
Towards a Unifying Object Role Modelling Theory

S.J. Brouwer1 C.L.J. Martens1 G.H.W.M. Bronts1 H.A. Proper1

PUBLISHED AS:

S.J. Brouwer, C.L.J. Martens, G.H.W.M. Bronts, and H.A. (Erik) Proper. Towards a Unifying
Object Role Modelling Approach. In T.A. Halpin and R. Meersman, editors, Proceedings of
the First International Conference on Object–Role Modelling (ORM–1), pages 259–273, July
1994. ISBN 0867765658

Abstract

In this article we briefly present the idea of defining a kernel for object role modelling techniques,
upon which different drawing styles can be based. We propose such a kernel (the ORM kernel) and
define, as a case study, an ER and a NIAM drawing style on top of it. One of the prominent advantages
of such a kernel is the possibility to build a CASE-tool supporting multiple methods. Such a CASE-tool
would allow users with different methodological backgrounds to use it and view the modelled domains
in terms of their favourite method. This is illustrated using a running example of a concrete domain in
which we use the ORM kernel in combination with the NIAM and ER drawing style.

1 Introduction

In the last decades, a plethora of modelling techniques for the design of information systems has been
developed (see e.g. [8]). This has led to the Methodology Jungle ([2]). In particular a wide range of
data modelling techniques exists, for instance: ER based modelling techniques ([11], [13], [24]), and
Object Role Modelling (ORM) techniques ([26], [3], [29], [22], [17]). Quite often, the difference between
contemporary data modelling techniques is limited to ‘cosmetic’ issues. Even if there are fundamental
differences, most modelling techniques have more common than differing aspects. This observation has
led to the idea of defining a general ORM (Object Role Modelling) kernel as a greatest common divisor.
The definition of such a kernel has several advantages. CASE-tools supporting multiple data modelling
techniques can be developed on top of the ORM kernel, e.g. leading to an ER and a NIAM view on the
same ORM data model. A further result is that in one information system development project, multiple
modelling techniques can be employed simultaneously. As a result, project members can use their own
preferred modelling technique, and any investment in e.g. ‘old’ NIAM or ER models do not go to waste.
As an illustration of the relationship between the ORM kernel and other modelling techniques, consider
figure 1. This figure also illustrates the possibility of using the textual language LISA-D ([20], [21]) as a
way to represent models.

Figure 1: ORM Kernel

1Computing Science Institute, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands (All correspondence
should be sent to E.Proper@acm.org)



A further advantage of using a common ORM kernel is that research results based on this kernel may apply
to all variants based on the kernel. In [3] and [19], theoretical results concerning identifiability of object
types and populatability of data models are presented, which directly apply to the ORM kernel. Schema
evolution of data models conforming to the ORM kernel is treated in [28] and [27]. Issues regarding
internal representations of data models conforming to the ORM kernel have been studied in [4], [15] and
[16]. Finally, in [20] and [21] the query language LISA-D is presented, which allows for the formulation
of queries in a semi-natural language format, closely following the naming conventions in the data model.
The LISA-D language directly applies for data models conforming to the ORM kernel.
To illustrate the elegance of the ORM kernel concept, we present the ORM kernel first, and then define
an (E)ER ([11], [14]) and a NIAM ([26]) way of communicating on top of it as case studies. We do
not yet claim that the presented ORM kernel is general enough to cover all different aspects of object
role modelling techniques, nevertheless, the (E)ER and NIAM case studies already provide some empirical
proof of the generality of this kernel. It in particular shows that the ORM modelling concepts are expressive
enough to cater for (E)ER based models, from which can be concluded that a data modelling kernel should
at least support all ORM concepts.
This article only provides an overview of the ORM kernel. For a more elaborate discussion of the presented
ideas, refer to the full paper: [6]. Furthermore, the Universities of Nijmegen and Queensland are heavily
involved in joint research aiming at an integration between their respective versions of ORM (a first result
can be found in [18]).
The structure of this article is as follows. In section 2 we present the syntactical aspects of the ORM
kernel, i.e. what is a model. Semantical issues of ORM models are addressed in section 3. Sections 4 and
5 then provide the ways of communicating for (E)ER and NIAM respectively, together with an elaborated
example.

2 Syntactical aspects of the ORM Kernel

In this section, the syntactical issues of the ORM kernel are addressed, i.e. what is a proper ORM data
model. In the ORM kernel [22], an information structure I consists of the following basic components:

1. Two disjunct, nonempty, sets L and N of object types. Together (O,L∪N ), they form the set of
all object types. Instances of label, or value, types (L) are directly denotable, whereas instances of
the non-label object types (N ) are not directly denotable.

2. A finite set P of predicators.

3. A setA ⊆ O of atomic types. Atomic types are not decomposable in other object types. The abstract
atomic object types (E ,N ∩A) are referred to as entity types.

4. A partition F of the set P . The elements of F are called fact types, or relationship types.

5. A set G of power types. Power types form a special class of object types (G ⊆ O). Power typing is
a type constructor which leads to an object type that is instantiated with subsets over an underlying
object type.

6. A set S of sequence types. Sequence types form a special class of object types (S ⊆ O). Sequences
of an underlying object type are formed by sequence typing.

7. A set C of schema types: C ⊆ O. Schema typing provides the opportunity to describe an information
structure in a top-down fashion. Schema types are instantiated by populations of the underlying
schema.

8. A function Base : P→O. A fact type is an association between a number of object types. The
involvement of an object type in a fact type is represented by a predicator. The base of a predicator
is the object part of that predicator.

9. A function Elt : G ∪S→O. This function yields the element type of power types and sequence
types.

10. A relation ≺ ⊆ C ×O. This relation describes the decomposition of schema types.



11. A partial order IdfBy ⊆ A×O on object types, capturing the inheritance hierarchy.

12. A partial order Spec ⊆ IdfBy specifying that part of the identification hierarchy concerned with
specialisation.

13. A partial order Gen ⊆ IdfBy specifying that part of the identification hierarchy concerned with gen-
eralisation. Generalisation and specialisation are different in nature, and originate from different
axioms in set theory ([22]).

Note that one may argue that power types, sequence types, and schema types are no atomical concepts.
They may indeed be expressed in terms of other concepts (see e.g. [23]) if an extra class of constraints is
introduced. However, from a formal and pragmatical point of view, their presence in the kernel is justified.
Due to the different interpretation that will be given to atomic types, fact types, power types, sequence
types and schema types, these object types are all considered to be different concepts:

[ORM1] (disjunction) A, F , G, S and C form a partition of O

In the remainder of this section, we elaborate more on the above constructs, and provide some examples.

2.1 Abstract and concrete objects types

In data modelling there exists a distinction between objects that can be represented directly and objects
that cannot be represented directly. This corresponds to the difference between label (or value) types and
non-label types. As a result, label types are also called concrete object types, as opposed to the other object
types which are referred to as abstract object types. The concrete and the abstract world may not be mixed:

[ORM2] (strict separation) x = Elt(y) ∨ x≺ y ∨ x IdfBy y ⇒ x, y ∈ L ∨ x, y ∈ N

The only way to bridge the gap between concrete and abstract world, is by means of so called bridge types,
being a special kind of (binary) fact type. The set of bridge types (B) is:

B,
{
{p, q} ∈ F

∣∣ p ∈ PL ∧ q ∈ PN
}

where PX ,
{
p ∈ P

∣∣ Base(p) ∈ X
}

. Bridge types, should be the single way to cross the gap between the
concrete and abstract worlds:

[ORM3] (bridges only) f ∈ F ⇒ f ⊆ PL ∨ f ⊆ PN ∨ f ∈ B

The predicators that constitute a bridge type b =
{
p, q
}

can be extracted by the operators concr and abstr.
These operators are defined by concr(b), p such that p ∈ b∩PL and, abstr(b), p such that p ∈ b∩PN ,
respectively.

2.2 Fact typing

One of the key concepts in data modelling is the concept of fact type (or relationship type). Generally, a
fact type is considered to represent an association between object types. A fact type consists of a number
of roles denoting the way object types participate in that fact type. The connection between an object type
and a role is called a predicator. In the ORM kernel, a fact type is identified by a set of predicators. A fact
type is therefore considered to be an association between predicators, rather than between objects types. A
fact type may be treated as an object type (fact objectification), and can therefore play a role in other fact
types. A bridge type is a special fact type, relating the abstract and the concrete worlds.

X1

��
@@��

@@
R

p1 p2
X2

Figure 2: Example fact/relationship type

As an example fact type, consider the ER schema depicted in figure 2. In this schema we have: E =
{X1, X2}, F = {R}, and P = {p1, p2} where fact type R = {p1, p2}. Note that to provide an example,
we already have to choose a more concrete way of communicating, i.c. the ER style.



2.3 Power typing

The concept of power type in ORM forms the data modelling pendant of power sets in conventional set
theory. An instance of a power type is a set of instances of its element type. Such an instance is identified by
its elements, just as a set is identified by its elements in set theory (axiom of extensionality). An example
power type is provided in figure 3, in the PSM style of communicating. This example is concerned with
convoys, being sets of ships, where Elt(Convoy) = Ship.

Figure 3: Convoys of ships

2.4 Sequence typing

Sequence typing offers the opportunity to represent sequences, built from an underlying element type.
Instances of a sequence type thus correspond to sequences of instances from its underlying element type.
The element type of a sequence type is also found by the function Elt.

2.5 Schema typing

A schema type is an object type with an underlying decomposition. The concept of schema typing allows
for the decomposition of large schemata into, objectified, subschemata. The need for such a mechanism
has been generally recognised. In figure 4, an example of a schema type concerned with activity graphs
and their decomposition is given.

Figure 4: Meta schema of activity graphs

The strict separation between concrete and abstract object types also goes for schema types. A schema type
can either be a label type or a non-label type. For a schema type, which is a label type, this means that all
the object types in the decomposition of it are also label types. An example of this is a date. A date can be
regarded as a combination of a year, a month and a day, which can all be defined as label types.

2.6 Identification hierarchy

In the ORM kernel, we define the notion of identification hierarchy, which generalises generalisation and
specialisation. The identification hierarchy is defined as a partial order (asymmetric and transitive) IdfBy on
object types, with the convention that a IdfBy b is interpreted as: a inherits its identification from b. Note that
an identification hierarchy only deals with inheritance of identification via specialisation or generalisation.
The nature of a partial order is expressed by:

[ORM4] x IdfBy y ⇒ ¬y IdfByx and x IdfBy y IdfBy z ⇒ x IdfBy z



We define IdfBy1 as the one step counterpart of the IdfBy relation:

x IdfBy1 y , x IdfBy y ∧ ¬∃z [x IdfBy z IdfBy y]

In the ORM kernel, all object types in the identification hierarchy have direct ancestors:

[ORM5] x IdfBy y ⇒ x IdfBy1 y ∨ ∃p [x IdfBy1 p IdfBy y]

The finite depth of the identification hierarchy in the ORM kernel is expressed by the following schema of
induction:

[ORM6] If F is a property for object types, such that: ∀x:y IdfBy1 x [F (x)] ⇒ F (y) for any y, then
∀x∈O [F (x)]

The identification hierarchy is a result of specialisation and generalisation:

[ORM7] x IdfBy1 y ⇒ xGen y ∨ x Spec y and xGen y ∨ x Spec y ⇒ x IdfBy y

2.7 Specialisation

Specialisation is a mechanism for representing one or more (possibly overlapping) subtypes of an object
type. For proper specialisation, it is required that subtypes be defined in terms of one or more of their
supertypes. Such a decision criterion is referred to as subtype defining rule ([3]), and can be specified by
means of a LISA-D expression ([20]). Identification of subtypes is derived from their supertypes. As an
example specialisation consider figure 5. Possible subtype defining rules for CD and Record in the example
are:

CD = Medium having Type ’CD’ and Record = Medium having Type ’Record’

The concept of specialisation is modelled as a partial order (asymmetric and transitive) Spec on object types,
such that Spec is a part of the identification hierarchy. The intuition behind a Spec b is: a is a specialisation
of b, or a is a subtype of b.

[ORM8] If x IdfBy y IdfBy z then: x Spec y Spec z ⇐⇒ x Spec z

Note that the asymmetry of Spec follows from the asymmetry of IdfBy, as Spec ⊆ IdfBy.

Figure 5: An example of specialisation

2.8 Generalisation

Generalisation is a mechanism that allows for the creation of new object types by uniting existing ob-
ject types. Generalisation is to be applied when different object types play identical roles in fact types.
Contrary to what its name suggests, generalisation is not the inverse of specialisation. Specialisation and
generalisation originate from different axioms in set theory ([22]) and therefore have a different expressive
power. Properties are inherited “upward” in a generalisation hierarchy instead of “downward”, which is
the case for specialisation. This also implies that the identification of a generalised object type depends on
the identification of its specifiers. The concept of generalisation is introduced as a partial order Gen. The
expression aGen b stands for: a is a generalisation of b, or b is a specifier of a.



Figure 6: An example of generalisation

[ORM9] (transitivity completeness) If x IdfBy y IdfBy z then: xGen y Gen z ⇐⇒ xGen z

Remark 2.1
A lot of confusion exists with regards to specialisation as opposed to generalisation. In this proposal
for the ORM kernel, we have chosen for PSM’s ([22]) notion of generalisation, which is not simply
the inverse of specialisation. Furthermore, [22] shows that the presented notions of generalisation
and specialisation originate from different axioms from set theory.

However, other views on generalisation do exist. In [13] the Entity Category Relationship (ECR)
model is introduced, which uses the concept of sub-categories to specialize, and categories to build
polymorphic types. A recent EER variant is presented in ([12]). In this EER version, the relationship
between super types and their sub types is referred to as the super class/sub class relationship. This
specialisation mechanism corresponds to NIAM’s standard subtyping The only real difference is that
subtypes not always have to be defined by a subtype defining rule in which case it is a user-defined
subclass.

In ([12]) the authors also identify the problem that in some subclass hierarchies more than one com-
mon superclass (pater familias in PM terminology) is required. For these situations they introduces
the notion of category (which is now slightly different from the category notion used in [13]). Catego-
rization corresponds to the notion of union in set theory, and indeed corresponds to generalisation.

On the other hand, IFO ([1]) features a notion of generalisation and specialisation corresponding
to PSM’s approach. The specialisation and generalisation relations in IFO are depicted using two
different arrows, with differing semantics.

More details on the discussion on generalisation vs specialisation can be found in [18]. 2

3 Semantical aspects of the ORM kernel

In this section we briefly discuss the semantics of data models in the ORM kernel. We distinguish two
sorts of semantics. The first sort of semantics deals with the interpretation of both the user and information
analyst. Thus far, object types and predicators in the ORM kernel are abstract concepts. We propose a
naming mechanism for these abstract concepts, providing a means for human interpretation. The second
sort of semantics is concerned with populations of data models in the ORM kernel, and constraints defined
over these populations. At the end of this section, we provide a running example which will be illustrated
for the (E)ER and NIAM cases.

3.1 Naming of Concepts

In this article we define two classes of names for the abstract concepts in the ORM kernel. Object types,
and combinations of predicators, may also receive a name. The set Names is used for all names that can
be found in an information structure.
Object types are referenced by a unique name: ONm : O� Names, which is specified in the schema upon
their introduction. The (partial) function Obj : Names�O is the left-inverse of ONm, and relates object



type names to their corresponding object type: ∀x∈dom(ONm) [Obj(ONm(x)) = x], where dom(ONm) denotes
the domain of function ONm.
Besides naming of objects, ORM also allows naming of pairs of (different) predicators by means of con-
nector names. The function combining such pairs with names is called Conn : P × P� Names. Names
can only be given to pairs of predicators which are part of one single fact type: Conn(p, q)↓ ⇒ p ∈ Fact(q).
Note that in some interpretations, connector names may correspond to the notion of role name. In figure 2,
we could for instance have the following names:

ONm(X1) = Department Conn(p1, p2) = has as coworker the

ONm(X2) = Employee Conn(p2, p1) = is a coworker of the

3.2 Constraints and Semantics

In the ORM kernel, a population Pop of an information structure I is a value assignment of sets of instances
to the object types in O: Pop : O → ℘(Ω), where Ω is the set of values that can occur in the population.
Constraints may have to be enforced on the populations. For example, a person can be stated to have at least
one name. In some contexts, it can be stated that a person has a unique name. In this article we only consider
one class of constraints, the exclusion constraint. An exclusion constraint states that the population of dif-
ferent object types may not have any instance in common: exclusion(X) , ∀x,y∈X [x 6= y ⇒ Pop(x)∩Pop(y) = ∅]

In the full version of this paper ([6]), we also provide some example axioms to tune the above presented
ORM kernel to concrete ER and NIAM versions (e.g. binary NIAM).

3.3 Running example

We employ the example of a zoo as a running example in the remainder of this article. Consider a company
owning several zoos in different cities. A zoo houses a number of animals (in this case only mammals and
reptiles), and employs people to run the zoo. The persons working for the zoo each have a contract for a
number of hours a week. Since the zoo is obliged to pay an environmental-tax for the amount of biological
waste it produces, the zoo wants to know the amount (in kilos) of manure each mammal produces. For
reptiles it is essential that their living environment is kept at a specific temperature, therefore, for each
reptile this temperature is recorded. Each animal is accommodated in a home (together with other animals).
Finally, all kinds of animals need to be fed at certain times, therefore a feeding table needs to be maintained.
If you consider the way of communicating, which will be employed in the remainder of this section, for the
example U◦D to be unreadable, and incomprehensible, we could not agree with you more. The readability
and comprehensability is exactly the reason why a graphical way of communicating for data models is to
be preferred. For a preview on the resulting graphical models, the reader is advised to look at figure 7 and
figure 8.
The example U◦D can now be formulated in terms of the concepts of the ORM kernel. The object types in
this example are, in abstract notation:

A = {x1, . . . , x19} P = {p1, . . . , p20} F = {{p1, p2}, . . . , {p19, p20}}
G = {g} S = {s} C = {c}

Note that, in this example, all fact types are binary.
The object types in the example, which receive a name are:

ONm(x1) = Name ONm(x2) = F id ONm(x3) = P id

ONm(x4) = # Hours ONm(x5) = C id ONm(x6) = Kg

ONm(x7) = oC ONm(x8) = Function ONm(x9) = Person

ONm(x10) = Zoo keeper ONm(x11) = Home ONm(x12) = Time

ONm(x13) = City ONm(x14) = Kind of animal ONm(x15) = Animal

ONm(x16) = Manure ONm(x17) = Mammal ONm(x18) = Reptile

ONm(x19) = Temperature ONm(g) = Animals ONm(s) = Feeding table

ONm(c) = Zoo ONm({p1, p2}) = Contract



The division in label types and non-label types is given by:

L = {Obj(Name),Obj(F id),Obj(P id),Obj(# Hours),Obj(C id),Obj(Kg),Obj(oC)}
N = {Obj(Function),Obj(Person),Obj(Zoo keeper),Obj(Home),Obj(Time),Obj(Kind of animal)

Obj(City),Obj(Animal),Obj(Manure),Obj(Mammal),Obj(Reptile),Obj(Temperature),

Obj(Animals),Obj(Feeding table),Obj(Zoo),Obj(Contract), {p3, p4}, . . . , {p19, p20}}

The bases of the predicators are:

Base(p1) = Obj(Function) Base(p2) = Obj(Person) Base(p3) = Obj(Person)
Base(p4) = Obj(Name) Base(p5) = Obj(Contract) Base(p6) = Obj(# Hours)
Base(p7) = Obj(Zoo keeper) Base(p8) = Obj(Kind of animal) Base(p9) = Obj(Home)
Base(p10) = Obj(Animals Base(p11) = Obj(Zoo) Base(p12) = Obj(City)
Base(p13) = Obj(Feeding table) Base(p14) = Obj(Kind of animal) Base(p15) = Obj(Kind of animal)
Base(p16) = Obj(Animal) Base(p17) = Obj(Manure) Base(p18) = Obj(Mammal)
Base(p19) = Obj(Reptile) Base(p20) = Obj(Temperature)

The element types of the Feeding table and Animals object types are:

Elt(Obj(Animals)) = Obj(Animal) and Elt(Obj(Feeding table)) = Obj(Time)

Almost all object types are in the decomposition of schema type Zoo:

∀o∈O−{Obj(Zoo),{p11,p12},Obj(City),Obj(C id)} [Obj(Zoo) ≺ o]

In the example the following connectors are used:

Conn(p1, p2) = is done by Conn(p2, p1) = works as

Conn(p3, p4) = has as Conn(p4, p3) = is name of

Conn(p5, p6) = for Conn(p6, p5) = belonging to

Conn(p7, p8) = takes care of Conn(p8, p7) = is taken care by

Conn(p9, p10) = inhabits Conn(p10, p9) = are inhabitants of

Conn(p11, p12) = is located in Conn(p12, p11) = has as zoo

Conn(p13, p14) = contains times to feed Conn(p14, p13) = must be fed at

Conn(p15, p16) = has as animal Conn(p16, p15) = is kind of

Conn(p17, p18) = is produced by Conn(p18, p17) = produces

Conn(p19, p20) = likes Conn(p20, p19) = is favorite of

The information structure contains one specialisation and two generalisations:

Obj(Zoo keeper) Spec Obj(Person)

Obj(Kind of Animal) Gen Obj(Mammal) and Obj(Kind of Animal) Gen Obj(Reptile)

4 ER way of communicating

When discussing the ER way of communicating, we actually refer to a group of modelling techniques. In
this article we will use the name pure ER for the modelling technique which was introduced in [11]. Taking
this technique as a base, we will define ER+ by adding new symbols, part of which are taken from the EER
technique as presented in [14].

4.1 Pure ER

As stated before, pure ER stands for the technique introduced in [11]. In this technique the following
ORM constructs can be identified: entity types, fact types, predicators, label types and bridge types. In
table 1 these constructs and their pure ER representation are given. Although [11] does not give a graphical
notation for attributes (bridge types), we will consider the notation shown in table 1 to be pure ER. The set
FO corresponds to the objectified fact types, and is defined by: FO , ran(Base)∩F where ran returns the
range of a function. Note that in pure ER: PL ⊆

⋃
B.



construct symbol

x ∈ A∩N

f ∈ F−FO

p ∈ PN −∪B

l ∈ A ∩ L

f ∈ B

Table 1: Relation between ORM constructs and ER symbols

construct symbol

f ∈ FO

p ∈ PL −∪B

g ∈ L ∩ G

s ∈ L ∩ S

c ∈ L ∧ Dec(c) =
{
d1, . . . , dn

}

g ∈ N ∩ G

c ∈ N ∩ S

c ∈ N ∧ Dec(c) =
{
d1, . . . , dn

}

x IsGenOf {y1, . . . , yn}

Table 2: Relation between ER+ symbols and ORM constructs



4.2 ER+

Taking pure ER as a starting point, we can define ER+ by adding more symbols. These extra symbols deal
with fact objectification, generalisation, specialisation as well as power, sequence and schema types.
The symbol used for fact objectification is similar to the one used in NIAM or PSM, in that it is made
by drawing an entity type symbol around a fact type symbol. For the representation of power and se-
quence types we distinguish between concrete and abstract types. This representation is based on the
representation of multi- and data-valued attributes in [14]. Except for generalisation and specialisation,
all extra symbols are depicted in table 2. In this table, the Dec function is defined as: Dec(c) , if c ∈
C then

{
d
∣∣ c ≺ d

}
else ⊥ fi. Generalisation can be drawn in a very direct way, using Gen1 and IsGenOf:

xGen1 y , xGen y ∧ x IdfBy1 y and x IsGenOfY , Y =
{
y
∣∣ xGen1 y

}
For specialisation hierarchies, the drawing algorithm is less straightforward. As for generalisation, we
introduce some predicates:

x Spec1 y , x Spec y ∧ x IdfBy1 y and X AreSpecsOf y , X =
{
x
∣∣ x Spec1 y

}
For drawing Spec in ER+ we execute, for any x and Y such that X AreSpecsOf y, the following algorithm:

E :=
{
S
∣∣R ` exclusion(S)

}
∪
{
{x}

∣∣ x ∈ O}
while X 6= ∅ do

let {x1, . . . , xn} ⊆ X such that {x1, . . . , xn} ∈ E and n is maximal
/* Note that the let makes a non-deterministic choice */

draw

X := X − {x1, . . . , xn}
od

The expression R ` exclusion(S) means: the exclusion constraint exclusion(S) is part of the set of con-
straintsR defined on the schema. As a result, this algorithm also deals with exclusion constraints, since all
output types of a type construction (the types at the top of the triangle) have to be disjoint.
The complete zoo example is now depicted in figure 7 in the ER+ style. Note that we did not depict all
names of object types, and connectors, for reasons of clarity.

5 NIAM way of communicating

The techniques, which use a NIAM way of communicating are mostly extensions of the NIAM modelling
technique presented in [26]. The Predicator Set Model, which is presented in [22], is also such an extension
of NIAM. In this section we make a distinction between the concepts used in NIAM and the concepts used
in PSM.

5.1 Pure NIAM

In pure NIAM the following ORM concepts can be identified: object types (O), entity types (E), roles or
predicators (P), fact types (F), and label types (L). In table 3 the relation between the ORM constructs
and NIAM are provided.

5.2 PSM

Not all of the constructs of ORM can be represented using NIAM. Therefore, NIAM was extended with
some constructs, resulting in PSM (see [22]). In PSM, all concepts of the ORM kernel can be visualised.
The additional concepts are: generalisation, power typing, sequence typing, and schema typing.
In table 4 the PSM symbols corresponding to the ORM constructs are given. The complete zoo example is
depicted in figure 8.



construct symbol

x ∈ N ∩A

p ∈ P

f ∈ F

l ∈ L∩A

x Spec y

Table 3: Relation between ORM constructs and pure NIAM symbols

construct symbol

xGen y

p ∈ G

s ∈ S

Dec(c) =
{
d1, . . . , dn

}

Table 4: Relation between the ORM constructs and the PSM symbols



Figure 7: Complete zoo example in ER+

6 Conclusions

By making a clear distinction between the different aspects of methods, we were able to demonstrate the
possibility to built a CASE-tool with different ways of communicating, using a single way of modelling.
We have presented a first attempt for an ORM kernel, general enough to contain both ER-like and NIAM-
like models, together with two appropriate ways of communicating. More research in the refinement of
the ORM kernel is underway, in the form of joint research between the Universities of Nijmegen and
Queensland. Furthermore, the ER view on an ORM model could be further refined and tuned, by applying
abstraction mechanisms for ORM schemas as discussed in [9] and [10].
As a next step, an actual CASE-tool should be build supporting the ORM kernel and multiple ways of
communicating. Furthermore, the completeness of the ORM kernel should be validated. e.g. can object
oriented data models be ‘linked’ into the kernel.
The ORM kernel further illustrates that there is little difference in the way of modelling of ER and NIAM
(more extensive comparisons can be found in [5], [25] and [7]). The main difference between ER and
NIAM lies in their respective ways of working, any research concerned with the underlying way of mod-
elling is interchangeable between both ‘worlds’.

Acknowledgements

We would like to thank the anonymous referees for their comments on previous versions of this article.

References

[1] S. Abiteboul and R. Hull. IFO: A Formal Semantic Database Model. ACM Transactions on Database
Systems, 12(4):525–565, December 1987.

[2] D.E. Avison. Information Systems Development: Methodologies, Techniques and Tools. McGraw–
Hill, New York, New York, USA, 2nd edition, 1995. ISBN: ISBN 0077092333



Figure 8: Complete zoo example in PSM

[3] P. van Bommel, A.H.M. ter Hofstede, and Th.P. van der Weide. Semantics and verification of object–
role models. Information Systems, 16(5):471–495, October 1991.

[4] P. van Bommel and Th.P. van der Weide. Reducing the search space for conceptual schema transfor-
mation. Data & Knowledge Engineering, 8:269–292, 1992.

[5] G.H.W.M. Bronts. Formalization of an Object Model. Master’s thesis, University of Nijmegen,
Nijmegen, The Netherlands, EU, 1993.

[6] G.H.W.M. Bronts, S.J. Brouwer, C.L.J. Martens, and H.A. (Erik) Proper. A Unifying Object Role
Modelling Approach. Information Systems, 20(3):213–235, 1995.

[7] S.J. Brouwer. PSM vs ‘the rest of the world. Master’s thesis, University of Nijmegen, Nijmegen, The
Netherlands, EU. In Dutch.

[8] J.A. Bubenko. Information System Methodologies – A Research View. In T.W. Olle, H.G. Sol, and
A.A. Verrijn–Stuart, editors, Information Systems Design Methodologies: Improving the Practice,
Amsterdam, The Netherlands, EU, pages 289–318. North–Holland/IFIP WG8.1, Amsterdam, The
Netherlands, EU, 1986.

[9] L.J. Campbell and T.A. Halpin. Automated Support for Conceptual to External Mapping. In
S. Brinkkemper and F. Harmsen, editors, Proceedings of the Fourth Workshop on the Next Gener-
ation of CASE Tools, pages 35–51, June 1993.

[10] L.J. Campbell and T.A. Halpin. Abstraction Techniques for Conceptual Schemas. In R. Sacks–
Davis, editor, Proceedings of the 5th Australasian Database Conference, volume 16, pages 374–388,
Christchurch, New Zealand, January 1994. Global Publications Services.

[11] P.P. Chen. The Entity–Relationship Model: Towards a Unified View of Data. ACM Transactions on
Database Systems, 1(1):9–36, March 1976.



[12] R. Elmasri and S.B. Navathe. Advanced Data Models and Emerging Trends. In Fundamentals of
Database Systems, chapter 21. Benjamin Cummings, Redwood City, California, USA, 1994. Second
Edition.

[13] R. Elmasri, J. Weeldreyer, and A. Hevner. The category concept: An extension to the entity–
relationship model. Data & Knowledge Engineering, 1:75–116, 1985.

[14] G. Engels, M. Gogolla, U. Hohenstein, K. Hülsmann, P. Löhr–Richter, G. Saake, and H.-D. Ehrich.
Conceptual modelling of database applications using an extended ER model. Data & Knowledge
Engineering, 9(4):157–204, 1992.

[15] T.A. Halpin. A Fact–Oriented Approach to Schema Transformation. In B. Thalheim, J. Demetrovics,
and H.-D. Gerhardt, editors, MFDBS 91, Rostock, Germany, EU, volume 495 of Lecture Notes in
Computer Science, pages 342–356, Berlin, Germany, EU, 1991. Springer.

[16] T.A. Halpin. Fact–oriented schema optimization. In A.K. Majumdar and N. Prakash, editors, Pro-
ceedings of the International Conference on Information Systems and Management of Data (CISMOD
92), pages 288–302, July 1992.

[17] T.A. Halpin and M.E. Orlowska. Fact–oriented modelling for data analysis. Journal of Information
Systems, 2(2):97–119, April 1992.

[18] T.A. Halpin and H.A. (Erik) Proper. Subtyping and Polymorphism in Object–Role Modelling. Data
& Knowledge Engineering, 15:251–281, 1995.

[19] A.H.M. ter Hofstede. Information Modelling in Data Intensive Domains. PhD thesis, University of
Nijmegen, Nijmegen, The Netherlands, EU, 1993.

[20] A.H.M. ter Hofstede, H.A. (Erik) Proper, and Th.P. van der Weide. Formal definition of a con-
ceptual language for the description and manipulation of information models. Information Systems,
18(7):489–523, October 1993.

[21] A.H.M. ter Hofstede, H.A. (Erik) Proper, and Th.P. van der Weide. A Conceptual Language for the
Description and Manipulation of Complex Information Models. In G. Gupta, editor, Seventeenth
Annual Computer Science Conference, volume 16 of Australian Computer Science Communications,
pages 157–167, Christchurch, New Zealand, January 1994. University of Canterbury. ISBN: ISBN
047302313

[22] A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data modelling. Data &
Knowledge Engineering, 10(1):65–100, February 1993.

[23] A.H.M. ter Hofstede and Th.P. van der Weide. Fact Orientation in Complex Object Role Modelling
Techniques. In T.A. Halpin and R. Meersman, editors, Proceedings of the First International Confer-
ence on Object–Role Modelling (ORM–1), pages 45–59, July 1994.

[24] U. Hohenstein, L. Neugebauer, G. Saake, and H.-D. Ehrich. Three–Level–Specification of Databases
using an extended Entity–Relationship Model. In R.R. Wagner, R. Traunmüller, and H.C. Mayr, edi-
tors, Informationsbedarfsermittlung und –analyse für den Entwurf von Informationssystemen, Berlin,
Germany, EU, pages 58–88, Berlin, Germany, EU, 1987. Springer.

[25] C.L.J. Martens. PSM vs ‘the rest of the world. Master’s thesis, University of Nijmegen, Nijmegen,
The Netherlands, EU. In Dutch.

[26] G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational Database Design: a fact oriented
approach. Prentice–Hall, Englewood Cliffs, New Jersey, USA, 1989. ISBN: ASIN 0131672630

[27] H.A. (Erik) Proper. A Theory for Conceptual Modelling of Evolving Application Domains. PhD
thesis, University of Nijmegen, Nijmegen, The Netherlands, EU, 1994. ISBN: ISBN 909006849X

[28] H.A. (Erik) Proper and Th.P. van der Weide. EVORM – A Conceptual Modelling Technique for
Evolving Application Domains. Data & Knowledge Engineering, 12:313–359, 1994.

[29] P. Shoval and S. Zohn. Binary–Relationship integration methodology. Data & Knowledge Engineer-
ing, 6(3):225–250, 1991.


