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Abstract: Task delegation presents one of the business process security 
leitmotifs. It defines a mechanism that bridges the gap between workflow and 
access control systems. Delegation completion and authorisation enforcement 
are specified under specific constraints so-called events. In this article, we aim 
to reason about delegation events to model task delegation and to specify 
delegation policies using a logical framework. To that end, we propose an 
event-based task delegation model to control the delegation execution. We then 
identify relevant events responsible for the dynamic enforcement of delegation 
policies. Further, we define a task-oriented access control model to specify 
delegation constraints into authorisation policies. Finally, we propose a 
technique to automate the delegation policies integration. Using event calculus, 
we develop a reasoning tool to control the delegation execution and to increase 
the compliance of all delegation changes in the existing policy of the workflow. 
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1 Introduction 

With the broad adoption of workflow management systems to model and automate 
business processes cross organisations, security becomes a crucial and essential topic 
(Hung and Karlapalem, 2003). Organisations establish a set of security policies that 
regulate and secure the flow of information between workflow’s tasks and users that 
constitute the business process (Atluri andWarner, 2005). The execution of these tasks 
may require an access to specific and potentially sensitive data that have to be controlled 
when deploying processes within a workflow (Zur Muehlen, 2004). 

While the modelling of business processes and workflows is well researched, the 
organisational dimension has been less investigated in workflow systems (Clavel et al., 
2008). Organisational processes are determined by a mix of ad-hoc as well as human-
centric processes (Gaaloul, 2010). Human involvement introduces authorisation 
concerns, requiring restrictions on who is allowed to perform which tasks at what time. 
This highly dynamic environment must be supported by mechanisms allowing flexibility, 
security and on-the-fly shift of rights and responsibilities both on a (atomic) task level 
and on a (global) process level. One specific approach ensuring human-centric 
interactions is that of task delegation. 

We define task delegation as a means for assigning tasks and its access rights  
from one user to another user. The user who performs a delegation is referred to as 
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a ‘delegator’ and the user who receives a delegation is referred to as a ‘delegatee’.
Delegation can be very useful for real-world situations where a user who has to perform
a task is either unavailable or too overloaded with work to successfully complete
it. It is frequently the case that delaying these tasks executions would violate time
constraints, thereby impairing the entire process execution. Therefore, delegation is a
suitable approach to handle such situations and to ensure alternative scenarios by making
process execution more flexible and secure within a workflow.

To the best of our knowledge, most of the work done in the area of workflow and
access control (AC) systems does not treat delegation in sufficient details and deserves
more investigations. On the one hand, existing work in the domain of organisational
management in workflows suffers of rigidity and does not support human-centric
processes (Atluri and Warner, 2005; Crampton and Khambhammettu, 2008a). On the
other hand, current AC mechanisms are relatively static and have tackled delegation
in a different way from the business process perspective (Seitz et al., 2005; Wainer
et al., 2007). Most of the AC models are role-based and do not consider task delegation
constraints (Barka and Sandhu, 2000; Zhang et al., 2003). Moreover, the derived security
requirements from delegation are manually integrated and lack of compliancy with the
existing policies (Gaaloul, 2010).

In this article, we aim to address the organisational and security requirements for
task delegation within workflow systems. In doing so, we have to tackle two major
issues, namely allowing task delegation to complete, and enforcing a secure delegation.
On the organisational level, we have to identify the list of potential delegatees having
the ability to execute the delegated task and to complete it. In doing so, we present
an event-based task delegation model (TDM) to monitor the execution of the delegated
task. On the security level, it implies the controlled propagation of authority (access
right) during task execution and its specifications within the existing policy.

The contribution of this work is to develop a logical framework for reasoning about
delegation policies. The novelty of our approach consists of reasoning on authorisation
based on the event-based delegation model, and specifying them in terms of delegation
policies dynamically. Based on an AC model we defined, we analyse and specify
delegation constraints into authorisation policies. Additionally, we propose a technique
that automates delegation policies using event calculus (EC) to control the delegation
execution and to increase the compliance of all delegation changes in the existing policy
of the workflow.

The remainder of this article is organised as follows. Section 2 presents an example
requiring the integration of delegation policies. Section 3 focuses on modelling task
delegation in workflows. In Section 4, we present a task oriented AC model to reason
about delegation constraints based on delegation events. This material is used in Section
5 to specify authorisation policies. In Section 6, we leverage an EC technique to support
delegation automation and to increase the compliance of delegation policies. Section 7
presents the implementation of the logical framework. Section 8 discusses related work.
Finally, we conclude and outline topics of potential future work.

2 Delegation in an e-government context

To understand the motivation of our research, we present a scenario from an
e-government case study supporting delegation (R4eGov, 2006). Mutual legal assistance
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(MLA) defines a workflow scenario involving national authorities of two European
countries regarding the execution of measures for protection of a witness in a criminal
proceeding. Here we describe the MLA process part in the Eurojust organisation A.
Users with roles prosecutor and assistant are assigned to execute the MLA process.
Activities which are part of the process are represented as tasks (see Figure 1).

Figure 1 MLA delegation scenario

2.1 Task delegation scenario

The MLA process consists of receiving the request of assistance from Europol member
in order to process it and send it to the concerned authority in Eurojust B. The task
‘translate documents’ T3 is originally only accessible by the user Alice member of role
prosecutor, a fact defined in the workflow security policy. We define a workflow policy
as a mean for defining access rights to a task’s resources also called authorisation policy.

Let P an authorisation policy for the MLA process. This task is a long-running
task and is expected to take five working days to complete. The Prosecutor Alice is
unavailable to execute this task due to illness, and will delegate it to a subordinate
involved in the MLA process. Assistant is a subordinate to prosecutor in the
organisational role hierarchy (RH).

During delegation, the policy P is updated so that user Bob with role assistant is
now allowed to complete task T3. The policy P will grant an access right to Bob to
execute the task T3. As such, users with roles prosecutor and assistant are here the
delegator and the delegatee, respectively.
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In the meanwhile, Alice interrupts her sick leave and returns to work. Once again,
Alice is able to claim T3. Due to qualification considerations, it is decided that Alice
should complete the task, and that her Assistant Bob should revoke his actions, and free
the task. The policy P needs to be updated to reflect that only Alice has access to the
task. As such, the grant access to Bob would now evaluate to a deny decision which
defines a policy rule. In addition, the authorisation policy P needs to reflect the new
requirements for delegation. In order to derive a delegation policy from the existing
policy, we have to specify additional authorisation rules to support delegation, where a
rule defines the policy decision effect (e.g., permit, deny). Delegation rules depend on
several delegation constraints such as time (i.e., five days) and have to be included in
the delegation policy to define specific conditions to validate the policy decision effect.

2.2 Discussion

Delegation policies depend on delegation constraints. Such constraints define the
delegation behaviour in the business process. This behaviour interprets human
interactions when deploying a workflow. Here, delegation constraints aim to automate
delegation policies from existing policy specifications. Accordingly, it is not possible
to foresee a deny rule for revocation during the policy definition. Moreover, a manual
review of the current AC rights and task executions is costly, labour intensive, and
prone to errors. At present, responses arising from AC requests are stateless such that
a response changes due to a policy adaptation will not support a dynamic delegation of
authority (Pfleeger and Pfleeger, 2006; Barka and Sandhu, 2000; Seitz et al., 2005).

Based on the delegation scenario, we aim to address issues related to task delegation
in workflows. At the organisational level, we have to identify the list of potential
delegatees having the ability to execute the delegated task. The delegatee Bob is
a subordinate to the delegator Alice based on the RH definition of the Eurojust
organisation. At the security level, we have to compute the required authorisation
(privileges) to execute the delegated task.

Delegation policies are defined from existing policies and are dynamically specified.
Additionally, the integration of such policies has to be computed and compliant with the
existing policy based on the delegation constraints. Hence, the essence of our work is
to answer the following interrogations:

1 How to model task delegation within a workflow?

2 How to compute delegated privileges with regards to users, tasks and rights?

3 How to monitor delegation when deploying a workflow?

4 How to specify and integrate delegation policies in a compliant manner?

3 Modelling task delegation in workflows

In this section, we aim to model task delegation supporting human-centric interactions
in workflows. A workflow is defined as a set of coordinated activities (tasks) composing
a business process. We consider a task as a single unit of work (Russell et al., 2005).
The basic states for a task life cycle are initial, assigned, started, cancelled failed, and
completed (WFMC, The Workflow Management Coalition, 1999).
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3.1 Task delegation model

We present a TDM to control the delegation execution. The delegation completion is
specified under control constraints defined in the TDM. Control constraints define a
fixed set of delegation events to monitor the delegation execution. Control constraints
are illustrated in Figure 2. It defines the life cycle of our TDM from the time that a task
is created through its final completion, cancellation or failure. It can be seen that there
are series of potential states that comprise this model. A task, once created, is generally
assigned to a user. The assigned user can choose to start it immediately or to delegate
it. Delegation depends on the assignment transition, where the assigned user has the
authority to delegate the task to a delegatee in order to act on his behalf.

Figure 2 Task delegation model

Intermediate events define constrained delegation operations within a workflow
(u1:delegate, u1:cancel, u1:revoke). For instance, the delegator might want to cancel
the delegated task. Our TDM would then go back to the previous state (assigned
state). The delegation control-flow behaviour remains internal according to the task
model, where completed, cancelled and failed are the final states. Moreover, additional
delegation constraints define how a delegation request is issued based on the TDM. In
the following, we detail the main constraints presented in Figure 2.

• Delegation mode: it defines how a delegator selects a delegatee. The pull mode
assumes that a delegator has at his disposal a pool of delegatees to be selected to
work on his behalf. However, the push mode assumes that a delegator is waiting
for an acceptance from a potential delegatee. For instance, derived events from the
Push mode are u2:accept, u1:cancel and u1:revoke in Figure 2.

• Delegation type: it refers to the delegation of privileges. It may be classified into
grant or transfer (Schaad, 2003; Crampton and Khambhammettu, 2006). A grant
delegation type allows an instantiated task to be available for both delegator and
delegatee. As such, the delegator is still having the control to u1:validate or
u1:revoke the task, and the delegatee to execute it. However, in a Transfer
delegation type, the ability to use a delegated access right is transferred to the
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delegatee; in particular, the delegated access right is no longer available to the
delegator. There is no validation required and the task is terminated
(u2:complete/u2:fail) by the delegatee.

Note that TDM is prefixed with either an S or an U indicating that the transition is
initiated by the workflow system or the human resource, respectively. We define u1 and
u2 belonging to the set of users U, where u1 is the delegator and u2 the delegatee.

3.2 Delegation relation

Task delegation defines a user-to-user delegation under specific constraints. Constraints
depend on both the delegation behaviour within TDM and the process constraints
(i.e., deadline). We define a delegation relation including the delegator, the delegatee,
the delegated task and the delegation constraints as follows:

Definition 3.1: We define a delegation relation DR ⊆ T × U × U × 2DC where T
defines a set of tasks, U a set of users and DC a set of delegation constraints. A task
delegation relation is defined as dr = (t, u1,u2, {dc}), t is the delegated task and t ∈ T,
u1 the delegator, u2 the delegatee ∈ U and dc the delegation constraints.

Delegation constraints can be related to time or evidence specifications. In the MLA
example, evidence can be related to the language of translated documents or the number
of translated documents within a period of time. In addition, organisational constraints
define the delegation relation condition in a user-to-user delegation. For instance, an
RH is defined between the prosecutor and the assistant when delegating task T3. The
delegation relation for T3 is defined as follows:
(T3,u1:Prosecutor,u2:Assistant,{RH,5days}) ∈ DR.

3.3 Revocation

Revocation is an important event/action that must accompany the delegation life cycle.
A vast amount of different views on the topic can be found in literature (Zhang et al.,
2003; Hagstrom et al., 2001). For simplification, the decision of revocation is issued
from the delegator in order to take away the delegated privileges, or the desire to go
back to the state before privileges were delegated.

The revocation factors can be identified depending on the delegation context. For
example, a delegator can take back his task if his workload is being decreased or if the
delegatee is not efficient anymore for performing the delegated task. For instance, Alice
cancels Bob’s work and will revoke the delegated task T3. The operation of revocation
can be defined manually when the delegator decides to revoke the selected task by
removing the delegatee’s privileges or automatically by bending a time constraint to
delegation. This constraint will affect the delegating access rights by deriving additional
authorisation requirements in the policy P (see Section 6).

4 Access control over task delegation

In this section, we aim to reason about task delegation from a task’s resource perspective
to analyse and specify task delegation constraints while accessing workflow’s data. Data
access defines permissions on business objects related to workflow’s tasks. In current



372 K. Gaaloul et al.

workflow management systems, the RBAC model is widely adopted, where system
administrators assign roles to users. It is more convenient for administrators to manage
roles than to manage users directly (Sandhu et al., 1996). In our work, we define a task
oriented AC model based on the RBAC model. We aim to support security delegation
constraints with regards to potential delegatees and their required privileges.

4.1 Task execution model

We define a task execution model using an activity diagram composed of three
main activities: initialisation, processing and finalisation (see Figure 3). During the
initialisation of the task, a task instance is created and then assigned to a user. During
task processing, the assigned user can start or delegate the task which gathers all
operations and rights over the business objects related to task’s resources. Finally,
the task finalisation would notice the workflow management system that the task is
terminated, where termination defines completeness, failure or cancellation.

Figure 3 Task execution model

Seeing the task as a block that needs protection against undesired accesses, the activity
diagram includes an AC transition which is in charge with granting access to the task.
AC defines the transition from the creation of a task to its assignment to a user. This
assignment will lead to the processing or the cancellation of the task. Cancellation can
be triggered when an assigned user does not fulfill the required authorisation to execute
a task.

The AC transition defines the required authorisation also called permissions when
executing a task. Authorisation makes an explicit binding between a user, a task resource
(object) and his rights over it (action). For instance, the authorisation to execute the
task T3 defines a permission to translate() (action) the ‘request document’ (business
object) of task T3. Such authorisation information may be specified using a simple
AC list where users may perform tasks for which they are authorised (Crampton and
Khambhammettu, 2008a).

4.2 A task-oriented access control

We propose a task-oriented access control (TAC) model to support authorisation
requirements in workflow systems (see Figure 4). Authorisation information will be
inferred from AC data structures, such as user-role assignment (URA) and task-role
assignment (TRA) relations. In addition, we model permission assignment relations for
tasks and roles in order to support the task execution context. The remaining relations
are generic relations based on the RBAC model (Sandhu et al., 1996).

Formally, we define sets U, R, OU, T, P, S and TI as a set of users, roles,
organisations units, tasks, permissions, subjects and task instances, respectively. We use
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a subject to denote the time a user selects roles for a session. During the the task
instantiation assignment, we create a user’s current active role set.
Figure 4 TAC model

We define RH, where RH is a partial order on R, ri and rj ∈ R. RH denotes that ri is
a role superior to rj , as a result, ri automatically inherits the permissions of rj .

We define role mapping (RM), where RM ⊆ OUi ×OUj with OUi and OUj

two organisations units. RM defines external roles accessing distributed resources
cross-organisations (Freudenthal et al., 2002). It provides a decentralised AC mechanism
where externally known roles are publicly available: rk ∈ OUi and rl ∈ OUj , RM
denotes that rl is a role mapped to rk, as a result, rl shares potentially the permissions
of rk.

4.2.1 Definitions of map relations

• URA ⊆ U ×R, the user role assignment relation mapping users to roles they are
member of.

• RPA ⊆ R× P , the permission role assignment relation mapping roles to
permissions they are authorised to.

• TPA ⊆ T × P , the task permission assignment relation mapping tasks to
permissions. This defines the set of permission required to execute a task.

• TRA ⊆ T ×R the task role assignment relation mapping roles to tasks they are
assigned to.

4.2.2 Definitions of functions

• SU : S → U a function mapping a subject to the corresponding user.

• SR : S → R, a function mapping each subject to a role, where
SR(s) = r, (SU(s), r) ∈ URA} with s having a permission p|(r, p) ∈ RPA}.

• instanceof : TI → T , a function mapping a task instance to its task type.

• claimedby : TI → S, a function mapping a task instance to a subject to execute it.
It defines the user-task assignment condition:

s = claimedby(ti1)
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where

{ti = instanceof (ti1), (r, u) ∈ URA|(SR(s)
= r

∧
SU(s) = u), (ti, r) ∈ TRA}.

4.2.3 Definitions of constraints

Here we discuss separation of duty (SoD) and Binding of duty (BoD) constraints. It
defines a security constraint between two tasks that compose a business process (Botha
and Eloff, 2001). We define an exclusive relation between tasks for SoD, and a binding
relation between tasks for BoD:

TTSOD : {(ti, tj) ∈ T × T |tiis exclusive withtj}

TTBOD : {(ti, tj) ∈ T × T |tiis binding withtj}

If (ti, tj) ∈ TTSOD, then ti and tj cannot be assigned to the same user. For instance,
(T3, T4) ∈ TTSOD cannot be assigned to the same user Bob with the role assistant in
the MLA process (see Figure 1). Regarding the policy, a subordinate (assistant) is not
allowed to approve a request that he prepared on behalf of his superior (prosecutor).

If (ti, tj) ∈ TTBOD, then ti and tj must be assigned to the same user which defines
a binding relation between tasks.

4.3 Model contributions

The main contribution of the TAC model is to specify the task assignment condition.
Actually, two conditions have to be verified. The first condition is related to task
resources requirements. The role’s permissions defined in role-permission assignment
(RPA ) needs to satisfy the permissions defined in task-permission assignment (TPA). If
this condition is satisfied, the task is executed if and only if the user/role is assigned to
it. Basically, having a permission to execute a task but not being assigned to it will not
satisfy the outlined conditions and, therefore, will deny the access to task resources.

Definition 4.1: A task instance ti is assigned to a user u if and only if:

(t, r) ∈ TRA⇒ {p ∈ P |(t, p) ∈ TPA} ⊆ {p|(r, p) ∈ RPA}
∧

claimedby(ti) = s,

where (SR(s) = r
∧
SU(s) = u).

The user-task assignment requires the claimedby function. Returning to the motivating
example, T2 ‘check request’ is assigned a set of permissions based on the TPA relation
in order to carry out this task. The user Alice with the role prosecutor is assigned to T2
since Alice verifies the TRA and claimedby conditions. However, if we consider another
user member of the role prosecutor from Eurojust B, he is not allowed to execute T2
since he does not fulfill the user-task assignment conditions.

4.4 Access control over task delegation using TAC model

Delegation is a mechanism that permits a user to assign a subset of his assigned
permissions (privileges) to other users who currently do not possess it. The TAC model
allows computing the list of potential delegatees using the RPA relation that may satisfy
the delegated task requirements based on the TPA relation. Here, we define a method for
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AC over task delegation using our TAC model. We present the main steps to describe
how valid delegatees are checked and whether they need delegated privileges grant as
follows:

1 defining roles and permission assignments for each user
({(u1, r1), (u2, r2)} ⊆ URA and {(r1, pr1), (r2, pr2)} ⊆ RPA)

2 instantiating the task ti1 and assigning it to the delegator s1 who is the current
user u1 (s1 = claimedby(ti1))

3 checking security constraints before delegation (SoD and BoD)

4 computing the delegatee s2, who is the current user u2, based on his permissions
assignment ((ti, pr2) ∈ TPA)

5 granting privileges for s2 based on the task instance permissions assignment
(p′r2 ← pr2 ∪ pti) which is defined in the claimedby function

6 defining the delegation relation instance: dr1 = (ti1,s1,s2,{DC}).

The main contribution of this method is to specify the delegated task assignment
conditions based on Definition 4.1. If the conditions are satisfied, then the task ti is
delegated to the delegatee u2. However, if u2 does not have the permission required
and there is no conflicts (BoD or SoD) to execute ti. Then the delegated privileges are
granted for u2 based on the claimedby function.

The computation of the privileges is based on the TRA and claimedby specifications
defined in our TAC model. Basically, we provide an optimised method to compute the
least privileges to delegate based on the current requirements of the task instances ti1
and not the full requirement of the task type ti. The task instance is generated from the
delegated task. We aim to optimise the delegated privileges based on what the delegated
task instance defines (see claimedby condition for permissions).

For instance, the Prosecutor Alice delegates T3 to his Assistant Bob. We assume
that Bob does not have the permissions to access T3 resources. Alice will grant just
the permission translate() on the business object type ‘request document’ while keeping
additional privileges related to the MLA request treatment that have to be protected
due to privacy reasons. By computing the task instance requirements for delegation, we
ensure the grant of the least privileges for the delegatee: (Assistant,translate()) ∈ RPA.

In summary, we have analysed task authorisation constraints to support security
requirements for delegation. We have presented a TAC model to support AC over
workflows. The novelty of this model is the ability to reason about task delegation
from human (users) and material resources (tasks). Our TAC model allows us to
compute delegatees and their delegated privileges. This model will help us to specify
the delegation polices within workflows in the next section.
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5 Specifying delegation policies

In this section, we discuss authorisation policy specifications and particularly delegation
policies. We introduce authorisation policies based on our AC (TAC) model. We then
identify the delegation constraints that have to be specified in the delegation policies
and updated in the existing authorisation policy.

5.1 Authorisation policy specification

Authorisation policies may be specified using a simple AC list or more complex
role-based structures. An AC has to be defined to check the authorisation of the
initiating user so-called subject. An authorisation makes an explicit binding between a
role (subject), a task resource (object) and his rights (action) over it. This binding is
defined based on the main relations: URA, TPA and TRA in our AC model (TAC).
Subsequently, an authorisation expresses a user’s permissions on a task’s resources,
where a permission is the right to execute an action on a resource.

Definition 5.1: We define a policy P ⊆ target× rule× 2C , where target defines where
a policy is applicable, rule is a set of rules that defines the policy decision result, and
C the policy constraints set that validates the policy rule.

A target defines the entities of an access request. It is composed of a role associated
to the subject and an action on a business object of a task type. A rule effect
defines an authorisation decision. It can return as a result a permit, a deny or
an indeterminate request (Moses, 2005). Constraints are related to the workflow
authorisation specifications. For instance, the SoD is a constraint for a user-task
assignment. For instance, the policy decision returns the result ‘permit’ where the user
Alice member of role Prosecutor can access to the resource MLA1 (Request Document)
of task T1 and read it (see Figure 1).

5.2 Policy decision changes

We define delegation transitions as events ruling delegation behaviour. The internal
behaviour based on events may be a source to a policy change, thereby introducing
advanced security requirements in AC systems. From our TDM, we analyse security
requirements that need to be taken into account to define event-based delegation
policies:

• Delegation of authority: it permits to a delegator to assign a subset of his assigned
privileges to a delegatee who currently does not possess the required authorisation
to execute the task. For instance, u1:delegate is an event that will trigger task
delegation, thereby updating a policy to grant a new AC for a delegatee.

• AC enforcement: it permits dynamic policy enforcement. For instance, u1:revoke
implies the revocation of delegated privileges where the delegator will take the
control back on his assigned task and, therefore, cancel the previous policy
decision.

The specified events define the condition to validate the policy decision effect. An
event change may inquire a policy decision change. In the following, we classify
delegation events and identify the relationship between delegation type, mode and
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their corresponding impacts on policies decision changes (see Table 1). In Table 1, a
grant delegation type using a push mode is based on events: u1:delegate, u2:accept,
u1:cancel, u2:execute, u1:validate and u1:revoke. In this case, delegation policies
changes when u1:delegate, u2:accept and u1:revoke.

Table 1 Delegation policies changes based on events

Delegation events Push delegation Pull delegation Policy decision change
Grant Transfer Grant Transfer

u1:delegate Yes Yes Yes Yes Yes
u2:accept Yes Yes No No Yes
u1:cancel Yes Yes No No No
u2:execute Yes No Yes No No
u1:validate Yes No Yes No No
u1:revoke Yes No Yes No Yes
U:fail No Yes No Yes No
U:complete No Yes No Yes No

Source: Gaaloul (2010) and Gaaloul et al. (n.d.)

From our motivation scenario, we present two examples to explain policy changes
presented in Table 1.

Example 1: The u1:revoke event is defined in both push and pull modes. It supports
grant delegation, where a delegatee needs to wait for the validation from the delegator.
This event will enforce a policy change and terminates the authorisation for the
delegatee. The revocation leads to the completion of the delegated task, and the
revocation of the delegated privileges. For instance, Bob work is cancelled by Alice and
then his delegated privilege is no more valid in the policy.

Example 2: The u2:fail event is defined in both push and pull modes. It supports transfer
delegation, where a delegatee terminates the task by himself without validation. Defined
policy will take effect until the termination of the task during transfer delegation, where
no new updates are required since all the task privileges are transferred to the delegatee.

5.3 Dynamic delegation policies

At present, we can enforce delegation access rights via policy adaptation. Subsequently,
we need to update the delegation relation DR in the workflow policy P once a delegation
event is triggered. It consists of adding a new policy authorisation constraint for the
delegated user. If this constraint changes due to a policy adaptation (e.g., a task
revocation event), a new response needs to be conveyed to the delegatee dynamically
(Gaaloul et al., 2009).

Definition 5.2: Let P be a global authorisation policy, P = (target,rule,C), we define
a delegation policy PD = (targetD,ruleD,CD), where targetD = DR the delegation
relation, ruleD ⊂ rule, CD ⊂ C and CD = DC

⋃
events where DC the set of delegation

constraints.

Returning to our example, we can observe a dynamic policy enforcement during
delegation. Initially, T3 is delegated to Bob and the delegation policy for T3:
PD = (DR, permit, {RH, 5 days, u1 : delegate}). In the meanwhile, user Alice is
back to work before T3 is finished and will cancel what was performed by Bob so far.
Alice is once again able to claim the task and will cancel the policy effect (permit) for
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Bob. The event revoke will be integrated in the policy, and a notification (deny) is then
conveyed back to Bob for appropriate actions. Thus, the delegation policy for T3 needs
to be updated and PD = (DR, deny, u1 : revoke).

The dynamic revocation of the delegated task will enforce a new authorisation rule
generation. The new rule has to be integrated in the delegation policy dynamically.
In doing so, we have to compute automatically the new delegation policy within the
existing policy P. This computation will ensure compliancy by adding valid rules for
delegation in the existing policy using AC systems. The computation of delegation
policies will be discussed in the next section.

6 Integrating event-based delegation policies

In this section, we propose a logical framework for reasoning about delegation policies.
The framework is based on the EC formalism. We leverage the event-based TDM to
control the delegation behaviour and to specify its authorisation policies dynamically.
We gather relevant events that define both the task execution path and the generated
delegation policies. Using EC, we develop a technique that automates delegation policies
for controlling the delegation execution and increasing the compliance of all delegation
changes in the existing policy.

6.1 Our approach

Securing delegation involves the definition of authorisation policies which have to be
compliant with the policy of the workflow. To do so, we need to address two important
issues, namely allowing task delegation to complete, and having a secure delegation.
The monitoring of task delegation is an essential step to ensure delegation completion.
In our TDM, delegation completion depends on events generated during the delegation
life cycle. Events such as validate may be required, when a delegation request is issued
under a certain obligation, where the delegatee has to perform specific evidence to
validate the task execution. Securing delegation consists of reasoning on authorisation
based on specific delegation events, and specifying them in terms of delegation policies.
When one of these events changes, our access policy decision may change implying
dynamic delegation policies.

Returning to our example, we consider the situation where the delegator with the role
Prosecutor sends a delegation request for all users members of role assistant regarding
the execution of task T3 in the delegation scenario. This defines a push delegation mode,
where a delegatee is chosen dynamically. An acceptance of delegation implies a new
AC enforcement in the existing policy, thereby adding a new authorisation rule for the
delegatee under specific conditions (i.e., time) and/or obligations (i.e., evidence) agreed
between the delegation principals.

The prosecutor may need to review all the translations done by his assistant for
the validation based on evidence. Evidence can be related to the language of translated
documents or the number of translated documents within five days. To that end, an
authorisation rule, permitting the access (e.g., read, write) to the legal document, is
constrained by an obligation allowing to investigate whether evidence were satisfactorily
met. If however, evidence are not satisfied, a revoke action may be triggered including a
deny result for the previous policy effect. Subsequently, another rule has to be integrated
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dynamically in the policy with an effect of deny for the previous authorisation to the
delegatee.

6.2 Modelling task delegation in EC

We use our TDM to monitor the delegation execution. It defines how delegation request
is issued and then executed depending on delegation constraints. The idea is to offer a
technique to monitor the delegation execution based on specific events. Using EC, we
can foresee the delegation behaviour within a workflow.

Background and motivations. The proposed approach for the representation of task
delegation model relies on the EC formalism. The choice of this formalism is motivated
by the fact that given the representation of the event-based TDM, an EC reasoner can
be used to reason about such events.

EC is a logic programming formalism for representing events and is being widely
used for modelling different aspects such as flexible process design, monitoring and
verification (Kowalski and Sergot, 1986). It comprises the following elements: A is the
set of events (or actions), F is the set of fluents, T is the set of time points, and X is
a set of objects related to the particular context. In EC, events are the core concept that
triggers changes to the world. A fluent is anything whose value is subject to change
over time. EC uses predicates to specify actions and their effects (see Table 2).

Table 2 EC predicates

Predicate Interpretation
Initiates(e, f, t) Fluent f holds after timepoint t if event e happens at t
Terminates(e, f, t) Fluent f does not hold after timepoint t if event e happens at t
Happens(e, t) Is true iff event e happens at timepoint t
HoldsAt(f, t) Is true iff fluent f holds at timepoint t
Initially(f) Fluent f holds from time 0
Clipped(t1, f, t2) Fluent f was terminated during time interval [t1, t2]
Declipped(t1, f, t2) Fluent f was initiated during time interval [t1, t2]

Source: Kowalski and Sergot (1986)

The reasoning modes provided by EC can be broadly categorised into abductive,
deductive and inductive. In reference to our proposal, given a TDM and authorisation
policies, it will be interested to find a plan for task delegation, that allows to identify
what possible actions (policy changes) will result from the task delegation and may
opt to choose the optimal plan in terms of minimal policy changes. This refers to the
‘abduction reasoning’. Then, it will be also interested to find out the possible effects
(including policy changes) for a given set of actions (a set of events that will allow task
delegation). This leads to the choice of ‘deduction reasoning’ (Mueller, 2006).

EC based on TDM. The basic entities in the proposed model are tasks. In terms of
discrete EC terminology, they can be considered as sorts, from which instances can be
created. Then, each task can be in different states during the delegation execution. In
reference to the TDM presented earlier (see Figure 2), the possible task states include
initial, assigned, delegated, completed and others. As task states change over time, they
can thus be regarded as fluents in the EC terminology. Further, the states change are
governed by a set of actions/events and in relation to the TDM. The task state changes
from initial to assigned as a result of the occurring of the assign event. Finally the TDM
introduces a set of orderings, such as the state of a task cannot be assigned, if it is not
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yet created. In reference to the event calculus model, we introduce a set of axioms to
handle these dependencies. In the following, the EC model introduces the fluents, basic
events and dependency axioms (see Figure 5).

Figure 5 EC-based TDM

Delegation model
sort task
fluent Initial(task), Assigned(task), Delegated(task), Started(task)...

event Create(task)
[task, time] Initiates(Create(task), Initial(task) ,time).
event Assign(task)
[task, time] Initiates(Assign(task), Assigned(task) ,time).
[task, time1] Happens(Assign(task), time1) → {time2} HoldsAt(Initial(task), time2)
& time1 > time2

Delegation mode choice
[task, time] !Happens(Abort(task), time).
[task, time] !Happens(Start(task), time).
[task, time] !Happens(PullDelegate(task), time).

The EC model presented in Figure 5, first defines sort and fluents that mark the
different task states. Then, we define an event Create(task), and an Initiates axiom that
specifies that the fluent Initial(task) continues to hold after the event happens at some
time. Similarly, we define the event/axiom for the assignment event and fluent. We
further introduce an axiom that specifies that in order to assign some task at time1.
This task must be already in initial state at time2, with time1 greater than time2. In
a similar fashion, we can define events and associated initial axioms for the complete
TDM model.

For the basic EC model above, the solutions (plans) returned by the reasoner may
also include the trivial plans which does not enforce the delegation and directly start or
abort the task once assigned. In order to give the user ability to choose the delegation
mode once the task is assigned, we enrich the model with axioms specifying wich task
does not either Start, Abort or requires PullDelegation once assigned. Thus, the only
option for the reasoner is to conclude that the model requires a PushDelegation mode.
We can similarly restrict the delegation permission (grant/transfer), once the task is in
the WaitingforCompletion state (see the delegation mode choice in Figure 5).

6.3 Building delegation policies

Here we analyse the security requirements that need to be taken into account to define
delegation policies. Additional requirements such as pull/push mode and grant/transfer
type may be a source to a policy change during delegation. Using EC, we present a
technique capable of computing and generating new policy rules automatically.

A policy rule may include conditions and obligations which are used to identify
various conditions or cases under which a policy may become applicable. Conditions
and obligations are related to delegation security constraints when defining delegation
policies. Based on the result of these rules different policies may become applicable in
the context of delegation.
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Delegation rule: We define a delegation rule ruleD ⊆ PD, ruleD = (effect, condition,
obligation), where effect returns the policy decision result (permit, deny), condition
defines the delegation mode (push, pull) and obligation checks evidence for the
delegation type (grant, transfer).

We analyse security requirements to define delegation policy rules in a push mode
of the TDM. We present a table that gathers specific events for push delegation and
analyse them in terms of policy rules. Adding rules in the workflow policy will ensure
the delegation of authority, thereby adding the required effect (permit, deny) to the
delegation policy rules (see Table 3).

Table 3 Push delegation policy rules-based events

Delegation events Push delegation Adding policy rule
Grant Transfer

u1:delegate Yes Yes Add rules if accepted
u2:accept Yes Yes Add rules based on execution type
u1:cancel Yes Yes No add
u2:execute Yes No (Permit,Push,Grant:Evidence)
u2:execute No Yes (Permit,Push,Grant:NoEvidence)
u1:validate Yes No No add
u1:revoke Yes No (Deny,Push,Grant)
U:fail No Yes No add
U:complete No Yes No add

Source: Gaaloul (2010) and Gaaloul et al. (n.d.)

Returning to the example, we can observe a dynamic policy enforcement during
delegation. Initially, T3 is delegated to the Assistant u2 (the delegatee) and the
delegation policy for T3 is defined as follows: PD = (DR,Permit, {Push, 5 days})
(see Table 3, u2:execute/Grant).

In the meanwhile, the Prosecutor u1 (the delegator) is back to work before
delegation is done and is not satisfied with the work progress and will revoke what
was performed by his assistant so far. The prosecutor is once again able to claim
the task and revokes the policy effect (permit) for the assistant. The event revoke is
updated in the policy, and a deny rule is then inserted in the policy. Thus, the delegation
policy for T3 needs to generate a new rule and the delegation policy is updated to:
PD = (DR,Deny, {Push,Grant}) (see Table 3, u1:revoke).

6.4 Modelling delegation policies in EC

In order to model the delegation policy rules, we introduce new sorts called effect,
condition, obligation to the EC model. We then specify instances of each sort to
be the possible effects, conditions and obligations. Possible effects include deny and
permit results, and conditions define the push and pull mode. The possible instances
for obligations include grant, transfer, evidence and NoEvidence which are constraints
related to delegation type and mode. We further add an action AddRule(effect, condition,
obligation) and corresponding axiom and enrich the model to specify the policy changes
as a result of events (see Figure 6).

The policy change axioms presented above specify that once certain actions happen,
they cause policy changes and thus we add a new rule to the existing policy. The name
of actions/events depicts their invocation hierarchy, PushDelegateAcceptExecuteGrant
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is the execute event with a grant permission once the PushDelegation request has been
accepted by a delegatee and has to be validated before completion (see Table 3).

Figure 6 Delegation policy

sort task, effect, condition, obligation
effect Permit, Deny condition Push, Pull obligation Grant, Transfer, ..

fluent RuleAdded(effect, condition, obligation)
event AddPolicyRule(effect, condition, obligation)
[effect, condition, obligation, time]
Initiates(AddPolicyRule(effect, condition,obligation),
RuleAdded(effect, condition, obligation) ,time).

;policy change
[task, time] Happens(PushDelegateAcceptExecuteGrant(task), time) →
Happens(AddPolicyRule(Permit, Push, Evidence), time)
[task, time] Happens(PushDelegateAcceptFailTransfer(task), time) →
Happens(AddPolicyRule(Deny, Push, Transer), time)

6.5 Delegation automation

The formalised approach for the monitoring and securing of TDM defines the logical
framework for reasoning about delegation policies. The framework is a mean to ensure
the automation technique for delegation. Automation is necessary for both the task
completion and the policy specification during delegation. Reasoning on delegation
events using EC offers a solution to foresee the delegation execution and to increase the
control and compliance of all delegation changes.

By reasoning on specific events, we are able to control the order of delegation
execution which is computed automatically based on events. Events allow to distinguish
between the order of execution by checking the delegation mode and type. For instance,
an execution expects a validation transition if and only if we are in a grant delegation
type. In addition, we are able to address the policy stateless issue. We can compute
delegation policies from triggered events during task execution.

Moreover, delegation automation offers many benefits. Actually, it reduces efforts
for users and administrators. Administrator efforts can be related to the process
definition and policies specification. Besides, it increases control and compliance of
all delegation changes. Subsequently, task delegation is accomplished under constraints
which are compliant with the workflow’s policy. For instance, time constraint has to be
taken into account when granting a temporal access for delegation (see T3 deadline in
Figure 1).

In order to test the performance of our technique, we develop a tool supporting
delegation automation. The implementation is based on an EC reasoner. The
implementation environment and its performance are presented in the next section.

7 Implementation

We use the discrete event calculus reasoner (DEC reasoner) for performing automated
common sense reasoning using the EC formalism. It solves problems efficiently by
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converting them into satisfiability (SAT) problems. In addition, the DEC reasoner
attempts to find a solution by transforming the EC model into a SAT problem and
invoking the SAT solver for the solution.

7.1 Reasoning

As discussed earlier, the reasoning can either be abductive or deductive. For the
abductive reasoning, a plan is sought for the specified goal. A plan is a sequence
of EC happens clauses that specify the temporal ordering of different event-based
actions/transitions, whose execution leads to the goal.

In reference to the TDM, the goal is to have either the task in completed,
cancelled or failed states. We then add the goal [task]HoldsAt(Completed(task), 15)
|HoldsAt(Failed(task), 15)|HoldsAt(Cancelled(task), 15) to the EC model and add
an instance of the delegated task T3, where 15 is the maximum range of the timepoint
interval. The value 15 covers the possible transitions to reach the delegation goal. It
presents the maximum number of transitions that may occur when delegating a task.
For instance, a value less than 15 may stop our execution before the defined goal
(i.e., completed, cancelled or failed).

Figure 7 Delegation plan

1389 variables and 7290 clauses
relsat solver
1 model
—
model 1:
0 Happens(Create(T3), 0).
1 +Initial(T3).
2 Happens(Assign(T3), 2).
3 +Assigned(T3).
4 Happens(PushDelegate(T3), 4).
5 +WaitingDelegation(T3).
6 Happens(PushDelegateAccept(T3), 6).
7 +WaitingCompletion(T3).
8 Happens(PushDelegateAcceptExecuteGrant(T3), 8).
Happens(AddPolicyRule(Permit, Push, Evidence), 8).
9 +RuleAdded(Permit, Push, Evidence).
+WaitingValidation(T3).
10 Happens(PushDelegateAcceptExecuteGrantValidate(T3), 10).
11 +Completed(T3).
—
;DECReasoner execution details
0 predicates, 0 functions, 12 fluents, 20 events, 90 axioms
encoding 0.5s - solution 0.2s - total 0.9s

The invocation of the EC reasoner will then give us a set of possible solutions (called
plans) for achieving the goal. Let us first consider the case, when the chosen delegation
mode is PushDelegation with the grant of permissions to the delegatee, the EC reasoner
returns the plan detailed in Figure 7.

The execution plan follows the delegation of T3 described in the delegation scenario.
It shows the actions that need to be considered for delegation and most importantly,
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it shows the possible policy changes as a result of delegation. Steps 1 to 11 depicts
the delegation process execution. Having a push mode as a condition, we derive the
relevant rules to be added in the policy. For instance, step 8 and 9 show when a
delegatee requests the task T3 for execution. Delegatee acceptance went through the
‘WaitingDelegation’, ‘WaitingAcceptance’ and ‘WaitingCompletion’ states (described in
Figure 2). Based on these events, we deduce that an authorisation rule is added at this
stage under a certain obligation (evidence for task validation). Finally, a validation of
T3 completes the delegation execution (see steps 10 and 11 in Figure 7).

All the defined axioms using the DEC Reasoner language can be given to
the reasoner for finding a solution (if it exists) to support policy changes, which
automatically orients these axioms into delegation rules. Then, given as inputs the
specification of the conditions and obligations expressed when adding rules, the
generated plan by the reasoner shows that either the authorisation rules result in a permit
or a deny decision.

Regarding policy changes, there are two possible scenarios. The first scenario is
the adding of a new policy rule because the conjectures (conditions or obligations) are
valid. The second scenario concerns cases corresponding to an overriding of this rule to
a deny result.

7.2 Deployment limits

We have checked the performance of our reasoning algorithm to evaluate the proposed
framework. The example presented in Figure 7 computed the time of encoding for a
single delegated task. Then, we have tested the event-calculus model for sequential and
parallel tasks (about 50 tasks) using the DEC reasoner tool. The tests were conducted
on a MacBook Pro Core 2 Duo 2.53 Ghz and 4 GB RAM running Mac OS-X 10.6. The
DEC Reasoner Version 1.0 and the SAT reasoner, relsat-2.0 were used for reasoning.

Figure 8 Performance testing for sequential and parallel tasks (see online version for colours)

Figure 8 illustrates two curves for sequential and parallel tasks. Time is computed based
on the total of time encoding (DEC reasoner) and solution computation (SAT). We can
observe that the sequential task curve reflects a good performance of our model. For
instance, 40 delegated tasks in sequence will take less than 25 seconds to be encoded
and solved. However, parallel (concurrent) tasks are more time consuming. For the
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same number of tasks, we will need about two minutes. This can be explained by the
algorithm of encoding for parallel tasks. The algorithm complexity is Θ(n2), which
presents an exponential growth in the graph.

Note that the proposed framework is still under construction. This experience is
limited to a user-to-user delegation (two users) where permissions and its authorisation
rules are not subdivided. Cascaded delegation cross multi users (Zhang et al., 2003) will
be a part of the encoding improvement in the future work.

8 Related work

We discuss different approaches that tackle task delegation in secure workflow systems.
To do so, we firstly analyse delegation in workflows. We then present AC mechanisms
supporting delegation and discuss their functionalities and limitations.

8.1 Delegation in workflow systems

Most of the work done in the area of workflow management systems does not treat
delegation in sufficient details (Venter, 2003). There exists little related work considering
task delegation behaviour within a business process. This observation is supported by
research done by Russel et al. (2005) and Hung et al. (2003). They outlined that existing
approaches remain static and do not support security constraints in general and task
delegation modelling in particular (Bertino et al., 1999; Wainer et al., 2007).

Crampton et al. discussed delegation in the context of workflow systems using three
different workflow execution models (Crampton and Khambhammettu, 2008b). The
work offers a greater understanding of the effects of various delegation operations on
the authorisation data structures in the context of role-based workflows. However, they
did not consider task delegation constraints within authorisation policies. The integration
of delegation policies into existing policy is not treated and the problem of policy
compliancy is not addressed (Crampton and Khambhammettu, 2006).

Atluri et al. have extended the notion of delegation to allow conditional delegation
such as time, workload and task attributes. In addition, different types of constraints
come into play, which include authorisation constraints, role activation constraints and
workflow dependency requirements (Atluri and Warner, 2005). Authors addressed the
problem of assigning users to tasks in a consistent manner such that none of these
constraints are violated. However, additional aspects related to the delegation behaviour
are missed. The action of delegation remains atomic and does not investigate the internal
behaviour of delegation and its impacts over the organisational process.

Russel et al. (2005) proposed an approach supporting delegation. They described the
life cycle of a work item in the form of a state/transition diagram with a particular focus
on the resource allocation perspective. One of the main drawbacks of this approach
is that it defines a static binding of all work items associated with a task to a
single resource. This approach ignores additional events (transitions) during delegation
execution and does not support the aspects of users, tasks and events within a workflow
to specify delegation policies.
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8.2 Delegation in access control models

The discretionary access control (DAC) approach allows the creator of an object, or
anyone else that is authorised to control it, to make AC decisions. These rights change
dynamically at the discretion of the owner of an object. AC mechanisms that support a
DAC policy include directory lists, AC lists and AC matrices. A disadvantage of this
approach is that management complications arise in the event that an object is removed
or renamed. Maintenance is difficult when updates are required in the directory of many
users (Pfleeger and Pfleeger, 2006), which is the scope of this paper.

Role-based access control (RBAC) is recognised as an efficient AC model for large
organisations. Most organisations have some business rules related to AC policy (Sandhu
et al., 1996). Barka and Sandhu proposed a role-based delegation model based on the
RBAC model. Their unit of delegation is a role. Authors focused also on role-based
models supporting role hierarchies when studying delegation in the context of both
RBAC0 model (flat roles) and RBAC1 model (hierarchical roles) of the RBAC96 family
(Barka and Sandhu, 2000). However, users may want to delegate a piece of permission
which is not supported in such models. This is the case when computing delegatee
privileges.

The eXtensible Access Control Markup Language (XACML) was developed in order
to provide a uniform way of specifying AC policies in XML (Moses, 2005). Policies
comprising rules, possibly restricted by conditions, may be specified and targeted at
resources, subjects and actions. Resources, subjects, actions and conditions are matched
with information in an authorisation request context using attribute values and a rich
set of value-matching functions. The outcome or effect of a policy evaluation may
be permit, deny, not Applicable or indeterminate. Unlike other application-specific,
proprietary access-control mechanisms, this standard can be specified once and deployed
beyond the boundaries of organisations and countries. However, the current XACML
standard does not provide explicit support for task delegation (Chadwick et al., 2006).

9 Conclusions and future work

Providing AC mechanisms to secure task delegation in workflow management systems
is a non-trivial task to model and implement. In this article, we have presented problems
and requirements that such a model demands, and developed a solution to model task
delegation within workflows and to specify delegation policies into AC systems. The
motivation of this work is based on a real world process from an e-government scenario,
where a task delegation is required and may support dynamic changes when deploying
a workflow.

The main contribution of this article is the development of a methodology with
a logical framework to control and secure dynamic task delegation within workflows.
To ease the monitoring of task delegation and the propagation of delegation authority,
we have presented an event-based TDM amenable for supporting a logical framework
to model, analyse and specify delegation policies. We then identified relevant events
for authorisation enforcement to specify delegation policies based on a TAC model.
Finally, we have applied formal methods to integrate delegation policies. Using EC, we
have developed a reasoning tool to control the delegation execution and to increase the
compliance of all delegation changes in the existing policy.
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Our immediate priority is to complete the development of the delegation automation
approach within an AC framework. We will work on implementing an event-based
delegation policy component using the XACML standard. Further, we will ensure the
synchronisation between the policy definition and the automation approach. Moreover,
we will look at enriching our reasoning approach with historical records. Delegation
history will be used to record all delegations that have been made for auditing. Auditing
technique will allow us to choose the best candidate for delegation based on the
delegatee’s historical performance.
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