then we go through design, development,
testing, etc., which is the purview of IT experts and programmers. Design addresses
concerns such as how do we componentize the system; what can we reuse; what can we
buy; what needs to be built afresh; what technology stack to use; which frameworks,
libraries and languages; etc. The entire process is people heavy, requiring large teams with
varied skills and expertise to work together. People with these skills are increasingly in
short supply relative to the demand. The process also suffers from long latencies owing to

complexities of communication and coordination among teams with disparate backgrounds
and skills.

5 Democratized Hyper-automated Software Development 87

Business
Need

Requirements
Specification Design Development Testing

Fit for purpose?
Correct?

Complete?
Consistent?

Componentization
Reuse / Buy / Build

decisions

Tech stack
Platforms / Frameworks

Libraries, Languages

Purview of Business Domain Experts
Domain knowledge intensive

Purview of Programmers
Solution knowledge intensive

Fig. 5.2 Typical software development life cycle

Over the years, we have seen several technologies that attempt to address different parts
of this problem with varied degrees of success, such as model-driven development (MDD),
low-code/no-code platforms and the more recent AI-powered software development.

Model-Driven Development

Model-driven development (MDD) is at least a couple of decades old, if not more. In
MDD, we start with a business need, create a requirements specification and from this
specification derive models and detailed business logic specifications. Up to this, it is
typically a manual process. But once we have models, we can use model compilers to
automate code generation. Typically, for each target platform, we have a platform-specific
model compiler. These compilers need to be developed only once per platform. Since they
are specified at the meta-model level, they will work for all problems that can be specified
as instances of these meta-models. Figure 5.3 depicts the typical MDD pipeline.

MDD brings several benefits to software development [1]. It brings improved produc-
tivity since code generation is automated. It leads to uniform code quality since code
quality does not depend on an individual’s coding skills. It provides platform independence
since specifications are in terms of platform-independent models, providing an easy path to
platform migration. All we need to do is use a different model compiler without having to
rewrite the code. Also, since models are easier to verify compared to code, the system can
be verified for various desirable properties, such as correctness, completeness, consistency,
etc., at an early stage. On the minus side, modelling has a steeper learning curve since
developers must understand the semantics of the underlying meta-models to do a good job
of modelling. Also, the upper end of the SDLC, namely, translating a business need into
software system specifications, remains manual. In some sense, while MDD addresses the
need of “building systems right”, it does not address the need of “building right systems”
that meet the business need.

88 S. Reddy

Business
Need

Requirements
Specification

Models
(Data, Process, UI…)

Business Logic
(DSL/PL)

Platform 1
Specific

Implementation

Platform 2

Platform N

…

Model compiler 2

Manual Automated

Fig. 5.3 Model-driven development

Visual programming

Repository of
Pre-built

Components,
Services, APIs

Models

MDD Code Generator

Platform specific code

Fig. 5.4 Low-code/no-code platforms

Low-Code/No-Code Platforms

Low-code/no-code (LCNC) platforms [2] provide a drag-and-drop visual programming
interface for users with little/no programming experience. LCNC is essentially a simplified
version of MDD, where the visual specifications are mapped to underlying models which
are then translated into platform-specific code by a bunch of model compilers (refer to
Fig. 5.4). LCNC works well in situations where the applications can largely be composed

from pre-built components, with visual programming serving primary as an orchestration
specification with simple rules. For applications that require a substantial amount of fresh
code with modest to complex logic, visual programing quickly becomes cumbersome.

5 Democratized Hyper-automated Software Development 89

AI-Powered SDLC

AI-Powered Requirements
Recent AI-powered advances in NLP are being used to automate early stages of SDLC, for
example, analysing quality attributes of requirements such as imprecision, incompleteness
and escape clauses. More recent advances transform requirements spread across structured,
semi-structured and unstructured information sources into formal purposive models lead-
ing to several benefits [3, 4], for example, (1) automated analysis of requirements for
properties such as consistency and completeness, (2) automated computation of change and
change impact, (3) automated transformation of requirements into a detailed specification
and (4) end-to-end traceability via Digital Thread.

AI-Powered Testing
AI platforms can now aid in detecting, diagnosing and repairing certain classes of software
errors such as incorrect usage of APIs and null dereferencing. Today, there are tools that
can significantly automate user interface testing through test script generation from user
interaction history and automated test script repair.

AI-Powered Coding
Recent advances in transformer-powered language models such as GPT-3, Codex and
AlphaCode have opened the possibility of generating code from natural language
descriptions. These are huge models (175B parameters) that have been trained on large
public code repositories such as GitHub. These are being integrated into IDEs (such as
GitHub Copilot) where they suggest code completions based on natural language
descriptions of functions and current program context.

A language model is essentially a statistical model that predicts the next token in a
sequence, i.e. it predicts the probability of the next token taking different values given the
token sequence seen so far, P(wt | wt-k, . . ., wt-1), and in a generation task, we typically take
the token value that has the highest probability. In the case of code generation, given the
natural language specification as the prior token sequence, it predicts the code sequence
that has the highest probability of being consistent with the specification. Figure 5.5 shows
a small example where the specification is incrementally extended in a series of steps to
generate the code.

While language models have shown themselves to be remarkably good at learning
abstract patterns and correlations among those patterns, being statistical models, funda-
mentally, they can only solve problems that are “similar” to the problems they have already
seen. They cannot reason and synthesize a solution to a brand-new problem. What works in
their favour is that they are trained on massive repositories that have solutions to most of

the common coding problems, written in several languages, using several libraries, APIs
and frameworks. So, it is possible to see this technology mature to a stage where automa-
tion support of the following kind will exist for common coding problems:

90 S. Reddy

P(| “/* Write a function that calculates the area of a cube */”)

/* Write a function that calculates the area of a cube */
function cubeArea(side) { return 6 * side * side; }

/* Write a function that calculates the area of a cube */
function cubeArea(side) { return 6 * side * side; }
/* ask for user input */

/* Write a function that calculates the area of a cube */
function cubeArea(side) { return 6 * side * side; }
/* ask for user input */
var side = prompt(“Enter the side length of a cube”);

?

Next: P(|)?

Fig. 5.5 Code generation using large language model

As an intelligent, context-adaptive replacement for search-copy-paste-modify style of
coding: Programmers routinely search the internet (Stack Exchange) for solutions.
They issue a natural language query, look at the results, pick an appropriate solution,
copy the code and modify it to adapt to their context. What if this entire process could be
automated more intelligently and efficiently from within the IDEs? OpenAI Codex
promises just that. From the text description of the problem and the coding context,
Codex can (1) perform a better “search” than Google since it has the power of GPT-3
language model, (2) use much richer context for search than a simple query since it can
process the program context and (3) adapt the “retrieved” code to the context since it
“understands” the program context. To illustrate the last point, suppose we have a binary
tree of COVID patient data in the program and we want a function to search patients in
each age range. The binary tree search function (we are searching the binary tree) that
Codex generates will use the COVID patient data type even if it has never seen such a
data type in its training data. All this happens instantly from within the IDE.

Intelligent assistance on new/unfamiliar languages, libraries, APIs and frameworks:
Suppose we have an ML programmer who knows TensorFlow (and hence the logical
ML pipeline) but is new to PyTorch or we need to access stock market data but do not
know which API to use. From the textual description of the task to be performed and the
library to be used, Codex can automatically generate the required library and API calls.

Productivity aid to novice programmers: Tools such as Codex will be of great assistance to
novice programmers on common coding problems involving various standard data
types and algorithms. An assessment of Codex on LeetCode showed that it does a
reasonable job. This can only get better with improving technology.

Automation of UI and DB ends of programming: Most of the mundane UI code is likely to

5 Democratized Hyper-automated Software Development 91

be completely automated. For example, from a natural language description of the
screen such as “A screen that has an edit box with title ‘Department’ to show department
name and a list box with title ‘Employees’ to show employees of the department, and a
Submit button that calls the API get-employee-list”, we can automatically generate the
code to render the screen. Similarly, for a database schema and a natural language
description of the query, we can generate an SQL code such as “Get the percentage of
employees who have worked on AI projects”. All mundane code that does not require
knowledge of the business domain and the underlying business logic is a candidate for
automation.

However, this technology has some limitations too:

No guarantee of correctness: If these models remain purely statistical, there will never be
any guarantee of correctness of the generated code. It will always have to be manually
checked. With autoregressive language models such as Codex, the farther the prediction
is from the input prompt, the greater the drift from the intent. So, longer code fragments
require several iterations of generate-correct-regenerate to get them right.

Determining the level of specification detail: We do not have a clear answer to this at this
stage. It obviously defeats the purpose if the natural language description needs to be as
detailed as the pseudocode. One can even argue that it is much harder to specify a
program precisely in natural language than to write the code. There needs to be an
empirical study to assess this aspect.

Incapable of generating code for business logic: AI models we see today are trained on
public repositories. Since enterprise code repositories are private and will not be made
public anytime soon, it is unlikely that these models will generate code for business
logic at present or in the near future.

Computational cost: Today, OpenAI’s GPT-3 and Codex are both available only as APIs,
to be used in as-is form, with the model hosted on OpenAI’s hardware. However, to be
more useful to enterprise applications, Codex needs to be trained on domain-specific
knowledge and code. The cost of training the model is likely to be high, estimated to
cost OpenAI about 3.114E23 FLOPS of compute power to train its GPT-3 model.

Proposed Line of Attack

While MDE, LCNC and AI-driven code generation address different aspects of the SDLC,
none of them provides a comprehensive end-to-end solution for deriving software system
specifications from business needs and then deriving software system implementations
from these specifications. As discussed earlier, the former is a domain knowledge-intensive
activity and the latter solution knowledge-intensive, and none of these approaches provides

a systematic means to integrate knowledge and knowledge-based reasoning into the SDLC
process.

92 S. Reddy

Fig. 5.6 Knowledge-guided AI-aided model-driven software development

To address this, we outline a software development approach that brings together
knowledge, AI and MDD to significantly enhance the automation in SDLC, bringing the
process closer to domain experts. Figure 5.6 outlines the high-level approach. The
approach leverages domain knowledge and state-of-the-art NLP to help business domain
experts refine high-level business requirements into detailed software system requirements
that are complete with respect to meeting the stated business needs (refer to Fig. 5.6a,
Requirements Engineering). These can then be reviewed for feasibility and practicality,
perhaps using a requirements digital twin (refer to Fig. 5.6b, Requirements Simulation).
We leverage solution knowledge and state-of-the-art NLP to help IT experts refine the
system requirements into a software system specification, catering to functional and
non-functional requirements (refer to Fig. 5.6c, System Specification). These specifications
may either be precise formal models using model-based generation (refer to Fig. 5.6e,
System Implementation) or natural language text (with associated ambiguity and impreci-
sion) using AI-based generation (refer to Fig. 5.6f, System Implementation) to derive
implementation artefacts such as code, test cases and test data. We leverage AI-based
testing, bug detection and bug fixing, wherever possible. The various implementation
artefacts sit in a knowledge repository, thus facilitating further training of AI-based
SDLC tools.

We delve into details of these steps below.

5 Democratized Hyper-automated Software Development 93

Knowledge-Guided, AI-Aided Refinement of Business Requirements
into Software Requirements

The first step towards implementing a successful software system is to arrive at right
software requirements that will meet the business need. This requires deep business domain
knowledge. It also requires some amount of systems knowledge, i.e. knowledge of what
systems solutions work for what problems in what context. This knowledge is typically
derived from solutions developed in the past. To provide automation support, we need
machinery that captures both kinds of knowledge in a machine-processable form. To aid
business experts, we need an automated process that can reason with this knowledge to
systematically transform a high-level business requirement, given in natural language, into
a set of software requirements. We also need a validation mechanism that can check the
generated requirements indeed meet the business needs. Digital Twin(s) can be of value
here. They can potentially simulate the requirements to see how the system behaves in its
operating environment.

Domain Ontology
Domain ontology describes the core concepts and relations that underlie a business domain
along with the rules and constraints that govern them (Fig. 5.7). The concepts encompass
business domain entities, events, actions and operations. The ontology serves as the
semantic base and provides the vocabulary in terms of which domain knowledge is
expressed and interpreted. It also serves as the common reference point for all stakeholders
involved in system development to align their respective artefacts. Ontological alignment
of all artefacts involved in software development, namely, business requirements, software

Domain Concepts, Relations

Rules, constraints

Domain 1 Ontology

Domain Concepts, Relations

Rules, constraints

Domain 2 Ontology

Common Concepts, Relations

Fig. 5.7 Domain ontologies

specifications, models and code, paves the way for transfer learning across related
problems in a given domain and across related domains.

94 S. Reddy

System Meta Model

System ModelRequirement

Data Model Process Model
sub

Core Model

Intent Specific
Variant ModelIntent

Ontology

Context

sub sub

Fig. 5.8 Systems knowledge

Systems Knowledge
Systems knowledge consists of knowledge of different systems that serve different intents
in different contexts. A system is described in terms of its intent and context, their
decomposition into detailed requirements and a set of associated structural and behavioural
models that meet the stated intent in the stated context. This can be organized into a core
part and a set of variants corresponding to variations in intent and context. A comprehen-
sive knowledge repository also contains code artefacts corresponding to the structural and
behavioural models. All elements of the repository (i.e. intent, context, requirements,
model elements, their natural language descriptions and code) are mapped to the domain
ontology to semantically align them with domain concepts. Figure 5.8 schematically
describes the various models and their relationships. The key thing to note here is that all
systems are described in terms of a common meta-model and all model elements and their
descriptions and coding artefacts are aligned with a common domain ontology.

AI and NLP
Such a knowledge repository facilitates training of AI models. From it, we can generate
training data tuples of the form <ontology, system-meta-model, intent-description, context-
description, system-model, system-code>. AI learns to use the common meta-model and
ontology as the basis to generalize from problem-solution instances captured in the
knowledge repository.

In a typical SDLC, we start with a high-level business requirements specification given
in natural language that describes the business intent and context. Then we align this
specification with the ontology (see example in Fig. 5.9) using NLP. This alignment
enables the AI to relate the specification with prior knowledge (which is already ontology
aligned) and enable it to carry out the required transformations, namely, from business
requirements to software requirements and further on from software requirements to
software implementations. To be able to do this, we need AI models that can combine

language processing with knowledge-based reasoning. While language models themselves
are quite mature, integrating structured knowledge with them is still an on-going research
problem. Recent work on integrating knowledge graphs into language models [5–7] is a
step in that direction. This needs to be further extended with neuro-symbolic approaches to
integrate axiomatic knowledge as well.

5 Democratized Hyper-automated Software Development 95

Employee

ID
Name
Grade

Claim

EmpID
Date
Category
Amount

ClaimLimit

EmpGrade
ClaimCategory
Limit

Sum claimed in a year under dental category cannot exceed the limit set for the
employee’s grade.

Sum claimed in a year under dental category cannot exceed the limit set for the
employee’s grade.

sumClaimed = SUM(Claim.Amount) where [EmpId = Employee.ID and
Category = ‘Dental’ and Date BETWEEN
[date(year(Today) - 1, month(Today), day(Today)), Today]];

limit = ClaimLimits.limit where [EmpGrade = Employee.grade and
ClaimCategory = ‘Dental’];

Validate [sumClaimed <= limit];

NL Spec

DSL Spec

AI assisted

AI assisted

ONL Spec

Fig. 5.9 AI-assisted transformation via ontology-aligned natural language (ONL) specifications

Digital Twin(s)
The idea of Digital Twin(s) has been gaining ground in both industrial and enterprise
spaces. Digital Twin is a purposive virtual representation of reality that responds to
automated analysis typically through what-if scenarios. While Digital Twin(s) have been
used as design aids in physical and cyber-physical spaces, their use in enterprises has been
limited to a decision-making aid, that is, to identify “in silico” which among the available
options is the best response in a given situation. However, in enterprise software develop-
ment, the concept of digital twin can be very useful in arriving at the right system
specification, starting from high-level requirements [8]. A simulation-capable digital twin
enables a business domain expert to explore the solution space by playing out various
scenarios of interest under a multitude of design options [9]. A software system exists in a
business context interacting with several internal and external actors. It is useful to simulate
this whole context to see which solution option has what effect, thereby helping arrive at
the right system specifications in an informed manner. For this to be feasible, it should be
possible to generate a light-weight digital twin (stripped of all non-functional concerns that
a typical software system would have) from requirements specifications. We believe a
lighter version of the knowledge-guided, AI-aided, model-driven system implementation
approach discussed below will do the job.

96 S. Reddy

Knowledge-Guided, AI-Aided Refinement of Software Requirements
into Software Specifications

From software requirements, we derive detailed software system specifications. This
involves deriving detailed functional specifications such as data models, process models,
business logic, etc. This also involves deriving the right software architecture (components/
services, etc.) and technical architecture (GUI/middleware/DB, cloud, etc.) to meet the
non-functional requirements. This part of the SDLC is solution knowledge-intensive. By
solution knowledge, we mean knowledge that helps in deciding which design and archi-
tectural patterns to use for what problem in what context, and what platform-specific
choices to make in what situation, based on non-functional requirements. Here, system
specifications might take two different forms.

In one case, we might derive specifications in the form of models and domain-specific
languages (DSLs) and use model-based code generators to translate them into platform-
specific implementations. However, these specifications might be harder for domain
experts to verify and correct. Also, this approach presupposes that we have the necessary
modelling languages and DSLs which are complete for the purpose. This need not always
be the case. But where they do, this is a more reliable and well-proven path to system
implementation.

In other cases, we may derive specifications in the form of controlled natural language
which is easier for domain experts to verify and correct. However, being expressed in
natural language, these specifications are likely to contain some amount of inherent
ambiguity and incompleteness from a computer implementation perspective. This is
where AI-based code generation technologies excel, as they are better at dealing with
ambiguity and incompleteness in inputs. As discussed earlier, language models such as
Codex demonstrate great potential, targeting a wide range of languages, platforms and
frameworks. However, they need to be trained and fine-tuned on domain-specific knowl-
edge and content to be able to generate domain-specific business logic from natural
language specifications. This is where the knowledge repository architecture discussed in
previous sections helps, where all systems are described in terms of a common meta-model
and all content is aligned with a common domain ontology. AI can learn to use the common
meta-model and ontology as the basis to generalize from problem-solution instances
captured in the knowledge repository. For instance, we can generate training tuples of
the form <ontology, meta-model, model, NL-functional-spec, NL-non-functional-spec,
code> to train the AI model and then use the model on a new specification
(i.e. <ontology, meta-model, model-new, NL-functional-spec-new, NL-non-functional-
spec> as input) to generate platform-specific business logic compliant with the spec. As
mentioned, to be able to do this, we need AI models that can combine language processing
with knowledge-based reasoning. Recent work on integrating structured and symbolic
knowledge into language models looks quite promising in this regard [5–7].

5 Democratized Hyper-automated Software Development 97

Architecture for Software Adaptation

Software implementation is not a one-time activity. Over time, requirements change,
operating environment changes, system goals themselves change, and so on. A software
system needs to evolve suitably to cater to these changes. To address this, we propose a
novel architecture for continuous dynamic adaptation of software systems as discussed in
Chap. 4.

Technology Infrastructure to Support the Line of Attack

To support the proposed approach, we need the following key technology enablers:

1. Domain ontologies and automation aids to construct purposive domain ontologies by
mining structured/semi-structured/unstructured text resources

2. Knowledge-enhanced NLP capable of processing nebulous incomplete requirements
3. Requirements digital twin, automation aids for its construction from detailed

requirements in text form and the associated simulation machinery
4. Modelling infrastructure to capture system specifications in model form and machinery

to author these models from NL text
5. Model validation and verification machinery
6. Model-based code generation machinery
7. AI-based code generation machinery

While some of these technologies are already mature, others are still at a research stage.
The following are the more mature ones:

Authoring models from NL text: We presume that the necessary information concerning
functional and non-functional characteristics of the desired application is available,
albeit in a fragmented form, distributed over several text documents. This information
may cover the known knowns (i.e. static and fully known information) and the known
unknowns (i.e. fully known possible variations). Moreover, the documents containing
this information may conform to a certain superstructure (organized in terms of sections
and subsections whose names give a definitive hint of their text content). Several
algorithms exist that can process this NL text content to identify domain concepts and
the relationships between these concepts, that is, the domain model which SMEs can
further refine, if required.

For instance, we have an automated regulatory compliance (ARC) solution that enables
SMEs to author a purposive domain model based on the regulation document released
by the regulatory authority. This model serves as a lens to sift the relevant text from a
regulation document. This text containing obligations is presented in a Controlled
Natural Language (CNL) which is more intuitive for SMEs to refine. The refined

98 S. Reddy

obligations in CNL are translated to structured English (SE), a linearized representation
of Semantics of Business Vocabulary and Business Rules (SBVR). Thus, text in SE can
easily populate the SBVR model. This NL ! CNL ! SE ! SBVR is a human-in-the-
loop refinement process supported by automation aids [10]. While we have used these
underlying NLP and ML techniques to author a variety of models from NL text, they
need to be enhanced to help SMEs author the solution architecture model.

Modelling infrastructure: As we would be using different models to specify different
aspects of the system, we need a meta-modelling infrastructure so that purpose-specific
meta-models can be defined. Several such meta-modelling solutions exist. For example,
TCS MasterCraftTM provides a meta-modelling infrastructure complete with multi-user,
multi-site repository having in-built versioning and configuration management
capability [1].

Validating the authored models: The authored models must be consistent with the domain
ontology and must be correct with respect to the intent. The former is a solved problem
with several automation aids across a wide spectrum of sophistication. We can use
simulation-based techniques to address the latter. For instance, Enterprise Digital Twin
(EDT) models support what-if and if-what scenario playing to ascertain correctness. We
can also use Answer Set Programming (ASP)-based techniques to help SMEs ensure the
authored model is correct, as done in the regulatory domain [11].

Model-based code generation machinery: System specification in model form can be
automatically transformed into various implementation artefacts such as code, test
cases, test data and deployment descriptors. System specifications are kept agnostic of
technology platform, thereby enabling them to be retargeted to multiple technology
platforms by changing the code generators suitably. In TCS MasterCraftTM , we have
comprehensive model-based code generation infrastructure comprising model-to-model
and model-to-text transformers. These transformers are specification-driven and can be
easily customized to cater to different technology platforms and purposive meta-
models [12].

Knowledge repository for actionable contextual intelligence: One of the key strengths of
any business enterprise is its deep domain and contextual knowledge, gained over
decades of experience. It should be possible to capture this knowledge formally in a
machine-processable form, so that it can be systematically exploited in solution devel-
opment processes. Knowledge exists at multiple levels of abstraction, in multiple forms
(facts, rules, models) to serve multiple intents (purposes). A knowledge model should
capture all these aspects of knowledge and enable context-based reasoning to identify
and reason according to a given problem context. At TCS, we have developed a similar
knowledge modelling framework in our work in materials engineering [13]. This
framework has proven to be versatile in supporting a diverse range of applications in
the engineering space. We believe it can be easily extended to support software
development as well.

Digital Twin: Digital Twin is a virtual purposive, high-fidelity representation of reality that
is responsive to what-if and if-what scenario playing. A purposive requirements digital

5 Democratized Hyper-automated Software Development 99

twin can help SMEs arrive at the right requirements efficiently through scenario playing.
Also, a digital twin of the software system can evolve and adapt the software system
efficiently in response to changes in the desired objectives as well as operating environment.
At TCS, we have developed actor-based infrastructure (EDT) that helps SME construct a
purposive digital twin and use it as a risk-free experimentation aid to arrive at right
decisions. We use the purposive digital twin as an experience generator to train a Rein-
forcement Learning agent, thus considerably automating the decision-making process [14].

There are also several new investigations that are required, such as:

Domain Specific Languages: The key objective is to empower SMEs to play a significantly
greater role in SDLC, and eliminating accidental complexity is a significant step towards
this objective. General-purpose programming languages pose a serious problem for
SMEs. They need more intuitive and closer-to-business means for specifying system
requirements. There is a need to strike the right balance between expressiveness,
intuitiveness and pragmatism. As these means would vary from problem to problem
and domain to domain, there is a need for a platform that can help quickly define suitable
Domain Specific Language (DSL). While the well-researched space of language engi-
neering can provide primordial concepts, some effort is needed to come up with
purposive DSLs. Once the DSL is ready, the model authoring infrastructure can be
easily repurposed to author system specifications in DSL.

Leveraging AI for SDLC: The intent of our approach is to leverage AI in all stages of
SDLC. Manual developer-centric SDLC can benefit from AI in terms of IntelliSense,
intelligent code completion and proactive search-cut-n-paste. Specification-based code
generative SDLC can benefit in terms of increased automation in early SDLC stages,
which are document-centric and manual. AI techniques such as Reinforcement Learning
(RL) can enable smart Integrated Development Environments (IDEs) that can provide
highly personalized user experience based on user profile, intent and past interactions.
RL seems to be a key enabler to impart continuous improvement (and adaptiveness) to
IDEs over time. Recent AI advances such as language models, transformers and
program synthesis give hope of generating implementations from descriptions in NL
text and input-output data. At present, these AI-based automation aids lack in domain
specificity, having been trained on public repositories such as GitHub. We believe their
effectiveness can be significantly improved if they are trained on content that is domain-
specific and are capable of using domain knowledge in their operation.

References

1. Kulkarni, V., Reddy, S., & Rajbhoj, A. (2010). Scaling up model driven engineering–experience
and lessons learnt. In International conference on model driven engineering languages and
systems (pp. 331–345). Springer.

100 S. Reddy

2. Bock, A. C., & Frank, U. (2021). Low-code platform. Business & Information Systems Engi-
neering, 63(6), 733–740.

3. Nistala, P. V., Rajbhoj, A., Kulkarni, V., Soni, S., Nori, K. V., & Reddy, R. (2022). Towards
digitalization of requirements: Generating context-sensitive user stories from diverse
specifications. Automated Software Engineering, 29(1), 1–35.

4. Rajbhoj, A., Nistala, P., Kulkarni, V., Soni, S., & Pathan, A. (2022). DizSpec: Digitalization of
requirements specification documents to automate traceability and impact analysis. In 2022 IEEE
30th International Requirements Engineering Conference (RE) (pp. 243–254). IEEE.

5. Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., & Liu, Q. (2019). ERNIE: Enhanced language
representation with informative entities. arXiv preprint arXiv:1905.07129.

6. Peters, M. E., Neumann, M., Logan, R. L. IV, Schwartz, R., Joshi, V., Singh, S., & Smith, N. A.
(2019). Knowledge enhanced contextual word representations. arXiv preprint arXiv:1909.04164.

7. Yu, D., Zhu, C., Yang, Y., & Zeng, M. (2022). Jaket: Joint pre-training of knowledge graph and
language understanding. Proceedings of the AAAI Conference on Artificial Intelligence, 36(10),
11630–11638.

8. Kulkarni, V., & Reddy, S. (2017). From building systems right to building right systems. In
Federation of International Conferences on Software Technologies: Applications and
Foundations (pp. 184–192). Springer.

9. Kulkarni, V., Barat, S., & Clark, T. (2019). Towards adaptive enterprises using digital twins. In
2019 winter simulation conference (WSC) (pp. 60–74). IEEE.

10. Sunkle, S., Kholkar, D., & Kulkarni, V. (2016). Informed active learning to aid domain experts in
modeling compliance. In 2016 IEEE 20th International Enterprise Distributed Object Computing
Conference (EDOC) (pp. 1–10). IEEE.

11. Kholkar, D., Mulpuru, D., & Kulkarni, V. (2018). Balancing model usability and verifiability
with SBVR and answer set programming. In MoDELS (Workshops) (pp. 570–573).

12. Kulkarni, V., & Reddy, S. (2008). An abstraction for reusable MDD components: Model-based
generation of model-based code generators. In Proceedings of the 7th international conference on
Generative programming and component engineering (pp. 181–184).

13. Yeddula, R. R., Vale, S., Reddy, S., Malhotra, C. P., Gautham, B. P., & Zagade, P. (2016). A
knowledge modeling framework for computational materials engineering. In SEKE (pp. 197–
202).

14. Barat, S., Khadilkar, H., Meisheri, H., Kulkarni, V., Baniwal, V., Kumar, P., & Gajrani, M.
(2019). Actor based simulation for closed loop control of supply chain using reinforcement
learning. In Proceedings of the 18th international conference on autonomous agents and
multiagent systems (pp. 1802–1804).

Coordinated Continuous Digital
Transformation 6
Henderik Proper and Bas van Gils

Introduction

The overall focus of this book is on the transformation of enterprises towards AI-Enabled
Enterprises, involving a strong role for both AI and digital twin technologies. At the same
time, it is important to realize that for enterprises, the transformation towards AI-Enabled
Enterprises is “just” a logical, albeit important, next phase in the continuous flow of digital
transformations which enterprises are (and need to be) engaged in. In this chapter, we
therefore specifically zoom in on both the challenges facing enterprises regarding digital
transformations in general and the transition to AI-Enabled Enterprises in particular. In
doing so, we will review, and integrate, both insights from practice and insights from
research results.

Since digital transformations have (by definition) a profound impact on the structure of
an enterprise, it is important to ensure that such (enterprise) transformations are well-
coordinated [1, 2]. Enterprise (architecture) models are traditionally regarded as an effec-
tive way to enable such informed coordination and decision-making [1, 3]. In line with this,
we take a model-enabled perspective on the needed coordination, in particular in the
context of what we call enterprise design dialogues [4].

In the second section, we start by defining more precisely what we mean by digital
transformation. The third section then reflects on the fact that digital transformations should
be seen as a continuous process. This is then complemented in the fourth section with the

H. Proper (✉)
TU Wien, Vienna, Austria
e-mail: e.proper@acm.org

B. van Gils
Antwerp Management School, Antwerp, Belgium
e-mail: bas.vangils@strategy-alliance.com

The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kulkarni et al., The AI-Enabled Enterprise, The Enterprise Engineering Series,
https://doi.org/10.1007/978-3-031-29053-4_6

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29053-4_6&domain=pdf
https://orcid.org/0000-0002-7318-2496
https://orcid.org/0000-0003-2434-0547
mailto:e.proper@acm.org
mailto:bas.vangils@strategy-alliance.com
https://doi.org/10.1007/978-3-031-29053-4_6#DOI

observation that it is essential for these continuous digital transformations to happen in a
coordinated way, involving coordination among many different actors. The fifth section
reviews the concept of enterprise design dialogues that we see as being at the heart of the
needed coordination of transformations. In the sixth section, we then attend to the crucial
role of models (including the virtual model included in a Digital Twin(s)) to support
enterprise design dialogues. Finally, before concluding, the seventh section reviews
challenges and opportunities towards future research.

102 H. Proper and B. van Gils

Digital Transformation

Our society has transitioned well and truly from the industrial age to the digital age. As a
result, “digital” has become an integral part of our lives. Tasks in our common lives that
used to be completely “analogue” are now increasingly “digital”: ordering pizza, ordering a
taxi, booking a vacation trip, dating, etc. Similarly, in business, we see an increased
transition from “analogue” via “digitized” (i.e. replacing paper with PDF) to “digital”
(redesign of value proposition and operating model) business models [5]. The on-going
development and maturation of “digital technologies”, such as mobile computing, perva-
sive computing, cloud computing, big data, AI, robotics, social media, low-code, Digital
Twin(s), etc., drive enterprises to transform. Even more, non-IT infrastructures, such as
electricity networks, water networks, transportation networks and even cities and buildings,
increasingly become IT-intensive infrastructures. As a result, it is now humans and IT, who
are jointly the driving agents in an enterprise, where IT is increasingly also fulfilling the
role of the “operating system” of the enterprise. The increased use of different forms of AI
in conjunction with digital twin technologies now ushers in a further transition for
enterprises, from being “digital” to being AI-enabled.

When we speak about “digital transformation”, we do so primarily in the context of
“enterprises”. An “enterprise” is a “unit of economic organization or activity” [6] such as a
company, a government agency, a factory, etc. It is also, at a more fundamental level, a
purposeful system (i.e. its enterprise) in the sense of conducting (possibly as part of a
network of enterprises) a particular business in the sense of a “particular field of endeav-
our” [6]. In some areas, this is stated as systems having a function in their environment
(e.g. [7]). With this in mind, we [8] define digital transformation as follows:

The deliberate effort to transform the architecture of the enterprise, with a significant impact on
its digital capabilities.

The phrase “digital capabilities” refers to those business capabilities [9] of an enterprise
that are digitally driven or at least highly digitally reliant. In terms of [10, 11], digital
transformations may not only change the operational capability (needed to execute the
business and operating model) of enterprises but specifically also their dynamic capability

(needed to continuously improve and innovate the business and operating model in relation
to new opportunities and challenges).

6 Coordinated Continuous Digital Transformation 103

To expand on the above definition of digital transformation, it should be noted that the
term architecture has different meanings. The way it is used in the above definition should
be taken in line with the general definition of architecture as reported in our earlier work
(e.g. [12]):

Those properties of an artifact that are necessary and sufficient to meet its essential
requirements; or in more colloquial terms it is about ‘what (should) keep(s) stakeholders
awake at night’.

In line with [13], the latter is usually operationalized for system architectures by the
assertion that, for systems, architecture concerns (1) the fundamental properties of a system
(in terms of components and their relations) and (2) the principles guiding design and
evolution. In light of the definition provided by [12], this implies that digital transformation
initiatives are aimed at changing the essence of the organization. The corollary is that
(relatively) minor changes that leave the essence of the organization intact do not count as
digital transformation initiatives.

A further observation with regard to the definition is digital transformation is the focus
on digital capabilities. The implication is that transformation initiatives that do not have a
significant impact on the digital capabilities of the organization do not count as digital
transformation initiatives. As before, we are not claiming that these do not occur nor that
they are not important. We simply do not consider these to be digital transformation
initiatives.

Continuous Digital Transformation

The on-going development and maturation of “digital technologies” certainly drives
enterprises to change. However, this is certainly not the only source for change in
enterprises. Market dynamics, new regulations, opportunities offered by other
(non-digital) new technologies, etc. force modern-day enterprises to change almost contin-
uously. This is sometimes referred to as the “VUCA” world (volatile, uncertain, complex
and ambiguous; see, e.g. [14, 15]).

At the same time, we argue that enterprises have always had a need to change. Before
the Industrial Revolution, such changes might have (in general) occurred at a slow pace.
Social and political developments (including wars and revolutions) may have caused a
temporary increase in the pace of change. The technological advancements driving, and
causing, the Industrial Revolution added more speed to change. Enterprises could innovate
at a higher pace due to the technological developments, while society at large also became
more demanding regarding products and services. During this period, companies with the

“best” innovations “won” in the market (first-mover advantage), often leading to extrava-
gant market positions.

104 H. Proper and B. van Gils

We are now experiencing the “Digital Revolution” [5, 16–18], which is increasing the
speed of change even more. Our observation is that this is a reinforcing loop. Market
developments drive the need to innovate, which is faster in a digital space. Demand creates
supply: organizations innovate at a higher and higher pace. This in turn drives market
developments, which sets in motion the next “cycle”.

What also strengthens the reinforcing loop is the fact that, as mentioned above, digital
transformations can not only be used to transform the operational capabilities of an
enterprise but their dynamic capabilities as well. Initial examples of the digital transforma-
tion of dynamic capabilities include the use of workflow engines, business rule engines and
low-code solutions. The introduction of AI to support different tasks in digital
transformations (see, e.g. [19–21]) is a prelude towards things to come for the dynamic
capabilities in AI-Enabled Enterprises.

As a result, we would argue that one needs to increasingly consider digital transforma-
tion to be a continuous process and certainly not as a “one-off” project.

Coordinated Continuous Digital Transformation

So far, we have discussed what digital transformation is and that it should be considered as
a continuous process. We now shift perspective to emphasize the fact that digital transfor-
mation requires strong coordination to be successful.

We start with two related observations based on the previous discussion. As the
definition of digital transformations stipulates, digital transformations have a significant
impact on the digital capabilities of an enterprise. We can also observe how, over the past
decades, the role of IT in enterprises has increased from the mere automation of informa-
tion processing, via the automation of actual business processes, to now being a core
element of their business models. As the role of IT in enterprises increased, so did the need
to ensure a coherent design between IT and all other aspects of an enterprise [22], from the
operational alignment between human and IT-based activities to the longer-term strategic
alignment [3, 23]. A second pertinent observation is that experience shows that digital
transformation requires a deliberate effort to achieve an outcome [24, 25].

Our position is that both of these observations, i.e. (1) the need for coherent design and
(2) the fact that digital transformations require a deliberate effort, point towards the need
for a coordinated [1] approach to digital transformation to ensure that the profound impact
of these transformations pushes the enterprise in the right direction in a coherent and
deliberate manner.

In the remainder of this section, we argue that there is another fundamental reason for
requiring a coordinated approach: social and technical complexity. Different frameworks
exist to classify, and reason about, complexity of problems in general. For our discussion
below, we primarily rely on the Cynefin framework (see, e.g. [26–29]). In this sense-

making framework, “problems” are classified into different domains. The framework,
enriched with our interpretation, is visualized in Fig. 6.1. To understand why it is important
to understand in which domain a problem at hand fits, we use a quote from the GUM:1

6 Coordinated Continuous Digital Transformation 105

Fig. 6.1 The Cynefin framework [28], enhanced with our own interpretation

Throughout the day, we are forced to deal with numerous new impressions and experiences. In
order to get to grips with the chaos that characterises the world around us, we are constantly on
the lookout for connections and patterns. Based on those, we are able to classify reality and
create order. Scientists draw up similar classifications. However, these need to be underpinned
by clearly defined criteria which will determine in a straightforward way whether or not
something belongs to that classification, and, if so, where. Now, you might wonder: does
that order truly exist? Alternatively, do scientists impose said order on reality?

The domain of simple problems is characterized by the fact that challenges are recognized
as belonging to a certain class, so the solution to these challenges is immediately obvious,
while there is none to moderate time pressures to realize the solution. A good example
would be the update of the operating system as used on the desktop or the migration of
e-mail services to a new e-mail platform.

1 Gents Universitair Museum https://www.gum.gent/en/collection-album/chaos-1; seen on
27-Dec-2022

https://www.gum.gent/en/collection-album/chaos-1;

106 H. Proper and B. van Gils

In the domain of chaos, the complete opposite is true; whenever there is chaos and a
(life-threatening) crisis emerges, an immediate response is usually lacking. In situations of
this type, it is suggested [28] that decisive leadership is required in order to stabilize the
situation. In practical terms, this would entail returning to one of the other three problem
domains. This is why, e.g. officers in the military speak of the terrible burden of command:
when the proverbial shit hits the fan, they still have an army to lead with potentially lethal
consequences [30].

This leaves the complicated and complex domains. The former refers to situations for
which an a priori, provably correct solution can be developed. This does not mean that
these are simple, or trivial, problems. They are, however, complicated [30]. Usually, these
situations involve challenging engineering problems, such as the design of bridges or other
intricate water works. The generally used approach in these kinds of situations is to analyse
the situation, design a solution and then implement it. Note that in these situations, a
reductionist approach is common: the “essential” properties of the problem domain are
analysed (whatever these may be), and the irrelevant aspects are (and are assumed safe to
be) ignored.

In contrast, for problems in the domain of complex problems, no a priori correct solution
can be found. The situation is characterized by the fact that the interplay between variables
is so complex that cause and effect can only be analysed (fully) a posteriori. Problems in
this domain are also called wicked problems [31]. This is the realm of emergent change,
where a hypothesis of the situation is the input for deciding about potential action which
has to be evaluated a posteriori to see if it delivered the expected results. In software
engineering, this usually entails to the use of an agile approach. Note that the approach here
does not favour reductionism; the whole point in this domain is that a full analysis is not
possible. The emphasis is, indeed, on probing the organization and evaluating results –
something that is often referred to as situational awareness [32, 33].

Note further that:

• There is a fifth “unknown” domain of problems in the centre of the framework. This is
used to signal situations here we do not yet know in which of the four main domains
we are.

• The left-right “split”: both the simple and complicated domains are said to be ordered.
This is intended to signify that a correct solution can be derived a priori. The complex
and chaos domains are said to be unordered and do not have this property.

• Going from the simple domain to the complicated domain signifies a clear distinction
between situations where a full understanding is immediately apparent (simple domain)
versus situations where time for analysis is needed.

• Going from the complicated to the complex domain signifies a clear distinction where
time is available for analysis (complex) versus situations where it is not (complicated).

• The “squiggle” at the bottom, between the chaos and simple domains, is intended to
signify a rift/barrier: it is not possible to go from the chaotic domain to the simple
domain; one will have to go “up” to the complicated or complex domain.

•

6 Coordinated Continuous Digital Transformation 107

The blue areas are “in-between” areas. These signify the areas of doubt and uncertainty
where we are unsure in which of the two adjacent areas we are.

Our claim is that (continuous) digital transformations are primarily in the complex
space. We motivate this claim by referring to the earlier observation that, in our view,
the profound impact suggests that many parts of the enterprise will be impacted. These
“parts” come in many shapes and forms that are intricately intertwined: people in their
roles, processes (structured and creative), data, information systems, infrastructure, team
meetings and perhaps even culture are all considered [34]. Furthermore, AI-based actors/
components will add even more complexity to the mix, especially, when taking the
complex interplay between multiple human and AI-based actors into account.

In [35], the complexity that originates from people and their different interests and
backgrounds is referred to as social complexity. Inspired by this, in [34], the following
pseudo-formula for social complexity is suggested:

social complexity= #stakeholder roles × diversity of stakes × diversity of cultures

This could be complemented further with technical complexity due to the interplay
between the different components and relations involved in a digital transformation. As
mentioned before, the increased use of AI and the potential interplay (and associated
uncertainty regarding causes and effect).

The social complexity and technical complexity involved in digital transformation put
more stress on the need for coordination. To further illustrate this, we introduce two new
notions: (1) a single-effort digital transformation initiative refers to a situation where a
single initiative attempts to achieve a digital transformation outcome, and (2) a multi-effort
digital transformation refers to a situation where a group of parallel initiatives does the
same. We deliberately use the “vague” term initiative to avoid a (waterfall) project versus
agile discussion while also embracing the earlier observation that digital transformations
(be it single-effort or multi-effort) should be thought of as continuous processes.

Let us now, briefly, examine each of these kinds of digital transformations in turn. In a
single-effort digital transformation initiative, one attempts to change the core/architecture of the
enterprise in a single initiative. Our earlier claim is that digital transformation initiatives are in
the complex space, which suggests that a full a priori understanding of the domain is, by its
very nature, not possible. We argue that multiple stakeholders are involved in such an initiative,
also requiring the balancing of “local” interests (e.g. at business unit level) and “global”
interests (e.g. at company-wide level) [1] (including, for instance, the need to comply to
regulations). This emphasizes the need for coordination: both within the group of stakeholders
that shape and execute the transformation initiative and with the stakeholders that are impacted
by it. Indeed, in agile methods (e.g. SCRUM), there is much focus on communication and
rituals (daily stand-up, retrospective, etc.) to arrange for this kind of coordination.

In a multi-effort digital transformation initiative, these coordination challenges become
even more pressing. Here, we not only see the need for coordination (among stakeholders)

within a transformation initiative but also across different (parallel) initiatives. A more
flexible approach seems to be called for, i.e. also less “Big Design Up Front” [36, 37]. At
the same time, concerns, such as regulatory compliance, risk management, security, etc., do
require an integrated view (and design) of all relevant aspects of an enterprise [3, 38]. In
practice, we tend to see variations of scaled agile emerge.2 Scaled agile methods are
characterized by coordinating mechanisms “on top of” agile initiatives, ensuring that
their goals and efforts align sufficiently.

108 H. Proper and B. van Gils

To summarize our point, digital transformations are highly complex (and will be even
more complex when AI is involved). They are also continuous and require strong coordi-
nation either within or across initiatives. In the next section, we will investigate the role of
models in light of this point.

Enterprise Design Dialogues

We [4] take the view that, in general, the design of the structure (processes, hierarchies,
(IT) infrastructures) of an enterprise is (re)shaped by a continuous flow of (top-down and
bottom-up) enterprise design dialogues between the different involved human actors.
(Coordinated and continuous) digital transformations are no exception to this.

This may sound abstract, but in practice, such design dialogues occur all across
enterprises. Or in the words of [39]: “Design literally shapes organizational reality”.
Each time co-workers discuss “how to” divide work or conduct a (new) task, they
essentially engage in an enterprise design dialogue. When process engineers discuss with
senior business management how to shape a business process, they are having a design
dialogue. When database engineers discuss with domain experts what information needs to
be captured in the database, they are having a design dialogue. When the enterprise
architects that are involved in a digital transformation coordinate with different
stakeholders regarding the future direction of the enterprise, they are having a design
dialogue. These examples show how design dialogues occur across an enterprise, mean-
while (re)shaping the design of the enterprise.

As a more concrete example of (1) what a design dialogue looks like and (2) what the
value of such a dialogue can be, consider the situation at a utilities company that we3

consulted to. This company had had a “best of breed” software strategy in the past. They
ended up with a set of systems from different vendors that were only loosely connected.
The situation served them well for years on end, but the need for a more integral approach
to data access (both for operational and for business intelligence purposes) had arisen. It
had been decided that “we need an integral platform” to make that happen, without having

2 Several frameworks to scale agile methods have emerged. A full listing would be beyond the scope
of this chapter.
3 One of the authors works as an enterprise architect for different clients.

a good discussion of what that really is/means. This task fell to the project team which
“should be able to figure that out”. After the project team had struggled with the issue for
several months, it became apparent that this was not as easy as it seemed. A cursory root
cause analysis showed that (1) there were too many disparate perspectives on the problem,
(2) the language that stakeholders used to talk about the problem space varied greatly and
(3) some politics were going on in the background as well. It was decided that a smaller
group (three professionals) were to come up with a proposal for a definition of what an
integral platform is, an ontological question, and a by-and-large overview of what it could
look like for this organization – a practical question. Over a period of 3 weeks, we had three
meetings (lasting 1.5–2 h each) where we carefully explored the problem area. Within this
smaller group, we were able to strictly separate the two questions. The biggest hurdle was
to standardize terminology, with questions such as “What is a process?”, “What is a
platform?” and “What does ‘integral’ mean?”. With those questions answered, the onto-
logical question was quickly resolved. We also managed to draft a rough outline of (the
design of) what we think an integral platform should be and used that to align the views
within the larger project team. The project is still on-going, but we can already conclude
that a deliberate and brief design dialogue helped to align the views within our project team.

6 Coordinated Continuous Digital Transformation 109

The notion of enterprise design dialogue also intends to reflect notions such as
authoring “authoring of organizations” [40], as well as views from organizational design
[41]. It also acknowledges the fact that an enterprise is certainly not a “machine” (in the
sense of [42]) that can be “engineered” as such. In our view, a perspective on an enterprise
as an “organism” or even a “learning system” (e.g. [43]) makes more sense, especially
when dealing with continuous digital transformations. We do, however, assume that these
dialogues result in some artefact that represents some abstraction of some aspect(s) of the
design of the enterprise, i.e. an enterprise model in the broadest sense.

In dealing with the many levels and speeds of change that confront enterprises, it will
become increasingly important for enterprises to be aware of all relevant activities and
activities inside, and outside, the organizational boundaries. Even more, the different actors
involved in/impacted by these changes need to (1) have an insight into the existing
structures and operations of an enterprise; (2) be able to express, assess and evaluate
different design options for their future; and (3) have instructions on how to make the
necessary changes to these structures and operations and (4) how to operate in the future.

Mirroring the fact that digital transformation can occur in a top-down as well as a
bottom-up fashion, enterprise design dialogues may occur bottom-up, but they may also
take place as part of an orchestrated enterprise development/transformation process. In the
latter case, one may explicitly develop a conversation strategy [44], spanning multiple
design dialogues. As suggested in [44], the different steps (i.e. distinct design dialogues)
involved in a conversation strategy can serve more specific goals with regard to “enterprise
knowledge”, such as share (or create) knowledge, agree to the shared knowledge and
commit to the consequences actions resulting from the shared/created knowledge.

Figure 6.2 illustrates our way of thinking. First, note that stakeholders have transforma-
tion goals (which may or may not conflict) with regard to a domain. In order to achieve

these goals, they engage in a design conversation. This conversation uses a (standardized)
language and follows a strategy. As part of the conversation, they have different dialogues,
each with a specific goal that is in line with the overall strategy. Based on our claim that
digital transformation is a deliberate effort, we also claim that design is an activity that is
part of digital transformation initiatives.

110 H. Proper and B. van Gils

Fig. 6.2 Design conversation and dialogues

The Role of Models

Whenever we, as humans, have a need to (jointly) reason/reflect about some part of an
existing/imagined domain, we essentially use models to express our understanding of this
(part of the) domain [45], i.e. domain models. We take the view that such domain models
have an important role to play in the design dialogues that shape an enterprise.

Based on the foundational work by, e.g. Apostel [46] and Stachowiak [47], more recent
work on the same by different authors [48–51] as well as our own work [45, 52–57], we
currently [58] understand a domain model to be:

A social artifact that is acknowledged by a collective agent to represent an abstraction of some
domain for a particular cognitive purpose.

With domain, we refer to “anything” that one can speak and/or reflect about, i.e. the domain
of interest. As such, domain simply refers to “that what is being modelled”. A model is seen
as a social artefact in the sense that its role as a model should be recognizable by a

collective agent (e.g. people). The collective agent observes the domain by way of their
senses and/or by way of (collective) self-reflection and, based on this, should acknowledge/
accept the artefact as indeed being a model of the domain (for a given purpose). A model
must always be created for some cognitive purpose, i.e. to express, specify, learn about or
experience knowledge regarding the modelled domain. Finally, a model is the representa-
tion of an abstraction. This implies that, in line with the cognitive purpose of the model,
some (if not most) “details” of the domain are consciously filtered out.

6 Coordinated Continuous Digital Transformation 111

In the context of digital transformations, different aspects of an enterprise, including
its structures, purpose, value proposition, business processes, stakeholder goals, infor-
mation systems, etc., can be captured in terms of (interconnected) domain models. The
latter also enables “cross-cutting” analysis [3, 59] across different aspects and
perspectives.

Models pertaining to any aspect of an enterprise are, by definition, enterprise models.
Enterprise models typically take the form of some “boxes-and-lines” diagram. As argued
in, e.g. [60–62], enterprise models should also be understood from a broader perspective
than mere “boxes-and-lines” diagrams. As such, domain models can, depending on the
purpose at hand, take other forms as well, including text, mathematical specifications,
games, animations, simulations and physical objects.

Enterprise models are traditionally regarded as an effective way to enable such informed
coordination and decision-making. Just as senior management uses financial modelling to
enable decision-making from a financial perspective, (enterprise) models covering the
other aspects of an organization can be used to enable informed decision-making regarding
the other aspects as well [36, 38, 63], as well as operational use in Digital Twin(s) and
advanced rule-based systems (i.e. for tax law execution, [64, 65]). More generally, as
suggested in [61, 66], high-level purposes for the creation of enterprise models include
understand the current affairs on the enterprise, assess the current affairs, diagnose
possible problems in the current affairs, (re-)design changes towards the future, realize
such changes, provide guidance/direction for (human or digital) actors who operate in the
enterprise and enable regulators to express regulations in order to regulate the activities of
the enterprise.

More specifically, enterprise models potentially capture important enterprise knowledge
[67]. This can, e.g. pertain to knowledge in relation to the well-known interrogatives (why,
who, whose, when, how, with), be positioned in time (as-was, as-is, as-planned, to-be, etc.),
be nuanced in terms of modalities (must, ought, desired, etc.), take a prescriptive or a
descriptive perspective, etc. As a result, enterprise models can be used to support design
dialogues and/or capture the results of design dialogues. Some concrete examples, across
different objectives, would be:

• Coherence of the enterprise: Models can be used to capture different aspects of an
enterprise, as well as their coherence. This was actually also one of the key drivers [68]
in the development of the ArchiMate standard for enterprise (architecture) modelling.

112 H. Proper and B. van Gils

Engagement of stakeholders: Models can be used to capture requirements and/or
regulations reflecting the needs from different stakeholders. They can also be used to
express balanced compromises regarding the positive/negative impacts on the respective
goals and concerns (security, regulatory compliance, environmental impact, flexibility,
etc.) of stakeholders.

•

• Evidence-enabled decision-making: Models can be used to represent past and current
design(s) of an enterprise, its desired future design as well as different options for its
future design, all in relation to its (evolving) context. Such models enable among others
(1) the analyses of the current, or future, affairs of the enterprise and its environment and
(2) the evaluation of the potential impact of design decisions on (new) concerns or
(3) assess the compliance of a design with regard to requirements or regulations.

• General design knowledge: Models can capture general design knowledge in terms of,
e.g. construction theories, design patterns and reference designs (leading to reference
models/architectures).

In line with the earlier discussed Cynefin framework, the potential role of models needs to
be nuanced towards the specific domain in which the problem fits. For instance, if a problem
can be classified as complicated, then the key properties of the problem (and its potential
solution) can easily be caught in a model, which – in such a setting – has the interpretation of a
simplified (yet relevant) version of reality. In the case of a problem that is classified as
complex, models may still be used, but in a more humble role as hypothesis to decide about
potential action. In the latter case, the emphasis is on probing the organization and evaluating
results – something that is often referred to as situational awareness [32, 33].

Challenges and Opportunities

In this section, we will discuss the challenges and opportunities related to (the use of)
design dialogues (as part of modelling initiatives) for digital transformation. We will first
discuss the challenges – roughly following the line of reasoning in this chapter – and then
the opportunities.

We started this chapter with our definition of digital transformation. This definition,
loosely, boils down to changing the core of the enterprise with a significant impact on the
digital capabilities of the enterprise. To see where the main challenge lies, from this
perspective, one has to realize that the organization has been shaped – deliberately or
not – the way it is for a reason. We can assume that the designer (i.e. management) of the
organization made decisions in the past with the future of the enterprise in mind. The
enterprise is the way it is because stakeholders have made their decisions with a bright
future in mind, and now we are about to change that. Worse, we are about to embark on a
digital transformation journey with uncertain outcome with the doors open: we still have to
perform the main functions of the enterprise. The consequence is that there is a period of
fluid organization – meaning parts of the enterprise conform to the old architecture and

parts conform to the new architecture. This is a sub-optimization and may hamper service
levels towards customers.

6 Coordinated Continuous Digital Transformation 113

We then argued that digital transformation efforts are continuous in nature, which
appears to lead to many organizations adopting agile methods with shorter turn-around
times to realize (initial version of) capabilities. The challenges related to this aspect are
closely related to the previous point, for it entails that the enterprise is continually in flux.
There is no such thing as moving from one stable situation to the next, as the transformation
is a continuous, on-going process. The consequence is that, at any point in time, we do not
have a full understanding of the enterprise. We only have a by-and-large understanding
based on what we know of a past situation (which we can analyse because it is in the past)
and our knowledge of the on-going transformation initiative(s). This means that, when we
make a decision about transformation initiatives or their implications on the enterprise, we
do so on an incomplete information position. We base our decisions on what we believe to
be true, rather than on what we know to be true. In our view, this emphasizes once more
that a thorough understanding of the architecture of the enterprise is crucial: the architec-
ture will change/evolve slowly, whereas (implementation) details change more rapidly as a
result of transformation initiatives. Models, of course, are a key enabler to mitigate the risks
around this challenge, as they are intended to capture the shared understanding of what we
believe to be true.

This brings us to the third point in this chapter: the need for coordination. As we have
seen, the enterprise is in a constant state of flux, with uncertainty for all stakeholders
involved. We believe that there is no such thing as “the” future of the enterprise that we are
working towards: each of the stakeholders has their unique view of what the future should
look like. From the perspective of attaining a bright future for the enterprise, the challenge
is to align the views of stakeholders as much as possible which is the definition of
coordination as used in this chapter. Based on our experience in the field (both authors
are/have been active as consultants), we feel justified to conclude that this is rarely the case:
in many organizations, stakeholders engage in politics to further their own agenda and
maximize their own power/influence rather than achieving the best possible future as seen
by the community at large within the enterprise. We should add that “decisive leadership”
is sometimes useful or even necessary – but perhaps not at the level that we sometimes see.

As a small example, consider the tension that might occur between stakeholders with a
more “risk-averse” mindset and with a more “innovation-driven” mindset. The former
group of stakeholders may want to move cautiously from one semi-stable state to another,
whereas the latter may desire a more bold approach, taking bigger steps to achieve success.
When this tension is not (sufficiently) managed, then conflict/strive and sub-optimal results
are bound to occur in the enterprise.

Solving this stakeholder puzzle is beyond the scope of this chapter. Yet, we do believe
that models can aid in resolving these puzzles: they offer a focus to key discussion points as
part of enterprise design dialogues.

The point of a dialogue is that stakeholders engage in thoughtful and purposeful
conversation about the enterprise. This emphasizes the next challenge that is addressed

in this chapter: language. It is well-known that language – particularly getting a shared
understanding of an utterance – is notoriously difficult (see, e.g. [69]). When shaping a
digital transformation, seemingly small differences in the interpretation of important
concepts may have large consequences. For example, take the notion of causation
(a causes b). Someone with an engineering background is likely to have a more strict
interpretation of what causation really means. When, in a design dialogue, it is claimed that
a causes b and we know that a will be changed, then it may occur that one stakeholder
logically infers that since a is no longer the case, it must be the case that b is also no longer
the case, whereas the other stakeholder might have a more loose interpretation and
conclude that b still could be (somewhat) the case. Worse, it may appear that these
stakeholders are in agreement on some course of action, whereas in fact they are not
(since the exact interpretation of their commitments is unclear). This is why we believe that
design dialogues should be explicit and argue that the meaning of any key term must be
clarified – and models are a good way to do so. We are aware that (a) this takes time and
(b) this goes against what agile practitioners are accustomed to – yet we also argue that
there is a potentially high “return on modelling effort” [58, 70].

114 H. Proper and B. van Gils

Last but not least, there are challenges related to the notion of models and modelling. As
noted, we see models as a social artefact; stakeholders should be able to examine it and
assert whether the model (of a domain) can stand for that domain. We also observed that
models are an abstraction: details that – according to the modeller(s) – are not relevant are
left out. And here lies the challenge: how does one decide what is relevant and what is not?
It may appear that this is a trivial choice made by the modeller(s). Yet, the work of Bjeković
[71] shows that there is more to it than that: what is relevant is determined by the goal of the
modeller. Going back to the previous points on design dialogues, we can see how the point
on shared understanding of modelling objectives as well as key concepts “propagates”:
without the shared understanding, it is hard to decide collectively which details to include/
leave out.

This leaves the discussion of the opportunities that are to be reaped. In light of the
overall theme of this book, we focus on AI-related opportunities and leave other
opportunities for future research and exploration.

Recall that we spoke of digital transformation of an enterprise, which we defined as
“unit of economic organization or activity”. We also expressed that enterprises are
organized in the sense that actors and other means of production (data, materials, etc.)
are used to achieve specific outcomes. In AI-Enabled Enterprises, these actors come in the
form of humanoids and AIs which interact to create value. We have noted that, in terms of
the Cynefin framework, digital transformations tend to belong to the complex domain
which implies that no a priori full understanding of that domain can be obtained. This is
where an opportunity for AIs comes in: correctly trained AIs may be able to take over a
large part of the modelling effort (particularly the “complicated part”) so that human
modellers can focus on the truly complex parts.

As an illustration, consider software bots that can “crawl” a network to discover
application interfaces (see, e.g. [72]) or mine data to discover how processes work (see,

e

e.g. [73]). This type of bots exists for other domains as well. It seems safe to assume that in
the foreseeable future, bots can be trained to not only discover/mine for processes but also
to connect them to form a (detailed) model of the “things that exist” as well as “how they
are related”. Perhaps the ability to create “useful abstractions” is a bit far-fetched, but it
seems only a matter of time before we are able to achieve such results. This would be of
tremendous help for human actors attempting to build up an understanding of the existing
enterprise as well as shape a future enterprise: it takes away the burden of having to do a lot
of background research.

6 Coordinated Continuous Digital Transformation 115

This brings us to the second opportunity. Recent advances in chat bots and related
technologies (e.g. [74]) show that meaningful conversations with an AI are available in
specific domains. Anyone who has tried to talk their way to an AI over a phone line
attempting to resolve business issues is probably well aware that the technology is not yet
perfect. Let us assume that the domain we are applying this type of technology to is the
domain of digital transformation initiatives. In this case, the AI could be a meaningful and
valuable partner that would assist us in creating models with likely future state scenarios
and assess impact in terms of digital transformation initiatives [20]. Given the big compu-
tational power that an AI has, it should be able to run scenarios and apply heuristics to test
which scenarios are most feasible. While useful, we do expect that human judgment
remains imperative – even with a well-trained AI (e.g. to ensure that there are no issues
around bias/ethics, something we do not expect an AI to resolve for itself).

Conclusion

This chapter started with the observation that the transformation of enterprises towards
AI-Enabled Enterprises is a logical next phase in the continuous flow of digital
transformations which enterprises are (and need to be) engaged in. In line with this, this
chapter zoomed in on both the challenges facing enterprises regarding digital
transformations in general and the transition to AI-Enabled Enterprises in particular.

In doing so, we argued that digital transformation should be seen as a continuous
process while also needing coordination among many different involved stakeholders
and activities, as such resulting in coordinated continuous digital transformation. W
then positioned enterprise design dialogues as being at the heart of the needed coordination
of transformations while then also positioning enterprise models as a key artefact in support
of enterprise design dialogues. Finally, we reviewed some of the challenges and
opportunities towards future research.

116 H. Proper and B. van Gils

References

1. Proper, H. A., Winter, R., Aier, S., & de Kinderen, S. (Eds.). (2018). Architectural coordination
of enterprise transformation (The Enterprise Engineering Series). Springer. https://doi.org/10.
1007/978-3-319-69584-6. ISBN 978-3-319-69583-9.

2. Proper, H. A., van Gils, B., & Haki, K. (Eds.). (2023). Digital enterprises – Service-focused,
digitally-powered, data-fueled (EE Series). Springer. ISBN 978-3-031-30213-8.

3. Land, M. O., Proper, H. A., Waage, M., Cloo, J., & Steghuis, C. (2008). Enterprise architecture –
Creating value by informed governance (The Enterprise Engineering Series). Springer. https://
doi.org/10.1007/978-3-540-85232-2. ISBN 978-3-540-85231-5.

4. van Gils, B., Hoppenbrouwers, S. J. B. A., & Proper, H. A. (2022). Conceptual modeling in
digital transformations – Enabling enterprise design dialogues. In PoEM 2022 Forum
Proceedings. CEUR-WS.org.

5. Ross, J., Beath, C. M., & Mocker, M. (2019). Designed for digital: How to architect your
business for sustained success (Management on the cutting edge). MIT Press.

6. Meriam–Webster. (2003). Meriam–Webster Online, Collegiate Dictionary. http://www.merriam-
webster.com

7. Veeke, H. P. M., Ottjes, J. A., & Lodewijks, G. (2008). The Delft systems approach: Analysis and
design of industrial systems. Springer Science & Business Media.

8. Proper, H. A., & van Gils, B. (2019). Enterprise modelling in the age of digital transformation.
IFIP Select, 1(2). http://ifip.org/select/select_1_2/proper%201_2.pdf.

9. Scott, J. (2009). Business Capability Maps – The missing link between business strategy and IT
action. Architecture & Governance, 5(9), 1–4.

10. Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management.
Strategic Management Journal, 18(7), 509–533.

11. Teece, D. J. (2007). Explicating dynamic capabilities: The nature and of (sustainable) enterprise
performance. Strategic Management Journal, 4(28), 1319–1350.

12. Greefhorst, D., & Proper, H. A. (2011). Architecture principles – The cornerstones of enterprise
architecture (The Enterprise Engineering Series). Springer. https://doi.org/10.1007/978-3-642-
20279-7. ISBN 978-3-642-20278-0.

13. IEEE Computer Society. (2000). IEEE std 1471-2000: IEEE recommended practice for architec-
ture description of software-intensive systems.

14. Bennett, N., James, G., & Lemoine. (2014). What VUCA really means for you. Harvard Business
Review (January-February), 27.

15. Johansen, B., & Euchner, J. (2013). Navigating the vuca world. Research-Technology Manage-
ment, 56(1), 10–15.

16. Horan, T. A. (2000). Digital Places – Building our city of bits. The Urban Land Institute (ULI).
ISBN 0-874-20845-9.

17. Negroponte, N. (1996). Being digital. Vintage Books. ISBN 0-679-76290-6.
18. Proper, H. A., Guédria, W., & Sottet, J.-S. (2020). Enterprise modelling in the digital age; Chapter

3. In V. Kulkarni, S. Reddy, T. Clark, & B. S. Barn (Eds.), Advanced digital architectures for
model-driven adaptive enterprises (pp. 46–67). IGI Global. https://doi.org/10.4018/978-1-7998-
0108-5.ch003. ISBN 9781799801085.

19. Burgueño, L., Cabot, J., & Gérard, S. (2019). An LSTM-based neural network architecture for
model transformations. In MODELS 2019 (pp. 294–299). IEEE Explore.

20. Feltus, C., Ma, Q., Proper, H. A., & Kelsen, P. (2021). Towards AI assisted domain modeling. In
I. Reinhartz-Berger & S. W. Sadiq (Eds.), Advances in Conceptual Modeling ER 2021 Workshops
CoMoNoS, EmpER, CMLS, St. John’s, NL, Canada, October 18-21, 2021, Proceedings (Lecture
Notes in Computer Science) (Vol. 13012). Springer. ISBN 978-3-030-88357-7.

https://doi.org/10.1007/978-3-319-69584-6
https://doi.org/10.1007/978-3-319-69584-6
https://doi.org/10.1007/978-3-540-85232-2
https://doi.org/10.1007/978-3-540-85232-2
https://doi.org/10.1007/978-3-642-20279-7
https://doi.org/10.1007/978-3-642-20279-7
https://doi.org/10.4018/978-1-7998-0108-5.ch003
https://doi.org/10.4018/978-1-7998-0108-5.ch003

6 Coordinated Continuous Digital Transformation 117

21. Snoeck, M., Stirna, J., Weigand, H., & Proper, H. A. (2019). Panel discussion: Artificial
intelligence meets enterprise modelling (summary of panel discussion). In C. Feltus, P.
Johannesson, & H. A. Proper (Eds.), Proceedings of the Practice of Enterprise Modelling 2019
Conference Forum (short papers), Luxembourg, November 27-29, 2019 (CEUR Workshop
Proceedings) (Vol. 2586, pp. 88–97). CEUR-WS.org. http://ceur-ws.org/Vol-2586/paper8.pdf

22. Proper, H. A., Wagter, R., & Bekel, J. (2022). On enterprise coherence governance with gea: A
15-year co-evolution of practice and theory. Software and Systems Modeling. https://doi.org/10.
1007/s10270-022-01059-0

23. Henderson, J. C., & Venkatraman, N. (1993). Strategic alignment: Leveraging information
technology for transforming organizations. IBM Systems Journal, 32(1), 4–16.

24. Mulder, H., Johnson, J., Meijer, K., & Crear, J. Investigating 5,140 digital transformation
projects. In Proper et al. [2]. Forthcoming.

25. Mulder, J. B. F., & Johnson, J. (2016). The next step of IT project research in practice: The
CHAOS university system. In The 10th International Multi- Conference on Society, Cybernetics
and Informatics: IMSCI 2016, July 5 – 8, Orlando, FL.

26. Kurtz, C. F., & Snowden, D. (2003). The new dynamics of strategy: Sense-making in a complex
and complicated world. IBM Systems Journal, 42(3), 462–483.

27. Mark, A., & Snowden, D. (2006). Researching practice or practicing research: Innovating
methods in healthcare – The contribution of cynefin. Innovations in Health Care.

28. Snowden, D., & Rancati, A. (2021). Managing complexity (and chaos) in times of crisis. A field
guide for decision makers inspired by the cynefin framework. Information Society.

29. Snowden, D. J., & Boone, M. E. (2007). A leader’s framework for decision making. Harvard
Business Review, 85(11), 68–76.

30. Edwards, J. B. (2014). The burden of command. CreateSpace Independent Publishing Platform.
ISBN 978-1495240447.

31. Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy
Sciences, 4, 155–169.

32. Endsley, M. R. (2001). Designing for situation awareness in complex systems. In Proceedings of
the Second International Workshop on symbiosis of humans, artifacts and environment (pp. 1–
14).

33. Nofi, A. A. (2000). Defining and measuring shared situational awareness. Technical report.
Center for Naval Analyses, Alexandria, VA.

34. Wagter, R., & Proper, H. A. Involving the right stakeholders – Enterprise coherence governance.
In Proper et al. [1], chapter 10, pp. 99–110. ISBN 978-3-319-69583-9. https://doi.org/10.1007/
978-3-319-69584-6.

35. Conklin, J. (2005). Dialogue mapping: Building shared understanding of wicked problems.
Wiley. ISBN 978-0-470-01768-5.

36. Proper, H. A., & Lankhorst, M. M. (2014). Enterprise Architecture – Towards essential
sensemaking. Enterprise Modelling and Information Systems Architectures, 9(1), 5–21. https://
doi.org/10.18417/emisa.9.1.1

37. Waterman, M., Noble, J., & Allan, G. (2015). How much up-front? A grounded theory of agile
architecture. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering
(Vol. 1, pp. 347–357). IEEE.

38. Harmsen, A. F., Proper, H. A., & Kok, N. (2009). Informed governance of enterprise
transformations. In H. A. Proper, A. F. Harmsen, & J. L. G. Dietz (Eds.), Advances in Enterprise
Engineering II – First NAF Academy Working Conference on Practice-Driven Research on
Enterprise Transformation, PRET 2009, held at CAiSE 2009, Amsterdam, The Netherlands,
June 11, 2009. Proceedings (Lecture Notes in Business Information Processing) (Vol. 28, pp.
155–180). Springer. https://doi.org/10.1007/978-3-642-01859-6_9. ISBN 978-3-642-01858-9.

http://ceur-ws.org/Vol-2586/paper8.pdf
https://doi.org/10.1007/s10270-022-01059-0
https://doi.org/10.1007/s10270-022-01059-0
https://doi.org/10.1007/978-3-319-69584-6
https://doi.org/10.1007/978-3-319-69584-6
https://doi.org/10.18417/emisa.9.1.1
https://doi.org/10.18417/emisa.9.1.1
https://doi.org/10.1007/978-3-642-01859-6_9

118 H. Proper and B. van Gils

39. Junginger, S. (2015). Organizational design legacies & service design. Design Journal. Special
Issue: Emerging Issues in Service Design.

40. Taylor, J. R. (1996). The communicational basis of organization: Between the conversation and
the text. Communication Theory, 6(1), 1–39.

41. Magalhães, R. (Ed.). (2014). Organization design and engineering: Coexistence, cooperation or
integration. Palgrave-Macmillan. ISBN 13 9781137351562.

42. Morgan, G. (1998). Images of organization. Sage. ISBN 0-761-91752-7.
43. Senge, P. M. (1997). The fifth discipline. Measuring Business Excellence.
44. Proper, H. A., Hoppenbrouwers, S. J. B. A., & Veldhuijzen van Zanten, G. E. (2017). Communi-

cation of enterprise architectures. In Enterprise Architecture at Work – Modelling, Communica-
tion and Analysis (The Enterprise Engineering Series) (4th ed., pp. 59–72). Springer. https://doi.
org/10.1007/978-3-662-53933-0_4. ISBN 978-3-662-53932-3.

45. Proper, H. A., & Guizzardi, G. (2021). On domain conceptualization. In D. Aveiro, G. Guizzardi,
R. Pergl, & H. A. Proper (Eds.), Advances in Enterprise Engineering XIV – 10th Enterprise
Engineering Working Conference, EEWC 2020, Bozen-Bolzano, Italy, September 28, October
19, and November 9-10, 2020, Revised Selected Papers (Lecture Notes in Business Information
Processing) (Vol. 411, pp. 49–69). Springer. https://doi.org/10.1007/978-3-030-74196-9_4.
ISBN 978-3-030-74195-2.

46. Apostel, L. (1960). Towards the formal study of models in the non-formal sciences. Synthese, 12,
125–161.

47. Stachowiak, H. (1973). Allgemeine Modelltheorie. Springer. https://doi.org/10.1007/978-3-7091-
8327-4. ISBN 3-211-81106-0.

48. Harel, D., & Rumpe, B. (2004). Meaningful modeling: What’s the semantics of “semantics”?
IEEE Computer, 37(10), 64–72. https://doi.org/10.1109/MC.2004.172

49. Rothenberg, J. (1989). The nature of modeling. In L. E. Widman, K. A. Loparo, & N. Nielson
(Eds.), Artificial intelligence, simulation & modeling (pp. 75–92). Wiley. ISBN 0-471-60599-9.

50. Sandkuhl, K., Fill, H.-G., Hoppenbrouwers, S. J. B. A., Krogstie, J., Matthes, F., Opdahl, A. L.,
Schwabe, G., Uludağ, O., & Winter, R. (2018). From expert discipline to common practice: A
vision and research agenda for extending the reach of enterprise modeling. Business & Informa-
tion Systems Engineering, 60(1), 69–80. https://doi.org/10.1007/s12599-017-0516-y

51. Thalheim, B. (2011). The theory of conceptual models, the theory of conceptual modelling and
foundations of conceptual modelling. In Handbook of conceptual modeling (pp. 543–577).
Springer.

52. Bjeković, M., Proper, H. A., & Sottet, J.-S. (2014). Embracing pragmatics. In E. S. K. Yu, G.
Dobbie, M. Jarke, & S. Purao (Eds.), Conceptual Modeling – 33rd International Conference, ER
2014, Atlanta, GA, USA, October 27-29, 2014. Proceedings (Lecture Notes in Computer Science)
(Vol. 8824, pp. 431–444). Springer. https://doi.org/10.1007/978-3-319-12206-9_37. ISBN 978-
3-319-12205-2.

53. Guarino, N., Guizzardi, G., & Mylopoulos, J. (2020). On the philosophical foundations of
conceptual models. Information Modelling and Knowledge Bases XXXI, 321, 1.

54. Guizzardi, G. (2006). On ontology, ontologies, conceptualizations, modeling languages, and
(meta)models. In O. Vasilecas, J. Eder, & A. Caplinskas (Eds.), Databases and Information
Systems IV – Selected Papers from the Seventh International Baltic Conference, DB&IS 2006,
July 3-6, 2006, Vilnius, Lithuania (Frontiers in Artificial Intelligence and Applications) (Vol.
155, pp. 18–39). IOS Press. ISBN 978-1-58603-715-4.

55. Hoppenbrouwers, S. J. B. A., Proper, H. A., & van der Weide, T. P. (2005). A fundamental view
on the process of conceptual modeling. In L. Delcambre, C. Kop, H. C. Mayr, J. Mylopoulos, &
O. Pastor (Eds.), Conceptual Modeling – ER 2005, 24th International Conference on Conceptual
Modeling, Klagenfurt, Austria, October 24-28, 2005, Proceedings (Lecture Notes in Computer

https://doi.org/10.1007/978-3-662-53933-0_4
https://doi.org/10.1007/978-3-662-53933-0_4
https://doi.org/10.1007/978-3-030-74196-9_4
https://doi.org/10.1007/978-3-7091-8327-4
https://doi.org/10.1007/978-3-7091-8327-4
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1007/s12599-017-0516-y
https://doi.org/10.1007/978-3-319-12206-9_37

6 Coordinated Continuous Digital Transformation 119

Science) (Vol. 3716, pp. 128–143). Springer. https://doi.org/10.1007/11568322_9. ISBN 3-540-
29389-2.

56. Proper, H. A., & Guizzardi, G. (2020). On domain modelling and requisite variety – Current state
of an ongoing journey. In J. Grabis & D. Bork (Eds.), The Practice of Enterprise Modeling.
PoEM 2020 (Lecture Notes in Business Information Processing) (Vol. 400, pp. 186–196).
Springer. https://doi.org/10.1007/978-3-030-63479-7_13. ISBN 978-3-030-63479-7.

57. Proper, H. A., Verrijn-Stuart, A. A., & Hoppenbrouwers, S. J. B. A. (2005). On utility-based
selection of architecture-modelling concepts. In S. Hartmann & M. Stumptner (Eds.), Conceptual
Modelling 2005, Second Asia-Pacific Conference on Conceptual Modelling (APCCM2005),
Newcastle, NSW, Australia, January/February 2005 (Conferences in Research and Practice in
Information Technology Series) (Vol. 43, pp. 25–34). Australian Computer Society. ISBN 1-
920682-25-2. http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV43Proper.html.

58. Proper, H. A., & Guizzardi, G. (2022). Modeling for enterprises; Let’s go to RoME ViA RiME. In
PoEM 2022 Forum Proceedings. CEUR-WS.org.

59. Jonkers, H., Lankhorst, M. M., Quartel, D. A. C., Proper, H. A., & Iacob, M.-E. (2011).
ArchiMate for integrated modelling throughout the architecture development and implementation
cycle. In B. Hofreiter, E. Dubois, K.-J. Lin, T. Setzer, C. Godart, H. A. Proper, & L. Bodenstaff
(Eds.), 13th IEEE Conference on Commerce and Enterprise Computing, CEC 2011,
Luxembourg-Kirchberg, Luxembourg, September 5-7, 2011 (pp. 294–301). IEEE Computer
Society Press. https://doi.org/10.1109/CEC.2011.52. ISBN 978-0-769-54535-6. http://
ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6046209.

60. Magalhães, R., & Proper, H. A. (2017). Model-enabled design and engineering of organisations.
Organisational Design and Enterprise Engineering, 1(1), 1–12. https://doi.org/10.1007/s41251-
016-0005-9

61. Proper, H. A. (2021). On model-based coordination of change in organizations (pp. 79–98).
Springer. https://doi.org/10.1007/978-3-030-84655-8_6. ISBN 978-3-030-84655-8.

62. Proper, H. A., & Bjeković, M. (2019). Fundamental challenges in systems modelling. In H. C.
Mayr, S. Rinderle-Ma, & S. Strecker (Eds.), 40 Years EMISA 2019, May 15-17, 2019,
Evangelische Akademie Tutzing, Germany (Lecture Notes in Informatics) (Vol. P-304, pp. 13–
28). Gesellschaft für Informatik e.V.. https://dl.gi.de/20.500.12116/33130

63. Proper, H. A. (2014). Enterprise architecture: Informed steering of enterprises in motion. In S.
Hammoudi, J. Cordeiro, L. A. Maciaszek, & J. Filipe (Eds.), Enterprise Information Systems –
15th International Conference, ICEIS 2013, Angers, France, July 4-7, 2013, Revised Selected
Papers (Lecture Notes in Business Information Processing) (Vol. 190, pp. 16–34). Springer.
https://doi.org/10.1007/978-3-319-09492-2_2. ISBN 978-3-319-09491-5.

64. Ausems, A., Bulles, J., & Lokin, M. (2021). Wetsanalyse voor een werkbare uitvoering van
wetgeving met ICT. Boom. ISBN 978-9-462-90937-3. In Dutch.

65. Corsius, M., Hoppenbrouwers, S., Lokin, M., Baars, E., Sangers-Van Cappellen, G., & Wilmont,
I. (2021). RegelSpraak: A CNL for executable tax rules specification. In Proceedings of the
Seventh International Workshop on Controlled Natural Language (CNL 2020/21). Special
Interest Group on Controlled Natural Language.

66. Proper, H. A. (2020). Digital enterprise modelling – Opportunities and challenges. In B. Roelens,
W. Laurier, G. Poels, & H. Weigand (Eds.), Proceedings of 14th International Workshop on
Value Modelling and Business Ontologies, Brussels, Belgium, January 16-17, 2020 (CEUR
Workshop Proceedings) (Vol. 2574, pp. 33–40). CEUR-WS.org. http://ceur-ws.org/Vol-2574/
short3.pdf

67. Lillehagen, F., & Krogstie, J. (2010). Active knowledge modeling of enterprises. Springer. ISBN
978-3-540-79415-8.

https://doi.org/10.1007/11568322_9
https://doi.org/10.1007/978-3-030-63479-7_13
https://doi.org/10.1109/CEC.2011.52
https://doi.org/10.1007/s41251-016-0005-9
https://doi.org/10.1007/s41251-016-0005-9
https://doi.org/10.1007/978-3-030-84655-8_6
https://dl.gi.de/20.500.12116/33130
https://doi.org/10.1007/978-3-319-09492-2_2
http://ceur-ws.org/Vol-2574/short3.pdf
http://ceur-ws.org/Vol-2574/short3.pdf

120 H. Proper and B. van Gils

68. Lankhorst, M. M., Proper, H. A., & Jonkers, H. (2010). The anatomy of the ArchiMate language.
International Journal of Information System Modeling and Design, 1(1), 1–32. https://doi.org/10.
4018/jismd.2010092301

69. Ogden, C. K., & Richards, I. A. (1923). The meaning of meaning – A study of the influence of
language upon thought and of the science of symbolism. Magdalene College, University of
Cambridge.

70. Guizzardi, G., & Proper, H. A. (2021). On understanding the value of domain modeling. In G.
Guizzardi, T. P. Sales, C. Griffo, & M. Furnagalli (Eds.), Proceedings of 15th International
Workshop on Value Modelling and Business Ontologies (VMBO 2021), Bolzano, Italy, 2021
(CEUR Workshop Proceedings) (Vol. 2835). CEUR-WS.org. http://ceur-ws.org/Vol-2835/
paper6.pdf

71. Bjeković, M. (2017). Pragmatics of enterprise modelling languages: A framework for under-
standing and explaining. PhD thesis, Radboud Universiteit Nijmegen.

72. Shestakov, D. (2009). On building a search interface discovery system. In International Work-
shop on Resource Discovery (pp. 81–93). Springer.

73. van der Aalst, W. (2012). Process mining: Overview and opportunities. ACM Transactions on
Management Information Systems (TMIS), 3(2), 1–17.

74. Adamopoulou, E., & Moussiades, L. (2020). An overview of chatbot technology. In IFIP
International Conference on Artificial Intelligence Applications and Innovations (pp. 373–
383). Springer.

https://doi.org/10.4018/jismd.2010092301
https://doi.org/10.4018/jismd.2010092301
http://ceur-ws.org/Vol-2835/paper6.pdf
http://ceur-ws.org/Vol-2835/paper6.pdf

A Case Study: Wellness Ecosystem 7
Vinay Kulkarni and Sreedhar Reddy

Introduction

Modern businesses operate in a dynamic, uncertain environment where they are continually
subjected to unpredictable changes in the business domain, consumer needs, laws and
regulations and even technology. Business enterprises need to be able to adapt to these
changes, continue to operate, stay relevant and thrive despite the dynamism and uncertainty
[1]. In understanding the dynamism in their environment, enterprises need to be viewed in
the context of the larger business ecosystems they are part of.

As shown in Fig. 7.1, an ecosystem comprises multiple interacting stakeholders such as
business enterprises, suppliers, service, sales and other partner organizations, consumers,
regulators, etc. [2]. Each stakeholder has a set of objectives to be met, devises a set of
strategies to achieve these objectives and brings to the table a set of capabilities to realize
these strategies. Working collaboratively enables them to deliver greater value to the
customer than they could individually, giving them greater market access and brand
value. In a dynamic world characterized by partial information and uncertainty, stakeholder
strategies and capabilities need to be suitably adapted on a continuous basis while also
being mindful of the fact that stakeholder objectives could be complementary or
conflicting. This calls for sharing of the right information between the various stakeholders.
This won’t scale up if done individually where each stakeholder needs to approach the rest
of the stakeholders for the relevant information. In the least, we need a value integrator that
will acquire and share the right information among the stakeholders. In a dynamic world
where stakeholders as well as their objectives can change rapidly, this integration needs to
happen continuously. Going beyond just information sharing, one can think of the value

V. Kulkarni (✉) · S. Reddy
Tata Consultancy Services Research, Pune, Maharashtra, India
e-mail: vinay.vkulkarni@tcs.com

The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Kulkarni et al., The AI-Enabled Enterprise, The Enterprise Engineering Series,
https://doi.org/10.1007/978-3-031-29053-4_7

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29053-4_7&domain=pdf
https://orcid.org/0000-0003-1570-1339
https://orcid.org/0000-0002-6990-1662
mailto:vinay.vkulkarni@tcs.com
https://doi.org/10.1007/978-3-031-29053-4_7#DOI

integrator providing adaptation support to stakeholders for devising the right strategies and
their effective operationalization through the right capabilities [3]. This can be in the form
of advisory via a recommender system or automated via an adaptation engine. This
adaptation also needs to happen on a continuous basis in a dynamic world.

122 V. Kulkarni and S. Reddy

Stakeholder

ObjectiveStrategy

Capabilities

devises

achieves

hasrealize

has

dependsOn

confilctsWith

EcoSystemhas

Fig. 7.1 Enterprise ecosystem

We illustrate these ideas using an example from the wellness domain.

Wellness Ecosystem

Wellness needs of individual consumers encompass fitness, healthcare, nutrition, leisure as
well as health insurance. The wellness ecosystem comprises service providers for these
needs; the consumer population consisting of individuals, families and corporates or
communities; government and regulatory bodies; and manufacturers of wellness products
as well as their networks of partner organizations, some of which are depicted in Fig. 7.2.

Wellness Stakeholders

We summarize the objectives, capabilities and adaptation needs of various stakeholders in
wellness ecosystem.

Individual
Objectives An individual would want to maximize fitness and minimize hospital expenses
while achieving good work-life balance.

Capabilities of interest include overall health, ability to handle stress, capacity to
exercise and discipline.

Adaptation drivers include age, health disorders, financial situation, fitness aspirations
and lifestyle changes.

7 A Case Study: Wellness Ecosystem 123

Hospital

Food Store

Nutrition
plan

GymInsurance
Company

Leisure

Wellness Plan

Wellness
Buddy App

Customer

Wearables

Leisure
plan

Healthcare
plan

Insurance
policy

Fitness
plan

Fig. 7.2 Wellness ecosystem

Adaptive response An individual may want the wellness plan to be refined which
includes choice of fitness regime, nutrition plan, health check-ups, health insurance, leisure
activities and corresponding service providers.

Gym
Objectives A gym would want to maximize customer footfall and satisfaction, maximize
RoI in fitness equipment and facilities and provide the right set of services to achieve these
objectives.

Capabilities include fitness equipment and facilities, fitness packages and staff.
Adaptation drivers include demographics, fitness needs, competitor actions and black

swan events like wars, pandemics, etc.
Adaptive response A gym may want to alter its size and layout, quantity and quality of

fitness equipment, size and skill profile of training staff, fitness packages, etc.

Food Store
Objectives Principal objectives are maximizing customer satisfaction, maximizing sale and
profit, eco-friendly packaging, minimizing energy consumption and wastage towards
sustainability goals, etc.

124 V. Kulkarni and S. Reddy

Capabilities include shelf space, number of brands and products, strategies for product
placement, pricing and promotion and size and quality of salesforce.

Adaptation drivers are demographics, consumer needs, economic profile of the
neighbourhood, regulatory regime, competitor actions, etc.

Adaptive response of a food store comprises changes to shelf space and layout, product
pricing and promotion strategies, supply chain and size and skill profile of salesforce.

Hospital
Objectives A hospital would want to service as many patients as possible without
compromising on the quality of the healthcare; maximize RoI in healthcare facility,
diagnostic centres, medical equipment and size as well as skill profile of staff; and provide
the right set of services to achieve these objectives.

Capabilities include size and skill profile of staff, healthcare packages, medical equip-
ment and diagnostic centres and facilities.

Adaptation drivers include demographics, competitor actions and black swan events
like war, pandemics, etc.

Adaptive response A hospital may want to alter its size and profile in terms of
diagnostics and equipment, quantity and quality of medical equipment, size and skill
profile of healthcare staff, healthcare packages, etc.

Insurance Company
Objectives Principal objectives are maximization of sales, profit, customer lifetime value,
average revenue per customer and customer satisfaction while minimizing customer churn
and rationalization of product portfolio.

Capabilities include insurance products covering various types of risks; services such as
underwriting, claims processing, policy administration, etc.; and product creation, market-
ing and servicing staff.

Adaptation drivers include demographics, health conditions, fitness levels and insur-
ance products.

Leisure Provider
Objective Principal objectives are maximization of measures such as sales, profit, customer
satisfaction and RoI in facilities.

Capabilities include leisure facilities such as resorts, theatres, cinema halls, restaurants,
etc., size and skill profile of staff and the right set of services around these facilities.

Adaptation drivers include demographics, state of economy, competitor actions and
black swan events like war, pandemics, etc.

Adaptive response A leisure provider may want to alter the leisure packages and their
price points, expand facilities and resize and reskill the staff.

Services in each of the areas of wellness such as healthcare, fitness, nutrition and leisure
complement one another and are also inter-dependent, requiring action to be taken on
multiple fronts to satisfy an individual’s wellness needs. For example, the health of an

individual is impacted by his fitness and nutrition habits. Similarly, fitness regime needs to
cater to individual’s fitness needs while taking into consideration overall health and dietary
habits. Dietary needs are a function of individual’s overall health and fitness regime. A
change in any one aspect impacts the other related aspects, requiring them to change
appropriately so that overall wellness objectives continue to be met.

7 A Case Study: Wellness Ecosystem 125

A customer who aspires for wellness would have to interact separately with a fitness
provider, food stores and healthcare provider for his needs in each of these areas. He has to
manage the inter-dependence and dynamism among these aspects himself. For example, a
switch from active to sedentary job would necessitate commensurate changes to fitness
regime and nutrition intake. The customer might consult the appropriate nutrition and
fitness experts for guidance; however, it is apparent that their advice would not work in
isolation. Rather, healthcare, nutrition and fitness experts need to collaborate to decide
upon the course of action that would truly work to satisfy the customer’s needs. Although
individual service providers may fulfil their goal of providing healthcare/nutrition/fitness
services, their value proposition is complete only in conjunction. Changes introduced in
their services by any of the collaborating participants are another potential source of
dynamism in the ecosystem. Moreover, wellness needs of individuals change over time
with age, change in lifestyle, family commitments, etc. As a result, the wellness plans as
well as their implementations need to adapt suitably and continuously over time.

A service provider aspires to provide fit-for-purpose services aimed principally at
maximizing the return on investment which in turn depends on customer satisfaction and
maximum utilization of facilities. Current practice is to classify the target clientele into
broad buckets and defining services catering to these buckets. Typically, these buckets are
formed by taking into consideration multiple dimensions of interest, e.g. an insurance
company will use the dimensions of age, occupation, medical history and fitness level to
define buckets of interest. This definition will make use of data when available and will
resort to guestimate when data is not available. In addition, they arrive at correlations
across these dimensions, e.g. individuals in sedentary occupations tend to have low fitness
levels and low fitness level correlates to onset of health conditions such as coronary artery
disease, diabetes and hypertension later in life. Insurance company designs insurance
products for this bucket taking into consideration probability of onset of these health
conditions at certain age. Access to correct data thus minimizing guesswork will lead to
definition of insurance product that’s beneficial to both the insurer and the insured.
However, this still has some lacunae. This strategy is ignorant of the fact that correlations
may change over time and hence bucket-level analysis-based product definition needs to
adapt over time. Also, this strategy of product definition may not fit all individuals in the
bucket equally well. It would be desirable if the product definition is customisable to
individual’s profile and needs.

Similarly, a gym may decide to invest in a set of exercise equipment based on broad
bucketing of the target clientele such as youngsters, middle-aged white-collar workers,
retired professionals, etc. Here, the assumption might be that only youngsters will opt for
vigorous exercises such as weight training, retired professionals will opt for yoga and

middle-aged clients will opt for light jogging. However, it’s quite common that some
youngsters will choose yoga, whereas as some middle-aged customers may choose weight
training. Such mismatches between the assumptions and ground reality will lead to
sub-optimal provisioning and utilization of exercise equipment. Moreover, the gym
needs to be cognizant of the overall health and health conditions of individual and the
effect the prescribed fitness regime may have on the individual. First, the gym may not have
access to this information, and second, the gym may not be in a position to assess health
ramifications of the prescribed fitness regime. Thus, in short, the gym by itself can at best
cater to only one aspect of wellness and that too in a sub-optimal manner. Finally, the gym
also needs to be cognizant of other competing fitness facilities in the neighbourhood. This
too is fraught with uncertainty as only partial information about the competitors is
available. As wellness needs of individuals change over time, services offered by the
gym need to adapt suitably and continuously over time.

126 V. Kulkarni and S. Reddy

All service providers face similar situations characterized by partial and uncertain infor-
mation about customers and competitors and changing customer needs and competition
landscape over time. Would it not be nice if there exists a value integrator that facilitates:

– Sharing of relevant information among the service providers
– Integration of the services offered by the various service providers to meet the wellness

needs of individual customers
– Effective planning of capabilities and devising strategies for the various service

providers to help maximize RoI

We posit such value integrator, wellness provider, as an adaptive enterprise that helps
effective adaptation of all stakeholders in the wellness ecosystem [4].

Wellness Provider

The wellness provider is a central entity that provides an integration platform for all
stakeholders and services so that customers now need to interact with a single entity for
their wellness needs. The wellness provider orchestrates services from individual service
providers, taking care of inter-dependencies and ensuring necessary information is made
available to each entity while safeguarding security and privacy policies. As a facilitator, it
tracks customer and service provider needs and issues at each step and ensures optimum
collaboration between them to achieve objectives of each entity.

In order to realize this vision, the wellness provider will need to:

– Onboard a wide range of service providers in each category to cater to needs and
preferences

– Capture information about each service provider and their services and inter-
dependencies

– Acquire knowledge about customers’ needs, preferences and behaviours

7 A Case Study: Wellness Ecosystem 127

Provide appropriate choices to customers based on their preferences–
– Schedule services optimally for meeting customer requirements while honouring

ecosystem-wide constraints
– Monitor customer and service providers continuously to learn from their behaviour and

interactions
– Make intelligent adaptation decisions based on available information
– Alter its orchestration appropriately to continue meeting objectives

As a result, the wellness provider helps each stakeholder benefit from the collaboration
as they gain access to the right information and insights and get advice to suitably adapt
their capabilities, thus leading to improved services. The wellness provider also enables the
ecosystem as a whole to deliver far greater value to all stakeholders through intelligent
orchestration. Customers get a cohesive solution for all their wellness needs customized to
their individual goals and preferences that will adapt with changing situations. Being part
of the ecosystem, all service providers have the added advantage of enhancing their
customer base. Uncertainty in the environment may cause disruption affecting various
stakeholders in the ecosystem. The wellness provider facilitates a coordinated adaptive
response to this disruption, thus ensuring a smooth and speedy transition to a stable state.

We propose these capabilities be supported through a wellness platform that provides
the means to:

– Collect and disseminate the relevant information of stakeholders
– Capture stakeholder needs and their objectives in a machine-processable form
– Support decision-making via simulation, knowledge-based reasoning, statistical

reasoning, etc.
– Effect the decisions through software systems in an efficacious manner
– Capture the relevant knowledge and keep it up to date
– Learn from past executions and external knowledge sources
– Integrate the above capabilities to support dynamic adaptation

Figure 7.3 depicts such a platform which we now elaborate in detail.

Decision-Making in Dynamic and Uncertain Environment

In essence, decision-making is the process of choosing the right course of action from a set
of possible alternatives so as to meet the stated goals. The decision-making in a system is
called upon when there is a change either in its capabilities or environment or goals. This
typically requires exploration among the alternatives. Ideally, this is best supported “in
silico”, thus optimizing on time, cost and effort. Moreover, this eliminates consequences of
incorrect choices in the real world.

We propose the decision-making process to be viewed as a navigation over Goal-
Measures-Levers (GML) graph shown in Fig. 7.4a. It depicts the goal decomposition

making explicit the relationships between goals. Goal is viewed as an objective function
over a set of measures, i.e. observable output variables of the system. These measures are
influenced by a set of levers, i.e. controllable input variables (or capabilities) of the system.
Thus, supporting the decision-making process involves varying the levers, observing the
effect on measures, checking if the stated goals are met and iterating till the goals are met or
the capabilities are fully explored [5].

128 V. Kulkarni and S. Reddy

Fig. 7.3 The wellness platform

Observable
variables

Control
variables

Goal

Goal Goal

Goal Goal Goal Goal

Goal Goal Goal Goal Goal Goal
+ -

Measure Measure Measure Measure Measure Measure

nuFjbOnuFjbO

Lever Lever Lever Lever Lever Lever

(a) Goal – Measure – Lever model

Digital Twin

Digital Twin

(b) risk-free experimentation aid

(c) Leveraging Reinforcement Learning

Fig. 7.4 Digital twin-based decision-making. (a) Goal—Measure—Lever model, (b) risk-free
experimentation aid, (c) leveraging Reinforcement Learning

7 A Case Study: Wellness Ecosystem 129

We propose digital twin as a purposive representation of the system that supports this
decision-making process “in silico” [6]. The digital twin can be used as a risk-free
experimentation aid (refer to Fig. 7.4b) wherein a Subject Matter Expert (SME) subjects
the digital twin to a set of what-if scenarios to identify the right settings for the right levers
that lead to satisfaction of the stated goal [7]. Selecting the right set of scenarios, checking
if the goals are met and identifying the right levers are intellect-intensive activities. This
analysis and synthesis burden on SME can be reduced by bringing in Reinforcement
Learning (RL) and knowledge-guided exploration of solution space [8] as shown in
Fig. 7.4c.

Effecting the Decisions in Software

With enterprises relying more and more on software for automating business operations,
decisions are implemented in software systems. Hence, software needs to change suitably
when new decisions are made. Typically, this is a time-, cost- and intellect-intensive
endeavour, the principal reason being the current software engineering technology enforces
determinism on specification even when the requirements are nebulous. In addition,
assumptions about the environment get hardcoded into the software implementation, thus
making it brittle to change. Moreover, the requirements are arrived at based upon knowl-
edge at that point in time which is typically incomplete and possibly uncertain as shown in
Fig. 7.5a.

Current software system architectures do not provide any means to capture and reason
with knowledge. As a result, when software does not behave as expected, the only recourse
is to rely on human experts who need to analyse the current state, possibly acquire the
necessary knowledge and adapt the system suitably. This is a time-, effort- and intellect-
intensive endeavour.

Uncertainty

Partial Information

Knowledge

Rigid and brittle

Requirements

Specifications

Implementation

Enforced
determinism

Nebulous

(a) Software engineering – current state

Analysis loop

deviation

Adaptation
spec

Update
model

Software
System

Adaptation
Effector

Adaptation
Learner

System,
Environment

& Goal Model

Execution
Trace

Learner

External
Knowledge

Sources
Input Output

Desired goals

Reinforcement Learning
Dynamic programming …

Mining patterns
Mining

knowledge…

(b) Learning-aided adaptive software

Fig. 7.5 Effecting decisions in software. (a) Software engineering—current state, (b) learning-aided
adaptive software

130 V. Kulkarni and S. Reddy

We propose a learning-aided adaptive architecture [9] as shown in Fig. 7.5b. The key
components are system, environment and goal (SEG) model, adaptation learner, adaptation
effector and learner. The SEG model is in essence a digital twin of the software system and
its operating environment where all alternatives are open for exploration. Adaptation
learner component monitors the system output with respect to the desired goals. When
the goals are not met, the adaptation loop kicks in to identify the interventions to be
introduced into the system behaviour through intelligent simulation of the SEG model.
Adaptation effector component introduces the identified interventions into the software.
Learner component enhances the existing knowledge through the analysis of system
execution traces as well as extraction of relevant knowledge from external sources [10].

Effecting the Decisions in Business Processes

With enterprises relying more and more on automated business processes, these processes
need to change suitably when new decisions are made [11]. Typically, this is a time-, cost-
and intellect-intensive endeavour, the principal reason being the current business process
engineering technology enforces determinism on the orchestration of processes even when
the requirements are nebulous. In addition, assumptions about the environment get
hardcoded into the process implementation, thus making it brittle to change. Moreover,
the requirements are arrived at based upon knowledge at that point in time which is
typically incomplete and possibly uncertain as shown in Fig. 7.6.

Current business process implementation does not provide any means to capture and
reason with knowledge [12]. As a result, when a process does not behave as expected, the
only recourse is to rely on human experts who need to analyse the current state, possibly
acquire the necessary knowledge and adapt the system suitably. This is a time-, effort- and
intellect-intensive endeavour.

We leverage the learning-aided adaptive architecture of Fig. 7.5b. We propose to specify
a business process as a set of interacting autonomous agents [13]. An agent knows how to
meet its stated goals by making use of its capabilities and available resources. It may use

Uncertainty

Partial Information

Knowledge

Orchestration
Rigid and brittle

Fig. 7.6 Business process engineering – current state

other agents in this process. We propose to use Reinforcement Learning to arrive at the
right purposive orchestration that’s mindful of the current state of environment, goals of
agents and the system goal [14]. The learner component helps keep agent specifications
current through the analysis of system execution traces as well as extraction of relevant
knowledge from external sources.

7 A Case Study: Wellness Ecosystem 131

Bringing It All Together

An enterprise is typically viewed along three planes, namely, Strategy, Process and System
planes [15]. The strategy plane concerns with the definition of the desired goals and
devising suitable strategies for achieving these goals. The process plane concerns with
the definition of roles and responsibilities and workflows to effectively operationalize the
strategies. The system plane concerns with the definition of software systems for the
efficient automation of the operational processes. Decisions need to be made at each
plane such that they are consistent with each other and meet the overall goals. In essence,
decisions arrived at strategy plane set goals to be achieved for process plane, and decisions
arrived at process plane set goals for system plane. Partial information, high dynamics and
uncertainty make it highly challenging. Current decision-making practice that relies
heavily on human experts is turning out to be ineffective.

We propose an architecture, associated method and automation aids to support decision-
making as well as effecting these decisions as shown in Fig. 7.7. We borrow proven ideas
from established fields, namely, Digital Twin(s) from modelling and simulation, Rein-
forcement Learning from artificial intelligence and model reference adaptive control from

Fig. 7.7 Bringing it all together

control theory. To support decision-making at strategy plane, we construct a purposive
digital twin for the enterprise as a system and its environment. We support automation-
aided method that leverages domain knowledge and enterprise data to construct purposive
Digital Twin(s). Thus, in essence, the digital twin captures behaviours exhibited so far as
well as art of the possible. We use the purposive digital twin as a risk-free “in silico”
business experimentation aid to arrive at right decisions to achieve enterprise goals. These
decisions in turn set goals for process and system planes. We propose a learning-aided
adaptation architecture for software systems and business processes that facilitates easy
adaptation to meet these goals. The business processes and software systems are
instrumented to generate execution traces. We provide AI-based machinery to analyse
and learn from these traces to update the knowledge that may lead to updated Digital Twin
(s), thus completing the cycle [16].

132 V. Kulkarni and S. Reddy

Illustrative Example

We discuss how the wellness platform enables the wellness provider to help various
stakeholders of the wellness ecosystem adapt to changing needs as well as goals
[17]. We illustrate this capability with a few scenarios involving two stakeholders, namely,
individual and gym.

The gym classifies potential clientele into a set of buckets. For illustration sake, we
consider two buckets, namely, senior citizen and young professional. For each bucket, the
gym assumes a certain representative profile in terms of characteristics such as age, level of
activity, overall health and propensity towards different kinds of exercises such as cardio,
weight training, yoga, etc. Based on this information, the gym arrives at the fitness
aspiration for each bucket and a fitness plan that’ll help a prototypical member of the
bucket achieve the aspired fitness level. Based on these parameters and projected volume of
the clientele, the gym arrives at the numbers and kinds of exercise equipment that’s
sufficient to support the fitness plans of the two buckets. The gym would like to maximize
return on investment as well as customer satisfaction. In case these goals are not met, the
gym would like to revisit the fitness plans being offered as well as the fitness equipment
portfolio.

While an individual may broadly fit into one of the two buckets, his fitness aspirations as
well as propensity towards different exercises may vary significantly from the prototypical
profile of the bucket. Therefore, the individual would like the bucket-level fitness plan to be
suitably adapted to his fitness aspiration and propensity.

The wellness provider offers:

– A digital twin-based design service to the gym for coming up with bucket-level plans
wherein Digital Twin(s) of prototypical individual of each bucket and the gym are
created and fitness plan for each bucket is derived through the simulation of prototypical
individuals. Coupled with the projected volume of customers for each bucket, the gym
can then arrive at the required fitness equipment portfolio.

7 A Case Study: Wellness Ecosystem 133

A digital twin-based adaptation service to the gym for coming up with customized
fitness plans for individuals wherein digital twin for each individual is created to
simulate the bucket-level fitness plan and individual’s response to the plan based on
which the plan is suitably altered to maximize fitness level attainable while honouring
individual’s propensity towards different kinds of exercises. Coupled with volume of
clientele, the gym can then check if the existing fitness equipment portfolio is sufficient
and if not what’s the required augmentation.

–

– A digital twin-based adaptation service to an individual for coming up with customized
fitness plan.

– Propensities of individual will change over time, thus necessitating adaptation to fitness
plan. This adaptation may necessitate adaptation at gym end in the form of fitness
equipment portfolio.

For instance, consider the two buckets senior citizen and young professional having the
characteristics shown in Table 7.1.

Based on the bucket characteristics, the gym arrives at characteristics of prototypical
member of the bucket. Using these characteristics, the gym arrives at exercise preference
ratio for the prototypical member. The wellness provider then helps the gym to come up
with a fitness plan for the bucket consisting of weekly schedule, namely, < Day, Exercise,
Duration >. Calorie burn can then be computed from this fitness plan, thus defining the
targeted fitness level. Here, the fitness level is principally a function of calories burnt.

Let us consider two individuals from young professional bucket, namely, YP_1 and
YP_2, having characteristics as shown in Table 7.1. If they followed bucket-specific fitness
plan, their calorie burn would have come to 1260 kcal/week and 1470 kcal/week, respec-
tively. However, since their exercise preferences deviate from those of the bucket, the
wellness provider helps the gym to arrive at customized fitness plans for YP_1 and YP_2
honouring their preferences. With the customized fitness plans, YP_1 is able to burn

Table 7.1 Profiles of buckets and individuals
Characteristic Senior Citizen Young Professional YP_1 YP_2
Age 60 – 75 years 25 – 40 years 27 35
Lifestyle Sedentary Active Active Sedentary
Height 5’3” – 5’10” 5’6” – 6’2” 5’9” 5”6”
Weight 60 – 80 Kg 50 – 75 Kg 60 Kg 70 Kg
Comorbidities Yes No No Yes
Food habit Healthy Unhealthy Healthy Unhealthy
Calory burn target 15 * Weight Kcal per

week
21 * Weight Kcal per
week

Bucket specific plan –
1260
Customized plan –
1810

Bucket specific plan –
1470
Customized plan –
1130

Capacity to workout Low – Medium Medium – High High Medium
Exercise preference Cardio : Upper body :

Lower body :: 50 : 20 :
30

Cardio : Upper body :
Lower body :: 30 : 35:
35

Cardio : Upper body :
Lower body :: 25 : 35:
40

Cardio : Upper body :
Lower body :: 60 : 20:
20

1810 kcal/week which is greater than the bucket fitness level. However, YP_2 is only able
to burn 1130 kcal/week which falls below the bucket fitness level, thus necessitating further
tweaking of fitness plan. This would mean striking a trade-off between sticking to exercise
preference and burning more calories.

134 V. Kulkarni and S. Reddy

On similar lines, the wellness provider can offer design and adaptation services to
individual and hospital, individual and insurance company and individual and leisure
provider.

Similar value integrators and associated platforms can be imagined for a variety of other
domains such as travel tourism and hospitality, building and construction, banking, etc. For
example, we can imagine the builder acting as a value integrator for property buyers,
property users and property financers wherein the builder offers pre-leased property, thus
making it quite attractive to buyers and financers.

Essentially, the approach and associated platform can benefit any domain characterized
by multiple inter-dependent stakeholders, partial information, dynamism and changing
environment as well as objectives, thus requiring a solution that keeps the ecosystem
viable in the least and moving towards optimality.

References

1. Hoogervorst, J. A. P. (2009). Enterprise governance and enterprise engineering. Springer
Science & Business Media.

2. Peltoniemi, M., & Vuori, E. (2004). Business ecosystem as the new approach to complex adaptive
business environments. Proceedings of eBusiness Research Forum, 2(22), 267–281.

3. Visnjic, I., Neely, A., Cennamo, C., & Visnjic, N. (2016). Governing the city: Unleashing value
from the business ecosystem. California Management Review, 59(1), 109–140.

4. Briscoe, G. (2010). Complex adaptive digital ecosystems. In Proceedings of the International
Conference on Management of Emergent Digital EcoSystems (pp. 39–46).

5. Barat, S., Kulkarni, V., & Barn, B. (2018). Towards improved organisational decision-making – a
method and tool-chain. Enterprise Modelling and Information Systems Architectures–Interna-
tional Journal of Conceptual Modeling, 13(2018), 6.

6. Kulkarni, V., Barat, S., & Clark, T. (2019). Towards adaptive enterprises using digital twins. In
2019 winter simulation conference (WSC) (pp. 60–74). IEEE.

7. Barat, S., Kulkarni, V., Clark, T., & Barn, B. (2022). Digital twin as risk-free experimentation aid
for techno-socio-economic systems. In Proceedings of the 25th International Conference on
Model Driven Engineering Languages and Systems (pp. 66–75).

8. Barat, S., Khadilkar, H., Meisheri, H., Kulkarni, V., Baniwal, V., Kumar, P., & Gajrani, M.
(2019). Actor based simulation for closed loop control of supply chain using reinforcement
learning. In Proceedings of the 18th international conference on autonomous agents and
multiagent systems (pp. 1802–1804).

9. Kholkar, D., Roychoudhury, S., Kulkarni, V., & Reddy, S. (2022). Learning to adapt–software
engineering for uncertainty. In 15th Innovations in Software Engineering Conference (pp. 1–5).

10. Clark, T., Barn, B., Kulkarni, V., & Barat, S.. (2017). Querying histories of organisation
simulations.

11. Mehandjiev, N., & Grefen, P. (Eds.). (2010). Dynamic business process formation for instant
virtual enterprises (Vol. 39). Springer.

7 A Case Study: Wellness Ecosystem 135

12. Chang, J. F. (2016). Business process management systems: Strategy and implementation.
Auerbach Publications.

13. Jennings, N. R., Faratin, P., Johnson, M. J., Norman, M. J., O’Brien, P., & Wiegand, M. E.
(1996). Agent-based business process management. International Journal of Cooperative Infor-
mation Systems, 5(02n03), 105–130.

14. Metzger, A., Kley, T., & Palm, A. (2020). Triggering proactive business process adaptations via
online reinforcement learning. In International Conference on Business Process Management
(pp. 273–290). Springer.

15. Kulkarni, V. (2022). Toward AI-native enterprise. In Enterprise Engineering Working Confer-
ence (pp. 10–17). Springer.

16. Clark, T., Kulkarni, V., Barn, B., & Barat, S. (2017). The construction and interrogation of actor
based simulation histories. CEUR Workshop Proceedings., 1979, 334–347.

17. Roychoudhury, S., Selukar, M., Kholkar, D., Suraj, Choudhary, N., Kulkarni, V., & Reddy, S.
(2022). Learning-aided adaptation – A case study from wellness ecosystem. The Enterprise
Computing Conference, EDOC Forum, Bozen-Bolzano, Italy, 2022. https://edocconference.
org/2022/pre-proceedings/edoc-forum-roychoudhury.pdf

https://edocconference.org/2022/pre-proceedings/edoc-forum-roychoudhury.pdf
https://edocconference.org/2022/pre-proceedings/edoc-forum-roychoudhury.pdf

	Preface
	Contents
	About the Authors
	1: The AI-Enabled Enterprise
	Motivation
	Current State
	Decision-Making in the Face of Uncertainty
	Software Architecture for Continuous Adaptation
	Automated Compliance with Minimal Exposure to Risk
	Democratized Knowledge-Guided Software Development
	Continuously Adapting Software
	Coordinated Continuous Digital Transformation
	The AI-Enabled Enterprise
	Illustrative Example
	References

	2: Decision-Making in the Face of Uncertainty
	Introduction
	Current Practice
	Decision-Making as an Optimization Problem
	Model-Based Decision-Making
	Human-Centric Decision-Making

	Solution
	Decision-Making Meta-Model
	Digital Twin
	``In Silico´´ Experimentation Aid for Decision-Making
	Technology Infrastructure
	Specification Language
	DT Construction
	DT Validation

	Illustrative Real-World Applications
	Case Study from Telecom
	Maximizing Throughput of Sorting Terminals
	Optimizing Shop Stock Replenishment for a Retail Chain
	Prediction and Control of Covid-19 Pandemic in a City
	Helping Organizations Transition from Work from Home to Work from Office Mode

	Summary and Future Work
	References

	3: Regulatory Compliance at Optimal Cost with Minimum Exposure to Risk
	Introduction
	Regulatory Compliance
	Current Practice
	Tenets of a Desirable Line of Attack
	AI-Aided Model-Based Automated Regulatory Compliance
	Technology Infrastructure to Support the Line of Attack
	AI-Based Model Authoring
	Validating the Authored Model
	Automating Compliance Checking

	Benefits of the Proposed Approach
	Illustrative Use Cases of Automated Regulatory Compliance
	Assurance of Hygiene
	Business Problem
	Scope
	Approach

	Benefits
	Compliance Hygiene and Change Impact Management
	Business Problem
	Objectives
	Scope
	Approach
	Benefits

	Compliance Checking
	Business Problem
	Current Practice
	Objectives
	Scope
	Approach
	Benefits

	Change Management
	Business Problem
	Scope
	Approach
	Results
	Benefits

	Summary and Future Work
	References

	4: Continuously Adapting Software
	Introduction
	Digital Twin(s)
	State of the Art
	Modelling Twin Systems
	Case Study
	Twin System Execution
	Twin Policies

	Implementation: TwinSim
	Training for Multiple Eventualities
	Prototyping as Part of the Development Process
	Research Roadmap
	References

	5: Democratized Hyper-automated Software Development
	Introduction
	Current Practice
	Typical SDLC Today
	Model-Driven Development
	Low-Code/No-Code Platforms
	AI-Powered SDLC
	AI-Powered Requirements
	AI-Powered Testing
	AI-Powered Coding

	Proposed Line of Attack
	Knowledge-Guided, AI-Aided Refinement of Business Requirements into Software Requirements
	Domain Ontology
	Systems Knowledge
	AI and NLP
	Digital Twin(s)

	Knowledge-Guided, AI-Aided Refinement of Software Requirements into Software Specifications
	Architecture for Software Adaptation

	Technology Infrastructure to Support the Line of Attack
	References

	6: Coordinated Continuous Digital Transformation
	Introduction
	Digital Transformation
	Continuous Digital Transformation
	Coordinated Continuous Digital Transformation
	Enterprise Design Dialogues
	The Role of Models
	Challenges and Opportunities
	Conclusion
	References

	7: A Case Study: Wellness Ecosystem
	Introduction
	Wellness Ecosystem
	Wellness Stakeholders
	Individual
	Gym
	Food Store
	Hospital
	Insurance Company
	Leisure Provider

	Wellness Provider
	Decision-Making in Dynamic and Uncertain Environment
	Effecting the Decisions in Software
	Effecting the Decisions in Business Processes
	Bringing It All Together

	Illustrative Example
	References

