
An Extended RBAC Model for Task Delegation
in Workflow Systems

Khaled Gaaloul1, Erik Proper1,2, and François Charoy3

1 Public Research Centre Henri Tudor,
L-1855 Luxembourg-Kirchberg, Luxembourg

2 Radboud University Nijmegen
P. O. BOX 9010 6500, GL Nijmegen, The Netherlands

3 LORIA, Université de Lorraine
BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France

{khaled.gaaloul,erik.proper}@tudor.lu,charoy@loria.fr

Abstract. In role-based access control models, delegation of authority
involves delegating roles that a user can assume or the set of permissions
that he can acquire, to other users. Several role-based delegation models
have been proposed in the literature. However, these models consider only
delegation in presence of the role type, which have some inherent limi-
tations to task delegation in workflow systems. In this paper, we address
task delegation in a workflow and elaborate a security model supporting
delegation constraints. Delegation constraints express security require-
ments with regards to task’s resources, user’s assignment and privileges
(delegation of authority). Further, we show how, using a role-based secu-
rity model, we inject formalised delegation constraints to compute prin-
cipals and privileges to be specified into delegation policies within an
access control framework.

Key words: Workflow, access control, delegation, constraints, privi-
leges, authorisation policy.

1 Introduction

With the broad adoption of workflow management systems to model and au-
tomate business processes cross organisations, security becomes a crucial and
essential topic. Typically, activities that are part of a process are represented as
tasks. Organisations establish a set of authorisation policies that regulate how
business processes and resources should be managed within a workflow [1]. Au-
thorisation information is given which authorises users to perform tasks. Such
authorisation information may be specified using a simple access control list or
more complex role-based structures [2].

In current workflow management systems, the role-based access control
(RBAC) model is widely adopted, where system administrators assign roles to
users. It is more convenient for administrators to manage roles than to manage
users directly [3]. One important factor that affects access control (authorisa-
tion) distribution among users is delegation. Delegation involves a user passing

2 Khaled Gaaloul et al.

its authority to other users. If delegation is allowed, a delegator delegates au-
thority (a privilege) to another active entity, called the delegatee, to carry out a
task on behalf of the former. In the context of workflow systems, delegation can
be very useful for real-world situations where a user who has to perform a task
is either unavailable or too overloaded [4]. Hence, we define task delegation as a
means for assigning a task and its access rights from a delegator to a delegatee.

The concept of delegation has been presented in [1, 5]. Significant contribu-
tions to role-based delegation can be found in [6, 7]. While much of the work
in the area of delegation is limited to role-based access control, the goal of our
paper is to consider task delegation constraints in workflow systems. Delegation
constraints needs to tackle several issues with regards to workflow’s invariants
in terms of users, tasks and resources. In doing so, we need to come up with an
access control model supporting the assignment of task delegation. Delegation as-
signment deals with delegation principals (delegator, delegatee) their respective
rights (privileges) and their availability (no conflicts during task assignment). In
this paper, we extend the RBAC model of Sandhu et al. [3] in two directions: (i)
our formal security model defines a Task-oriented Access Control (TAC) model
which is capable of supporting task assignment condition in workflows and (ii)
we leverage TAC specifications to inject delegation constraints, thereby comput-
ing potential delegatees and their required privileges, thereby specifying them
in terms of delegation policies.

The remainder of this article is organised as follows. Section 2 presents fun-
damental concepts of the organisational management in workflows. Section 3
defines workflow authorisation constraints during task execution. In section 4,
we present a formal security model to reason about task assignment within a
workflow. This model is used to integrate delegation constraints in order to com-
pute delegatees with their respective privileges and to specify delegation policies
in section 5. Section 6 presents related work. Finally, we conclude and discuss
future work.

2 Background

In this section, we aim to give an overview of the organisational aspect to sup-
port human and material resources specifications in the context of workflow
management systems. The aforementioned resources will play an important role
to define task delegation constraints and its security requirements in Sect. 4.

2.1 Resource Management in Workflows

A workflow is made of tasks, where a task defines a unit of work that at each
invocation performs the binding between different resources needed to complete
a specific part of the workflow [8]. The resources that may be involved are dif-
ferent. We distinguish material and human resources for business objects and
workflow’s actors, respectively. Generally, the manipulation of material resources
is interfaced by one or several entities called applications or services.

An Extended RBAC Model for Task Delegation 3

A resource model contains the definition of human and material resources
that are involved in the execution of a workflow model. While the resource model
is a structured representation of organisational entities, it should be noted that
both this model as well as the elements contained therein follow a life cycle and
change over time. Therefore, a workflow management system not only needs to
provide a mechanism to represent the organisational elements involved in the
execution of workflows, but it also needs to provide mechanisms for continuous
change within these elements [9]. Our change scope in this paper deals with task
delegation.

2.2 Organisational Resources Analysis

During the design time, the workflow application designer has to design both
the structure of the business process to be automated, and the structure of the
resources that carry out the process. Resources and workflow’s tasks are linked
through the construct role [10]. From a process perspective, a role is a subject
to authorisations that define permissions (operations) for the execution of a
task. From a resource perspective, a role represents a granted authorisation for
a workflow actor (so-called user). Based on these two perspectives, the design of
the resource model can follow two different directions namely the material and
human resources. Material resources define business objects and the way to use
them. Human resources define the actors of the workflow.

From a material resource perspective, we define permissions as functions with
operations to manipulate business objects. From a human resource perspective,
we define a subject as an assigned user who is member of a role to claim a
task instance. The task execution is added to the subject’s worklist. A worklist
defines the set of task instances claimed by this subject. The access to resources
will be dependent on the execution model of the task. Figure 1 shows a meta
model for a task-based organisational structures, which analyses the possible
ways the resources access can be defined during the task execution. Figure 1
includes a white and a blue blocks. Each block defines a set of concepts and
their relationships when executing a task within a workflow. The white block
represents the material resource to carry out a task, and the blue block defines
how a human resource (an actor) is managed to execute a task. This distinction
will help us to specify our task-oriented access control model (see Sect. 4).

In figure 1, we define a task as a set of applications or services that are
accessed by subjects via specific functions. These applications consist of functions
that manipulate business objects. From one task several task instances can be
generated. Note that we distinguish task type element from task since we assume
that a task represents an instantiation of a task type during execution, equally
for business objects. A task instance corresponds to an actual execution of a
task. This specific execution of the task (a task instance) is allocated to only
one subject through its unique worklist, where a subject defines a user selecting
a role during runtime.

We aim to address issues related to the organisational management in work-
flow systems with regards to user’s assignments, task’s definition and resource’s

4 Khaled Gaaloul et al.

Task Type
1

1..*

instance_of

Task Instance

Application

1..*

0..*

consist_of

Object Type Function

1..*

1..*

consist_of

1 1..*

manipulates

Worklist Subject
10..*

consist_of

11

hold

Role

Authorisation

Authorisation Instance

Object Instance

0..* 1..*is_assigned_to

1..*

0..*

is_member_of

0..*

1..*

is_subject_to

1

1..*
generates

1..*1

is_subject_to 1

1..*

defines

1

1..*
has_instances

User

0..*

1..*

is_assigned_to

1

1

initiates

Fig. 1. A model for task-based organisational structures

access. We mainly focus on both material and human resources to analyse task’s
requirements. We can identify from our analysis the main relationships between
tasks, roles and resources.

– The set of Tasks, Applications, Objects and Functions defines the material
requirements that are necessary to carry out a task.

– The set of Roles assigned to a task. A role inherits permissions based on the
defined authorisation from an access control model.

– The set of Authorisations defines the condition of assignment that a role must
have as permissions to execute a task, where a permission defines which ac-
tion/function to perform over a business object of a task.

– The set of Subjects, Worklists, Task Instances and Authorisation Instances
defines the task assignment condition.

Authorisation constraints need to be specified under access control models
and expressed in terms of authorisation policies that regulate business processes
and resources within a workflow [1]. In the rest of this paper, we explain how
such constraints are specified and expressed in an extended role-based access
control model supporting task delegation.

An Extended RBAC Model for Task Delegation 5

3 Workflow Authorisation Constraints

A workflow comprises various activities that are involved in a business process.
Activities that are part of a process are represented as tasks [11]. Authorisation
information is given which authorises users to perform tasks. Such authorisation
information may be specified using a simple access control list or more complex
role-based structures [12].

A task instance is created and then assigned to a user. The assigned user
can start or delegate the task which gathers all operations and rights over the
business objects related to task’s resources (see Fig. 1). Seeing a task as a block
that needs protection against undesired accesses, access control will depend on
the specified authorisation information.

We define a permission as an authorisation allowing a user to perform a
task. Authorisation makes an explicit binding between a user, a task resource
(business object) and his rights over it (function/action). In our work, we define
a task oriented access control model based on the RBAC model. We focus on
task’s requirements to analyse and specify security constraints while accessing
workflow’s data. Data access defines permissions on business objects related to
task’s resources.

4 Task-oriented Access Control Model

We propose a Task-oriented Access Control (TAC) model to support authorisa-
tion requirements in workflow systems (see Fig. 2). Authorisation information
will be inferred from access control data structures, such as user-role assignment
(URA) and task-role assignment (TRA) relations. In addition, we model per-
mission assignment relations for tasks and roles in order to support the task
execution context. The remaining relations are generic relations based on the
RBAC model [3].

Formally, we define sets U, R, OU, T, P, S and TI as a set of users, roles,
organisations units, tasks, permissions, subjects and task instances, respectively.
We use a subject to denote the time a user selects roles for a session. During
the task instantiation assignment, we create a user’s current active role set and
define it as a subject (see Fig. 2). For example, the user Alice with the role clerk
defines a subject to execute the instance of a task ‘Check credit’ in a bank loan
process.

We define RH (Role Hierarchy), where RH is a partial order on R, ri and
rj ∈ R. RH denotes that ri is a role superior to rj , as a result, ri automatically
inherits the permissions of rj .

We define RM (Role Mapping), where RM ⊆ OUi × OUj with OUi and
OUj two organisations units. RM defines external roles accessing distributed re-
sources cross-organisations. It provides a decentralised access control mechanism
where externally known roles are publicly available:
rk ∈ OUi and rl ∈ OUj , RM denotes that rl is a role mapped to rk, as a result,
rl shares the permissions of rk.

6 Khaled Gaaloul et al.

U R
URA RPA

P

TPA

S TI

Constraints

claimed_by

instance_of T

TRA

S
U

S
R

RH
OU

RM

U: users URA: user role assignment
R: roles RPA: role permission assignment
P: permissions TPA: task permission assignment
T: tasks TRA: task role assignment
TI: task instance SR: subject role assignment
S: subject SU: subject user assignment

Legend

Fig. 2. Task-oriented access control (TAC) model.

4.1 Definitions of Map Relations

Formally, we define a set of relations as follows:

– URA ⊆ U ×R, the user role assignment relation mapping users to roles they
are member of.

– RPA ⊆ R × P , the permission role assignment relation mapping roles to
permissions they are authorised to.

– TPA ⊆ T × P , the task permission assignment relation mapping tasks to
permissions. This defines the set of permission required to execute a task (see
Definition 2).

– TRA ⊆ T × R the task role assignment relation mapping roles to tasks they
are assigned to.

4.2 Definitions of Functions

Formally, we define a set of functions as follows:

– SU :S → U a function mapping a subject to the corresponding user.
– SR:S → R, a function mapping each subject to a role, where SR(s) =

r, (SU(s), r) ∈ URA} with a subject s having a permission p|(r, p) ∈ RPA}.
– instanceof :TI → T , a function mapping a task instance to its task type.

An Extended RBAC Model for Task Delegation 7

– claimedby:TI → S, a function mapping a task instance to a subject to execute
it. It defines the user-task assignment condition s = claimedby(ti1) where :
{ti = instanceof (ti1), (r, u) ∈ URA|(SR(s) = r

∧
SU(s) = u), (ti, r) ∈

TRA}.

4.3 Definitions of Constraints

Here we discuss Separation of duty (SoD) and Binding of duty (BoD) constraints.
It defines security constraints between two tasks that compose a business pro-
cess [13]. Such constraints help to verify whether a user is not allowed to execute
a task due to some conflicts (e.g., conflict of interest). We define an exclusive
relation between tasks for SoD, and a binding relation between tasks for BoD :

TTSOD : {(ti, tj) ∈ T × T | ti is exclusive with tj}

TTBOD : {(ti, tj) ∈ T × T | ti is binding with tj}

If (ti, tj) ∈ TTSOD, then ti and tj cannot be assigned to the same user.
If (ti, tj) ∈ TTBOD, then ti and tj must be assigned to the same user which
defines a binding relation between two tasks.

4.4 Model Contributions

The main contribution of the TAC model is to specify the task assignment
relation where two conditions have to be verified: (1) the first condition is related
to task’s resources requirements. The role’s permissions defined in RPA (role-
permission assignment) needs to satisfy the permissions defined in TPA (task-
permission assignment). (2) the task is executed if and only if the user/role is
assigned to it. Basically, having a permission to execute a task but not being
assigned to it will not satisfy the outlined conditions and, therefore, will deny
the access to its resources.

Definition 1 (Task Assignment). A task instance ti is assigned to a user u
with an active subject s if and only if :
(t, r) ∈ TRA⇒ {p ∈ P |(t, p) ∈ TPA} ⊆ {p|(r, p) ∈ RPA}

∧
claimedby(ti) = s,

where (SR(s) = r
∧

SU(s) = u).

The user-task assignment requires the claimedby function. For instance, a
task ti is assigned a set of permissions based on the TPA relation in order to
carry out this task. A user u1 with a role rj is assigned to ti if and only if
u1 verifies the TRA and claimedby conditions. However, if we consider another
user u2 member of same role rj having the same permissions based on the RPA
relation but u2 is not defined in claimedby(ti), which means not assigned to this
task. In this case, u2 is not allowed to execute ti since he does not fulfil the
user-task assignment relation (see condition 2).

8 Khaled Gaaloul et al.

In the banking process example, let user Bob a member of role Clerk but
not from the same bank agency. Bob is not allowed to perform the task ‘Check
credit’ since he is not assigned by the system to execute it. Within organisations,
users can share different roles but are not assigned to the same tasks. This is due
to privacy and security constraints such as the separation of duty. Therefore, we
leverage condition 2 as an additional constraint when claiming a task instance
by a user.

5 Securing Task Delegation

In this section, we leverage the user-task assignment conditions to support task
delegation assignment with regards to the delegatees and its required privileges.
We use computed privileges to specify delegation policies within an existing
access control framework.

5.1 Access Control over Delegation

Delegation is a mechanism that permits a user to assign a subset of his assigned
authorisations (privileges) to other users who currently do not possess it.

Definition 2 (Delegation Relation). We define a delegation relation DR ⊆
T×U×U×2DC where T a set of tasks, U a set of users and DC a set of delegation
constraints. A task delegation relation is defined as DR = (t,u1,u2,{DC}), t is
the delegated task and t ∈ T, u1 the delegator and u2 the delegatee ∈ U.

For instance, delegation constraints (DC) can be related to time or evidence
specifications [4]. In addition, organisational constraints regarding roles mapping
cross organisations or role hierarchies within an organisation define user-to-user
delegation constraints (see RM and RH relations of the TAC model in Fig. 2).
For instance, a subordinate in an organisation hierarchy can act on behalf of his
superior where the latter is the delegator and the former is the delegatee.

Here, a delegation relation defines the main constraints to be considered when
delegating privileges with regards to users/roles, task and resources. Our focus
is to integrate such constraints in a secure manner. In doing so, we leverage the
TAC (task-oriented access control) model specifications to compute delegatees
and privileges. The TAC model allows to compute the list of potential delega-
tees using the RPA (role-permission assignment) relation that may satisfy the
delegated task requirements based on the TPA (task-permission assignment) re-
lation. In doing so, we define a method for access control over task delegation
using TAC. In the following, we detail our method and describe how valid dele-
gatees are checked and whether they need delegated privileges grant.

Input: u1, u2 ∈ U ; r1, r2 ∈ R; ti, tj ∈ T.
1. Defining the role and permission assignments for each user (URA and RPA);

An Extended RBAC Model for Task Delegation 9

2. Instantiating the task ti1 and assigning it to the delegator s1 who is the
current user u1;

3. Checking security constraints before delegation (SoD and BoD);
4. Computing the delegatee s2, who is the current user u2, based on his per-

missions assignment ((ti, pr2) ∈ TPA) or;
5. Granting privileges for s2 based on the task instance permissions assignment

(p′
r2 ← pr2 ∪ pti) which is defined in the claimedby function;

Output: Delegation relation instance : dr1 = (ti1,s1,s2,{DC});

The main contribution of this method is to specify the delegated task assign-
ment conditions based on Definition 2. If the two conditions are satisfied, then
the task ti is delegated to the delegatee u2. However, if u2 does not have the
permission required and there is no conflicts (BoD or SoD) to execute ti. Then
the delegated privileges are granted for u2 based on the claimedby function.

The computation of the privileges is based on the TRA and claimedby spec-
ifications defined in our TAC model (see claimedby condition for permissions).
Basically, we provide a method to compute the least privileges to delegate based
on the current requirements of the task instances ti1 which is generated from the
delegated task. At this stage, delegated privileges are done manually supporting
a user-to-user delegation. However, the administration of new access rights has
to be specified later into authorisation policies in a compliant and dynamic man-
ner. Authorisation policies will regulate how the business process and resources
should be managed during delegation.

5.2 Delegation Policies

We introduce authorisation policies based on our access control (TAC) model.
We then identify the delegation constraints that have to be specified in the dele-
gation policies. An access control has to be defined to check the authorisation of
the initiating user so-called subject. An authorisation makes an explicit binding
between a role (subject), a task resource (object) and his rights (action) over it.
This binding is defined based on the main relations: user-role assignment (URA),
task-permission assignment (TPA) and task-role assignment (TRA) in our access
control model (TAC). Subsequently, an authorisation expresses a user’s permis-
sions on a task’s resources, where a permission is the right to execute an action
on a resource.

Definition 3. We define a policy P ⊆ target× rule× 2C , where target defines
where a policy is applicable, rule is a set of rules that defines the policy decision
result, and C the policy constraints set that validates the policy rule.

A target defines the entities of an access request. It is composed of a role
associated to the subject and an action on a business object of a task type. A
pseudo formal expression of a target is:

10 Khaled Gaaloul et al.

<target>
<Subject>[role]
<Resource>[object]
<Action>[operation]
<Task>[task type]

< /target>

A rule effect defines an authorisation decision. It can return as a result a
permit, a deny or an indeterminate request [14]. Constraints are related to the
workflow authorisation specifications. For instance, the separation of duty (SoD)
is a constraint for a user-task assignment. In the aforementioned banking process,
a pseudo formal expression of a policy for a subject member of role clerk on the
task T1 ‘Check credit’ on a business object ‘bo1’ is:

<Policy>
<target>[clerk,bo1,read,T1]
<rule>[Permit]
<C>[none]

< /Policy>

The policy decision returns the result “Permit” where the user Alice member
of role clerk can access to the resource ‘bo1’ of task ‘ Check credit ’ and read it.

5.3 Deployment

We use the PERMIS policy editor for creating and editing delegation policies.
PERMIS is a policy based authorisation system, a Privilege Management In-
frastructure [15]. Given a username, a target and an action, the PERMIS de-
cision engine says whether the user is granted or denied access based on the
policy for the target. The policy is role/attribute based where users are given
roles/attributes and roles/attributes are given permissions to access targets.

The interface to the PERMIS decision engine has been enhanced to support
dynamic delegation of authority [16]. It can be considered as a lightweight au-
thorisation decision engine. In order to execute our delegation request, we use
the policy tester which is a tool used to test PERMIS policies created by the
policy editor. The PERMIS Policy Tester can also allow dynamic updates of
policies. This offers a suitable solution to add new delegation rules that grant or
revoke delegated privileges. However, this tool does not support dynamic poli-
cies and any further changes in policy will be made externally from PERMIS. A
prototype of this implementation can be found in [4] (cf. pp. 156-166).

6 Related Work

Barka et al. proposed a role-based delegation model based on the RBAC model.
Their unit of delegation is a role. Authors focused also on role-based models
supporting role hierarchies when studying delegation in the context of both

An Extended RBAC Model for Task Delegation 11

RBAC0 model (flat roles) and RBAC1 model (hierarchical roles) of the RBAC96
family [6]. In this paper, we motivated additional requirements where users may
want to delegate a piece of permission. This is the case when computing delegated
privileges which are not covered by RBAC.

Task-based access control (TBAC) aims to provide a task context during
permission assignments [17]. A workflow system consisting of tasks is assumed.
Each of these tasks is then assigned a “protection state”, providing information
as to who gets to have which permission on a task basis. According to the current
state of the workflow system moving through the process instance, different per-
mission assignments are activated or deactivated as ordered by the protection
state. The TBAC design is process oriented, however, ignoring human-centric
interactions such as user-to-user delegation. Delegation involving users is dis-
cussed in the TAC model and aligned with the workflow invariants in terms of
tasks, users, and resources.

Team based access control (TMAC) is an access control scheme similar to
RBAC, but it provides the assignment of both users and permissions to teams
[18]. Each team then is bound to the task it was created for. At runtime, more
than one team can be created out of the same template, but each team will be
working on a different task instance and accordingly will need access to different
object instances. TMAC model is out of the scope of this paper where we consider
constraints on tasks and users rather than a team.

There exists several work about delegation policies. In [16, 19], authors in-
vestigated how an authorisation management system based on the XACML (eX-
tensible Access Control Markup Language) can be extended to use flexible del-
egation mechanisms. The proposed architecture offers a flexible and dynamic
way to manage users credentials and administrate delegation policies. However,
it is not enough to support dynamic delegation of authority. Delegating a task
requires more effort and involves additional specifications related to delegation
constraints. In this paper, we proposed an approach to inject delegation con-
straints within an access control model as a means to specify dynamic delegation
policies within workflows.

7 Conclusion

In this paper, we integrated task delegation constraints into a formal security
model. In doing so, we analysed task authorisation constraints to support secu-
rity requirements for delegation. Based on the RBAC model, we proposed the
task-oriented access control (TAC) model. This model can grant authorisations
based on workflow specifications and user authorisation information. It offers
a fine grained access control protocol to support delegation. Moreover, we pre-
sented a method to compute potential delegatees and their delegated privileges,
thereby specifying delegation policies in existing access control framework.

The next stage of our work is the implementation of our approach within an
existing workflow system supporting human interactions. Intalio Tempo is a set

12 Khaled Gaaloul et al.

of runtime components that support human-centric workflow within a service-
oriented architecture. The main goal is to provide a complete and extensible
workflow solution with a bias towards interoperable technologies such as BPEL,
BPEL4People, RBAC, and web services. In this context, we will work on ex-
tending the security framework based on RBAC with the delegation of authority
constraints defined in our model.

References

1. Atluri, V., Warner, J.: Supporting conditional delegation in secure workflow man-
agement systems. In: SACMAT ’05: The tenth ACM symposium on Access control
models and technologies, New York, NY, USA (2005) 49–58

2. Crampton, J., Khambhammettu, H.: On delegation and workflow execution mod-
els. In: SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing,
New York, NY, USA, ACM (2008) 2137–2144

3. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2) (1996) 38–47

4. Gaaloul, K.: A Secure Framework for Dynamic Task Delegation in Workflow Man-
agement Systems (2010) Ph.D. thesis, The University of Henri Poincaré, Nancy,
France.

5. Crampton, J., Khambhammettu, H.: Delegation in role-based access control. In:
Proceedings of the Computer Security - ESORICS 2006, 11th European Sympo-
sium on Research in Computer Security, Hamburg, Germany, September 18-20,
2006. Lecture Notes in Computer Science, Springer (2006) 174–191

6. Barka, E., Sandhu, R.: Framework for role-based delegation models. In: Proceed-
ings of the 16th Annual Computer Security Applications Conference, Washington,
DC, USA, IEEE Computer Society (2000) 168–176

7. Zhang, X., Oh, S., Sandhu, R.: PBDM: a flexible delegation model in RBAC.
In: SACMAT ’03: Proceedings of the eighth ACM symposium on Access control
models and technologies, New York, NY, USA, ACM Press (2003) 149–157

8. Russell, N., van der Aalst, W.M.P., Hofstede, A.H.M., Edmond, D.: Workflow
resource patterns: Identification, representation and tool support. In: Proceedings
of the Advanced Information Systems Engineering, 17th International Conference,
CAiSE 2005, Porto, Portugal. (2005) 216–232

9. Zur Muehlen, M.: Workflow-based Process Controlling. Foundation, Design, and
Application of workflow-driven Process Information Systems. Logos Verlag Berlin
(2004)

10. Curtis, B., Kellner, M.I., Over, J.: Process modeling. Commun. ACM 35(9) (1992)
75–90

11. WFMC, The Workflow Management Coalition: Workflow Management Coalition
Terminology and Glossary (1999) Document Number WFMC-TC-1011.

12. Crampton, J., Khambhammettu, H.: Delegation and satisfiability in workflow
systems. In: SACMAT ’08: Proceedings of the 13th ACM symposium on Access
control models and technologies, New York, NY, USA, ACM (2008) 31–40

13. Botha, R.A., Eloff, J.H.P.: Separation of duties for access control enforcement in
workflow environments. IBM Systems Journal 40(3) (2001) 666–682

14. Tim Moses: eXtensible Access Control Markup Language (XACML) Version 2.0
(2005) Committee specification, OASIS.

An Extended RBAC Model for Task Delegation 13

15. Chadwick, D.W., Otenko, A.: The permis x.509 role based privilege management
infrastructure. In: SACMAT ’02: Proceedings of the seventh ACM symposium
on Access control models and technologies, New York, NY, USA, ACM (2002)
135–140

16. Chadwick, D.W., Otenko, S., Nguyen, T.A.: Adding support to xacml for multi-
domain user to user dynamic delegation of authority. Int. Journal Information
Security 8(2) (2009) 137–152

17. Thomas, R.K., Sandhu, R.S.: Task-based authorization controls (tbac): A family of
models for active and enterprise-oriented autorization management. In: Proceed-
ings of the IFIP TC11 WG11.3 Eleventh International Conference on Database
Securty XI, London, UK, UK, Chapman & Hall, Ltd. (1998) 166–181

18. Thomas, R.K.: Team-based access control (tmac): a primitive for applying role-
based access controls in collaborative environments. In: RBAC ’97: Proceedings
of the second ACM workshop on Role-based access control, New York, NY, USA,
ACM (1997) 13–19

19. Seitz, L., Rissanen, E., Sandholm, T., Firozabadi, B.S., Mulmo, O.: Policy adminis-
tration control and delegation using xacml and delegent. In: GRID ’05: Proceedings
of the 6th IEEE/ACM International Workshop on Grid Computing, Washington,
DC, USA, IEEE Computer Society (2005) 49–54

	Lecture Notes in Business Information Processing
	Authors' Instructions
	Introduction
	Background
	Resource Management in Workflows
	Organisational Resources Analysis

	Workflow Authorisation Constraints
	Task-oriented Access Control Model
	Definitions of Map Relations
	Definitions of Functions
	Definitions of Constraints
	Model Contributions

	Securing Task Delegation
	Access Control over Delegation
	Delegation Policies
	Deployment

	Related Work
	Conclusion
	References

