
Evolving Information Systems:
Beyond Temporal Information Systems∗

E.D. Falkenberg, J.L.H. Oei, H.A. Proper
University of Nijmegen,

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
E.Proper@acm.org

PUBLISHED AS:

E.D. Falkenberg, J.L.H. Oei, and H.A. Proper. Evolving Information Systems: Beyond Tem-
poral Information Systems. In A.M. Tjoa and I. Ramos, editors, Proceedings of the Data Base
and Expert System Applications Conference (DEXA’92), pages 282–287, Valencia, Spain, EU,
September 1992. Springer Verlag, Berlin, Germany, EU. ISBN 3211824006

Abstract

Nowadays, in order for an organisation to be competitive, it must be able to adapt quickly to its
dynamic environment. In this paper, we discuss the need for information systems which are capable
to evolve to the same extent as organisations do. Requirements of evolving organisations on their in-
formation systems are identified, followed by alternative approaches to adequate information systems
development life cycles. We adopt an evolutionary approach resulting in so-called evolving information
systems.

On the basis of requirements and an architecture for these evolving information systems, the dis-
tinction from traditional information systems is explained. Traditional information systems, including
temporal information systems, appear to be degenerations of our evolving information systems. A con-
ceptual framework for update in evolving information systems is derived from the requirements. An
event level, a recording level and a correction level are distinguished in this framework for update.

1 Requirements of Evolving Organisations
on their Information Systems

Nowadays, in order for an organisation to be competitive on the global market place, it must be flexible. The
organisation must be able to adapt itself quickly to the production of new or different products - changes in
the primary process of an organisation - and to the ever changing and more and more demanding consumer
needs.

Due to the dynamic behaviour of organisations, these organisations have to deal with rapidly changing
information needs. Given the fact that information is gradually becoming a production factor of more and
more importance, it becomes crucial to have information systems which can easily be adapted to the same
extent as these information needs change. In this context, it is interesting to note that in the current situation
already 42% of all maintenance of information systems is needed for extensions/changes of the information
system due to changes of the information needs ([Bem87]). In case of a highly dynamic organisation, this
latter percentage is likely to be even higher. (Note that our notion of information systems in this paper is
that of information systems in the narrower sense as explained in section 4 and in [Ver89]).

Realizing this situation, it can be concluded that information systems are needed which can be adapted
to the changing environment in smaller, easier, and more frequent steps than generally it is the case. In

∗The investigations were partly supported by the Foundation for Computer Science in the Netherlands (SION) with financial
support from the Netherlands Organization for Scientific Research (NWO).

1

6

Information needs and
system versions

-
5 10

time in years

-

6

5 10
time in years

Figure 1: The discrepancy between information needs and systems versions

[Bem87], the adaptability of (information) systems is termed flexibility in a broader sense, and the abil-
ity of a (information) system to continue to function in a satisfactory way without having to change the
information system, although the organisation has changed, is termed flexibility in a narrower sense.

With respect to flexibility in a broader sense consider figure 1, which is taken from [Bem87]. In this
figure the dotted lines represent the evolution of the information system, whereas the solid lines represent
the evolution of the information needs. From the figure it can be concluded that the bigger the time periods
between adjustments of the information system are, the bigger the discrepancy is between the information
needs and the information available from the information system. Such a discrepancy can result in an unde-
sirable situation in which users will start to dislike using the information system to fulfill their information
needs. Consequently, a rather expensive production factor - the information contained in the information
systems - may become idle.

In order to cope with the problems identified, it is concluded that information systems are needed which
are more flexible, both in the broader and in the narrower sense, than the current generation of information
systems are. These information systems which are able to evolve to the same extent and at the same pace
as their underlying organisations do, are called evolving information systems.

2 Information Systems Development in
Evolving Organisations

If organisations change fast and frequently, the need emerges for an appropriate strategy which allows
information systems to evolve to the same extent and at the same pace as these organisation do. An attempt
to accomplish this goal would be to try to shorten or even abolish the traditional life cycle process of
information system development as illustrated in figure 2, which is taken from [Som89].

In [Lan87], six approaches to shorten or abolish this expensive life cycle process of information system
development have been identified. Following these approaches, the concept of reusability and an evolu-
tionary approach towards information systems development and maintenance is discussed here in order to
understand the philosophy behind evolving information systems.

The information system development life cycle can be made less expensive by designing information
systems in such a way that parts of the system, and the system specifications are suitable for reuse. The

2

Operation and
maintenance

6

System testing

6

?

Implementation
and unit testing

6

?

System and
software design

6

?

Requirements
definition

?

Figure 2: Traditional information systems development life cycle

development of CASE-tools is an example of an attempt to follow this strategy. Products developed in
a CASE-tool during the analysis and design phase of an information system (eg schemas, repositories,
etc.) can serve as a starting point for the analysis and design phase of a new information system to be
developed ([McC89], [OHM+88]). In the context of software engineering, the (re-)use of software modules
([Som89]) illustrates the strategy of reusability. The reusability of (software) objects is also the major claim
of the object-oriented approach (eg [Mey88]).

Most approaches to information systems development, including the ones which support the reuse of
products, demand for an actual replacement of the information system by another information system in
case of a structural change. Processes in the organisation depending on information from the information
system to be replaced, may have to be interrupted. The evolutionary approach that is proposed here, how-
ever, can be distinguished from traditional ones in the sense that it is required to maintain the information
system without the need to interrupt processes in the organisation. This evolutionary approach can be re-
garded as an advanced kind of prototyping. Prototyping resulted from the observation that in a significant
percentage of cases, as is argued in [Dav87], requirements for the systems can not be established correctly
and completely in advance. Even information systems which are based on correctly elicitated requirements
may be rejected by users, or require substantial rework to make them fit the actual needs of the user. These
needs may have changed since the start of the (traditional) life cycle of the information system in question.

Define system
deliverables

- Specify system
increment

- Build system
increment

- Validate
increment

?

�
�

�Z
Z

Z
�

�
�Z

Z
ZQ

Q
Q�

�
�Z

Z
Z �

�
�Q

Q
Q�

�
�Q

Q
Q�

�
�Z

Z
Z�

�
�c

c
c#

#
#Z

Z
Z�

�
�c

c
c#

#
#l

l
l,

,
,Z

Z
Z�

�
�

System
Complete?

?
Yes

�NoDeliver system
increment

6

Complete system
delivery

Figure 3: Prototyping

3

Prototyping has been introduced as an alternative approach to the strict incremental development pro-
cess, used in the traditional life cycle. After the acquisition of an initial set of requirements, a first prototype
is built on the basis of this set of requirements. After verification and validation by user and designer a new
prototype is built, after which this process is repeated until the point is reached that the user of the infor-
mation system is satisfied. The final prototype resulting from this iterative process will be the information
system which becomes part of the organisation. The prototyping process is illustrated in figure 3 which is
taken from [Som89].

Empty system - Specify update
requests

- Update system
(automatically)

-
Validate
system

increment

?

�
�

�Z
Z

Z
�

�
�Z

Z
ZQ

Q
Q�

�
�Z

Z
Z �

�
�Q

Q
Q�

�
�Q

Q
Q�

�
�Z

Z
Z�

�
�c

c
c#

#
#Z

Z
Z�

�
�c

c
c#

#
#l

l
l,

,
,Z

Z
Z�

�
�

System
Complete &

Correct?

�

Yes

6

No

Figure 4: Evolutionary approach

In our approach to evolving information systems, the prototyping strategy is not restricted to the de-
velopment phase of an information system, but is also followed in the operation and maintenance phase.
Our approach is an evolutionary approach characterized by an iterative life cycle having the length of the
organisation’s existence. In this evolutionary approach there is no essential difference between the devel-
opment and maintenance phase of information systems. The evolutionary approach which we advocate
here, distinguishes itself from others by the demand that adjustments of the information system have to be
made without the need to interrupt any processes in the organisation.

3 Requirements for
Evolving Information Systems

As the title of this paper suggests, the requirements for these evolving information systems are beyond
those of traditional, including temporal, information systems. The main requirement for an evolving infor-
mation system is that, as stated before, it is able to evolve to the same extent and at the same pace as the
underlying organisations does, without the need to interrupt the processes of that organisation. The notion
of ‘to the same extent’ and ‘at the same pace’ is now refined in more detail.

1. The information system allows update of all information which is dependent on the specific organ-
isation domain (universe of discourse) of the information system. Our notion of update, including
recording, correction and forgetting, is discussed in section 5. The specification of information which
is dependent on a specific organisation domain is part of the architecture for evolving information
systems as is discussed in section 4.

2. The information system allows correction of all information (previously) recorded in the system.
Information having been recorded in the information system, may appear to be (empirically) invalid.
In evolving information systems correction of this invalid information is possible. The notion of
correction is discussed in section 5. Note that the need for correction results from validation and not
from verification. Consistency is checked by the information system itself.

3. The system does not forget any information recorded in the information system unless explicitly
asked for. In other words, the complete history of information inside the information system is
kept, including that of correction, unless a user request or a law demands that information has to be
forgotten (e.g. because of privacy reasons).

4

4. Updates of the information system may not interrupt activities of the organisation. The intention of
evolving information systems is to minimize the discrepancy between the information needs of the
organisation and the information supply by the information system. For that reason, the information
system is required to remain available to users of the system in the case of updates.

A major consequence of these requirements, is that the notion of time has to be introduced to meet
these requirements. Even more, at least two distinct notions of time have to be distinguished. It will be
obvious that for meeting requirement 3 events in the organisation have to be recorded together with their
time of occurence. The point of time at which an event occurs in the organisation is called the event time
of that event. To perform corrections a roll-back operator is needed (see section 5). This roll-back operator
enables us to restore a former state of the information system. To accomplish this, the point of time at
which recordings of events take place in the information system are needed. These point of times are called
the recording time of events.

Our notion of event time and recording time is identical to the notions of valid time and transaction
time, respectively, as discussed in [SA86]. (The reason for this renaming is that the new names correspond
better to the level architecture we will introduce in section 6.) The classification which is made in [SA86] is
based on the basis of support of valid and transaction time. Conform this classification (which distinguishes
snapshot-, historical-, rollback-, and temporal systems), evolving information systems are temporal systems
because of the fact that both valid and transaction time are supported. However, it should be noted that
not all temporal systems are evolving information systems. As we have seen in this section evolving
information systems have to meet additional requirements.

4 The Architecture for
Evolving Information Systems

In our systems view on organisations, which is conform the approach taken in [FHL+98], an organi-
sation system is considered to be a set of interrelated actors, activities, states and points of time. Actors
perform certain activities resulting in a change of state at a certain point of time. The information sys-
tems considered here, are restricted to information systems in which the only actor performing information
processing activities is computerized. This computerized actor is called the information processor. The
information processor may be decomposed out of several sub-processors, which may also be (physically)
distributed. In this paper, however, the specific aspects of distributed information systems are not taken in
consideration.

The restriction to a computerized actor performing information system processing activities, corre-
sponds to what has been defined in [Ver89] as an information system in the narrower sense ‘IS(N)’. In
this paper, whenever we use the term information systems, information systems in the narrower sense are
meant. Conform this systems view on organisations and information systems, a general architecture for
information systems is presented. On the basis of this architecture the distinction between traditional and
evolving information systems is explained.

The information processor in an information system accepts input messages (requests), which, among
other things, may reflect changes of a state (events) in the universe of discourse, triggering the information
processor to perform activities. As a result of these activities, the information processor may produce
output messages (responses). These output messages are received in turn by the universe of discourse,
which is embedded in the environment of the information system.

In an information system, the description of that part which is consulted by the information processor
to process user requests, is called the processing model. The processing model can be divided into a part
which describes a particular universe of discourse, the application model, and a part which describes the
language (technique) in which this application model is specified and can be manipulated. The latter part
is called the meta model, and contains the description of a classification of domain elements, general rules
about these elements, their behaviour, and how they can be treated ([BF91]).

The meta model is application-independent and time-invariant. The application model, however, is
application-dependent, and can be time-variant. As a result, the meta model is provided in a particular
information system once and for all, while the application model must be built up and maintained for each
new application. The building-up and maintenance of an application model is done by the information

5

�
�

�
�

Application
Model

�
�

�
�Meta Model

�
�

�
�Responses

�
�

�
�Requests

Information
ProcessingA

A�
�

Information
Processor

���

C
C

BB
CC ��

��

CCUniverse of
Discourse

6
?

?

�

J
J
Ĵ

J
J

J]

�
�
�
��

Information System Environment of the Inf. Syst.

Legend:

Actor

Activity

�
�

�
Operand Environment

Actor performing Activity
� Information-flow

Figure 5: An (Evolving) Information System and its Environment

processor, which acts on, or reacts to events in the universe of discourse by consulting both the meta model
and application model. Thus, unlike the meta model, the application model is not only input, but also
output of the activities of the information processor. Besides update of the application model, information
can be retrieved from the application model as well. Messages are correspondingly classified into update
and retrieval messages. The language for formulating such messages in an information system are based
on the meta model of that particular information system. The architecture discussed is depicted in figure 5.

An application model can be subdivided (see figure 6). On the one hand, we need a model of that
part of the perceived world (universe of discourse) the interaction between the information system and
the environment is about. This model is called the world model. A world model can be described in a
modelling technique like eg ER ([Che76]), NIAM ([Win90]) or the Predicator Set Model ([HPW92]).

On the other hand, rules are needed which determine the actions of the information processor. These
rules are specified in what is called the action model. The action model can be subdivided into a part that
specifies activities - we call it the activity model - and a part that describes the (trigger-) relations between
the activity model and the world model. We will refer to this latter part by the name behaviour model.
In the behaviour model, for example, the relationship between events in the universe of discourse and the
activities performed by the information processor in the information system is described. In other words,
the behaviour model contains the description of when activities, under which conditions, and what activities
should be performed by the information processor, whereas the activity model specifies how these activities
should be performed. Examples of modelling techniques for the activity model are Data Flow Diagrams
([GS86]) or the A-schemas in ISAC ([LGN81]). Petri-Nets ([GL81]) and the WHEN-IF-THEN rules in
REMORA ([RR82]) are examples of techniques which are used for modelling behaviour models.

On the basis of this architecture, the distinction between a traditional information system and an evolv-
ing information system can be explained more specifically. In a traditional information system in which the
schema (type) vs. instance dichotomy (e.g. [BF91]) is applied to the application model, only the instances
can be updated. That is, schema specifications, as well as activity and behaviour specifications (which are
usually hidden in programming procedures), cannot be updated in traditional information systems. The
intention of an evolving information system, however, is that the complete application model will become
updatable.

Given a meta model for evolving information systems a software environment for these evolving in-
formation systems can be developed which is time-invariant and independent of any universe of discourse.
Such an environment is called an evolving information system shell (EIS-shell). When an evolving infor-
mation system has to be developed for a particular universe of discourse, an application model describing
this domain is built-up and maintained conform the language defined in the (meta model of the) EIS-shell.
The fact that the EIS-shell is independent of any universe of discourse, and that application models de-

6

-� -� -�

-�

6

?

6

?

World
Model

Activity
Model

Behaviour
Model

Action
Model

Meta
Model

Application
Model

Figure 6: The Structure of the Processing Model

��

��

��

%%
%%%%

%%��

EIS Shell

��

��
��

Application Model

? ?

Figure 7: The EIS-shell: independent of any application model

scribing different domains can be ‘plugged’ into the EIS-shell is illustrated in figure 7.

���

���
"""

���"""
""""""

���

EIS Shell

���Oracle DBMS
��

��

��

%%
%%%%

%%��

EIS Shell

��Ingress DBMS

���

��
��

��
#

#
Application Model

??

Figure 8: The EIS-shell: independent of any software environment

Furthermore, an EIS-shell has to be designed in such a way that it is independent of any software
environment, i.e. independent of any database mananagement system and/or operating system. This is
illustrated in figure 8.

5 Update in Evolving Information Systems

Information systems are meant to fulfill the information needs of organisations. As both the information
needs and the information itself change in time, information systems have to be updated from time to time.
In this section the notion of update is discussed. Update in traditional information systems is opposed to
update in evolving information systems. It is concluded that update in traditional systems is a degeneration
of update in evolving systems.

7

5.1 Update in traditional information systems
Update should result in a change of state of the information system such that the new state hopefully

reflects the new state of the organisation in a satisfactory way. By validation and verification it has to be
checked whether the information in the system is both (empiricaly) valid and (logically) consistent. In
traditional information systems an elementary update is usually considered to be an addition, deletion or
modification of (pieces of) information.

Furthermore, traditional information systems do not support any notion of time. As a consequence, if
there is a change of state in the information system due to an update, the former state cannot be ‘remem-
bered’ by the information system. Such systems are refered to as snapshot systems ([SA86]).

Starting from a particular state, update in snapshot systems is performed by an addition, deletion or
modification of (pieces of) information in that state, resulting in a new state without keeping track of the
updates made, and consequently, forgetting the former state. In a traditional relational database system, for
example, tuples - representing information - can be added, deleted or modified in the database. After the
deletion or a modification of a tuple, the former tuple can no longer be retrieved.

5.2 Update in evolving information systems
In this section we revise the traditional notion of update (viz addition, deletion and modification) which

is actually based on elementary operations on the database. Our framework for update, however, is rather
based on the possible causes for update requests, and which follow from the requirements for (evolving)
information systems. On this basis three kinds of update are distinguished: recording, correction and
forgetting ([FOP92a]).

An ideal information system reflects the state of an organisation system correctly at any time. Conse-
quently, whenever an event, i.e. a change of state at a particular point of time, occurs in the organisation
system, an update is needed which should result in an appropriate change of state in the information sys-
tem, such that a correct mapping between information system and organisation system is preserved. This
kind of update is performed by, what is called, a recording of an event occurence. Another situation requir-
ing an update is a situation in which it appears, by empirical validation, that information derivable from
the recordings of events is incorrect. In such situation, an update should be performed which corrects the
mapping between information system and organisation system. This kind of update is called a correction,
which corrects recordings which already have been performed.

A third kind of update can be distinguished if information systems are required to be able to remove
information if requested. A law stating that information about former personell of a company may not be
stored for more than two years, is an example of a situation which requires a third kind of update. This
kind of update is called forgetting, which will not be considered in this paper.

5.2.1 Recording Whenever an event is said to occur, it has to be communicated to the information system
by means of an update request. This event is reflected in the information system by the processing of this
update request. The processing of an update request due to an event is called the recording of that event.

The state of an organisation is reflected by a set of modelling constructs (e.g. entities, relationships,
rules, etc.) in the information system. The modelling constructs which are application dependent and, time-
variant, are part of the application model, and therefore termed application model elements. Independently
of any modelling technique it is concluded that an update results in the modification of the set of application
model elements constituting the state of the application model of an information system. The modification
is performed by a set of (elementary) transitions.

A birth-transition creates an application model element, an application model element is terminated
by a death-transition, whereas an application model element is transformed into another application model
element by a change-transition. (The question whether a change transition is elementary or a composition
of a death transition and a birth transition at the same point of time is a philosophical one, which will
be omitted here.) The lifetime of an application model element should correspond to the validity of the
information represented by that application model element.

In the metamodel of a traditional snapshot system, a birth transition of an application model element
is realized by a (physical) addition, a death-transition by means of a (physical) deletion of an application
model element. Consequently, former states which contain deleted application model elements cannot be

8

retrieved anymore. In the case of evolving information systems, however, no information may be lost, so no
application model elements may be deleted. The history of application model elements is kept by storing
transitions of application model elements together with the points of time at which these transitions take
place.

5.2.2 Correction The actual state of an information system depends completely on the processing of
update requests formulated by users of the system. These update requests should result in an information
system reflecting the organisation it is modelling in a correct way. An information system reflects an or-
ganisation correctly if and only if there exists an isomorphism between the states in the information system
and the states in the organisation system representing the organisation domain (universe of discourse), see
e.g. [FOP92b] and [HW93].

In [FOP92b] it is also argued that the order in which the events occured in the organisation should be
preserved by the mapping. This requirement is needed because recordings of several events may interfere
with eachother, such that a different order may result in a different state of the information system. In op-
erational terms this requirement states that events should be recorded correctly in order of their occurence.

In practice, however, by empirical validation it may appear that by mistake or by incomplete knowledge
users have recorded an event which should have been recorded before, or users may have recorded events
which did not happen at all. A combination of these two situations may also occur, i.e. the recording of
an event which did not happen at all has to be replaced by the recording of an event which indeed did take
place.

In evolving information systems a correction of recordings is performed by: an insertion of a recording
of an event in the sequence of already performed recordings, a removal of a recording already performed or
a replacement of a recording of an event by a new recording of another event. To accomplish these correc-
tions, it must be possible to go back in the sequence of performed recordings. The operation accomplishing
this task, is called a roll-back. As shown in [OPF92], insertions, removals, and replacements of recordings
can be mapped onto roll-backs and (re-)recordings.

In snapshot systems there is no support of time, and consequently, no order can be preserved. As a
result, incorrectness because of recordings (additions, deletions and modifications in snapshot systems)
can only be corrected by a new set of additions, deletions and modifications. The determination of an
appropriate set can be difficult due to the interferences between the (past) recordings.

6 A Conceptual Framework for Update

Based on the notion of update as discussed in the previous section, a conceptual framework for update is
presented. The framework distinguishes and relates different types of state transitions. Each type of state
transition corresponds to a different level of abstraction in the context of update in evolving information
systems. An event level, a recording level, and a correction level will be distinguished. State transitions on
the event level take place due to events occuring in the organisation, state transitions on the recording level
are caused by recordings of these events, wheras corrections of previous recordings cause state transitions
on the correction level.

6.1 The event level
It is generally assumed that the universe of discourse described in an information system, contains a set

of stable states, and that there are a number of actions that result in a change of state (state transitions) (see
eg [HW93]). The states and state transitions in an universe of discourse are modelled in an information
system. This means that the state of an organisation at a particular point of time is modelled by a set of
application model elements. This set of application model elements is called the application model state.

A state transition in the organisation is modelled in the information system by means of a transition of
the application model state. Note that a transition of an application model state can include more than one
elementary transition of an application model element. The elementary transitions involved in a particular
application model state transition depend on the trigger relationships between the elementary transitions
invoked by the transition in the organisation.

A transition in the organisation taking place at a particular point of time is called an (organisational)
event. The point of time at which such an event occurs in the organisation, is called the event time of that

9

event. These events are considered to occur on the organisational level ([FOP92b]). The corresponding
transitions in the information system are considered to occur on the so-called event level. A sequence of
these application model state transitions is called an application model history. In figure 9 a graphical
representation of a sample application model history on the event level is given. The circles represent
the application model states, wheras transitions between these application model states is represented by
arrows. Furthermore, the arrows are labeled with the denotation of the event causing the transition, and the
event time of that event. �

�
�
AMS0

�
�

�
AMS1

�
�

�
AMS2- -e1

at t1

e2

at t2

Figure 9: Application Model State (AMS) transitions on the event level

6.2 The recording level
A second level is introduced on which state transitions take place: the recording level. Whenever an

event occurs in the organisation, it should be communicated to the information system by means of an
update request. The processing of this update request, called the recording of an event, should result in an
appropriate state transition in the information system. The point of time at which the recording of an event
takes place in the information system, is called the recording time of that event.

The resulting state transition is more than a single transition of an application model state; it can be seen
as a transition of the complete application model history which modelled the history of the organisation up
to the occurence of the newly recorded event. A sequence of these application model history transitions
due to successive recordings is called an application model recording history. Such an application model
recording history reflects both the events occurring in the organisation, and the recordings of these events
in the information system.

In figure 10, an example application model recording history is provided. The arrows representing
transitions between application model histories are labeled with the denotation of the recording of the
event causing that transition, and the recording time of the event in question.

�
�

�
AMS0

AM History0

-Rec(e1 at t1)

at T1

�
�

�
AMS0

�
�

�
AMS1-e1

at t1

AM History1

-Rec(e2 at t2)

at T2

�
�

�
AMS0

�
�

�
AMS1

�
�

�
AMS2- -e1

at t1

e2

at t2

AM History2

Figure 10: Application Model History (AMH) transitions on the recording level

6.3 The correction level
In the process of recording of events, mistakes can be made. Information about events in the organi-

sation which have been recorded in the information system appears to be empirically wrong. To perform
corrections, an operation has to be introduced which makes it possible to go back in a sequence of succes-
sive recordings. This operation is called the roll-back operation.

In all cases which need a correction, a roll-back should take place to the latest application model history
which is correct. A replacement, removal, and insertion of a recording of an event require a roll-back to the
appropriate application model history in the application model recording history of the information system.
After performing the appropriate roll-back, all correct (rolled-back) events have to be rerecorded. In the
case of a replacement and an insertion, the first event recorded after the roll-back is the replacing event,
and the event to be inserted, respectively.

In figure 11, the performance of a correction by means of a roll-back is represented in the case of a
replacement of the recording of an event e1 having event time t1 by a recording of event e

′

1 with the same
event time. An event e2 which has an event time later than that of e1 and e

′

1 has already been recorded.
A sequence of successive recordings, i.e. an application model recording history, can be seen as the

belief of the world (organisation) by the information system. A correction of this belief of the world is
performed by means of a roll-back, causing a transition of the current application model recording history

10

�
�

�
AMS0

AM History0

-Rec(e1 at t1)

at T1

�
�

�
�

�
�

�
�Q

Q
Q

Q
Q

Q
Q

Q

�
�

�
AMS0

�
�

�
AMS1-e1

at t1

AM History1

-Rec(e2 at t2)

at T2

!!!!!!!!!!!!aaaaaaaaaaaa

�
�

�
AMS0

�
�

�
AMS1

�
�

�
AMS2- -e1

at t1

e2

at t2

AM History2

kk

RollBack to AMH0

AT T3

^

Rec(e′
1

at t1)

at T4

�
�

�
AMS0

�
�

�
AMS′

1
-e
′

1

at t1

AM History′
1

-Rec(e2 at t2)

at T5

�
�

�
AMS0

�
�

�
AMS′

1

�
�

�
AMS′

2
- -e′
1

at t1

e2

at t2

AM History′
2

Figure 11: Correction by means of a roll-back

in the information system. A sequence of these application model recording history transitions due to roll-
backs is called the application model evolution which is said to take place on the correction level. In figure
12 the situation of figure 11 is represented in an alternative way which identifies the three levels of state
transitions more clearly. Note that the roll-back performed by the correction is implicitly present in this
figure. In the same way corrections requiring the removal or insertion of a recording of an event can be
represented. In [FOP92b] more examples are given and elaborated.

�
�

�
AMS0

AM History0

-Rec(e1 at t1)

at T1

�
�

�
AMS0

�
�

�
AMS1-e1

at t1

AM History1

-Rec(e2 at t2)

at T2

�
�

�
AMS0

�
�

�
AMS1

�
�

�
AMS2- -e1

at t1

e2

at t2

AM History2

AM Recording History1

?

CORRECT Rec(e1 at t1)
TO Rec(e′

1
at t1) AT T3

�
�

�
AMS0

AM History0

-Rec(e′
1

at t1)

at T4

�
�

�
AMS0

�
�

�
AMS1-e

′

1

at t1

AM History′
1

-Rec(e2 at t2)

at T5

�
�

�
AMS0

�
�

�
AMS′

1

�
�

�
AMS′

2
- -e′
1

at t1

e2

at t2

AM History′
2

AM Recording History2

Figure 12: Application Model recording History (AMRH) transition on the correction level

7 Conclusions & Further Research

In this paper the importance of evolving information systems has been shown. These systems are able
to evolve at the same pace, and to the same extent as organisations do, making organisations more flexible
to react on changes in the dynamic environment.

An evolutionary approach to information systems development has been advocated which should result
in evolving information systems. On the basis of requirements and an architecture for evolving informa-
tion systems, the distinction with traditional information systems was explained. Traditional information
systems appeared to be degenerations of evolving information systems.

Further, the traditional notion of update (addition, deletion, and modification) has been replaced by an
evolutionary one. With respect to update for evolving information systems, recording, correction, and for-

11

getting are distinguished. On the basis of the new notion of update, a conceptual framework was presented
distinguishing state transitions on an event level, a recording level, and a correction level.

At the moment, a meta model is designed for evolving information systems ([FOP92c]). This meta
model is based on the conceptual framework for update as discussed in this paper. Furthermore, an evolving
information system shell is developed on the basis of that metamodel. Finally, a method for building up
and maintaining application models in an EIS-shell will be designed. This method will be based on the
evolutionary approach discussed.

References
[Bem87] Th.M.A. Bemelmans. Bestuurlijke informatiesystemen en automatisering. Stenfert Kroese, Leiden, The

Netherlands, 3rd edition, 1987. In Dutch.
[BF91] S. Brinkkemper and E.D. Falkenberg. Three Dichotomies in the Information System Methodology. In

P.W.G. Bots, H.G. Sol, and I.G. Sprinkhuizen-Kuyper, editors, Informatiesystemen in beweging. Kluwer,
Deventer, The Netherlands, 1991.

[Che76] P.P. Chen. The entity-relationship model: Towards a unified view of data. ACM Transactions on Database
Systems, 1(1):9–36, March 1976.

[Dav87] G.B. Davis. Strategies for Information Requirements Determination. In Robert Galliers, editor, Informa-
tion Analysis: Selected readings, chapter 13. Addison-Wesley, Reading, Massachusetts, 1987.

[FHL+98] E.D. Falkenberg, W. Hesse, P. Lindgreen, B.E. Nilsson, J.L.H. Oei, C. Rolland, R.K. Stamper, F.J.M. Van
Assche, A.A. Verrijn-Stuart, and K. Voss, editors. A Framework of Information Systems Concepts. IFIP
WG 8.1 Task Group FRISCO, 1998. ISBN 3-901-88201-4

[FOP92a] E.D. Falkenberg, J.L.H. Oei, and H.A. Proper. A Conceptual Framework for Evolving Information Sys-
tems. In H.G. Sol and R.L. Crosslin, editors, Dynamic Modelling of Information Systems II, pages 353–
375. North-Holland, Amsterdam, The Netherlands, EU, 1992. ISBN 0444894055

[FOP92b] E.D. Falkenberg, J.L.H. Oei, and H.A. Proper. A Conceptual Framework for Evolving Information Sys-
tems. In H.G. Sol and R.L. Crosslin, editors, Dynamic Modelling of Information Systems II, pages 353–
375. North-Holland, Amsterdam, The Netherlands, EU, 1992. ISBN 0444894055

[FOP92c] E.D. Falkenberg, J.L.H. Oei, and H.A. Proper. A Metamodel for Update in Information Systems. Tech-
nical Report 92-05, Department of Information Systems, University of Nijmegen, Nijmegen, The Nether-
lands, EU, 1992.

[GL81] H.J. Genrich and K. Lautenbach. System Modelling with High-Level Petri-Nets. Theoretical Computer
Science, 13:109–136, 1981.

[GS86] C. Gane and T. Sarson. Structured System Analysis: Tools and techniques. IST Databooks. MacDonald
Douglas Corporation, St. Louis, 1986.

[HPW92] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Data Modelling in Complex Application
Domains. In P. Loucopoulos, editor, Proceedings of the Fourth International Conference CAiSE’92 on
Advanced Information Systems Engineering, volume 593 of Lecture Notes in Computer Science, pages
364–377, Manchester, United Kingdom, EU, May 1992. Springer Verlag, Berlin, Germany, EU. ISBN
3540554815

[HW93] A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data modelling. Data &
Knowledge Engineering, 10(1):65–100, February 1993.

[Lan87] F. Land. Adapting to Changing User Requirements. In Robert Galliers, editor, Information Analysis:
Selected readings, chapter 12. Addison-Wesley, Reading, Massachusetts, 1987.

[LGN81] M. Lundeberg, G. Goldkuhl, and A. Nilsson. Information Systems Development - A Systematic Approach.
Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[McC89] C.L. McClure. CASE is Software Automation. Prentice-Hall, Englewood Cliffs, New Jersey, 1989. ISBN
0131193309

[Mey88] B. Meyer. Object-oriented software construction. Prentice-Hall, Englewood Cliffs, New Jersey, 1988.
[OHM+88] T.W. Olle, J. Hagelstein, I.G. Macdonald, C. Rolland, H.G. Sol, F.J.M. van Assche, and A.A. Verrijn-

Stuart. Information Systems Methodologies: A Framework for Understanding. Addison-Wesley, Reading,
Massachusetts, USA, 1988. ISBN 0-201-54443-1

[OPF92] J.L.H. Oei, H.A. Proper, and E.D. Falkenberg. Modelling the Evolution of Information Systems. Techni-
cal Report 92-36, Department of Information Systems, University of Nijmegen, Nijmegen, The Nether-
lands, EU, 1992.

[RR82] C. Rolland and C. Richard. The REMORA Methodology for Information System Design and Manage-
ment. In T.W. Olle, H.G. Sol, and A.A. Verrijn-Stuart, editors, Information Systems Design Methodolo-
gies: A Comparative Review, pages 369–426. North-Holland/IFIP WG8.1, Amsterdam, The Netherlands,
EU, 1982.

12

[SA86] R. Snodgrass and I. Ahn. Temporal Databases. IEEE Computer, 19(9):35–42, 1986.
[Som89] I. Sommerville. Software Engineering. Addison-Wesley, Reading, Massachusetts, USA, 1989.
[Ver89] A.A. Verrijn-Stuart. Some Reflections on the Namur Conference on Information Systems Concepts. In

E.D. Falkenberg and P. Lindgreen, editors, Information System Concepts: An In-depth Analysis. North-
Holland/IFIP, Amsterdam, The Netherlands, 1989.

[Win90] J.J.V.R. Wintraecken. The NIAM Information Analysis Method: Theory and Practice. Kluwer, Deventer,
The Netherlands, EU, 1990.

13

