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Abstract 

This article discusses two highly intertwined issues. Firstly, we discuss the lack of top-down abstraction 
mechanisms in data modelling techniques; i.e. abstraction techniques that are fully integrated into the modelling 
technique and methodology and not just a 'post-modelling process' add on. Secondly, we are concerned with the 
integration of object-oriented modelling techniques and traditional data modelling techniques. 

We start by discussing the pragmatics and motivations behind these issues. Then, a formalisation of (the syntax 
and semantics of) a data modelling technique is presented that is a generalisation of (E)ER and ORM, and also 
adheres to the requirements of an object-oriented technique as laid down in the object-oriented manifesto. The 
result of this exercise is the so-called CDM Kernel. Furthermore, we briefly show how (E)ER, ORM and 
object-oriented views can be derived from models in the CDM Kernel. This effectively means that the CDM 
Kernel equates (E)ER, ORM and (some) object-oriented models. 

Finally, we briefly discuss some practical issues on the use of the facilities offered by the CDM Kernel in terms of 
modelling practice and tool support. A generalised conceptual modelling kernel will be very beneficial in the 
context of CASE Tool and in the context of federated database (information) systems. 

Keywords: Conceptual Data Modelling; Generic Data Models; Schema Abstraction; Object Orientation; ORM; 
ER; NIAM; OMT 

1. Introduction 

This article is concerned with two central issues. The first issue is the lack of (top-down) 
abstraction mechanisms in data modelling techniques. The second issue is the integration with 
object-oriented modelling techniques. We first focus on the necessity of abstraction as an 
integral part of a data modelling technique. 
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In process modelling a much used concept is abstraction. Most successful process modelling 
techniques support some notion of composition which allows modellers to introduce layers of 
abstraction. Even most traditional programming languages allow for the introduction of layers 
of abstraction. In data modelling the situation is somewhat different, as most data modelling 
techniques do not have a built-in facility to introduce abstractions. 

Both previous and present research has been done on the automatic generation of 
abstraction layers for data models [41, 45, 22, 9, 7, 42], and in particular for popular data 
modelling techniques such as ER [12, 17, 3] and O R M / N I A M  [37, 48, 24, 28, 25]. Most of 
these algorithms try to automatically find so-called major entity types in an existing flat 
conceptual schema, and then group relevant relationship types around such a major entity 
type. This leads to a clustering of the relationship types in a conceptual schema. This 
clustering can be done repeatedly, resulting in several layers of abstraction. 

The above discussed abstraction techniques work well with existing conceptual schemas, and 
are seen as a way to make existing complex conceptual schemas more presentable to users. 
This is particularly useful for ORM diagrams; which are notorious for their complexity and 
detail. Using abstraction techniques, more abstracted views can be created. In addition, it 
allows one to view an ER schema as an abstracted view of an ORM schema [9, 7]. 

We would, however, like to use abstraction mechanisms as an integral part of the modelling 
process, and not as a means to solve the symptom: incomprehensible, large conceptual schema 
diagrams. In most (large) real life applications, the modelling process is a matter of starting 
with an overview in terms of the major entity types, and slowly adding more detail. In this 
paper we propose a syntactic extension to a generalised conceptual data modelling technique 
that allows us to model these multiple layers of abstraction. When modelling a new 
application, analysts can specify the complete model using stepwise refinements, while for 
existing conceptual schemas abstraction techniques can be applied to reverse engineer the 
abstraction layers from the existing flat conceptual schema. In this article we also show 
(formally backed) that these extensions allow us to regard an ER schema as a first abstraction 
from ORM schemas. 

The second problem we address in this paper is the closer integration of traditional data 
modelling techniques with object-oriented data modelling techniques. We extend O R M / E R  
with object-oriented aspects in such a way that the result adheres to the (modelling technique 
relevant) requirements on an OODBMS as laid down in the object-oriented database 
manifesto [2]. The response to the aforementioned object-oriented database manifesto from 
the more 'traditional' database community is given in [43]. There it is argued that traditional 
database systems are most likely to be extended with object-oriented aspects. We believe that 
the same will hold for the modelling techniques used to design such systems, i.e. traditional 
modelling techniques like ORM and ER will be extended with object-oriented aspects. 

Earlier attempts to extend ORM, or ER,  based techniques with top down abstraction 
mechanisms are reported in e.g. [35, 14, 31, 15, 13, 16]. The approaches as presented in 
[14, 16] also try to establish the connection to the OO paradigm. All of these approaches, 
however, do not provide a thorough study of the implications of these abstraction mechanisms 
on the formalisation of the modelling technique as a whole. Nor do they exploit the 
abstraction mechanism to further integrate different data modelling techniques. In this article 
we provide an abstraction mechanism which is fully integrated into the formalisation of the 
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used data modelling technique being used. Furthermore, the consequences of the introduction 
of the abstraction mechanism on the modelling technique as a whole are studied in detail; in 
particular the effects on identification, inheritance, and standard type construction mecha- 
nisms like objectification. This will lead to a reduction of the number of elementary concepts 
in the formalisation. Finally, we also provide a better integration between different data 
modelling techniques. 

The central aim, and main contribution, of this article is therefore to provide a generalised 
modelling technique for conceptual data modelling. This technique should encompass ER,  
ORM and object-oriented modelling techniques, while also allowing for the introduction of 
layers of abstraction. The secondary aims of this article are more concerned with practical 
issue. We shall show how models in the CDM Kernel can be drawn according to different 
modelling approaches (ER, ORM and OMT). This means that the key result of this article is 
a consolidation and formalisation of existing ideas across different modelling techniques. It 
does not try to add 'yet another feature', but rather tries to integrate existing ideas. 

Please note that it is not the aim of this article to prescribe a set of rules to determine 
abstractions for a given universe of discourse. Doing so would be in contradiction with what 
the CDM Kernel tries to do. There are different beliefs on how to use abstractions during the 
modelling process, and the aim of the CDM Kernel is to allow for different approaches and 
different data modelling techniques, i.e. to integrate and not to provide yet another approach. 
Nevertheless, a good suggestion on how to (automatically) derive abstraction layers can be 
found in [10]. 

For the first aim of this article, we base ourselves on existing research into an ORM Kernel 
[5, 25]). This research tries to provide a generalised ORM version covering most ORM 
variations, and to some extent ER versions. This kernel can be tailored to the different ORM 
versions by adding more specific axioms. For example, requiring all relationship types to be 
binary leads to the binary variation of ORM. In this article we shall take this existing ORM 
Kernel and add the extra concepts. However, some existing components from the ORM 
Kernel are removed to maintain orthogonality of concepts (though there will be no reduction 
in the conceptual expressiveness). The extra concepts deal with the aforementioned abstrac- 
tion layers, and the introduction of object-oriented concepts. The result is a Conceptual Data 
Modelling Kernel (CDM Kernel). 

A direct result of the use of the CDM Kernel in an information system development 
environment, is the observation that in one development project multiple conceptual 
modelling techniques can be employed simultaneously (possibly in a distributed environment). 
This could mean that project members can use their own preferred modelling technique, and 
any investments in, for example, 'old' N I A M / O R M  or ER models do not go to waste. Even 
more, being a generic data modelling technique, the CDM Kernel can very easily be used as a 
generic data model in the context of open distributed/federated database systems. Finally, 
most research results based on the ORM Kernel can directly be transplanted to the CDM 
Kernel, and then be applied to ORM, ER and OO models equally. For example, a conceptual 
query language like LISA-D [27] can easily be integrated with the new CDM Kernel. 

The structure of the paper is as follows. In Section 2 an example application is discussed 
where top-down abstraction is utilised to divide the problem area into more comprehensible 
chunks. The syntactical aspects of the CDM Kernel are introduced in Sections 3 and 4. The 



122 P.N. Creasy, H.A. Proper / Data & Knowledge Engineering 20 (1996) 119-I61 

former limits itself to the information structure only, while the latter discusses the conceptual 
schema as a whole (including operations). Section 5 deals with semantic issues of the CDM 
Kernel,  i.e. the populations of the conceptual schema. The semantics of operations defined for 
the types in the conceptual schema is not discussed in this paper. This remains a subject of 
further research. 

2. An example domain 

For our example domain,  we consider a bank. Fig. 1 shows the top level abstraction of the 
banking domain. This schema displays five types: Bank, Client, Service, enjoy, of. The Bank 
type is an abstracted type and forms the top abstraction of the entire banking application. This 
is also the reason why the enjoy and of relationship types, together with the remaining object 
types playing a role in these relationship types, are drawn inside the Bank type. Both Client 
and Service types are abstractions themselves, although their underlying structure is not 
shown at the moment .  When stepping down to a lower level of abstraction, the void in these 
types will be filled with more detail. 

The Client and Service type are involved in a relationship type called enjoys. This is a 
many-to-many relationship where each client must at least enjoy one service and each service 
offering must be enjoyed by some person. The two black dots indicate that a client of the bank 
must indeed enjoy some service, and conversely each service must be used by some client. The 
arrow tipped bar spanning the two roles of the enjoys relationship type indicates that it is a 
many-to-many relationship. Similarly, the of relationship type models the fact that a bank has 
many clients, and clients can be client of many banks. The (name suffix to Bank indicates that 
a bank is identified by a name. Basically, the use of the (name) suffix is a graphical 
abbreviation of the schema fragment depicted in Fig. 2. The two arrow tipped bars on the 
roles of the has relationship indicate a 1:1 relationship between a bank and its name; i.e. a 

B~ (name) 

o,E l 
r Client ~ ,,Service 

enjoys 

Fig. 1. The top diagram of the Bank domain. 
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Bank 

Fig. 2. Fully detailed top diagram. 

bank can be identified by its name. The broken ellipse of BankName type indicate that it is a 
value type; i.e. its instances are directly denotable (strings, numbers audio, video, html).  

As a first refinement step we can now take a closer look at what a client is. The details of 
the Client type are shown in Fig. 3. There,  we can see that each client is identified by a Client 
Nr, as indicated by the (nr) suffix to Client. Each client provides the bank with a unique 
address as indicated by the arrow tipped bar spanning the role of the lives at relationship type 
that is attached to Client. This address is mandatory for each client. This "mandatoryness"  is 
indicated by the black dot. Address  is a normal object type without any other types clustered 
to it. Therefore,  it is drawn in the traditional ORM way using a solid ellipse. The (description) 
suffix to Address  within the solid ellipse indicates that an address is identified by a description. 
This corresponds to the same underlying graphical abbreviation. 

C l i e a t  ( m ' )  

r 
I--It F qt  c 'ol qt 

; Password :: [ ~  ~ PhoueNr i 
• " ( d e s c h p u o a )  " 

Fig. 3. Refinement of the client type. 
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Clients must all provide at least one name, but they may have aliases. This leads to the 
arrow tipped bar spanning both roles of the has fact type and the black dot on the client side. 
For authorisation of transactions ordered by telephone or fax, the bank and the client agree 
upon a unique password. The combination of a password and address must uniquely identify a 
client (indicated in the diagram by the encircled U). Finally, clients may have a number of 
phone numbers at which they can be reached. 

With respect to the abstractions, we can now say that the relationship types has identifying, 
lives at, reachable at, has (together with the types playing a role in these relationship types) 
are clustered to Client. For each abstracted type, like Client, such a clustering of types (from a 
lower level of abstraction) is provided. This could be an emptyset. 

In this example we refer to relationship types used in the bank example by means of the text 
associated with these relationship types, such as has identifying. This text is a so-called mix fix 
predicate verbalisation. These mix fix predicate verbalisations do not have to be unique. The 
verbalisation has typically occurs numerous times in an average conceptual schema. For 
example: Client has Client Name and Client has Password. To uniquely identify relationship 
types (and types in general), each type receives a unique name. For instance Client Naming 
and Issued Passwords for the two earlier given examples. 

The next refinement of the bank domain provides us with more details about the service 
types available from the bank. This is depicted in Fig. 4. The Service type is a generalisation 
of three basic types: Credit Card Account, Access Account and Term Deposit Account. The 
Access  Accounts and Credit Card Accounts are first combined into a so-called Statement 
Account. It should be noted that during a top-down modelling process, a type like Credit Card 
Account will start out as a 'normal' entity type like Address. However, as soon as other types 
are clustered to such an entity type, they become abstracted types. 

The double lining around the Access Account type indicates that this type occurs in 
multiple clusterings. A CASE Tool supporting this kind of graphical representation, could 

S~rvic,. 

T 

/ 
Account 

T 

\ 

Fig, 4. Refinement of the service type. 
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have a feature in which clicking on such a double lining results in a list of (abstracted) types in 
whose clustering this type occurs. 

As stated before, a statement account is a generalisation of an access account and a credit 
card account. The intuition behind a statement account is that for such an account regular 
statements are sent to the clients and that a transaction record is kept. These details of the 
statement account are shown in Fig. 5. For each statement account, a number of statements 
can be issued. A statement lists a number of transactions. This is captured by the lists fact 
type. This fact type is, however, derivable from the (to be introduced) issue date of a 
statement and the dates at which the transactions took place. This derivability is indicated by 
the asterisk. 

One of the key features of the CDM Kernel is inheritance of properties between types. 
Instances (populations) are inherited in the direction of the arrows. For example, each credit 
card account is a statement account. Other properties, like clustered types, are inherited 
downwards. Typically, properties at the type level are inherited downward, while properties 
on the instance level are inherited upwards. The types clustered to Statement Account are 
therefore formally also part of the clusterings of Credit Card Account and Access  Account. 
Nevertheless, to avoid cluttered diagrams, we have chosen not to show this inheritance 
explicitly in the diagrams. Therefore, the details of the Credit Card type do not show the 
details of Statement account. The details of the Credit Card Type are provided in Fig. 6. For 
each credit card the bank stores its kind, the spending limit, as well as the access account to 
which the credit card is linked. The suffix ": Statement Account" to "Credit Card Account 
(nr)" hints at the inheritance of the clustered types to Statement Account. In a CASE Tool 
supporting our technique, one could implement the facility that clicking on the Statement  
Account suffix leads to the inclusion of the clustered types introduced by Statement Account. 
Note that both Access Account and Money Amount have double lining, indicating that they 
occur in multiple clusters. 

For Access  Account, the details are shown in Fig. 7. All extra information actually shown 
there is the identification of an access account; an Access Account Nr as indicated by the (nr) 

Statement Account- Service 

Stat~em ~ ~ lists • f Trax~action ) 

Fig. 5. Refinement of statement account. 
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Cr~li t  Card Account (nJr): St~temeot Aocouot 

t -°.sl I 

Fig. 6. Refinement  of the credit card type. 

suffix. Similar to the Credit Card Account, all types clustered to Statement Account are also 
clustered to Access Account, but we do not display this graphically. 

Fig. 8 shows the details of a statement. Each Statement is issued on a unique date. This 
date, together with the Statement Account for which the Statement was issued, identifies each 
Statement. Note that we decided to draw some contextual information of the Statement type 
to show how this type is identified. The fo r . . ,  was issued.. ,  and Statement Account types 
are not part of the clustering of Statement. The balance as listed on a Statement is, for 
obvious reasons, derivable from the Transactions that have taken place on this account. 

The refined view on a transaction is shown in Fig. 9. A Transaction is identified by the 
combination of the account it is for and a unique (for that account) transaction number. Note 
that contrary to a Statement,  all components needed for the identification of Transactions are 
part of the clustering. Each Transaction involves a certain money amount, occurs on a date, 
and is either a debit or credit transaction (depicted by TR Kind). Furthermore,  for each 
Transaction, some (unique) description may be provided. This example also shows that we 
must allow for mutually recursive abstractions, as the Transaction and Statement Account 
refinements refer to each other. 

Term deposits form a world on their own. This is elaborated in Fig. 10. On each Term 
Deposit Account, a client can have a series of term deposits. Each time a Term Deposit 
matures, this term deposit can be rolled-over leading to a new Term Deposit on the current 
Term Deposit Account. A special kind of Term Deposit is the Long Term Deposit, which is a 
subtype of Term Deposit. As each subtype inherits all properties from its supertype, the Long 
Term Deposit type is an abstracted type as well. For these Long Term Deposits we store 
whether the deposit is to be automatically rolled-over into a new deposit (the short Term 

Access Account (nt): Sta~mcat Aocount 

Fig. 7. Ref inement  of an access account.  



P.N. Creasy, H.A. Proper / Data & Knowledge Engineering 20 (1996) 119-161 127 

[stamaeat Accotmil} 

~ ~.i•i w~ ~.-. 

Statimacnt ® 

Fig. 8. Refinement of a statement. 

Deposits are of this kind by default). In the refinement of a Long Term Deposit, we shall also 
see what the so-called subtype defining rule for these Long Term Deposits is. Upon 
maturation, the invested amount including the interest acrued is transferred to a pre- 
nominated Access  Account. Finally, the interest rate given on the deposit is derived from a 
table listing the Periods for which amounts can be invested. The details of the Period type are 
given below. 

Tnm~e~a 

w~ for- f ] 
. . . -  - - . .  

/ T~.s~tioa "" 

• . .  . . . . . . . . . . . .  . - -   .LTLs 

"1 

I "D'. "c" I 

A 

Fig. 9. Refinement of a transaction. 
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Term Dep~it Account (m) 

with 

Term Depos i t~_=]  Long Term 

A 

oe maturing 

into 
automatic roU-over 

? 

e, a f l k s  

Rate 

given for 
-*---*- I Period 

Fig. 10. Refinement of a term deposit account. 

A Term Deposit itself is a clustering of the start and ending dates of the deposits and the 
money amount invested. This is depicted in Fig. 11. A Long Term Deposit is a term deposit 
with a duration of more than 60 days. In Fig. 12 the details of a long term deposit are shown, 
including the subtype defining rule. The Long Term Deposit type inherits all clustered types 
from Term Deposit, while not adding anything to this. Finally, the complete definition of the 
interest periods are given in Fig. 13. 

This completes the schema of the example domain. When modelling a domain like this, the 
modeller has the choice of using as many layers of abstraction as the modeller sees fit. We only 
provide a mechanism to introduce these abstractions and are (initially) not so much concerned 
with the 'sensibility' of abstraction steps. One may, for example, argue that the example given 
in this section has been split up into too many abstraction levels. As argued in the 
Introduction, defining guidelines to determine abstractions during a modelling process would 
be a violation of what the CDM Kernel tries to do: integration. Obviously, in practice one 
needs to make a choice of what set of modelling guidelines to use. However,  the underlying 
repository (CDM Kernel) can remain the same! 

Sometimes, an analyst may want to see the entire schema. This is quite easy to do by uniting 
all clusterings into one large schema. From the above discussed schema fragments, one can 
derive the complete ORM schema as depicted in Fig. 14 by uniting all clusters. This is, 
however, still not the 'lowest' level at which an ORM diagram can be displayed, since we have 
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Term Deposit Account 

® 

"'°...... 

Term Deposit 

Fig. 11. Refinement of a term deposit. 

Loag Tema Deposit: Tam Deposit 

Fig. 12. Refinement of a long term deposit. 

Period 

at I ~v °fE/~vesm~ent/ 

Fig. 13. Refinement of periods. 
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® 
~u I 1 

TnmLicUo~ 
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• ..... 
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Fig. 14. Complete ORM diagram of the Bank domain. 
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used the standard abbreviations for simple identifications and the short notat ion for objectifi- 
cations. Objectification is a concept we have not yet discussed in this paper. 

Both in ORM and ER,  modellers can use objectification, also referred to as nesting. In a 
nesting, instances of a relationship type are treated as objects themselves that can play roles in 
other  relationship types. For example, in Fig. 14 Transaction and Period are model led as 
nestings. In our view, objectification is an abstraction mechanism in itself. After  the addition 
of the clustering mechanism, as highlighted in this section, objectification can simply be seen 
as a graphical abbreviation of a (specific flavour of) clustering. Doing so will dramatically 
simplify the formal definitions underlying ORM. The general pattern of the abbreviation for 
an objectification is shown in Fig. 15. 

In general, when object type x is a compositely identified object type, i.e. more than one 
value type is used to identify its instances, and all relationship types used to identify instances 
of x are clustered to x, then we can use the graphical abbreviation. Examples of compositely 
identified object types are: Transaction, Period, Statement, and Term Deposit. The only 
object  types which  have all relationship types needed for their identification clustered to 
themselves are Period and Transaction. That is why in those cases we can use the graphical 
abbreviation as used in Fig. 14. 

Also when looking at a design procedure for ORM schemas as presented in [24] the decision 
to model  a Transaction, say, as an objectification or a flat entity type is based on 
considerations of abstraction. When,  for the modelling of the relationship types was for, has, 
took place on, and is of it is preferred to regard a transaction as an abstraction from its 
underlying relationships to a statement account and transaction number,  then the objectified 
view is preferred to the flat entity view. This directly corresponds to the decision whether  
these underlying relationships should be clustered to the Transaction object type or not. 
Later,  we shall see that set types, sequence types, etc. can be treated in a similar way. In 
[30, 29] it is shown that set types, sequence types and some other composed types are not 
fundamental  when introducing a special class of constraints which correspond to the set 

i ,C l*  

\ / 
c 

A 

Fig. 15. Objectification as an abbreviation. 
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theoretic notion of axiom of extensionality. This then allows us to regard set typing, sequence 
typing and schema typing as forms of abstraction. 

The schema depicted in Fig. 14 has the same denotational semantics as the combination of 
all previous schema fragments. However, the conceptual semantics is different as the 
abstraction levels (the third dimension) are now missing. Schema abstraction is purely a 
syntactical issue, and thus carries no denotational semantics. From the point of view of a 
modeller (and a participant of the universe of discourse), the abstractions do have a 
conceptual meaning. The abstractions represent certain choices of importance within the 
universe of discourse. 

An (E)ER view can easily be derived as well by uniting all clusterings except for the lowest 
ones, but interpreting these as attributes. The (E)ER view on this domain is given in Fig. 16. 
The version we used there is based on the one discussed in [3]. Differing extended ER 

. . . .  i TO kss ~m~yt~ pm,mxd 

A¢.c~ 
Ae.~ 

(i, dmdto ( • : 

r - -  . - o  ~ o (  CCZ iud  (<:ode) . .w  immd  _. 

n3 ~rml 0T D~ (mm~ld-yy) 

~it ~dq I Dim (mm-~-yy) 
~r M m e y ~ m  ($N 

e4rm 

), 

~ ot%* 

~al foe 

- - ~  mmm~m der=~/o~ Mu~.yAmoll ($)* 

mLqd on Dill (mm-dd-yy) 

Fig. 16. Complete ER diagram of the Bank domain. 
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versions use different notations for this concept [19, 18, 21]. The names for attributes in this 
diagram are simply based on the verbalisations given in the ORM schema. For most ER 
modellers, the concept of using elaborate verbalisations is new. One could allow for the 
specification of specific attribute names to, for example, abbreviate with minimum doposit of 
MoneyAmount ($)+ to MinDeposit. In this article we do not discuss naming conventions in 
detail but rather focus on the underlying conceptual issues. In [5] we have provided a more 
detailed study of the relationship between different ER versions and ORM. A detailed case 
study is also presented there, in which the different concepts underlying these modelling 
techniques are related, together with a mapping of the (graphical) concepts between the two 
classes of data modelling techniques. 

Of course for the (E)ER case one can also take objectifications into consideration and treat 
them as a graphical abbreviation. In the example domain, however, they have all disappeared. 
When there would be a compositely identified object type occurring on an abstraction level 
higher than one, then this would have led to an objectification in the (E)ER representation. 
In the remainder we shall also see fragments of an OMT ([39]) view on this same domain. An 
OMT view does not become very interesting until we have introduced some notion of 
operations on the types of the schema. Without operations, an OMT diagram can simply be 
seen as another (E)ER dialect. 

Some modelling techniques, for example OMT and some Extended ER versions (e.g. [18]) 
support forms of aggregation. Although one has to be careful with the notion of aggregation, 
as different authors define this concept differently, most of the definitions known to us are 
simply forms of abstraction similar to objectification. As an example consider Fig. 17. The 
left-hand side diagram is an OMT representation of the schema on the right-hand side. 

One might now successfully argue that by combining all existing abstraction mechanisms 
into one single unifying abstraction concept we lose expressiveness with respect to the 
conceptual semantics. When a modeller decides to model something as an aggregation, as 
opposed to an objectification, then this decision is of conceptual relevance. Therefore, we 
shall introduce in the CDM Kernel the possibility to distinguish between different flavours of 
abstraction. The ones we have seen so far are: objectification, grouping (set types, sequence 
types, etc.), aggregation and abstraction in general. In the CDM Kernel, we shall not 

J 5°mpu L I 
TT 

compwm- 
A 

II I 

Fig. 17. OMT aggregation as abstraction mechanism. 



134 P.N. Creasy, H.A. Proper / Data & Knowledge Engineering 20 (1996) 119-161 

prescribe a fixed set of abstraction flavours. This is left as a configuration option for a concrete 
application of the CDM Kernel. 

Finally, when entering a model  into the CDM Kernel using a normal 'flat' conceptual 
modell ing view, like traditional ORM or (E)ER,  the 'third dimension'  can be added (reverse 
engineered) to such a flat model  by means of existing algorithms. Examples of such algorithms 
can be found in [45, 42, 22, 8, 7, 9, 33]. The key difference between each of these algorithms 
lies in the extent to which they try to incorporate semantic information that is hidden in the 
constraints and verbalisations provided with the schema. Currently, work is underway with the 
authors of [9] in formalising their approach more in line with the CDM Kernel presented in 
this article. 

3. Information structures 

The formalisation of the CDM Kernel as presented here finds its origins in [4, 28, 27], where 
it was presented as a formalisation of one of the ORM versions. In [5, 25] the idea of an ORM 
Kernel was first presented. This ORM Kernel is configurable by means of a number  of axioms 
of taste, adapting the ORM Kernel to the different ORM dialects. Bronts et al. [5] also 
at tempts to include ER into the ORM Kernel, but this was not a complete success as ORM 
diagrams and ER diagrams model  the same domains on different levels of abstraction. In this 
article we do achieve this goal. 

The formalisation of the CDM Kernel therefore inherits a rich and well published history of 
constant refinements and additions. As we shall show in the next section, the formalisation is 
now fully able to handle ORM models, ER  models and some OO models. Therefore,  we now 
call the formalisation the CDM Kernel, which is short for Conceptual  Data Modelling Kernel. 
With its object-oriented extensions we believe it defines a generic modelling technique that is 
able to equate models in existing data modelling techniques and extends them with multiple 
layers of abstractions, i.e. 3-dimensional data modelling. 

To support  object-oriented models, it must be possible to associate operations (methods) to 
types. A precise language for the definition of such operations will not be given in this article, 
neither syntax nor semantics. There is also, as yet, no general consensus as to what such a 
language should offer, both with respect to the underlying paradigm (functional, imperative, 
declarative . . . .  ), nor with respect to the allowed set of operations. 

3.1. Type taxonomy 

We assume the reader has a basic knowledge of the concepts underlying ORM or ER.  A 
conceptual schema consists of a set of types. Let g ~  be the set of all types in a conceptual 
schema, then this set can be divided in three subclasses. The first class is the set of object types 
ON. Within this class a subclass of value types °V~7 C_ ON can be distinguished. Instances of a 
value type can, as stated before, be directly denoted on a communicat ion medium.  These 
instances usually originate from some underlying domain such as strings, natural numbers ,  
audio, video, html. etc. Later, a function is introduced that assigns a domain (set of values) to 
each value type. 
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A separate class of types are the relationship types ~ .  As we have shown in the previous 
section, relationship types will (from a formal point of view) not be used in objectifications 
anymore. Therefore, the set of relationship types is disjoint from the set of object types. 
Complex types like sequence types, set types, etc. [28], are now seen as ordinary object types. 
Doing so has led to a considerable reduction in the size of the formalisation of the type 
hierarchy. This is a change from the approach as previously taken in the ORM Kernel [5]. 
This change can be made due to the introduction of abstraction levels and the existential 
uniqueness constraints [30]. The fact that such types, for example, correspond to the 
traditional notions of a sequence type can be derived from the clusterings. 

3.2. Relationships between types 

Thus far, we have only discussed a taxonomy of types for the CDM Kernel. Types, 
however, are interrelated in a number of different ways. In the CDM Kernel, we have the 
following relationships between types. 

3.2.1. Relationship types 
Relationship types consist of a number of roles (also referred to as predicators). These roles 

are captured in the set ~¢ .  The roles in ~G are distributed among the relationship types by 
the partition: Roles: ~ - - * ~ + ( ~ G ) .  (Note that ~ + ( ~ G )  yields all non-empty subsets of 
~ 6 ) .  The type playing the role is yielded by the function Player: ~G----~ G~. In this context it 
is also useful to introduce a generalisation of the Player function. Based on this function we 
overload function Players. If P is a set of roles, then: Players(P) & {Player(p) I P E P}. For 
any relationship type r we can then define: Players(r) __a Players(Roles(r)). Finally, if R is a set a 
of types, then: Players(R) = U r ~ n ~ z  Players(r). Note that the last generalisation of Players 
allows us to apply this function to any set of types; not just relationship types. The reason for 
this is a gain of elegance in definitions to come. 

For the Roles function, we have the following 'inverse' function returning the relationship 
to which a given role belongs: Rel: 9t~--~ ~ ,  which is defined by: Rel(r) =fCr>r E Roles(f). 

3.2.2. Type hierarchies 
Both PSM and the ORM Kernel supported two constructs to build type hierarchies. Firstly, 

specialisation, or subtyping, allows for the introduction of subtypes of more general 
supertypes. The traditional form of subtyping used in PSM and the ORM Kernel (and (E )ER 
for that matter), does not allow for the introduction of polymorphic types, e.g. unite a set type 
and a nested relationship type to become a new polymorph type. This need has led to the 
introduction of a second construct for building type hierarchies, called polymorphism (also 
referred to as categorisation in some EER variations). Since we now take the approach that 
complex types, like objectifications, sequence types, and set types, can be seen as graphical 
abbreviations on top of simple object types rather than types with a direct underlying 
structure, we are able to unite the specialisation and polymorphism concepts into one single 
concept in the CDM Kernel. This concept will, however, still be referred to as subtyping (and 
supertyping). It is just that the 'rules of the game' are now more liberal. 

In a CDM Kernel type hierarchy one can specify hierarchies which will be hard/inefficient 
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to implement directly in a relational system. However, in our opinion it is more important to 
model the universe of discourse properly in a conceptual language, than to limit a modeller in 
their 'artistic freedom' by considerations dealing with the underlying relational platform. 

The type hierarchy is captured by the SubOf C_ 0 ~  z ©'~ relation; with the intuition: 

ifxSubOf y then 'the population of type x is subset of the population of y' 

An example of a small type hierarchy was already shown in the banking example, where we 
had: Long Term Deposit C_Term Deposit. We shall see that some properties in such a 
hierarchy are inherited upwards towards the top of the type hierarchy, whereas other 
properties are inherited downwards. Usually, type-based properties are inherited downwards, 
whereas population based properties will be inherited upwards. For a more detailed discussion 
refer to, e.g. [28, 5]. 

The type hierarchies as used in the CDM Kernel are more general and liberal than the ones 
used in the original ORM Kernel. The liberality of our current approach is mainly inspired by 
the category theoretic definitions of the semantics of data modelling techniques as can be 
found in, e.g. [23, 36]. Please note again that one can always limit the freedom of type 
hierarchies to comply with less liberal approaches like ORM EER or PSM, by using extra 
(optional) axioms. 

3.2.3. Type clustering 
We are now in a position to introduce a mechanism that enables us to cluster types to object 

types on multiple levels, thus creating multiple levels of abstraction. As can be seen from the 
running example of the Bank, the abstraction levels were introduced by clustering a set of 
types to one (major) object type which then becomes an abstracted type. By repeating this on 
multiple levels we were able to introduce different levels of abstraction at which we described 
the Bank domain. 

Formally, these clusterings are captured by the function: 

Cluster: N x ~ - - - ,  ~(3-~ ) 

The intuitive meaning is that if Cluster(i, x) = Y, then at level i type x is considered as an 
abstraction of the types in Y. For the bank domain we have for example: 

C l u s t e r ( 0 ,  T e r m  Depos i t )  = { . . .  s t a r t e d  a t  . . . . . . .  e n d e d  a t  . . . . . . .  for  . . . .  

Date.mm-dd-yy, Money Amount.S, Date, mm-dd-yy, Money Amount, $} 

Cluster(0, Period) - { . . .  starting a t . . . , . . ,  with investment of . . . . . . .  for . . . .  Date.mm-dd-yy, 

Money Amount.S, Duration.nr-days, Date, mm-dd-yy, Money Amount, 

$, Duration, nr days} 

Cluster(I, Statement Account) = { . . .  f o r . . ,  was issued . . . . . . .  lists . . . .  Statement, Transaction } 

Note: Date.mm-dd-yy represents the implicit relationship type that is present between the 
Date object type and the mm-dd-yy value type. Usually, this relationship type will be 
verbalised as . . .  h a s . . .  (see, for example, Fig. 2), but due to our graphical abbreviation for 
such simple identification schemes these names are usually completely omitted from the 
diagram. 
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The function symbol Cluster is overloaded with the additional function Cluster: 
/~----> ~ ' ( ~ )  which is defined as: 

Cluster(i) ~ U+~,:J~ Cluster(i, x) 

In the next section, well-formedness rules are introduced to which these layers of abstractions 
should adhere. In the remainder of this section a further refinement of the clustering of types 
is provided in the form of an encapsulation mechanism as can be found in traditional 
object-oriented modelling techniques. The encapsulation rules also provide some more natural 
well-formedness requirements of clustering of relationship types. 

3.3. Clustering flavours 

In Section 2, we distinguished a number  of data modelling constructs that can actually be 
regarded as forms of abstraction. We also signalled that treating all these flavours of 
abstraction as one uniform kind of abstraction means that the models will lose conceptual 
semantics. Therefore,  a function is needed that assigns flavours to clusterings. This function is 
introduced as: 

Flavour: ~ x E-~ ~ F l a v o u r s  

The interpretation is of course that if Flavour(x, y ) = f  then the clustering of y to x is of 
flavour f. Typical examples of flavours are: objectivity, aggregation, set, sequence, abstraction, 
etc. As an example, consider Fig. 18. A computer  is an aggregation of a monitor,  a keyboard,  
and a cpu. These are clustered to the Computer  type at the first level of abstraction. However,  
at a higher level of abstraction a computer  also has properties like speed, memory  size, etc. 
These are then clustered to the Computer  type at the second level of abstraction. 

3.3.1. Overriding inheritance 
Object oriented modelling techniques allow for overriding of inherited properties. At this 

momen t  we are not yet interested in inheritance and overriding of operations defined for 

Fust level a l ~ o n :  Second level ab~-act~: 

Computer (SerNr) 

@ 

Aggregation 

@ 

Compu~r (~rNr) 
A 

@ 
wemorysize 

Fig. 18. Aggregation and general abstraction flavours. 
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operations. This will be discussed in the next section. For the moment  we limit our attention 
to data aspects only. As an example of overriding an inherited property,  consider the two type 
definitions below: 

class Person 
type tuple (CommutingMeans: Vehicle, Name: String, TaxNr: Integer) 

class Student inherit Person 
type tuple (CommutingMeans: Bicycle) 

These two type definitions are given in a style that can be found as data definition language for 
OODBMSs.  Let us presume that Bicycle is a subtype of Vehicle. Then this is a proper  type 
specification in the sense that each student is a person, while students are only allowed to 
commute  by bike. If we would not have the fact that Bicycle is a subtype of Vehicle, then we 
could not legally state that Student  is a subtype of Person,  forbidding the inheritance 
declaration. For more details see for example [38] or [1]. 

In terms of an ORM schema, this would lead to the situation depicted in Fig. 19. The 
commutes by means of relationship type is inherited by the Student clustering. Normally (e.g. 
in the bank example), we shall not draw inherited relationship types to avoid cluttering up of 
diagrams. In this case, however, it allows us to illustrate the intended effect of the limitation 
of the commuting means for students to bicycles only. Therefore,  we drew the inherited 
relationship type using dashed lines. In the supertype, the commuting means role is played by 
the Vehicle type. For the Student subtype this is limited to the Bicycle type. To capture this 
formally, we introduce the function RoleLim: O~3 × 5~G ~ ~53. If RoleLim(x, p) = y, then in 
the context of the relationship types clustered to x, the population of Player(p)  should be 
limited to the population of object type y. In the case of RoleLim it does not make sense to 
take the abstraction level into consideration, as populations are inherited between abstraction 
levels as a whole. 

3.3.2. Identification schemes 
In traditional modelling techniques like ER and ORM it is required that for each type 

introduced there is a proper identification schema to identify instances of that type. In 
operational terms this means that instances of each non-value type must be denotable in terms 
of some instance of a value type(s). For this purpose,  each type has associated a so-called 
identification scheme which provides a scheme for referencing the instances. The underlying 
rationale is that this allows users to uniquely identify different instances in terms of common 
(denotable) properties of these instances. Furthermore,  when mapping a conceptual type to a 
set of relational tables, the type can be replaced by the value types used to identify its 
instances. 

Formally, an identification schema is provided by the function: Ident: 6Y3~ (~6 × Y~7) *, 
where X ° denotes the set of partial orders over X (just like X + denotes the set of sequences 
of X).  This function allows us to assign to each type a partially ordered set of identification 
schemes. This is a partial order since we need to cater for alternative identification schemes 
(where the order provides the preference). One may argue that in a practical situation this 
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Person CTax~r) 

COmmuu~ by h~~ 
means of ~e 

I 
: : m e ,  ms  o f  

T i . . . . .  

*-*-r--" 

Fig. 19. Commuting means of people and students. 

should be a sequence (i.e. a complete order). However,  from a theoretical point of view this 
does not have to be the case. 

Each identification scheme itself is a sequence of pairs of roles. Usually, instances of an 
object  type x are identified by means of instances of types that are related to type x via some 
relationship(s). For example, in Fig. 14 a term deposit is identified by a term deposit account, 
a starting date and an ending date. Therefore,  the identification scheme is provided as a 
sequence of role pairs. Each role pair in this sequence provides a path through a relationship 
type to another  object type that is used for the identification. 

In typing hierarchies, the identification of object types can be inherited from other object 
types in the hierarchy. This is discussed in more detail below. There we also introduce 
well-formedness rules on identification schemes. It is interesting to note that even though 
value types are obviously self-identifying, there is no theoretical objection against identifying 
instances of value types in terms of other value types. From a pragmatic point of view one 
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might, quite understandably, object to this. The basic CDM Kernel will not provide any extra 
rules that rule out this behaviour; this is left as optional rules for refinements to 'local' tastes. 

Using the Ident function we can define the function Identifiers: ~N--~ ~ ( J - ~ )  returning the 
set of relationships (if any) that are used to identify a given object type: 

Identifiers(x) ~ = UR~ldent(x ) {Rel(p)[ (p, q) E R} 

Note that we use e C S to denote that element  e is part of sequence S, analogously to sets. 
When dropping the requirement that there must be a proper identification scheme (i.e. 

defining a bijection) for each type in a conceptual schema, it automatically follows that for 
some types we have to introduce a surrogate identification to distinguish between different 
instances (possibly with the same properties). Such a surrogate identifier corresponds directly 
to the notion of an object identifier in object-orientation. For a detailed discussion of the role 
and pragmatics of object-identifiers in object oriented approaches refer to [32, 1]. Some 
advanced issues concerning object identity in the context of ORM are addressed in [30, 29]. 

3.3.3. The complete structure 
An information structure is fully determined by the components  of the following tuple: 

,Cow = ( ~ ,  G~, ~VA °, ~(7, SubOf, Roles, Player, Cluster, Flavour, RoleLim, Ident) 

The first 4 components  provide the types and roles present in the information structure, and 
the last 7 components  describe their mutual relationships providing the 'fabric' of the 
information structure. 

3.4. Correctness of information structures 

So far we have discussed the different modelling concepts used in the CDM Kernel. Now we 
come to the rules governing the CDM Kernel. Some of the rules that are discussed are 
possible refinements to the CDM Kernel. They are the so-called electronic SWitches, provided 
as the SW axioms. In the discussion of the CDM Kernel so far we have already hinted at 
possible electronic switches to introduce rules that bring the CDM Kernel closer to concrete 
modelling techniques. The core rules of the CDM Kernel are captured in the CDM rules. 

3.4.1. Traditional rules 
In the CDM Kernel some of the traditional rules as can be found in the existing 

formalisations of PSM and the ORM Kernel still hold. Here,  we briefly rehearse some of these 
rules. 

The type hierarchy spanned by SubOf should be transitive and irreflexive. Fur thermore ,  
type hierarchies should provide a strict separation between value types and non-value types 
applies. So if xSubOfy, then: x E o//,~ <=>y ~ ~Sf. For each type, the highest node in the type 
hierarchy can be identified by: 

Top(x, y) __a xSubOfy A -n3z[ySubOfz ] 

Here, and in the remainder, we use the abbreviation xSubOfy __a xSubOfy v x = y. In the 
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CDM Kernel a type hierarchy, each type x must have a unique top. This implies that Top is 
not just a relation, but is a function Top: G~----~ 0~ .  Therefore,  we shall now write Top(x) 
whenever  we refer to the unique top of the type hierarchy containing x. 

In [5] a whole range of additional optional axioms is discussed that can be used in the 
context of the CDM Kernel as well, and allow it to be adopted to different ORM ( E R / O M T )  
variations. 

3.4.2. Type clustering 
The clustering of types to other types should adhere to certain rules as well. As a first rule 

on clustering, a cluster must contain the type to which it is clustered: 

[CDM1] x E Cluster(i,x) 

The rationale behind this is purely a pragmatic one; from a formal point of view this turns out 
to be more convenient. 

A clustering must adhere to certain completeness rules. Firstly, a cluster associated to a type 
may only increase between the abstraction levels: 

[CDM2] i <j  :), Cluster(i, x) C Cluster(j, x) 

Fur thermore ,  clusterings are inherited between types: 

[CDM3] xSubOfy ~ Cluster(i, y) C Cluster(i, x) 

The intuition behind is that the types in a clustering can be regarded as attributes of the type 
to which they are clustered. In object-oriented approaches, attributes are inherited from types 
higher in the type hierarchy. This latter rule is provided as an inheritance 'overriding rule' in 
the OO extensions for ORM proposed in [15]. Note that in drawing the abstracted types on 
the different levels of abstraction and inheritance, we only draw the types added to the 
clustering. 

All players of relationship types present in a cluster must be present as well: 

[CDM4] Players(Cluster(i ,x)) c_ Cluster(i, x) 

All types needed to identify any of the object types present in a cluster should be part of the 
cluster too: 

[CDM5] y E Cluster(i, x) - {x} ::> Identifiers(y) c_ Cluster(i, x) 

Note that the Identifiers of x itself do not have to be present in Cluster(i, x). For example, in 
Fig. 11 we can see that a term deposit is identified by a combination of the start, end date and 
term deposit  account, while the Term Deposit Account is outside the class of the Term 
Deposit. 

Type hierarchies do not have to be completely present in a cluster. One may, however,  
want to enforce the rule that the transitivity of the type hierarchy must be visible: 

[SWl] aSubOfbSubOfc  ^ a, c E Cluster(i, x) ~ b E Cluster(i, x) 

This axiom, together with the inclusion of all relevant identifiers, ensures that we can see the 
entire sub-hierarchy that is relevant for a cluster. In [15], some examples are shown where this 



142 P.N. Creasy, H.A. Proper / Data & Knowledge Engineering 20 (1996) 119-161 

is not required. In some cases of abstraction, one would like to introduce an extra intermediate 
layer in a subtyping hierarchy. Therefore,  this rule should not be enforced as a strict law. 

Since subtypes may provide their own identification rule, axiom CDM5 does not imply that 
the top of a type hierarchy is automatically part of a given cluster. One may explicitly want to 
require presence of the tops: 

[SW2] y ~ Cluster( i ,  x) : :>Top(y )  E Cluster( i ,  x) 

The presence of all other types between y and Top(y)  follows automatically from the previous 
axiom. Again, in [15], examples are shown where this is not required. For instance, in a 
situation where a lower level abstraction needs to introduce a new common supertype of two 
existing object types. 

Before continuing, we should realise that an information structure can be regarded as a 
graph where each type results in a node and each connection between types (roles, 
decomposit ion,  inheritance, etc.) leads to an edge between these two types. A clustering 
should be complete in the sense that it spans a connected subgraph: 

[CDM6] Cluster(i, x) spans a connected subgraph of the original information s t ructure .  

Note: an empty graph is presumed to be a connected graph (not disconnected = connected).  
Analogous to some activity/process modelling techniques, we require the existence of a 

single overall abstracted type. This type represents the entire application, and is called the top 
cluster: 

[CDM7]  3 !x , i [C lus ter ( i ,x )  = J -~ ]  

Finally, we can formulate two additional optional axioms which further restrain the f reedom 
of abstraction levels. Each time types are clustered, less types will remain. One may argue that 
the set of remaining types should remain a connected graph: 

[SW3] The set of types ( ~ - ~ -  Cluster(i))U {x} spans a connected subgraph of the 

original conceptual schema at all levels of abstraction i .  

Depending  on one's view on value types, one may argue that value types are atomic in any 
sense and can therefore not be the abstraction of anything else: 

[SW4] x ~ ~LZ ::), Cluster( i ,  x) = {x }  

We can also define ERs notion of entity type relative to the abstraction levels: 

a {x ~ ©~ I ICluster( i ,  x)l > 1} - ~ ~Ni + 1 = 

From this we can see that ERs notion of entity types do not come into play until the first 
abstraction level, which corresponds with the observation that the attributes in E R  already 
provide a first abstraction. 

3.4.3. Clustering flavours 
Not many rules can be formulated about the clustering flavours. Possibly for more concrete 

techniques like ORM,  OMT or ER,  one could add more specific well-formedness rules on the 
choice of the abstraction flavours. For example, in the case of objectification, the abstracted 
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set of types must be of a pattern as shown in Fig. 15. Nevertheless, one general rule must 
hold. There are two general rules on abstraction flavours. If a flavour is associated to a 
clustering of a type to another object type, then there must be a clustering at some level 
showing this: 

[CDM8] (x, y )  E dom(Flavour) ~, 3,[y E Cluster(i, x)] 

3.4.4. Overriding inheritance 
The semantics of the overriding of inheritance with respect to relationship types as can be 

introduced using the RoleLim function will be introduced in Section 5. Nevertheless, there are 
certain well-formedness rules that should hold for the overriding of relationship inheritance. 
Firstly, for any relationship type in a cluster the role limitation function is defined, and a role 
limitation can only be defined for relationships in this cluster: 

[CDM9] Rel(p) E Cluster(i, x) <=> (x, p )  E dom(RoleLim) 

The default role limitations of a role p would obviously be Player(p) (which basically is no 
limitation on the population at all). When a further limitation of a role is in place, then this 
should be a subtype of the default limitation: 

[CDMlO] (x, p) E~ dom(RoleLim):ff RoleLim(x, p) SubOf Player(p) 

Finally, additional limitations for types deeper in the type hierarchy cannot be less limiting. So 
we must have: 

[CDMll]  If (x, p ) ,  (y,  p )  ~dom(RoleLim),  then: 

xSubOfy ~ RoleLim(x, p) SubOf RoleLim(y, p) 

In [15] a similar limitation mechanism is introduced called Type Restriction. There, a 
distinction is made between context inheritance and inside inheritance (the context of a cluster 
vs. the inside of a cluster) and the effects on type inheritance. In our formalisation they can be 
treated equally, as we require each schema to have a unique top cluster, so we always deal 
with type restrictions inside a cluster. 

4. Conceptual schemas 

The previous section introduced the notion of information structure as used in the CDM 
Kernel. This section introduces the other aspects of a conceptual schema, including constraints 
and operations. The introduction of operations (associated with types) is clearly needed to 
further bridge the gap to object oriented systems. 

A conceptual schema over a set of concrete domains @, is identified by the following 
components: 

~Se ___a (,¢6e, <¢j~, G~, or, Ops, DeRole, OpdRule, Encap, Dom 

Each conceptual schema contains an information structure as its backbone. An information 
structure only focuses on the structure of the information in the universe of discourse. 
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4.1. Conceptual schema overview 

Before we state any detailed rules on conceptual schemas in the CDM Kernel, each of the 
concepts relevant to the conceptual schema (as, so far, they are not present in the information 
structure) is briefly discussed. 

4.1.1. Constraints 
Constraints are modelled as a set ~2( C Predicate where Predicate is some language to 

define constraints. In some object-oriented approaches, or proposals to extend traditional data 
modelling techniques with object-oriented aspects, one allows constraints to be associated with 
types (or classes). In the CDM Kernel a different approach is taken. We shall provide a 
derived 'allocation' function which automatically determines to which (abstracted) types 
constraints should be allocated. 

4.1.2. Operations 
Operations are modelled as a set ¢ ~  C_ G~ >--,Method accompanied by a signature function 

o-: G~---~ J-~ +. If o E U~, we have an operation with signature or(o), while the methods (o(x)) 
may differ for different types in the same inheritance hierarchy. The way in which we use the 
terms operation and method is borrowed from [39]. The operations themselves are also 
introduced on different levels of abstraction. This will be tied in with the abstraction levels for 
the types. These abstraction levels are provided by the function: Ops: N--* ~ ( U ~ ) .  The Ops 
function symbol is (similarly to Cluster) overloaded with the function Ops: N × U~ --* ~ ( U ~ ) ,  
which is identified as: 

Ops(i,  x) a__ {o E Ops(i)  Ix ~ dom(o)} 

In this article we are not concerned with the naming of concepts. However,  one could imagine 
that a function OpName:  G~--*Names exists which assigns names to functions. When this is 
not  required to be a bijective function, two different operations may bear the same name. This 
means that operation names can be overloaded. 

As an illustration of some operations that are assigned to types, consider Figs. 20 and 21. 

Client 

has ClieatNr. String 
has identifying Password: String 
lives at Address (deuzr): String 
reachable at PhoeeNr: String 
has ClieatName: String 

Chang¢P~asword(String) 
Change.Addresr~ Slrin g). 

Transaction 

has A c c o u n t T ~ o n N r :  lnt 
was for MoaeyAmotmt($): Real 
has TramactioeDeu~ptioa: String 
took place oa Dam (mm*dd-yy): Swing 
is of TrKind (code): Char 

NewT~a.s~t( Real. Siring. String. Ch~) 

Fig.  20. O p e r a t i o n s  a s soc ia t ed  wi th  types .  
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Credit Card Account:  
Statement Account 

with CreditCAedAccotmtNr: lnt 
is of CCKind (code): String 
is linked to: Access Account 
has spending limit: MoneyAmoum ($): Real 

ChangeLmk~t(Accer~Accowat) 

Credit Card Accotmt (wr): Stalement Accotwt 

tJ' "L-I' " I  

ChangeLmkedAccotml(Acce~Account) 

Fig. 21. Higher level operations. 

Fig. 20 shows how graphically signatures of operations (and names) can be associated with 
types. The style used in Fig. 20 is the style of OMT ([39]). The figure shows the types Client 
and Transaction, together with the types clustered to them, represented as attributes. The 
domains String, Real . . . .  ) of the value types as shown in the OMT diagrams, are the domains 
as determined by the Dora function (to be introduced below). 

The Client type has two operations defined for it: ChangePassword(String) and ChangeAd- 
dress(String), while the Transaction type only has one associated operation: NewTransact 
(Real,String,String,Char). These operations are all operations at abstraction level O, so they 
are part of Ops(O) for our example bank domain. In this article we do not provide a language 
to define the bodies of the operations. Currently work is underway to find a suitable (and 
generic) candidate for this purpose. As an illustrative example of an operation at a higher 
level of abstraction consider the one given in Fig. 21. The ChanoekinkedAccount operation 
can change the access account for a given credit card. The Access Account type itself is an 
abstracted type, which means that the Changet inkedAccount  operation cannot be of 
abstraction level 0. The Credit Card Account type is of level 1, making it plausible to make 
ChangeLinkedAccount of level 1 as well. Below we shall state well-formedness rules on the 
abstraction levels at which operations are allowed to occur with regard to the types with which 
they are associated. 

4.1.3. Derivation and update rules 
As some of the types in the information structure are derivable from other types, conceptual 

schemas may contain derivation rules. Conversely, update rules may have been specified for 
the derivable types. Defining update rules is one way to deal with the so-called view update 
problem. The derivation rules for the derivable types, and the update rules for some of the 
derivable types are introduced by: 
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DerRule: 6 ~  >-~DerivationRule and UpdRule: C~ >-+UpdateRule 

The set of derivable types is now defined as 9 3 - ~  dom(DerRule). In this article we do not 
elaborate on a language for the definition of the P r e d i c a t e s ,  D e r i v a t i o n R u l e s ,  
U p d a t e R u l e s  and M e t h o d s .  However, we do presume the existence of the following 
function on these rules: 

Depends: (Predicate U DerivationRule U Update U Method)---> ~(~ U ~) 

returning the types to which the derivation rule (directly) refers. 

4.1.4. Encapsulation 
Most modelling techniques supporting object-oriented aspects allow for the encapsulation of 

attributes and operations with their types. In the CDM Kernel encapsulation is provided by 
the function Encap: C~ >--~(C~ U g ~ )  which allows us to encapsulate operations and 
relationship types within the definitions of clusters. 

Only relationship types can be encapsulated, since the players of relationship may be shared 
among relationship types. Similarly, in most object-oriented modelling techniques attributes 
can be encapsulated, but the underlying domains of these attributes cannot be encapsulated. 

4.1.5. Domain assignment 
All value types have associated a domain of pre-defined denotable values. For instance, the 

value type Nat no will typically have associated some implementable subset of the natural 
numbers. Formally, the possible relationships between the atomic value types and the domains 
is provided as: Dora: (M3- f3 °V~)--* 9 ,  where 9 denotes the set of available base domains. 

4.2. Correctness of  conceptual schemas 

Not every conceptual schema will be a correct one. In this subsection the rules for correct 
conceptual schemas are introduced. 

4.2.1. Operations 
Operations can be inherited from one type onto the other. This is why we modelled an 

operation as a function from a set of types to bodies. The inheritance of operations between 
types, however, needs to adhere to two strict rules. Firstly, the set of types to which an 
operation is associated may not be too large in the sense that if an operation is defined for a 
set of types, then these types must all be part of the same inheritance hierarchy: 

[CDM12] I f o E G ~ ,  then: x, y E dom(o) ~ xSubOfy v x = y v ySubOfx . 

The inheritance of operations between types is enforced by: 

[CDMI3] xSubOfy A y E dom(o) ~ x  E dom(o) 

The underlying intuition is that if we know to do o for ys instances, then we can also do it for 
xs instances since the population of x is a subset of the population of y. 

Similarly to Cluster, operations are inherited from types of lower levels of abstraction. 
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[CDM14] i < j  f f  Ops(i) C_ Ops(j) 

4.2.2. Derivation and update rules 
In some data modelling variations each subtype must have some subtype defining rule; i.e. 

they do not allow for user definable subtypes. For such techniques we would have: 

[SW5] xSubOfy #,x Edom(DerRule) 

Derivable types may be used to construct yet even other derivable types. This means that 
complicated dependencies between the derivation rules may appear. These dependencies 
should always be carefully checked to avoid circular definitions which can not be solved using 
fix-point calculations. In [26], a detailed discussion of such interdependencies is given in the 
context of subtyping. For a more general approach to the problem area of interdependent 
derivation rules, refer for example to the datalog language ([44, 1]). 

Only for types with a derivation rule an update rule may be defined. Therefore we should 
have: 

[CDM15] dom(UpdRule) C_dom(DerRule) 

4.2.3. Encapsulation 
Encapsulation allows us to hide details, like operations and other types, that are clustered to 

an abstracted type. As such encapsulation forms a very important and integral part of the 
abstraction mechanisms and inheritance mechanisms provided by the CDM Kernel. 

A first well-formedness rule on encapsulation requires that types can encapsulate only those 
types and operations which are already associated with them, i.e. one can only acquire 
exclusive access rights for something one already owns: 

[CDM16] y ~ Encap(x) n 9-~ ~ 3i[y E Cluster(i, x)] 

[CDM17] y E Encap(x) n G~ ::> 3,[0 ~ Ops(i, x)] 

Encapsulation of properties is inherited between types. This means that in an inheritance 
hierarchy, once something is encapsulated it remains encapsulated by a supertype. Formally 
this is captured as: 

[CDMI8] xSubOfy f f  Encap(y) c_ Encap(x) 

The semantics of encapsulation of source is that operation (bodies), constraint definitions, 
derivation rules, update rules and composed types, can only refer to types and operations that 
are visible to them. In general, the set of types and operations visible at abstraction level i can 
be identified by: 

Visible(i) g (Cluster(i) U Ops(i)) - U Encap(y) 
Y 

With this we can also define the set of types and operations that are visible from a given type x 
and abstraction level i: 
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Visible(i, x) ~ Visible(i) 

U (Cluster(i, x) U Ops(i, x)) - UEncap(y) 
V 

U Encap(x) 

Using the Visible function, we can now actually enforce the encapsulation. There are three 
classes of rules. The first class deals with composed types, the second class with operations and 
the third class deals with update/derivation rules. The constraints are dealt with separately. 

Types that are identified in terms other types can only use types that are visible to them. So 
we have: 

[CDM19] x E 3-~ i ~ Identifiers(x) c Visible(i, x) 

For operations we have two rules. These rules require any type or operation referenced in the 
body of the operation or the signature of the operation to be visible: 

[CDM20] If o E Ops( i ) ,  then: x E dom(o) ~ Depends(o(x)) c Visible(i, x) .  

[CDM21] I fo  E Ops( i ) ,  then: Set(~r(o)) c_ Visible(i). 

For derivation and update rules we have the following general rules requiring any referenced 
type or operation to be visible: 

[CDM22] I f x  E dom(DerRule) fq E-~,., then: Depends(DerRule(x)) c_ Visible(l, x) .  

[CDM23] I f x  E dom(UpdRule) N ~-~i, then: Depends(UpdRule(x)) c Visible(l, x) .  

Constraints are not limited by the encapsulation laws. Rather, we define the abstraction level 
and object type to which a constraint is associated by the function Level: ~X---~ ~ ( ~  x G~)  
which is identified by: 

Level(c) ~ { (I, x) I l = min{i I Depends(c) c Visible(i, x)} } 

A constraint can be associated with more than one type and level combination. Such a level 
and type can always be found since the CDM Kernel requires the existence of a unique top 
cluster. 

4.2.4. Identification 
Thus far, we have only been able to talk informally about the inheritance of, and the 

requirements of, identification schemes. We are now in a position to make these notions more 
formal. This is done by introducing the predicate: 

Identifies c_ ~ ( ~  +) x ~ ( ~  ) x (/~ 

The notation is I Identifiesp x, with as interpretation: 

the role sequences 1 together provide the identification for object type x, when the 

identification of the types in P is postulated. 

The pragmatics of the postulations in P will become clear in the context of recursive 
identification schemes, as discussed below. 
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The predicate itself is defined by a set of derivation rules. The first rule deals with the 
simple case of value types. All value types are, by definition, identifiable through themselves, 
so we have: 

[ID1] v E 7/'E? F gldentifies,v 

The second rule deals with the situation where an identification scheme is given that directly 
serves as an identification of an object type. 

[ID2] Let R C_ ~0'  x ~ be a set of role pairs, then: 

Identification(x, R, P) F- {R} Identifiesp x 

The predicate Identification(x, R, P) is used to determine whether a set of role pairs R can 
indeed be used to identify an object type x, while postulating the identifiability of the object 
types in P. For each of the role pairs (p ,  q) E R we refer to Player(p) as the start type of the 
role pair, and PlaYer(q ) as the end type. The definition of the Identif icat ion predicate is given 
in two parts. The first part deals mainly with syntactical issues, whereas the second part covers 
semantic issues. Firstly, for all role pairs (p ,  q ) ~  R we should now have: 

(1) the role pair should be from the same relationship type: 

Rel(p) : Rel(q) 

(2) the pair should start from some type of hierarchy to which x belongs: 

Top(Player(p)) = Top(x) 

(3) the pairs should end in a type that already has a proper identification scheme: 

3~.e,[P' C_ P ^ I Identifies m Player(q)] 

Besides these three syntactical requirements, the following semantical requirements should be 
met: 

(1) ~JV'l-extuniq(x, ~-:R) 
The existential uniqueness constraint requires that a combination of sets of instances 
from the end types uniquely determines an instance of x. For a detailed discussion of 
the existential uniqueness constraint refer to [30] or [29]. 
Note that: uniq(x, 7r2R)~extuniq(x, ~2R), i.e. traditional uniqueness is a stronger 
requirement than existential uniqueness. 

(2) ~JV" ~-total(x, ~-,R) 
This enforces the requirement that the function f may not be defined for the null tuple. 
The semantics of total(x, r) is defined formally in the next section. Informally, it means 
that each instance of x must be involved in one of the relationship types of the roles in 
T. 

Identification is inherited in a type hierarchy. The easiest form of inheritance of identification 
is downward inheritance. If xSubOfy, then each instance of x is also an instance of y. 
Therefore,  when all instances of y have an identification, all instances of x can be identified 
too. This leads to: 

[ID3] xSubOfy ^ Ildentifiesgy I-I  Identifies.x 
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Fig. 22. Upward inheritance in a type hierarchy. 

Another  class of identification inheritance is exemplified in Fig. 22. The encircled black dot 
signifies that A and B are a total subtyping of C: total(C, {A, B}), which informally means 
that each instance of C must be an instance of A or B (could be both). Since instances of A 
are identified by value type l, and instances of B by instances of value type m, and due to the 
totality of the subtyping of C, all instances of C can be identified; either using value type l or 
m (or both). This would lead to the following derivation rule: 

total(x,  S) ^ V~<~i<~.[Iildentifiesoy i ^ yi ~E S] I- (11 U . - -  U l . ) ldent i f ies~x  

However,  this rule is still too limited. For example, consider the schema depicted in Fig. 23. 
In this schema, X is clearly identified by I. The identifiability of Y and Z is harder. Let us 
presume that Z would be identifiable. Then we would be able to conclude that Y is 
identifiable due to upward inheritance. From the identifiability of Y then follows the 
identifiability of Z via relationship type f by applying the first derivation rule for identifica- 
tion. We can then safely drop the postulated identifiability of Z, and conclude that Y and Z 
are indeed identifiable. We can do this since each instance of Z and Y can be identified by a 
list of X instances. Type Y and Z have a so-called recursive identification scheme.  The 
recursion in this case terminates since we do not have infinite populations,  and X is 
identifiable. 

This now leads to the following two extra derivation rules for identifiers. The ability to deal 
with recursive identifications is also the reason why the P parameter  has been introduced for 

Y 

i® 

Fig. 23. Identification in a recursive context. 
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the Identifies predicate; it maintains the set of types that have been postulated to be 
identifiable. The first rule deduces the identifiability of types using postulates. 

[ID4] total(x, R U {Yl . . . . .  Y.})  ^ Vl~i~.'qe,c_e[I~ldentifiese,Yi] ^ R C. P ,  

t- (11 U .  • • U I , ) l d e n t i f i e s e x  

N o t e :  the n in this rule is at least one! When applying the above rule, one would like P to be 
as small as possible. This rule actually introduces the postulates we referred to earlier; P must 
be large enough to contain all needed postulates. For example, in the case of Fig. 23, this rule 
would be applied where R = {Z}, y~ = X with n = 1, and postulates P = {Z}. 

The next rule is able to remove any earlier made postulates, as long as certain criteria are 
met: 

[ IDS ]  to ta l (x ,  { Y l ,  • • • ,  Y . } )  A V,<~i~< 3e ,ceu~ ,  ' . . . . .  y . } [ /+ lden t i f i ese ,y , ]  

I- (11 U " " U  I.)ldentifiesex 

The effect of this rule is that all object types y~ which have now received a proper 
identification are removed from the set of postulates. Naturally, one would like P to be as 
small as possible. As an example of the interplay between the above two rules, consider the 
schema shown in Fig. 24. The annotation n: P gives the set of postulates P after the nth step 
of the derivation process. 

Our strategy to use postulates to determine the identification of object types in recursive 
constructs was inspired by the postulates used by the mode equivalence algorithm used in 
Algol 68 [34, 47]. 

The Ident function provides the identification scheme(s) for each object type in a conceptual 
schema. These identification schemes must all be correct: 

[CDM24] {Set(l) l l~Ident(x)}Identifiesox 

As discussed before, a major difference between object-oriented modelling techniques and 
traditional modelling techniques lies in the requirement that for all object types there must be 
an identification scheme. For traditional techniques we would thus have: 

[SW6 ]  d o m ( I d e n t )  = 6 ~  

+:IFI( C ~ I ~ D +~ 7:IFI( F "~ ,l : l l  
13:11 \ ] l I I \ ] 14:11 \ 2~ . 

' :"  :0J?l 

Fig. 24. Example of recursive identification. 
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4 . 2 . 5 .  T y p e  r e l a t e d n e s s  

Intuitively, object types can, for several reasons, have values in common in some 
population. This property is initially captured by the concept of type relatedness [28, 27]. Two 
object types are type related if they may share instances, when only taking structural 
properties into consideration. Below the notion of type relatedness is further refined to 
include exclusion constraints that may be added later. Type relatedness, and even more the 
refinement provided below, is an important concept for query optimisation as it allows for 
early detection of empty sub-queries. 

Type relatedness is defined as a predicate - C  0 ~  x ~'~, and is introduced by a set of 
derivation rules. All object types are type related to themselves. 

[TR1] x E ~ F x ~ x  

Type relatedness is commutative 

[TR2] x - y F y - x  

Please note that type relatedness is not a transitive relationship. 
Two value types are type related if their underlying domains share values: 

[TR3] x, y ~ °V~? A Dom(x) fq Dom(y) :~q Fx - y  

Type relatedness is inherited upwards in the type hierarchy: 

[TR4] x - - y A y S u b O f z F x ~ z  

Since type relatedness models the p o t e n t i a l  for object type populations to share values, type 
relatedness is also inherited downwards in a type hierarchy: 

[TR5] x - y ^ ySubOfz F x - z 

If object types are identified in the same manner, and with the same cardinality, then they 
must be type related as well: 

[TR6] :E~llEident(x),12Gident(y)[/1 ~/2] ~ - X  ~ y 

where two role sequences, [ ( P l , q l ) , . . . , ( P , ,  qn ) ], [ ( r l , s l ) . . . .  , ( % ,  sn ) ] E ~ O  x ~ ,  are 
considered type related when all the corresponding end types of the role sequences are, and 
they provide the same identifying cardinality: 

[ ( P ~ , q l ) , . . . , ( P , , q , ) l - - [ ( r ~ , s ~ )  . . . . .  (r,,,s,,)] ¢¢, 

V ~<~<~,[Player(q~) ~ Player(s~)] ^ 

~ N ~ - u n i q u e ( { q ~ , . . . , q , } )  ¢~ ~ J ~ l - u n i q u e ( { s ~ , . . . , s , } )  

This rule is in line with the view from traditional modelling techniques that two objects are the 
same if they have the same set of identifying properties. The first part of the definition 
requires all end types to be type related, whereas the second part of the definitions requires 
the identifications to be of the same cardinality, i.e. the identification is either provided as a 
sequence of s i n g l e  instances, or a sequence of s e t s  of instances. 

Please note that for traditional modelling techniques, when enforcing axiom SW6, that 
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axioms TR4 and TR5 can be proven from axiom TR6. However,  since axiom SW6 is an 
optional axiom, we can not remove these two axioms. 

4.2.6. Exclusive types 
A more refined view on type relatedness is obtained when taking exclusion constraints into 

consideration. An example of an exclusion constraint is shown in Fig. 25. From the type 
relatedness rules follows that A, B and C are mutually type related. However,  the exclusion 
constraint, depicted by an encircled x ,  requires A, B and C to have exclusive populations. 
This exclusion constraints in the conceptual schema is formally modelled (as a part of %~N) by 
exclusion {A, B, C}). 

To take the explicitly modelled exclusions into proper consideration, the predicate ® C_ 
~ 3  x G~ is introduced with the intuition: 

if x @y then the populations of x and y are exclusive 

Non-type related types are definitely exclusive: 

[TOI] x 4 - y k x ® y  

Exclusion is a commutative relationship: 

[TO2] x ® y k y ® x  

If a conceptual schema contains an explicit exclusion constraint (or one that can be derived 
from the other constraints), then this leads to exclusive types: 

[TO3] (fA c I-exclusion(X)) A X, y E X k x ® y 

Exclusion is inherited downward in a type hierarchy: 

[TO4] xSubOfy A y ® z I- x ® z 

When all direct subtypes of certain types are mutually exclusive, then the supertypes must be 
exclusive as well: 

[TO5] VaSubOfix,bSubOfly[a ~ b] F x ® y  

If object types used for the identification are found to be exclusive, then the identified object 
types are exclusive as well (although they could still be type related): 

Fig. 25. An example of an exclusions constraint. 
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[TO6] Vil~ldent(x),i2~ldent(y)[i I ~ i2] k x @y 

where we have for [ (P l ,  q , ) , -  • • , (P , ,  q , ) ] ,  [ ( r , , s l ) ,  • • • , ( r , , s , , ) ] E  ~ G  × ~ 0 :  

[ ( P ] , q l )  . . . .  , ( p , , q n ) ] @ [ ( r l , s l ) , . . . ,  ( r , , s , ) ]  ¢¢, 31<i<_.[Player(q~)®Player(si)] 
In the next section the implication of the ® relationship on the semantics of information 
models is provided. 

5. Semantic issues 

Thus far, we have only discussed syntactic issues of the CDM Kernel. In this section we 
briefly discuss the semantic issues. This can be done briefly, as the semantics of the CDM 
Kernel does not differ much from the semantics of the ORM Kernel, or even of that of the 
original PSM/PM languages. 

The population of a schema is provided by the function Pop which assigns to each type 3"~ 
a set of values. This function can, however, be split up in two separate functions based on the 
two major  type classes: 

Pop obj: O~ --~ ~ ( ~ )  

POPr~F ~ - - -~  ~(~G >--> f2) 

The set f2 a= ( U ~ ) U 0#@ is a set of atomic instances built from the following two (exclusive) 
subsets: 

(1) The set of values from the domains for value types: U 
(2) A set of object identifiers Gj~,  each representing an instance of a non-value type. 

This is the key difference between the formalisation of the population concept in the CDM 
Kernel and its predecessors. In previous definitions, ~ required a recursive definition to deal 
with complex types like objectification. Due to our t reatment  of objectification as an 
abstraction, we only have to deal with flat conceptual schemas from a population point of 
view. This allows us to simplify the definition of population. In practice we shall write Pop,  as 
it will be clear from the context which function is actually meant.  

It should be noted that, as discussed before, in the context of a non-object-oriented 
modelling approach an identification scheme is provided for all object types. This property 
allows us to replace the object identifiers of instances of these non value types by their proper  
identifications when mapping a conceptual schema, and associated population,  to a relational 
database and database population. For those object types which have not received a proper  
identification scheme, the object identifiers must be stored explicitly. When implement ing a 
conceptual  schema in terms of an object-oriented database, these object identifiers obviously 
directly map to the object identifiers in the database management  system. 

5.1. General population rules 

For populations there are certain well-formedness rules as well. These rules differ from 
earlier formalisations as we now have, from a population point of view, a much simpler setup. 
In this section we focus on the key differences. 
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Each value type population should be drawn from the proper domain: 

[P1] v ~ °//Lf ~ Pop(u) C_ Dom(v) 

The population of a non-value type must be a set of object identifiers: 

[P2] x ~ 0~ - ~ ~ Pop(x) C OJ~@ 

Please note that Pop is only a conceptual population. As stated before, when mapping to a 
database system these object identifiers may disappear. 

Besides these two CDM Kernel specific rules, general rules from PSM and the ORM Kernel 
on population hold. As usual, instances of relationship types should be functions with as 
domain the set of roles involved in that relationship type. The instances playing a role in such 
a relationship should be from the proper types. Populations should honour the typing 
hierarchies, so the population of a subtype should be a subset of the population of a 
supertype. The exclusion relationship on types leads to the (strong typing) requirement that if 
x ®y,  then the populations should indeed be exclusive: Pop(x)A P o p ( y ) =  g. 

5.2 Overriding of inheritance 

An important concept, from a semantic point of view, is the limitations of role populations 
when introducing subtypes. An example of such a situation is displayed in Fig. 19. In this 
subsection we are therefore concerned with the semantics in terms of populations of the 
RoleLim construct. 

When RoleLim(x, p ) =  a, intuitively the population of Player(p) should be limited to the 
population of a with respect to cluster x. For this purpose, we first need to develop the notion 
of a cluster population. 

As mentioned before, in the context of the RoleUm function the partition of clusterings to 
the same object type over multiple levels of abstraction is ignored. For x E ~ we therefore 
further overload Cluster with the function Cluster: 0~--> ~(9 -~)  with definition: 

Cluster(x) L U Cluster(i, x) 
i@N 

The population of an object type y @ Cluster(x) fq O~ is provided by the function CPop(x, y). 
This CPop: ( ~  --> ~(~J~@ ) function is exactly defined by the three following derivation rules: 

[CP1] i E Pop(x) F i E CPop(x, x) 

[CP2] IfaSubOfb ^ a, b E Cluster(x), then: i ~ CPop(x, a) F i E CPop(x, b) 

[CP3] IfaSubOfb A a, b ~ Cluster(x), then: i ~ CPop(x, b) tq Pop(a) Fi ~ CPop(x, a) 

[CP4] I f  Rel(p) = Rel(q) ^ Rel(p) ~ Cluster(x), then: 

i E Pop(Rel(p)) ^ i (p) E CPop(x, Player(p)) F i(q) ~ CPop(x, Player(q)) 

Intuitively, when regarding a population as a graph with each node labelled with the object 
type of which it is an instance, the above definition corresponds to the construction of a 
subgraph starting from nodes labelled with x only using neighbouring nodes that are labelled 
with object types in Cluster(x). 
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The semantics of RoleLim is now expressed as: 

[P3] RoleLim(x, p) = a ~ CPop(x, Player(p)) C Pop(a) 

5.3. Constraints and derivation rules 

The graphical constraints that can be defined on models in the CDM kernel are the same as 
the graphical constraints that can be defined on ORM models, which is a superset of the ones 
that can be defined on (E)ER models. The semantics of graphical constraints is not discussed 
in full detail in this article. For a detailed discussion of these semantics, please refer to [4, 46]. 

Nevertheless, in the context of our object-oriented extensions it makes sense to add a few 
new classes of graphical constraints. In the context of subtyping, and the role limitations 
provided by RoleLim, it makes sense to also provide a total role (the black dot) constraint that 
is limited to subtypes. The traditional format of t o t a l ( { p l , . . . ,  p ,})  would have to change to 
total(x, { p ~ , . . . ,  Pn)), where x is type related to all players of the roles p ~ , . . . ,  pn. The 
semantics are: 

Pop(x)= [,_,J Pop(Player(pi) ) 
l ~ i ~ n  

in other words, all instances of x must play at least one of the listed roles: P l , . - . ,  P,- 
Similarly, uniqueness constraints could be more exactly specified for subtypes using the 
format: u n i q u e ( { ( p l , x l ) , . . . ,  ( P , , X , ) } )  or extuniq({(pl ,x~)  . . . .  , ( p , , x , ) } ) .  a syntactic 
requirement would be that for each i we must have: Player(pi) - x i .  The semantics in this case 
would be: 

The combination of the instances of roles Pl,  • • •,  P, must be (existentially) unique when 

limited to the instances of x ~ , . . . ,  x, ,  respectively. 

A language for derivation rules, or non-graphical constraints, is not discussed in this paper. 
We propose to develop a slightly modified version of the LISA-D language as introduced in 
[27]. The modifications are required to deal with the more liberal approach to object 
identification and object equality in object-oriented systems. 

These special classes of constraints are particularly useful for constraint restriction as 
discussed in, e.g. [15]. Using one of the above constraints, we can easily define more stringent 
constraints on subtypes. For example, stating that all Access Accounts have a transaction 
associated (while leaving this optional for Credit Cards can be done quite easily by stating 
total Access Account, has Transaction). 

6. Relation to object-oriented modelling techniques 

We believe that with the inheritance of properties (both clustered types and operations) 
between types in an inheritance hierarchy or different levels of abstraction, we have 
incorporated one of the key features of object oriented modelling techniques into the CDM 
Kernel. The axioms we have formulated on the inheritance of properties are completely in line 
with object oriented typing systems [11, 6, 38, 1]. 
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When comparing the CDM Kernel to the requirements on object oriented database systems 
as laid down in the Object Oriented Database Manifesto [2], the CDM Kernel can successfully 
claim to be object oriented when limiting ourselves to those requirements that are relevant for 
modelling techniques: 

• Thou shalt support complex objects 
It is important to realise that we consider the construction of complex objects to be a 
form of abstraction. The existential uniqueness constraint provides the semantic power to 
build complex objects like sets, sequences, bags, etc. while the abstraction mechanism 
allows us to represent these complex types in a clear and concise way. 

• Thou shalt support object identity 
There is nothing in the kernel that disallows this. We have presented the traditional 
approach to object identity, i.e. identifying objects by means of a set of identifying 
properties (relationship types), as an optional feature. 

• Thou shalt encapsulate thine objects 
This is supported by the Endcap predicate. It should be noted, however, that our notion 
of encapsulation is more type oriented than object oriented. Two instances of different 
types cannot 'see' each other's encapsulated attributes and operations, while two 
different instances of the same type can still see each other's encapsulated properties. 
This latter would not be the case in a 'truly' object oriented approach. 

Our notion of encapsulation can quite easily by complemented with a more restricted 
version IEncap. The semantics can be expressed in a similar way as we expressed the 
RoleLim. A Cluster population should be derived, upon which the encapsulation rules 
can be applied. This latter mechanism is related to the notion of local referential integrity 
as introduced in [31]. 

It is interesting to note that in a recent publication [20] it was argued that encapsulation 
should not be used for object oriented analyses, and should only be used for object 
oriented design. Our type oriented encapsulation is more aimed at supporting re-use and 
partitioning of domains, by allowing information hiding at the type level. 

• Thou shalt support types or classes 
A central role in the CDM Kernel is played by object types. 

• Thine classes or types shalt inherit f rom their ancestors 
The SubOf is our type hierarchy, and inheritance of properties has been discussed in 
detail. 

• Thou shalt not bind prematurely 
The OO Manifesto uses this rule to require object oriented systems to support 
overriding, overloading and late binding. In this paper we did not discuss a language for 
process modelling, so this is only of partial importance to us. However,  we have 
identified the notion of further restricting the population of roles when subtyping, which 
can be seen as a form of overriding. 

Overloading is highly intertwined with naming conventions of concepts. In this article 
we did not elaborate on naming functions of object types and relationship types. 
However,  we did hint at possibilities of using these naming functions to overload names. 
A typical example of such a name is the role name has, which is one of the most 
commonly used (English language) role names in ORM schemas. 
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The remaining mandatory requirements are, in our opinion, more relevant in the context of 
query languages and actual database management systems. While the CDM Kernel defines an 
information modelling technique that is an object-oriented modelling technique (or very close 
to it), it does not ignore its ties to traditional modelling techniques. 

Using so-called electronic switches the kernel can be adopted to the 'limited' views of any of 
the more commonly used modelling techniques. Besides defining a powerful modelling 
technique in itself, the CDM Kernel can therefore be used to equate models in different 
information modelling techniques. 

7. Conclusions and further research 

In this article we have presented the thorough and detailed formalisation of a generic 
information modelling technique. We have focussed on the underlying way of modelling while 
distancing ourselves from discussions about notational and design procedural issues. Our 
generic technique also provides a powerful enhancement of the conceptual semantics of 
models in the form of a multilevel abstraction mechanism. Due to this abstraction mechanism, 
we have been able to reduce the number of basic type classes, by acknowledging the fact that, 
for example, objectification, set types, and sequence types, are essentially forms of abstrac- 
tion. We therefore also support different flavours of abstraction. 

Finally, we can mention a number of areas in which the CDM Kernel can be applied and 
avenues for further research: 

(1) Development of a CASE-Tool that uses the CDM Kernel as a generic meta-model for 
the underlying repository. On top of this repository specialised CASE-Tools can be 
defined tailored for (E)ER,  ORM and object-oriented views of the same models. 
Currently, this is being realised. 

(2) The modification of the existing LISA-D language to cope with the more liberal notion 
of object identification 

(3) Development of a suitable activity/method modelling technique to complement the 
data modelling aspects discussed in this article. 

(4) Application of the CDM Kernel as a generic data modelling language ([40]) in the 
context of federated/distributed information systems. The CDM Kernel can be used as 
a model of the information stored by a type manager and an object broker. 

(5) Extension of the existing conceptual schema design procedures with guidelines for top 
down and bottom up abstractions. In [10] work is reported on an algorithm to 
automatically determine bottom up abstractions for a given flat conceptual schema. 

An extended version of this article can be obtained from the authors, or alternatively be 
accessed from http://www.icis.qut.edu.au/~erikp/publist .html. 
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