
Enhancing the ArchiMate® Standard with a Responsibility
Modeling Language for Access Rights Management

Christophe Feltus, Eric Dubois,
Erik Proper

Public Research Centre Henri Tudor,
EE-Team†, Luxembourg

+352 42 59 91 – 1

{firstname.name@tudor.lu}

Iver Band
Standard Insurance Company

1100 SW Sixth Ave
Portland, Oregon

+1 503 – 321 – 6248

iver.band@standard.com

Michaël Petit
PReCISE Research Centre,

Faculty of Computer Science,
University of Namur, Belgium

+32 81 72 52 59

mpe@info.fundp.ac.be

ABSTRACT
In this paper, we describe an innovative approach for aligning the
business layer and the application layer of ArchiMate to ensure
that applications manage access rights consistently with enterprise
goals and risk tolerances. The alignment is realized by using the
responsibility of the employees, which we model using ReMoLa.
The main focus of the alignment targets the definition and the
assignment of the access rights needed by the employees
according to business specification. The approach is illustrated
and validated with a case study in a municipal hospital in
Luxembourg.

Categories and Subject Descriptors
H.1.1 [Models and Principles]: Systems and Information Theory.

General Terms
Management, Performance, Design, Reliability, Experimentation,
Security, Languages, Theory, Verification.

Keywords
Access rights, Business/IT Alignment, ArchiMate, Responsibility,
Case study.

1. INTRODUCTION
The access rights management process is central to the field of
information security because it impacts most of the functions of
the information system, such as the configuration of the firewall,
the access on the fileserver and the authorization to perform
software operations. Furthermore, the management of access
rights is complex because it involves the profiles of many
different actors, from administrative assistants to top managers,
and concerns all enterprise architecture layers, from business to
technology. On one hand, access rights to IT components must be
defined by functional requirements and, on the other, according to
the governance needs. Functional requirements dictate that
employees must have the access rights necessary to perform their
jobs. Governance requirements, on the other hand, provide the
protections that keep organizations safe, legal, reputable and
functioning. They are typically focused on the accuracy and
overall quality of access rights.
Existing access control models and rights engineering methods do
not adequately represent functional and governance requirements.
They depict access rights as technical data managed by IT

processes only distantly related to functional and governance
requirements. Instead, we introduce a responsibility modeling
language ReMoLa to model responsibility at the business layer
and link it to the application layer. This language extends the
standard ArchiMate® visual modeling language for enterprise
architecture. The language explicitly allows ReMoLa allows us to
model the relationships between employees and the activities that
they must perform, and to reflect those relationships within the
application layer that must implement them.
The enterprise architecture models (EAM), and more particularly
ArchiMate, enable the illustration of the interrelations between the
different layers of an enterprise architecture, e.g. the business,
application and the technology layers and, according to different
aspects such as the behavior, the information or the static
structure. Those models provide views that are comprehensible
for all stakeholders and permit to make decisions knowing the
impact on the whole enterprise. For instance, the enterprise model
architecture permits to understand the impact on the technical
layer of a new business service integrated in the business layer
and, consequently permits to analyze the server capability. In the
other sense, the failure of a server has an impact on an application
and so on business services. The enterprise architecture model
permits to overseen the impact and to improve the alignment.
For supporting the alignment between the enterprises’ layers, the
enterprise architecture models have undergone major
improvements during the first decade of 2000 and ArchiMate has
appeared to be a very interesting one, promoted and sustained by
the Open Group1. Even if the advantages of the enterprise
architecture models are not to be demonstrated anymore, the high
abstraction level of the modeled concepts and of the links between
those concepts make it sometimes difficult to use the architecture
models to perform, verify or justify concrete alignments. Actually,
enterprise architecture models do not permit to engineer precisely
the access right provided to the employee at the application layer
based on the specification from the business layer. Therefore, we
complete the ArchiMate enterprise architecture model with
ReMoLa in this paper.
The foreseen advantages of integrating both, ArchiMate and
ReMoLa, are the enhancement of the alignment between the
concepts of the business layer, between the concepts of the
application layer and between concepts from both layers.
Afterwards, this alignment leads to define the access rights to be
provided to the employees based on their responsibilities.
In the next section, we introduce ReMoLa, the responsibility
modeling language. Afterwards, we integrate ReMoLa with the

1 http://www.opengroup.org/archimate/
† Enterprise Engineering Team is a collaboration between CRP
Henri Tudor, Radboud University Nijmegen and the University of
Applied Science Arnhem-Nijmegen (http://www.ee-team.eu)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIN'12, October 25-27, 2012, Jaipur, Rajastan, India
Copyright © 2012 ACM 978-1-4503-1668-2/12/10... $15.00.

12

business layer of ArchiMate, what allows us defining employee’s
responsibility. In section 4, we adapt the application layer of
ArchiMate to support the provisioning of access right according to
business specification. In the fifth section, we illustrate the whole
with a case study of a municipal hospital from Luxembourg for
concluding the paper.

2. MODELING RESPONSIBILITY
The elaboration of the responsibility meta-model (Figure 1) has
been performed based on a literature overview. As explained in
previous papers [1,2], we have, in the first place, analyzed how
responsibility is included in information technology professional
frameworks, in the field of requirements engineering and role
engineering, and in the field of access right with the review of
access control models. Afterwards, this literature overview has
been completed by a literature review in the field of Human
Sciences (psychology, sociology, and management).

Figure 1. ReMoLa modeled in UML.
On figure 1, the most meaningful concepts of ReMoLa, are
defined in the following way:
• The responsibility is a charge assigned to an employee to
signify his accountabilities concerning a business task, and the
right and capacity required to perform those accountabilities.
• The accountability represents the obligation of what have to
be done concerning a business task and the justification that it is
done to someone else, under threat of sanction
• The capability represents the qualities, the skills or the
resources intrinsic to the employee and required to perform
accountability.
• The right represents the resources provided by the company to
the employee and required to perform accountability.
• The assignment is the action of linking an agent to a
responsibility. Delegation process is the transfer of an agent’s
responsibility assignment to another agent.

3. DEFINING RESPONSIBILITY AT THE
BUSINESS LAYER
In this section, we integrate ReMoLa with the business layer of the
ArchiMate enterprise architecture modeling language. This
integration allows defining the access rights provided to the
employees at the application layer according to their defined
responsibilities at the business layer.
The integration of ReMoLa with ArchiMate is achieved using a
three steps approach to integrate models defined by Petit in [6].

The first step is the preparation of the integration, the second step
is the investigation and the definition of the correspondences and
the third step is the integration of both meta-models.

3.1 Preparation for integration
As defined in [6], this first step of the integration of two meta-
models requires a certain preparation of the integration. Therefore,
an integration strategy is defined and provides the baselines for
the integration process such as the context of the integration, the
selection of a common language for the representation of the
meta-models being integrated, the expected abstraction layer of
the concepts represented in the integrated meta-model and so
forth.
The languages at our disposition are, e.g. Telos [7], UML, and so
forth. Telos has the advantages of being based on mathematical
foundations, of being expressive, and of using a limited number of
concepts. UML has the advantages of offering more
representation choices, of being less informal and, as a
consequence, might be more intuitive [6]. For the integration, we
have also selected UML as common representative language.
ArchiMate has been traduced in UML in [8].
Our integration aims at enhancing the alignment between the
business and the IT layer of ArchiMate and, thereby, enhancing
the definition of the access right. As a consequence, some
concepts of ArchiMate will not be considered such as e.g. those
from the technical layer, the value and so forth. Some concepts
from ReMoLa have also not been considered because they are not
of the appropriate abstraction layer like the sanction, the
commitment or the motivation.

3.2 Investigation and definition of the
correspondences
In [6], the author explains that this second step analyzes the
correspondences between the classes of the meta-models. Those
correspondences exist if correspondences between instances of
these classes, taken two by two, can be generalized. Therefore, it
is advisable to carry out one or more case study(ies) to model real
world elements with both languages and, to compare the
semantics of the obtained models. The correspondences between
the models' elements have been analyzed during complete case
study at the municipal hospital which is summarized in section 5.
During the investigation and definition of the correspondences,
we have model this case study with ArchiMate and with ReMoLa
first. Afterwards, we generalize the case modeling considering:
(1) Classes of both meta-models semantically equivalent:
• The business actor and the employee
• The business role (in ArchiMate) and the business role (in
ReMoLa)
• The business object and the information
• The business function and the association accountability–task
(2) Classes not existing in ArchiMate:
• The concept of capability. This concept exists explicitly in
ReMoLa and implicitly in ArchiMate that considers that a business
function groups behavior according to, for instance, the required
skill and knowledge [5]. This concept is explicitly introduced in
the integrated model.
• The concept of right. This concept exists explicitly in ReMoLa.
In ArchiMate, the business function also aims at grouping behavior
accord to the required resource [5] but the semantic of the resource
and its difference with the business object is not obvious.
(3) UML association between those classes that are equivalents:
• The UML association that assigns a business actor to a
business role

13

• The UML association that assigns a business role to business
function
• The UML association that associates a business function with
the business object which it accesses

3.3 Integration of ReMoLa in ArchiMate
The third step defined in [6] corresponds to the integration of the
meta-models. During analyze of the correspondences between the
classes and the UML associations between the classes, we have
observed some minor divergences. Notwithstanding the influence
of those divergences, to consider that a sufficient correspondence
exists between the elements and to consider them during this third
step of integration, we have to analyze that divergence in depth
and formalize the integration rules to consider for having a perfect
integration.
Our objective is to elaborate an integrated meta-model that
enriches the business layer of ArchiMate with the meta-model of
ReMoLa. Therefore, our integration strategy is as follows
regarding the classes of both meta-models: (1) when an exact
correspondence between one class from ArchiMate and one class
from ReMoLa exists, we preserve the name of the ArchiMate
class, (2) when the class of ReMoLa has no corresponding class in
ArchiMate, this class is integrated in the integrated meta-model
and it preserves its name from ReMoLa, (3) when a
correspondence with conflicts between the definition of the
classes exists, the classes are integrated in the integrated meta-
model and we preserve the name of the ArchiMate class but,
additionally, we includes integrations rules that need to be
followed in case of using the integrated meta-model. We observe
that, all the classes from ArchiMate have a corresponding class in
ReMoLa. The correspondence between the UML associations in
ArchiMate and in ReMoLa is also analyzed during the integration
of both meta-models. Two situations coexist: Firstly, one direct
association between two classes of ArchiMate corresponds to one
direct association between the equivalent classes of ReMoLa. In
this case, it can exist short semantic difference(s) between the
associations, and integration rule sometimes needs to be defined
to consider this difference. Furthermore, the name of the
association from ArchiMate is preserved. Secondly, one direct
association between two classes of ArchiMate corresponds to one
indirect association between the equivalent classes in ReMoLa. In
this case, the indirect UML associations are renamed.
1. Classes that correspond exactly
• The business role in ArchiMate and the business role in
ReMoLa
• The business object in ArchiMate and the information in
ReMoLa
2. Classes that only exist in ReMoLa
• Responsibility
• Right
• Capability
• Accountability
3. Classes that correspond under integration rules
• The business function and the task. The first integration rule is
that the definition of the business function in ArchiMate is
completed by a type of obligation for the business actor. As a
consequence, the ReMoLa's class of task corresponds to an
obligation concerning a business function being performed by the
business actor. This integration rule completes the business
function that have to be accurate enough to define what type of
obligation is expected by the business function, e.g. the business
function producing a rapport should be defined more precisely like,
for instance, make the report, review the report, manage the team
that produces it and so forth. Moreover, the business actor that
produces it must justify its realization.

• The business actor and the employee. The second integration
rule is that the ArchiMate class of business actor is limited to a
human actor. This integration rule exists due to the commitment
which is pledge by an employee, once he is assigned to a
responsibility. If the business actor is a machine, we assume there
is no question of commitment since a machine executes the
operation it is programmed for. If the business actor consists of a
group of humans, the commitment is not able to be check
individually and, by consequence, it is not possible to validate that
responsibility assigned to an employee from the group will be
fulfilled since no employee personally commits to it.
UML associations integration:
1. Equivalent associations between two classes of AchiMate and

the corresponding two classes of ReMoLa
• The business actor is assigned to the business role
2. Links from ReMoLa in the integrated meta-model complete or

replace the associations from ArchiMate
• The business actor is assigned to a responsibility that compose
a business role is an alternative association to the association that
associates the business actor with the business role.
• The business role is composed of responsibilities which are
composed of business function replace the direct association
between the business role and the business function.
• The association between the business function that composes a
responsibility and the rights concerning a business object that are
required to a responsibility replace the ArchiMate direct access
association from the business function to the business object.
3. New associations from ReMoLa, which do not exist in

ArchiMate, are integrated in the integrated meta-model.
• The responsibility required capability
• The capability is necessary for a business function

Figure 2. ReMoLa integrated with ArchiMate.
The integration of new classes from the responsibility meta-model
and the consideration of the above integration rules from the
analyze of the correspondence between the classes of business
object and information, and the business role in ArchiMate and in
ReMoLa permit to assemble both meta-models on a unique
schema in UML, which is afterwards represented with ArchiMate
symbols on Figure 2. To integrate responsibility in ArchiMate, we
used the symbols of full line hexagonal for responsibility, dash
line hexagonal for right and capability, and dot line hexagonal for
accountability.

4. ACCESS RIGHT MANAGEMENT

4.1 Previous work
RBAC is a model that facilitates the management of the access
rights to application component such as software or server. To
manage these access rights related to application components at
the application layer, it is necessary to be able to interpret the
business components such as the business role, the business actor
or the permission at the application layer.

14

Therefore, [4] introduces three data objects: the user, the role, and
the permission at the application layer (see Figure 3). The
interpretation of a concept from the business layer by a concept at
the technical layer in ArchiMate is only possible by using a
Realization link [5]. Unfortunately, this realization link only exists
between a data object that realizes a business data. Since this
realization does not formally exist in ArchiMate, [4] does not
explicitly consider that: 1) the role from the application layer
realizes the business role (or the concept of role from RBAC), 2)
the user from the application layer realizes the business actor (or
the concept of user from RBAC) and 3) the permission from the
application layer realizes a type of access to a business object (or
the permission concept from RBAC).

4.2 Realization link
Although it is not considered by [4], this realization link is
necessary, especially, in the field of the access right management.
Indeed, an access right management solution needs to be able to
consider an electronic representation of the business user to
calculate the access rights he needs. Therefore, we introduce a
new realization relationship in ArchiMate between Business and
Application layer concepts. This relationship specifies that a
concept at the application layer is an electronic representation of a
concept at the business layer.
This realization relationship is represented by using a double line
with a stealth arrow in Figures 3, 4, 7 and 9.

Figure 3. User-role and permission-role assignment.
Access rights management with RBAC is defined by a set of
functions such as the assignment of users to roles and the review
of this assignment, the assignment of permissions to roles and the
review of this assignment, the management of the roles hierarchy,
the management of the separation of duties constraint, the
management of the sessions, and the performance of access check.
[4] has explained all these functions. In Figure 3, we only
highlight the two functions that are important for our research: the
users to roles assignment and the permissions to roles assignment.
These functions are represented by using a horizontal chevron
symbol.
The users to roles assignment function requests the creation of a
new data object named User-Role Assignments and the
permissions to roles assignment function requires the creation of a
new data object named Permissions-Roles Assignment. These two
new data objects contain the list of the existing assignments. To
execute the assignment of users to roles, the user to role
assignment function reads the user and the role data objects, and
reads and writes the user-role assignment data object. To execute
the assignment of permissions to roles, the permission to role
assignment function reads the permission and the role data
objects, and reads and writes the permission-role assignment data
object. The integration of RBAC at the business layer and the
association of the RBAC role with ArchiMate's business role
seem appropriate. In this case, we have a RBAC role that
corresponds to a real role from the company such as the roles
encountered in the organizational chart (we have, for instance, the
business role of doctor, of medical secretary, of nurse, and so

forth). Accordingly, we have an exact correspondence between
the existing business roles of the company and the roles that are
used to manage the access rights. However, the problem with this
integration is that it requires a perfect alignment between the
permissions needed by the employees assigned to these roles and
the permissions really assigned to them. This is based on the
postulate: Mostly all users with the same role have exactly the
same tasks to perform and need exactly the same permissions.
In practice, this is slightly different since, although all users with
the same role globally achieved the same tasks, there always exist
some differences between the responsibilities of the employees
assigned to the same role. For instance, although all the doctors
from the role doctor, a priori, require the same access rights over
the information system, in practice, the doctors never exactly
perform the same tasks and never need access to the same
information, e.g. some doctors, additionally to their roles, manage
the unit and need access to financial software, while others are
members of ethical committee and need access to reporting tools,
others are specialized in specific professional in a specialty and
need access to dedicated software. The weaknesses related to the
roles’ definition have been demonstrated in [3, 9, 10].

4.3 Our approach
Our approach considers the assignment of rights to the employee
based on their responsibilities. Therefore, the responsibilities
integrated with the business layer of ArchiMate needs ultimately,
to be represented at the application layer.

4.3.1 Representation of responsibility, business role
and business actor
At the application layer, we introduce a data object responsibility
that realizes (according to [5]) the business concept of
responsibility and a data object business role which realizes the
business object of business role (see Figure 4). This data object of
business role is necessary for representing the composition of
business roles with responsibilities at the application layer.

Figure 4. Business role with responsibility composition.
We also introduce the data object of business actor that
corresponds to the computerized representation of the business
actor from the business layer. The business actor representation
corresponds to an electronic ID or to a unique identification. The
data object of business actor does not perform a behavior or an
application function, but it is used by some application functions
to calculate whether the business actor from the business layer
may access specific application functions or specific application
data used by this application function.

4.3.2 Responsibility to business role assignment
As explained in Section 3, a business role is composed of one or
more responsibilities. To administer this composition in
ArchiMate, we integrate, at the application layer, an application
function named Compose Business roles with Responsibilities,

15

and a data object named Responsibility-Business role
Compositions. This data object represents a set of Responsibilities
that compose a set of Business roles. As explained on Figure 5, to
compose the business roles with responsibilities, the application
function Compose Business roles with Responsibilities needs to
access the three following data objects: Responsibility, Business
role and Responsibility-Business role Compositions.

Figure 5. Business role administration.
4.3.3 Business actor assignment
To administer the assignment of a business actor to a
responsibility and/or to a business role, we integrate three new
data objects named (1) Business actor, that realizes the Business
actor from the business layer, (2) Business actor-Responsibility
Assignment, that represents a set of Responsibilities assigned to a
set of Business actors, and (3) Business actor-Business role
Assignment, that represents a set of Business actors assigned to a
set of Business roles (see Figure 6). We also integrate two new
application functions: Assign Business actors to Responsibilities
and Assign Business actor to Business role.
As explained in Figure 6, in order to assign responsibilities to
business actors, the application function Assign Business actors to
Responsibilities access the three following data objects: Business
actor, Responsibility and Business actor-Responsibility
Assignment. Equivalently, to assign a Business role to a Business
actor, the application function Assign Business actor to Business
role access the three following data objects: Business actor,
Business role and Business actor-Business role Assignment

Figure 6. Business actor assignment administration.

4.3.4 Representation of Permissions
At the business layer, a permission, corresponds to a type of
access right to a business object. The data object Permission
realizes the Permission from the business layer to the application
layer (see Figure 7).

4.3.5 Permissions to responsibilities
As explained in Section 2, a responsibility requires one or more
rights. Permission is a type of right to access a business object. To
administer this assignment of permissions too, we integrate an
application function named Assign Permissions to
Responsibilities, and a data object named Permission-
Responsibility Assignment at the application layer.
As explained in Figure 8, to assign permissions to responsibilities,
the application function Assign Permissions to Responsibilities
needs to access the three following data objects: Permission,
Responsibility, and Permission-Responsibility Assignment

Figure 7. Permission administration.

4.4 Permissions Assignment Optimization
Our approach used the concept of responsibility as a pivot
between the business layer and the application layer. Firstly, we
consider that a business role is composed of a set of
responsibilities (defined at the business layer) and secondly, we
consider that permissions provided with application functions at
the application layer are necessary to perform the responsibilities.
These permissions are calculated at the business layer but are
provided and managed at the application layer.
Regarding this second point, in practice, we are confronted at the
application layer with a large amount of responsibilities that need
a large amount of permissions and each permission may be
assigned to a set of different responsibilities. This situation is
close to the situation where a large amount of users are assigned
to a large amount of permissions and each permission may be
assigned to a large amount of users. Therefore, in the next
chapters, we analyze how it is possible to consider the RBAC
model to enhance the assignment of permissions to
responsibilities, at the application layer and we consider two
assignment functions: the responsibilities to roles assignment and
the permissions to roles assignment.

4.4.1 Representation of RBAC
At the application layer, we need to introduce a data object for the
RBAC role, such as realized in [4]. This data object facilitates not
the assignment of permissions to users, but the assignment of
permissions to responsibilities. It is only used at the application
layer, to optimize the management of the permissions, and has no
correspondences at the business layer. We keep the data object of
responsibility that realizes the business concept of responsibility
as explained in Figure 4 and, we keep the data object of
permission that corresponds to a type of access to a business data
as explained in Figure 8.
The data object of the RBAC role is a type of application role that
corresponds with a logical gathering of business actor
representations which have the same operations to perform on the

16

information system (IS) and therefore, request the same
permissions regarding the data objects. As a consequence, the
RBAC role is different to the business role such as defined in
ArchiMate.

Figure 8. Permission-responsibility assignment optimization.

4.4.2 RBAC role administration
To administer the assignments of responsibilities to the RBAC
role and the assignment of permissions to this role, we integrate,
at the application layer, two application functions named Assign
Responsibilities to RBAC role and Assign Permissions to RBAC
role.
Additionally, we also integrate two new data objects named
Responsibility-RBAC role Assignment, which represents a set of
responsibilities assigned to an RBAC role, and Permission-RBAC
role Assignment, which represents a set of permissions assigned
to an RBAC role. As explained in Figure 9, to assign
responsibilities to an RBAC role, the application function Assign
Responsibilities to RBAC role needs to access the three following
data objects: Responsibility, RBAC role and Responsibility-
RBAC role Assignment. Equivalently, to assign permission to an
RBAC role, the application function Assign Permission to RBAC
role needs to access the three following data objects: Permission,
RBAC role and Responsibility-RBAC role Assignment.

Figure 9. RBAC role administration.

4.4.3 Discussion
In our approach, we keep the use of the concept of a business role
that exists in the company and is consequently useful to manage
the business actors, as well as their responsibilities. In parallel, we
introduce and define the concept of Responsibility to improve the
definition of the responsibilities of the Business actors. Indeed,
although the business role offers a macro list of responsibilities to
be performed by the business actor, it does not allow managing
the responsibilities that are sporadically assigned to or removed
from the employees; it does not allow the management of
delegation of some responsibilities, etc. The access rights
provisioning using the RBAC model and using the mapping of the

RBAC role with the business role, as explained previously,
presents weaknesses, in terms of accuracy.
To face the question of accuracy, we have, considered providing
the access rights to the business actor according to these
responsibilities. In companies, access rights are managed with
application components at the application layer. Therefore, it was
necessary to translate business actor and responsibility at the
application layer, to define business roles to responsibility
assignment function and to define permissions to responsibility
assignment function.
Using responsibility to provide permissions is interesting, but it
reduces the advantage introduced by the role based access control
model to manage a large amount of users and permissions using
roles. As a result, after having introduced responsibility in
ArchiMate, we had to face the management of a large amount of
access rights to be provided to a large amount of responsibilities.
To provide a solution to this problem, we have considered using
the RBAC model and we have reintroduced the RBAC role at the
application layer.

5. CASE STUDY AT THE HOSPITAL
At the municipal hospital, there is no formal alignment, in terms
of access rights to professional software, between the business
layer where business roles are defined and assigned to the
employees, and the application layer where the access rights are
provided to these employees. Therefore, the objective of this case
study is to illustrate that the integrated ArchiMate with ReMoLa
meta-model at the business layer, as well as the enhancement of
the permissions to responsibilities assignment using RBAC at the
application layer, is a solution that improves the provisioning of
professional software access rights to the employees. All along
this section, the case study is illustrated with the reception
department from the hospital. The case study has been conducted
between January 2011 and January 2012, to the rhythm of one
meeting a month. During those meetings, the following persons
have participated: the Application support manager, the Reception
department manager and the Competences manager.
5.1 Hospital business roles analyze
At the municipal hospital, the employees are categorized based on
their roles. In the Human Resources (HR) department, the roles of
the employees are going to be formalized in the Job description.
These job descriptions aim to describe the tasks which are to be
performed by a role, as well as the necessary knowledge required
to be assigned to this role. The job descriptions, however, do not
specify the access rights required on professional software. In this
case study, we consider that the business role from ArchiMate
corresponds to the business roles from the hospital and that the
employees assigned to a role are accountable for doing the tasks
described in the job description. To illustrate this, let’s take the
job description of the receptionist role which is a thirteen page
document that formalizes the five main activities to be performed
by this role, i.e.: welcome and inform the patient, perform the
various technical and administrative tasks, contribute to the
enhancement and evolution of professional practices, train and
mentor new employees, and train and supervise trainees. Each of
these activities are described by a set of tasks and by the required
competences to perform them in terms of knowledge,
methodological and technical know-how and, relational ability.
The tasks to be performed for the activity: Perform the various
technical and administrative tasks, are eg.: encode and control the
data relating to the admission of ambulatory or hospital patients,
print and give the admission form to the patients, manage daily
access to the parking, receive deposits, issue invoices, and so
forth.

17

An organization chart for the reception department structures the
activities into eight sub-roles, as follows:
• SR1: Receptionist at the municipal hospital.
• SR2: Receptionist at the pediatric clinic and the maternity
• SR3: Phone reception
• SR4: Info desk
• SR5: Human resources management
• SR6: Department management
• SR7: Room operator
• SR8: Outsourced guardian
5.2 Analysis of the application layer
The architecture of the IS of the hospital is composed of:
1. Vertical software are applications which are used by well
defined and well specified healthcare businesses. These are for
instance: the management of the laboratory, the endoscopy
software, or the management of the polyclinic.
2. Transversal software are those used together by all healthcare
businesses. These are for instance: the dispatching of the
laboratory's results or the medical imaging. The hospital ERP is
the most important transversal software (see Figure 10).

Figure 10. Hospital municipal application layer.
The hospital ERP is a business management software that offers
the possibility to program specific application functions by the
owner of the application himself. Therefore, it has been decided to
use it, to manage the access rights to all the other software. As a
consequence there exists links between the ERP and the vertical
software and on the other hand links between the ERP and the
other transversal software using contextual calls. With the hospital
ERP, the access right management is realized using
AuthorityObject. AuthorityObject is composed of zone(s) from 1
to n based on what authority check is performed. Practically,
AuthorityObject correspondent to ERP transactions (see Figure
10) and for each transaction, a set of authorizations are defined
such as create, modify, delete, view historic, and so forth.

Figure 11. Hospital RBAC role equivalents.

To facilitate their management, AuthorityObject is assigned to
Functional roles like, for instance, the Functional role of Search
for a patient in the database, create a patient entry, create a
transaction, show a transaction, and so forth. Additionally, the
concept of Reference user has been created to gather a set of
Functional roles. In practice, one user may be assigned to one or
more Reference user or to one or more Functional role (See
Figure 11). The mapping between the application layer of the
hospital and the enhanced ArchiMate-ReMoLa meta-model allows
defining the correspondences between the AuthorityObject that
corresponds to the kind of right to perform an operation. In the
ReMoLa-ArchiMate meta-model, that permission corresponds to
the data object of permission. The Functional role corresponds to
a set of AuthorityObject which may be assigned to a business user.
Therefore, we consider that the Functional role component from
the hospital application architecture corresponds to the concept of
RBAC role of the application layer of the ArchiMate-ReMoLa
meta-model.
Finally, the Reference user corresponds to a set of Functional
roles and, on the second hand, is assigned to a set of business
user. Therefore, we consider that the Reference user component
from the hospital application architecture also corresponds to the
concept of RBAC role of the application layer of the meta-model.
Moreover, given that the Reference user is composed of
Functional role, we consider that there exists a role hierarchy
between both roles.
5.3 Illustration with the receptionist role
At the application layer, an authorization profile document is
defined and formalizes the five Functional roles that may be
assigned to the employees with the role of receptionist. These
Functional roles are:
• Patient's basic data encoding, that means Add or create,
modify, display, delete patient's basic data and entry, transfer or
leaving data related to the patient
• Entry, transfer or leaving patient's data encoding
• Management of the beds status at the hospital
• Medical delivery encoding
• Patient invoices creation and modification
The three first Functional roles are aggregated in the Reference
user of REFRECEP. For each of these Functional roles, a set of
AuthorityObjects is defined. These AuthorityObjects are managed
using an application interface that allows formalization of the
concerned rights. In practice, the Functional roles and Reference
user, as well as other rights to specific software, are assigned to
the sub-roles as follows:
• SR1: REFRECEP, all rights related to equipment ordering
software
• SR2: REFRECEP, medical delivery encoding, patient invoices
creation and modification, all rights related to equipment ordering
software
• SR3: REFRECEP, all rights related to equipment ordering
software, right to read the planning of doctors on duty
• SR4: REFRECEP, all rights related to equipment ordering
software
• SR5: REFRECEP, medical delivery encoding, patient invoices
creation and modification, all rights related to equipment ordering
software, read and write access to the Excel file: Timetable
planning
• SR6: All rights provided to the other sub-roles
• SR7: Read access related to the room agenda in GroupWise
multi-users, read access to the ticketing tool.
• SR8: Write access to the reporting software, all rights related to
equipment ordering software

18

5.4 Enhanced permission assignment
As explained in Section 4.4, to align the business role with the
application role, we have introduced the concept of responsibility
as an intermediary and pivot component. Responsibility composes
a business role at the business layer and is assigned with
permissions (or with an RBAC role) at the application layer. The
analysis of the receptionist job description has allowed defining
sixteen responsibilities that required access rights on the IS.

Table 1: Responsibility – Access Rights – Sub-Roles.

ID Responsibility Required Access Right Compose
Sub-Roles

1 Perform the entry record Add or create, modify, display, delete
patient’s basic data and entry, transfer,
or leave data related to the patient

SR1, SR2,
SR5

2 Perform the transfer
management

Display entry, transfer or leave data
related to the patient and all rights
related to the statistic software

SR1,SR2,
SR5

3 Perform the beds status
management

All rights related to the beds status
management

SR1,SR2,
SR5

4 Perform equipment
ordering

All rights related to the equipment
ordering software

SR8

5 Perform the medical
encoding for billing

All right related to the medical
delivery encoding

SR2

6 Perform the creation and
de modification of patient
invoices (billing)

All rights related to the patient
invoices creation and modification

SR2

7 Inform about the beds
status

Display rights related to the beds status SR1, SR2,
SR3, SR4

8 Perform the realization of
work plans

Read and write access to the Excel file:
Timetable planning

SR5

9 Perform the control of the
monthly worksheets

Read and write access to the Excel file:
Timetable planning

SR5

10 Perform the management
of HR indicators:
Overtime, Days off,
Hours of recovery

Read and write access to the Excel file:
Timetable planning

SR5

11 Perform the management
of the room

Read access related to the room agenda
in Groupwise multi-users

SR7

12 Perform the verification
of the infrastructure

Write access to the reporting software SR8

13 Fix defective
infrastructure

All rights related to equipment
ordering software

SR8

14 Perform the management
of the receptionists

All the rights provided to the sub-roles
SR1, SR2, SR3, SR4, SR5, SR7 and
SR8

SR6

15 Inform about the doctor
on duty

Rights to read the doctors on duty
planning

SR3

16 Perform the statistical
analysis to follow up the
daily business

All rights related to the statistical
software

SR5, SR7

The definitions and analysis of the responsibilities of the
receptionists have permitted to refine the required access rights
for each sub-role recovered in the organization chart of the
receptionist department (Table 1). By formalizing the
responsibilities, we have isolated the tasks to be performed by
each sub-role from the receptionist job description and we have
analyzed the access rights they need.
Thereby, we have observed the following differences:
• SR3 and SR4 have too many rights. The employees assigned to
the Phone reception and Infodesk role are authorized to add or
create, modify, display, delete patient's basic data and entry,
transfer, or leaving data related to the patient, although they do not
require these rights. They possess all rights related to the beds
status management, although, only some of them are required to
display information related to the beds status.
• SR1, SR2, SR5 do not have to perform equipment ordering,
although they have the right to do it.

6. CONCLUSIONS
We have proposed an approach for enhancing the alignment of the
business layer with the application layer, and in particular the
enhancement of the access right management and provisioning to
employees according to business specifications. This approach

takes responsibility as a link between both layers into account.
Therefore, responsibility has been modeled in a responsibility
modeling language named ReMoLa and has been integrated in
ArchiMate using the methodology defined in [5].
To illustrate the approach, a case study in a municipal hospital in
Luxembourg has been conducted with people in a variety of IT
and non-IT roles. We have defined and used the responsibilities of
the employees from the receptionist department to align the
business role, and sub-roles, defined at the business layer with
RBAC role defined at the application layer. At the application
layer, the business role and sub-roles, as well as the tasks to be
performed, have been recovered from the job description
document and from an organizational chart. At the application
layer, the RBAC roles have been analyzed in an authorization
profile document that defines a set of Functional roles, sometimes
aggregated in a Reference user.
We have observed that using responsibility allows a finer
assignment of rights to the employees. For instance, responsibility
16 does not compose any business role or sub-roles, but it may be
directly assigned to employees that are assigned to SR1 or SR2.
This direct assignment allows the provisioning of some
employees, who are responsible for making business analysis,
from the SR1 and SR2 sub-role, but not all of them.
This case study has allowed validating the usability of
responsibility to perform this alignment. Since the receptionist
department was already existing and functioning, the case study
did not engineer the access rights without relying on existing
resources, but it allows confronting the existing access rights with
those calculated by the modeling of the responsibilities. The
results of these confrontations were that the employees of five
sub-roles (over eight) were assigned to more permissions than
they really required in practice.

7. ACKNOWLEDGMENTS
This work is partially supported by the Fond National de la
Recherche in Luxembourg on the PEARL program ASINE.

8. REFERENCES
[1] C. Feltus, M. Petit, and M. Sloman, Enhancement of Business IT

Alignment by Including Responsibility Components in RBAC, 5th

Busital workshop, 2010, Hammamet, Tunisia.
[2] C. Feltus, M. Petit, and E. Dubois, Strengthening employee's

responsibility to enhance governance of IT: COBIT RACI chart case
study. 1st ACM Workshop on Information Security Governance.
ACM, New York, NY.

[3] D. Richard Kuhn, Edward J. Coyne, Timothy R. Weil. Adding
attributes to role-based access control. Computer, 43(6):79-81, 2010.

[4] I. Band, Modeling RBAC with SABSA, TOGAF and ArchiMate,
Creating a Foundation for Understanding and Action, Open Group
Conference, Austin, Texas, 2011.

[5] M. Lankhorst. Archimate language primer, 2004.
[6] M. Petit. Some methodological clues for defining a unified enterprise

modelling language. ICEIMT '01, pages 359-369, Deventer, The
Netherlands, 2003.

[7] J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis. Telos:
representingknowledge about information systems. ACM Trans. Inf.
Syst., 8:325-362, October 1990..H. Jonkers, M.-E.Iacob, M.
Wiering. Towards a uml profile for the archimate language, 2004

[8] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan, T. Freeman. A
exible attribute based access control method for grid computing.
Journal of Grid Computing, 7(2): 169-180, 2008.

[9] M. Covington and M. R. Sastry. A contextual attribute-based access
control model. On the Move to Meaningful Internet Systems 2006
OTM 2006 Workshops, pages 1996-2006.

19

