
On Utility-based Selection of Architecture-Modelling Concepts

H.A. Proper1, A.A. Verrijn-Stuart2 and S.J.B.A. Hoppenbrouwers1

1Radboud University Nijmegen, Sub-faculty of Informatics, IRIS Group
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, EU.

e.proper@acm.org, stijnh@cs.kun.nl
2Emeritus of the University of Leiden, Faculty of Mathematics and Science, LIACS

Scheltemakade 15 (home), 2012 TD Haarlem, The Netherlands, EU.

On the 26th of October, Xander Verrijn-Stuart passed away unexpectedly.
We dedicate this paper to Xander, and hope his memories may continue to inspire us in the years to come.

Published as:

H.A. Proper, A.A. Verrijn-Stuart, and
S.J.B.A. Hoppenbrouwers. Towards utility-
based selection of architecture-modelling
concepts. Technical Report NIII-R0417, Ni-
jmegen Institute for Information and Com-
puting Sciences, University of Nijmegen, Ni-
jmegen, The Netherlands, EU, 2004.

Abstract

In this position paper we are concerned with the prin-
ciples underlying the utility of modelling concepts, in
particular in the context of architecture modelling.
First, some basic concepts are discussed, in particular
the relation between information, language, and mod-
elling. Our primary area of application is the mod-
elling of enterprise architectures and information sys-
tem architectures, where the selection of the concepts
used to model different aspects very much depends
on the specific concerns that need to be addressed.
We present an approach to utility-based concept se-
lection. Our approach is illustrated by a brief review
of the relevant aspects of two existing frameworks for
modelling of (software intensive) information systems
and their architectures. We finish this paper by a dis-
cussion of our future research directions in this field.

Keywords: Modelling concepts, Modelling
languages, Architecture modelling

1 Introduction

The importance of information systems to modern
day society needs no arguing. Information systems
may range from small-scale systems geared towards
a few users, via systems supporting the tasks of a
business unit, to enterprise-wide systems and even

Copyright c©2005, Australian Computer Society, Inc. This
paper appeared at The Second Asia-Pacific Conference on
Conceptual Modelling (APCCM2005), New Castle, Australia.
Conferences in Research and Practice in Information Technol-
ogy, Vol. 43. Sven Hartmann and Markus Stumptner, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.
Part of this work was conducted within the ArchiMate project
(http://archimate.telin.nl), a research initiative that aims
to provide concepts and techniques to support enterprise ar-
chitects in the visualisation, communication and analysis of in-
tegrated architectures. The ArchiMate consortium consists of
ABN AMRO, Stichting Pensioenfonds ABP, the Dutch Tax and
Customs Administration, Ordina, Telematics Institute, CWI
(Centre for Mathematics and Informatics), Radboud Univer-
sity Nijmegen, and the Leiden Institute of Advanced Computer
Science.

value-chain wide systems. The ubiquity of informa-
tion systems, combined with their far-reaching inte-
gration with our daily lives (both at work and at
home) puts high demands on the development pro-
cesses that bring forth these systems.

Information systems, as their name suggests, pri-
marily handle ‘information’. Based on the definition
provided in [Falkenberg et al., 1998], we define infor-
mation as “the knowledge increment brought about
when an actor receives a message”. As a direct con-
sequence, we regard messages that result from an in-
formation system as representations of knowledge. In
line with [Falkenberg et al., 1998, Bernus et al., 1998]
we consider an information system to be a system
for collecting, processing, storing, retrieving and dis-
tributing information within an organisation and be-
tween the organisation and its environment. As such,
an information system can be regarded as a subsys-
tem of the organisation (focussing on the informa-
tional aspects of an organisation), and may consist of
both human and computerised actors.

In the last decennium, several approaches to the
development of larger information systems (anything
beyond small scale systems geared towards a few spe-
cific users) have emerged that strongly depend on
the use of so-called ‘architectures’ [Zachman, 1987,
Boar, 1999, Bernus et al., 1998]. Some of these ap-
proaches use the term ‘information architecture’, or
‘information systems architecture’, while yet others
refer to the same concept as ‘enterprise (IT) architec-
ture’.

In [IEEE, 2000], the concept of architecture is de-
fined as: “The fundamental organization of a sys-
tem embodied in its components, their relationships
to each other, and to the environment, and the prin-
ciples guiding its design and evolution.”. Architec-
tures are usually expressed in terms of architectural
descriptions, essentially design descriptions pertain-
ing to the architecture of a system. In general, the
rationale behind the use of architecture in the context
of information systems is that it provides a number
of important benefits [Bass et al., 1998, IEEE, 2000],
such as:

• It is a vehicle for communication and negotiation
among stakeholders. A software architecture, of-
ten depicted graphically, can be communicated
with different stakeholders involved in the de-
velopment, production, fielding, operation, and
maintenance of a system.

• It captures essential design decisions, both func-
tional aspects as well as quality aspects. In an ar-
chitecture, the global structure of the system has
been decided upon, while responsibilities (such as
functionality) have been assigned to the (overall)
components of the system.

In the conceptual framework for architecture as
defined in [IEEE, 2000], an architectural description
can be organised into one or more constituents called
architectural views. Each view addresses one or more
of the concerns (interests) of the stakeholders of a
system. The term ‘view’ is used to refer to the ex-
pression of a system’s architecture with respect to
a particular viewpoint. A viewpoint establishes the
conventions by which a view is created, depicted and
analyzed. In other words, a viewpoint determines the
languages to be used to describe the view, and any as-
sociated modelling methods or analysis techniques to
be applied to these representations of the view. These
languages and techniques are used to yield results rel-
evant to the concerns addressed by the viewpoint.

The concept of viewpoint is not new. For ex-
ample, Multiview [Wood-Harper et al., 1985] already
introduced the notion of views. Multiview identi-
fies five viewpoints: Human Activity System, Infor-
mation Modelling, Socio-Technical System, Human-
Computer Interface and the Technical System. Dur-
ing the same period when Multiview was devel-
oped, the so-called CRIS Task Group of the IFIP
working group 8.1 developed similar notions, where
stakeholder views were reconciled via appropriate
“representations” and special attention was paid to
the then common disagreement about which as-
pect (or perspective) was to dominate system de-
sign (viz. “process”, “data” or “behaviour”). As a
precursor to the notion of concern, the CRIS Task
Group identified several human roles involved in in-
formation system development, such as executive re-
sponsible, development coordinator, buiness analyst,
business designer, etc. The results of that work
can be found in a book entitled “Information Sys-
tem Methodologies: A framework for understand-
ing” [Olle et al., 1988a] and in the proceedings of the
CRIS conferences from 1982–1991 [Olle et al., 1982,
Olle et al., 1983, Olle et al., 1986, Olle et al., 1988b,
Verrijn-Stuart and Olle, 1991].

The use of viewpoints is not limited to the infor-
mation systems community, it was also introduced
by the software engineering community. In the
1990’s, a substantial number of software engineering
researchers worked on what was phrased as “the mul-
tiple perspectives problem” [Finkelstein et al., 1992,
Kotonya and Sommerville, 1992,
Reeves et al., 1995]. By this term, the authors
referred to the problem of how to organise and
guide (software) development in a setting with
many actors, using diverse representation schemes,
having diverse domain knowledge, and using different
development strategies. A general framework has
been developed in order to address the diverse issues
related to this problem [Finkelstein et al., 1992,
Kotonya and Sommerville, 1992]. In this framework,
a viewpoint combines the notion of actor, role, or
agent in the development process with the idea of
a perspective or view which an actor maintains. A
viewpoint is more than a partial specification; in
addition, it contains partial knowledge of how to fur-
ther develop that partial specification. These early
ideas on viewpoint-oriented software engineering
have found their way into the IEEE-1471 standard
for architectural description [IEEE, 2000] on which
we have based our definitions below.

In the context of architectural descriptions,
a plethora of frameworks of viewpoints ex-
ists. Some of these frameworks of viewpoints
are: The Zachman framework [Zachman, 1987],
Kruchten’s 4+1 framework [Kruchten, 1995], RM-
ODP [ISO, 1998], ArchiMate [Jonkers et al., 2003]
and TOGAF [TOGAF, 2004]. The aim of this posi-
tion paper is not to provide ‘yet another framework
of viewpoints’, but rather to argue the need for a

fundamental approach to the selection of viewpoints
(and modelling techniques in general), as well as to
lay a foundation that enables us to reason about such
frameworks at a meta-level. In other words, we seek a
fundamental approach allowing designers and archi-
tects to consider the relevance of specific viewpoints
regarding their practical design/development tasks.
Instead of making superficial comparisons between
the specific abilities of various techniques, we aim
at finding deeper motivations for the differences
between them.

This paper is a product of ongoing research which
aims to gain a more fundamental understanding of
the act of modelling in the context of system develop-
ment, and the languages that are used in the process.
The view presented is developed via three comple-
mentary angles:

Modelling: This angle aims to provide a fundamen-
tal grounding of (architectural) modelling and
representation. We will focus primarily on the
foundations of modelling, representation of mod-
els and the role of languages.

Utility: The potential utility that specific modelling
concepts may have when used to express archi-
tectural descriptions, from the perspective of a
given design/development task.
This angle, which builds on the previous one,
aims to provide designers and architects with
the insights to reason about the relevance of
modelling concepts to a specific task in the de-
sign/development process.

Communication: The (interpersonal) communica-
tion about architectural descriptions as it occurs
during modelling and design.
This angle, further adding to the insights of the
previous two, focuses on the role of architectural
descriptions as a means of communication be-
tween a system’s stakeholders, i.e. language in
action.

Thus far, our research in this area was di-
rected primarily at the modelling of archi-
tectures and the selection of suitable view-
points, in the context of the ArchiMate
project [Jonkers et al., 2003, Jonkers et al., 2004].
The results, however, can equally well be applied
to the selection of modelling techniques in gen-
eral. In both the past and present, a number of
information systems modelling techniques have
been, and are being, developed [Bubenko, 1986,
Avison and Wood-Harper, 1991, Avison, 1995,
Bernus et al., 1998]. The authors of this pa-
per have themselves contributed their fair share
of modelling techniques [Bommel et al., 1991,
Hofstede and Weide, 1993, Bronts et al., 1995,
Proper and Weide, 1994, Creasy and Proper, 1996,
Campbell et al., 1996, Hoppenbrouwers et al., 1997].
The myriad of modelling techniques that is available
to developers of information system has, in the past,
already been referred to as “a jungle” [Avison, 1995].
The viewpoints of the different architecture frame-
work contribute even more techniques to this jungle,
burdening architects/developers with the selection of
appropriate modelling techniques for the modelling
tasks at hand.

We have structured the remainder of this paper
as a discussion of the three angles mentioned above,
with a section each (sections 2 to 4). To make our re-
sults more concrete, in section 5 we discuss two exam-
ple frameworks of viewpoints (Kruchten’s 4+1 frame-
work [Kruchten, 1995] and RM-ODP [ISO, 1998]),
from the perspective of our meta-framework. Before

concluding, section 6 provides a brief discussion on
the perspective on information system development
we will take in further development of our theory.

2 Modelling

The aim of this section is to closely investigate the
process of modelling as it occurs in, for example,
architecture-modelling. In defining more precisely
what we mean by modelling a domain, we first need
to introduce a framework describing the essential pro-
cesses that take place when someone (a stakeholder
for example) observes a domain (such as a system
being developed).

Let us first consider what happens if some
viewer observes ‘the universe’. Following C.S.
Peirce [Peirce, 1969a, Peirce, 1969b], we assume that
viewers perceive the universe and then produce a con-
ception of that part of it they deem relevant. The con-
ceptions harboured by a viewer cannot be communi-
cated and discussed with other viewers unless they are
articulated somehow (the need for this ability in the
context of system development is evident). In other
words, a conception needs to be represented. Peirce
argues that both the perception and conception of a
viewer are strongly influenced by their interest in the
observed universe. This leads to the following (neces-
sarily cyclic, yet irreflexive) set of definitions:

Universe – the ‘world’ around the viewer.

Viewer – an actor perceiving and conceiving the
universe, using their senses.

Conception – that which results, in the mind of a
viewer, when they observe the universe, using
their senses, and interpret what they perceive.

Representation – the result of a viewer denoting a
conception, using some language and medium to
express themselves.

The underlying relationships between viewers, uni-
verse, conceptions and representations can be ex-
pressed in terms of the so-called FRISCO tetrahedron
[Falkenberg et al., 1998], as depicted in figure 1.

Viewer

Universe Representation

Conception

Figure 1: The FRISCO tetahedron.

As mentioned above, in conceiving a part of the
universe, viewers will be influenced by their particular
interest in the observed universe. In the context of
system development, this corresponds to what tends
to be referred to as a concern. For example:

• The current situation with regard to the comput-
erised support of a business process.

• The requirements of a specific stakeholder with
regard to the desired situation.

• The potential impact of a new system on the
work of the system administrators that are to
maintain the new system.

Concerns are not the only factor that influences a
viewer’s conception of a domain. Another important
factor is the pre-conceptions viewers may harbour,
brought forward by their social, cultural, educational
and professional background. More specifically, in
the context of architecture modelling, viewers will
approach a domain with the aim of expressing it in
terms of some set of meta-concepts, such as classes,
activities, constraints, etc. The set of meta-concepts
a viewer is used to using (or trained to use) when
modelling a domain will strongly influence the con-
ception of the viewer. This can be likened to the typ-
ical situation of having a ‘hammer’ and considering
all pointy objects to be ‘nails’. We therefore presume
that when viewers model a domain, they do so from
a certain perspective; their weltanschauung (German
for “view of the world”) [Wood-Harper et al., 1985].
The Weltanschauung can essentially be equated to
the notion of a viewpoint as discussed in section 1.
This perspective on the notion of viewpoints is com-
patible to the approach taken in the Reference Model
of Open Distributed Processing [ISO, 1998]:

“In order to represent an ODP system from
a particular viewpoint it is necessary to de-
fine a structured set of concepts [the meta-
concepts] in terms of which that representa-
tion (or specification) can be expressed. This
set of concepts provides a language for writ-
ing specifications of systems from that view-
point, and such a specification constitutes a
model of a system in terms of the concepts.”

In general, people tend to think of the universe
(the ‘world around us’) as consisting of related el-
ements. In our view, however, presuming that the
universe consists of a set of elements already consti-
tutes a subjective choice, which essentially depends
on the viewer observing the universe. The choice be-
ing made is that ‘elements’ (or ‘things’) and ‘relations’
are the most basic concept for modelling the universe;
the most basic Weltanschauung. In the remainder of
this paper, we will indeed make this assumption, and
presume that a viewer’s conception of the universe
consists of elements. The identification of elements
in the universe remains relative to viewers and their
own conception.

Viewers may decide to zoom in on a particular
part of the universe they observe, or to state it more
precisely, they may zoom in on a particular part of
their conception of the universe. This allows us to
define the notion of a domain as:

Domain – any subset of a conception (being a set
of elements) of the universe, that is conceived of
as being some ‘part’ or ‘aspect’ of the universe.

In the context of (information) system development,
we have a particular interest in unambiguous abstrac-
tions from domains. This is what we refer to as a
model :

Model – a purposely abstracted and unambiguous
conception of a domain.

Note that both the domain and its model are concep-
tions harboured by the same viewer. We are now in
a position to define more precisely what we mean by
modelling:

Modelling – The act of purposely abstracting a
model from (what is conceived to be) a part of
the universe.

For practical reasons, we will understand the act of
modelling to also include the activities involved in
the representation of the model by means of some
language and medium.

We presume viewers not only to be able to rep-
resent (parts of) their conceptions of the universe,
but also to be able to represent (parts of) the view-
points they use in producing their conception of the
universe. This does require viewers to be able to
perform some kind of self-reflection. When mod-
elling some domain in terms of, say, UML class
diagrams [Booch et al., 1999], viewers/modellers are
presumed to be able to express the fact that they
are using classes, aggregations, associations, etc, to
view the domain being modelled. In doing so, view-
ers essentially need to construct a conception of their
viewpoint on the world; i.e. a meta-model. This meta-
model comprises the meta-concepts and modelling ap-
proach used by the viewer when modelling a domain;
it is a model of the viewers viewpoint. Such a meta-
model can in essence be regarded as a ‘high level on-
tology’ [Kishore et al., 2004].

W
1

W
n

Domains Viewer

V

 Concern: C

 Meta-model: M

 Domain-models: D
1
, ... D

n

perceive

conceive

 Concern: C

 Meta-model: M

 Domain-models: D
1
, ... D

n

represent

Representations

Figure 2: A viewer viewing domains from a particular
concern and meta-model.

In figure 2 we have depicted a situation where
a viewer is confronted with a number of domains
(W1, . . . ,Wn). Each of these domains may be mod-
elled from the perspective of the viewer’s concern
C and meta-model M , leading to as many domain-
models (D1, . . . , Dn). The concern, the meta-model,
and the domain models can be represented using
some language and medium, leading to representa-
tions C,M,D1, . . . , Dn.

W

Domain Viewer

V

perceive

 Concern: C

 Meta-model: M
2

 Domain-model: D
2

represent

Representations

 Concern: C

 Meta-model: M
1

 Domain-model: D
1

Figure 3: A viewer viewing a domain from the per-
spective of two different meta-models.

A viewer may also consider a specific domain W
from the perspective of some concern C, using two
different meta-models M1 and M2. This situation
is illustrated in figure 3, where a viewer models a
domain D from the perspective of meta-models M1
and M2, leading to domain-models D1 and D2 respec-
tively. For example, when viewing a domain from the
perspective of a UML class diagram, this is bound
to lead to a different domain-model than the same
domain being viewed from the perspective of a UML
sequence diagram.

If a viewer observes a domain D using the same
meta-model M , but from the perspective of differ-
ent concerns C1 and C2, it is also quite likely that
the viewer will produce different domain-models, each
catering to the specific needs of the respective con-
cerns. Consider, for example, a concern focussing on

the functionality offered by a system to its users, ver-
sus a concern focussing on the impact of the system
on the efficiency of business processes.

Given two different concerns, it is likely that ques-
tions underlying them cannot be met by using a one-
size-fits-all meta-model. For example, the operators
who will be required to maintain a planned infor-
mation system will regard this system in terms of
costs of keeping the system up and running, costs
and efforts involved in implementing the system, etc.
Future users of the same planned system, however,
will be more interested in the impact/support the
system is likely to have on their work related tasks.
This implies that when modelling a system (being de-
signed/developed), different meta-models need to be
used to address different concerns.

The aim of the next section is to gain more insight
into the potential utility of a meta-concepts to a given
modelling goal and viewer’s concern.

3 Utility of modelling concepts

A fundamental problem to be addressed is the ‘utility’
of modelling concepts relative to some concern and
modelling goal. Utility must be understood in the
sense of its classical economic context, such as “what
benefit do I derive from using it?” or “of what use is
it to me?”. Our primary concern is with the area of
information systems, of which both the modelling and
model usage aspects must be considered. The former
pertain to the expressiveness of modelling languages,
the latter to the effectiveness of the ultimate system.

3.1 Representational economics

Intuitively, information is linked to knowledge (know-
ing how to do something, how to do it better, how to
do it more timely, or how to avoid something). In
other words, information is an important ingredient
of decision making. As mentioned above, a sensible
definition is to equate ‘information’ to an increment
in knowledge [Falkenberg et al., 1998]. Value of infor-
mation (or its ‘utility’) should then be associated with
the advantage of better decision making and more ef-
fective ‘goal-pursuit’ [Falkenberg et al., 1998, Section
2.5 and Chapter 3].

It is evident that the ‘economics of information’
are complex and cannot be derived from – if at
all associated with – some identifiable and coher-
ent market. While everyone will agree that some-
thing referred to as ‘information’ must have value,
the contexts will vary so much that any pretense to
a straightforward theory should be rejected. One of
the reasons is that what we actually deal with are
representations of domains in the real or imaginary
world (i.e. ‘models’), and representations of things,
relationships and actions pertaining to those domains
(i.e. ‘data’). The theme of this paper is the utility of
how and what one models. Regarding the link with
the economics of information we will merely assert
three things:

• a computerised system capable of providing in-
formation is of value to its owner/user;

• the cost of building and maintaining such a sys-
tem may exceed its value addition;

• any means of reducing cost and/or increasing
value in this context are desirable.

Since the systems we wish to construct are dynamic
representations of a domain of interest, a key ques-
tion is how best to describe such domains. What we

look for is a meta-model which is simultaneously sim-
ple and rich. For instance, it must be capable of de-
scribing anything requiring modelling in our domain.
On the other hand, it must be so restricted that the
full range of concepts may be grasped by any indi-
vidual modeller while being simultaneously usable in
exchanges between such a person and the many other
interested parties concerned.

The solution to this problem lies in a judicious
selection of ‘concepts’. These should be both op-
erationally effective and domain-encompassing. Ef-
fectiveness means having a high ‘utility’, that is to
say, they must be generally accepted and permit ‘eco-
nomical’ application. Encompassing one particular
type of domain, but not necessarily all conceivable
ones, means that a ‘goal-bounded’ approach should be
adopted whereby the modelling needs are restricted
according to the modelling goal at hand. The mod-
elling goal may differ from situation to situation. The
problem, therefore, evolves to that of agreeing on and
maintaining a large collection of concepts suitable to
cover a range of domains and a systematic means of
bounding it to fit any selected occasion.

The best way of achieving this is to resort to a
set of high-level ‘meta-concepts’, which can be spe-
cialised to fit contingencies. How general and large
should that set be, what should be in it and, most
importantly, how do we effectively and economically
restrict it to cope with specific domains?

3.2 Meta-concepts and concept restrictions

One way of dealing with complexity of a given sit-
uation is to abstract its features and describe it in
general terms. For instance, if an extended set of con-
cepts is required, then grouping them in broad cate-
gories aids better understanding. Similarly, when in
spite of all simplification efforts a complex language
remains necessary, discussing and describing it in a
‘meta-language’ is often fruitful.

Thus, the problem of arriving at a ‘goal-
boundable’ approach to modelling is to conceive an
extremely simple set of meta-concepts, each of which
is capable of being specialised so as to be used in a
particular case. Information systems – which serve or-
ganizations – have two general aspects, both of which
need to be captured in any model:

• Informational aspect – i.e. ‘what to describe’, but
also, ‘what to leave out’.

• System aspect – i.e. a cohesion-oriented ‘descrip-
tion format’.

While the first gives rise to the elements of the ulti-
mate system, the latter provides the formal basis for
putting them together. An ‘information system’ is
a special kind of ‘system’ and a ‘system’, in turn, is
a specialisation of a ‘model’ [Falkenberg et al., 1998].
Therefore, the concepts appropriate for underpin-
ning an information system description must, after
all, derive from the most general concepts for mod-
elling. These also constitute our desired set of ‘meta-
concepts’. The information and system aspects char-
acterise the special domain ‘information system’ and,
hence, may be covered under the umbrella ‘domain-
concepts’ (covering all elementary and structural fea-
tures of information systems, as such).

To summarize, our aim must be to devise a com-
plete – and ideally minimal – set of meta concepts
that are specific to the field of information systems
and to develop a well founded procedure for special-
ising this set, in a utility-driven and goal-bounded
way, according to the requirements of specific situa-
tions pertaining to the development and evolution of
information systems.

4 Utility of Concepts in Communication and
Computation

Let us now consider a functional or utilitarian view
on concepts as they are integrated in some language
that is being used to communicate. This boils down
to the question: ‘what is it that concepts are for ’?

4.1 A utilitarian view on concepts and meta-
concepts

Roughly speaking, there are two main areas of use for
concepts: communication and computation. Though
these uses are often heavily entwined – to the point
where they can hardly be distinguished – at a more
fundamental level of analysis they are completely
different [Hoppenbrouwers, 2003]. The distinction
between communication- and computation-oriented
concept use is related to the two general aspects dis-
cussed in section 3: the ‘informational aspect’ and the
‘system aspect’.

Concepts for communication are bound up with
languages in order to communicate: exchange infor-
mation, and thereby ultimately change the knowl-
edge of some individual in line with some intention
of another individual to do so. Such concept use is
very strongly tied up with communication between
humans as studied in linguistics and communication
theory. The utility of concepts for communicative use
is therefore related to principles of effective commu-
nication.

Concepts for computation form symbolic struc-
tures that are usually intended as part of an engi-
neered artefact. Even though their status is not pri-
marily ‘physical’, there is essentially a clear and un-
ambiguous link between the symbols in the structure
(for example, programming code) and an underlying
piece of hardware. This comes clearly to the fore
in the case of assembly code, microcode and hard-
ware, in particular in the trade-off between the re-
alisation of computational functionality in hardware
or microcode. The computational use of concepts is
mostly tied up with fields like electronic engineering,
computer engineering and software engineering. The
utility of concepts for computational use is therefore
related to principles of good engineering.

Ideally, a balance would need to be struck in each
situation between the sorts of utility involved. Archi-
tects are perhaps the most important group of people
that carry the burden of bridging the gaps between
levels, layers, groups, and activities involved in infor-
mation system development.

In system development, both concepts for com-
munication and concepts for computation are subject
of continuous discussion. Such ‘meta-conversations’
[Hoppenbrouwers, 2003] may concern the labelling of
a concept (typically, the word form associated with it
in some language), or the meaning of a concept. How-
ever, the very idea of (how to discuss and represent)
‘meaning’ is usually quite different in the two areas
of use distinguished.

In order to avoid the discussion concerning “the
meaning of meaning” [Putnam, 1975], it is possible
to take a strictly functional (i.e. utilitarian) approach
to conversation about concepts. In that case, we look
upon communication about concepts as striving for
sharing knowledge about the meaning of a concept
(according to whatever view on ‘meaning’ is deemed
relevant) so that parties involved can, in their own
opinion, effectively communicate.

The contexts for meta-conversation may differ
quite substantially. In particular, the difference be-
tween meta-conversation in context of ‘concept use for
communication’ will often be radically different from
that in context of ‘concept use for computation’.

4.2 Conversations for conceptual mediation

There is a third type of utility for concepts. In the
various disciplines and activities involved in large-
scale information system development, a multitude of
terms, concepts, and languages is used, combining the
two main utilities in many different ways. Straightfor-
ward strategies to deal with this (assuming involve-
ment of only two parties for sake of the argument) are
the following:
• One party acquires/uses the vocabulary of the

other.

• Both parties acquire/use each other’s vocabulary.

• Both parties acquire/use a third vocabulary, a
lingua franca.

• A third party steps in as a translator.
Note that these strategies apply to both types of util-
ity in concept use, and also between them. How-
ever, the ‘conceptual mediation utility of concepts’
is especially closely related to meta-conversation.
Strictly speaking, it may not only involve an active
combination of various meta-languages and meta-
conversation strategies, but even a class of meta-
language/strategies of its own: meta-language spe-
cific to the task of bridging gaps between languages
or (types of) meaning description. (For example, con-
sider conversations between translators).

Architects, more than any other professional
group, should be able to be active conceptual me-
diators. Modelling concepts, and the various meta-
languages and conversation strategies that may be
used to discuss them and align their meaning between
parties, are in the center of the utilitarian (meta-
)discussion because they are particularly vulnerable
to confusion and incompatibility resulting from the
communication-computation opposition, and related
mix-ups.

5 Case Studies

This section aims to illustrate the above discussed
principles by briefly positioning two existing frame-
works of viewpoints. In the discussions above, we
have argued how the combination of a goal and
a stakeholder concern should ideally dominate the
choice of a specific meta-model when modelling a do-
main. The motivation for specific choices of concepts
in the meta-model should be formulated in terms
of the utility these concepts may bring towards the
modelling goal and stakeholder concern. This utility
may pertain to the potential communicative, compu-
tational as well as mediative use of the concepts.

In the case studies we will primarily focus on the
viewpoints identified, the goals and concerns they aim
to serve, the concepts in the associated meta-model,
and any motivations for the specific concepts in the
meta-model. The two case studies are not intended
as criticism on the original frameworks. They may,
however, indicate that some important considerations
(such as utility based motivations) have been left out
of the (original) publication of the frameworks. This
does not imply that the framework as such is at fault,
but rather that interesting and important motivations
underlying the specific frameworks have been left im-
plicit. Furthermore, the case studies are part of an
ongoing research effort. More detailed studies of the
cases will be presented in later work.

5.1 The ‘4+1’ view model

In [Kruchten, 1995], Kruchten introduces a frame-
work of viewpoints (a view model) comprising five

viewpoints. The use of multiple viewpoints is mo-
tivated by the observation that it “allows to ad-
dress separately the concerns of the various stake-
holders of the architecture: end-user, developers, sys-
tems engineers, project managers, etc., and to handle
separately the functional and non-functional require-
ments”. Kruchten does not explicitly document the
motivation for these specific five viewpoints. This also
applies to the version of the framework as it appears
in [Kruchten, 2000, Booch et al., 1999].

The goals, stakeholders, concerns, and meta-model
of the 4+1 framework can be presented, in brief,
as shown in table 1. Note that in [Kruchten, 2000,
Booch et al., 1999], the viewpoints have been re-
named to better match the terminology of the UML:
physical viewpoint → deployment viewpoint, devel-
opment viewpoint → implementation viewpoint and
scenario viewpoint → use-case viewpoint.

The framework proposes modelling concepts (the
meta-model) for each of the specific viewpoints. It
does so, however, without explicitly discussing how
these modelling concepts indeed contribute towards
the goals of the specific viewpoints. Are, for example,
object-classes, associations, etc, the right concepts to
communicate with end-users about the services they
require from the system? The 4+1 framework is based
on experiences in practical settings by its author.
This should make it even more interesting to make
explicit the motivations, in terms of utility, for select-
ing the different modelling concepts. Unforunately,
in [Kruchten, 2000, Booch et al., 1999] this is also not
documented. The viewpoints are presented ‘as is’.

5.2 RM-ODP

The Reference Model of Open Distributed Process-
ing (RM-ODP) [ISO, 1998] was produced in a joint
effort by the international standard bodies ISO and
ITU-T in order to develop a coordinating frame-
work for the standardisation of open distributed pro-
cessing. The resulting framework defines five view-
points: enterprise, information, computation, engi-
neering and technology. The modelling concepts used
in each of these views are based on the object-oriented
paradigm. The goals, concerns, and associated meta-
models of the viewpoints identified by the RM-ODP
can be presented, in brief, as in table 2.

The RM-ODP provides a modelling language for
each of the viewpoints identified. Furthermore it
states:

“Each language [for creating views/models
conform a viewpoint] has sufficient expres-
sive power to specify an ODP function, ap-
plication or policy from the corresponding
viewpoint.”

The authors fail to provide a more detailed discus-
sion regarding the utility of the concepts underlying
each of these languages, from the perspective of the
goals/concerns that are addressed by each of the view-
points. Also, the RM-ODP does not explicitly asso-
ciate viewpoints to a specific class of stakeholders.
This can only be derived from the link with the con-
cerns which the viewpoints address.

In particular in the case of an international stan-
dard, it would have been interesting to see explicit
motivations, in terms of utility to the different goals,
for the modelling concepts selected in each of the
views.

5.3 Summary

Neither of the viewpoint frameworks discussed fail to
provide an explicit motivation for their choices re-

Viewpoint: Logical Process Development Physical Scenarios
Goal: Capture the Capture concurrency Describe static Describe mapping Provide a driver

services which and sychronisation organisation of the of software onto to discover key
the system aspects of the design software and its hardware, and its elements in design
should provide development distribution Validation and

illustration
Stakeholders: Architect Architect Architect Architect Architect

End-users System designer Developer System designer End-users
Integrator Manager Developer

Concerns: Functionality Performance Organisation Scalability Understandability
Availability Re-use Performance
Fault tolerance Portability Availability
...

Meta-model: Object-classes Event Module Processor Objects-classes
Associations Message Subsystem Device Events
Inheritance Broadcast Layer Bandwidth Steps
...

Table 1: Classification of the 4+1 viewpoint framework.

Viewpoint: Enterprise Information Computational Engineering Technology
Goal: Capture purpose, Capture semantics Express distribution Describe design Describe

scope and of information of the system into of distribution choice of
policies of and processing interacting objects oriented aspects technology
the system performed by the of the system used in the

system system
Concerns: Organisational Information and Distribution of Distribution of Hardware and

requirements and processing system the system, and software choices
structure required Functional mechanisms and Compliancy to

decomposition functions needed other views
Meta-model: Objects Object classes Objects Objects Not stated

Communities Associations Interfaces Channels explicitly
Permissions Process Interaction Node
Obligations ... Activities Capsule
Contract ... Cluster
... ...

Table 2: Classification of the RM-ODP viewpoint framework.

garding the modelling concepts used in specific view-
points. When using one of the frameworks, architects
will not find it difficult to select a viewpoint for a
given modelling task at hand. However, this ‘ease
of choice’ is more a result of the limitation of op-
tions available (one is limited to the number of view-
points provided by the framework) than the result of
a well motivated choice about the viewpoint’s util-
ity towards the tasks at hand. Even more, making a
choice for one of the two frameworks (or rather, one
of the many, many, other frameworks) will be hard on
rational grounds, without such utility based motiva-
tions.

6 Outlook: Understanding Requirements on
Modelling Techniques

This position paper states the need for a utilitarian
view on modelling techniques and modelling concepts.
Thus far, we have done so without providing a frame-
work reference in terms of which this utility should
be determined. Relative to what requirements should
the utility be judged? This section discusses our fun-
damental way of thinking with regards to system de-
velopment, and as such provides a frame of thought
within which one can evaluate the potential utility
of modelling concepts/techniques. It is this frame of
thought which we shall apply in further development
of our theory.

6.1 Communication-driven

Key to our view on the utility of modelling
techniques is their role as a means of commu-
nication in system development. In the past
we have already taken a communication-driven
perspective on modelling activities in informa-
tion system development [Derksen et al., 1996,
Hoppenbrouwers et al., 1997,

Frederiks and Weide, 2004,
Frederiks and Weide, 2004, Bleeker et al., 2004,
Proper and Hoppenbrouwers, 2004], as well
as the act of system development it-
self [Veldhuijzen van Zanten et al., 2004].
We are certainly not not alone in doing
so [Nijssen and Halpin, 1989, Embley et al., 1992,
Halpin, 2001].

To better understand the role of modelling tech-
niques in system development, we have extended our
communicative perspective to cater for the fact that
the communication taking place during during system
development leads to the creation and dissemination
of knowledge. In essence, we will regard system devel-
opment as a communication-driven knowledge trans-
formation process whereby conversations are used to
share and create knowledge pertaining to both the
system being developed, as well as to the development
process itself. The notion of conversation should be
interpreted here in the broadest sense, ranging from a
single person producing a model (description), via a
one-on-one design/elicitation session, to a workshop
with several stakeholders and even the widespread
dissemination of definitive system designs.

We also do not claim that viewing information sys-
tem development as a knowledge transformation pro-
cess is new [Mylopoulos, 1998]. Our aim is to use this
perspective on system development to better under-
stand and articulate the requirements that underly
modelling techniques. From this perspective, mod-
elling techniques should be regarded as a means (a
language) to an end (system development), not unlike
a functional (What is it to be used for?) perspective
on language [Cruse, 2000].

6.2 Development community

Given a focus on communication, it is important to
identify the actors and objects that could play a role

in the communication that takes place during the sys-
tem development process. These actors are likely to
have some stake with regards to the system being
developed. Examples of such actors are: problem
owners, prospective actors in the future system (such
as the future ‘users’ of the system), domain experts,
sponsors, architects, engineers, business analysts, etc.

These actors, however, are not the only ‘objects’
playing an important role in system development.
Another important class of objects are the many dif-
ferent documents, models, forms, etc., that represent
bits and pieces of knowledge pertaining to the system
that is being developed. This entire group of objects,
and the different roles they can play, is what we shall
refer to as a system development community :

a group of objects, such as actors, models
and representations, which are involved in
the development of a system.

The actors in a system development community will
(typically as a consequence of their personal goals
and stakes) have some specific interests with regards
to the system being developed. This interest im-
plies a sub-interest with regards to (the contents
of) the the system descriptions that are communi-
cated within the community. This interest, in line
with [IEEE, 2000], is referred to as the concern of a
stakeholder:

an interest of a stakeholder with regards
to the architectural description [which we
will generalise to mean “design description”]
of some system, resulting from the stake-
holder’s goals, and the present/future role(s)
played by the system in relationship to these
goals.
A concern usually pertains to the system’s
development, its operation or any other as-
pects that are critical or otherwise important
to one or more stakeholders.

Some examples of concerns are:

• The current situation with regard to the comput-
erized support of a business process.

• The requirements of a specific stakeholder with
regard to the desired situation.

• The potential impact of a new system on the ac-
tivities of a prospective user.

6.3 System development knowledge

The system development community harbours knowl-
edge about the system being developed. To be more
precise, objects in the system development commu-
nity can be regarded as knowledge carriers harbour-
ing knowledge pertaining to (their view on) a sub-
domain within the system being developed (and/or
its development process). In this vein, the communi-
cation occurring within a system development com-
munity essentially aims to create, further, and dis-
seminate this knowledge. The actual knowledge can
pertain to the system being developed, as well as the
development process itself. In the next section, we
will provide a more elaborate discussion on the kinds
of knowledge that may (have to) be communicated.

Depending on the concerns of a stakeholder, she
will be interested in different knowledge topics related
to the system being developed. For example: a fi-
nancial controller will be interested in an investment
perspective on the overall scope of a future system, a
designer will be interested in all aspects of the design
chain from different perspectives, etc.

6.4 Transformations of knowledge

During the development of a system, the knowledge
about the system and its development will evolve.
New insights emerge, designs are created, views are
shared, opinions are formed, design decisions made,
etc. Consequently, the knowledge as it is present
in a development community can be seen to evolve
through a number of states. Knowledge needs to be
introduced into the community first, either by creat-
ing the knowledge internally or importing it from out-
side of the community. Once the knowledge has been
introduced to a community, it can be shared among
different knowledge carriers. Sharing knowledge be-
tween different actors may progress through a number
of stages. We distinguish three major stages:

Aware – An actor may become aware of (possible)
knowledge by way of the sharing by another ac-
tor (possibly from outside the community), or by
creating it themselves.

Agreed – When shared, an actor can make up her
own mind about the shared knowledge, and de-
cide wether or not to agree to the knowledge
shared.

Committed – Actors who agree to a specific knowl-
edge topic may decide to actually commit to this
knowledge. In other words, they may decide to
adopt their future behaviour in accordance to
this knowledge.

There is no way to objectively and absolutely deter-
mine the level of awareness/agreement/committment
of a given set of knowledge carriers. It is in the eyes of
the beholder. This “beholder”, however, will typically
be an actor in the system development community.
We can, therefore, safely presume that some actors
in the system development community will be able to
(and have a reason to) judge the level of sharing of
knowledge between sets of actors, and communicate
about this.

7 Conclusion

The focus of this paper was on the principles un-
derlying the utility of modelling concepts. We have
discussed these issues from three angles: modelling,
utility and communication. The primary area of ap-
plication of the principles presented has been the
modelling of enterprise architectures and informa-
tion system architectures, where the selection of con-
cepts used to model different aspects very much de-
pends on the specific concerns that need to be ad-
dressed. Rather than providing ‘yet another frame-
work of viewpoints’, the aim of this paper was to lay
a foundation that enables architects to reason about
the many frameworks of viewpoints that are already
available. We have illustrated our approach by a brief
review of the relevant aspects of two existing frame-
works for modelling (software intensive) information
systems and their architectures. This was followed
by a discussion of our perspective on the general role
of modelling techniques in system development, and
their potential utility.

Currently, we are refining our results in two direc-
tions:

• A fundamental understanding of the use of mod-
elling concepts in the art of modelling.

• Refining our perspective on system development
as a communication-driven knowledge transfor-
mation process.

Both research directions will involve theoretical activ-
ities as well as more practical oriented activities based
on action research [Blum, 1955, Avison et al., 1999,
Baskerville, 1999].

References

[Avison, 1995] Avison, D. (1995). Information Sys-
tems Development: Methodologies, Techniques and
Tools. McGraw-Hill, New York, New York, USA,
2nd edition. ISBN 0077092333

[Avison et al., 1999] Avison, D., Lau, F., Meyers, M.,
and Nielsen, P. (1999). Action research. Commu-
nications of the ACM, 42(1):94–97.

[Avison and Wood-Harper, 1991] Avison, D. and
Wood-Harper, A. (1991). Information Systems De-
velopment Research: An Exploration of Ideas in
Practice. The Computer Journal, 34(2):98–112.

[Baskerville, 1999] Baskerville, R. (1999). Investi-
gating Information Systems with Action Research.
Communications of the Association for Informa-
tion Systems, 2(19).

[Bass et al., 1998] Bass, L., Clements, P., and Kaz-
man, R. (1998). Software Architecture in Practice.
Addison Wesley, Reading, Massachusetts, USA.
ISBN 0-201-19930-0

[Bernus et al., 1998] Bernus, P., Mertins, K., and
Schmidt, G., editors (1998). Handbook on Architec-
tures of Information Systems. International Hand-
books on Information Systems. Springer, Berlin,
Germany, EU. ISBN 3-540-64453-9

[Bleeker et al., 2004] Bleeker, A., Proper, H., and
Hoppenbrouwers, S. (2004). The role of concept
management in system development – a practical
and a theoretical perspective. In Gravis, J., Pers-
son, A., and Stirna, J., editors, Forum proceedings
of the 16th Conference on Advanced Information
Systems 2004 (CAiSE 2004), pages 73–82, Riga,
Latvia, EU. Faculty of Computer Science and In-
formation Technology.

[Blum, 1955] Blum, F. (1955). Action research –
a scientific approach? Philosophy of Science,
22(1):1–7.

[Boar, 1999] Boar, B. (1999). Constructing
Blueprints for Enterprise IT architectures. Wiley,
New York, New York, USA. ISBN 0-471-29620-1

[Bommel et al., 1991] Bommel, P. v., Hofstede, A. t.,
and Weide, T. v. d. (1991). Semantics and verifi-
cation of object-role models. Information Systems,
16(5):471–495.

[Booch et al., 1999] Booch, G., Rumbaugh, J., and
Jacobson, I. (1999). The Unified Modelling Lan-
guage User Guide. Addison-Wesley, Reading, Mas-
sachusetts, USA. ISBN 0-201-57168-4

[Bronts et al., 1995] Bronts, G., Brouwer, S.,
Martens, C., and Proper, H. (1995). A Unifying
Object Role Modelling Approach. Information
Systems, 20(3):213–235.

[Bubenko, 1986] Bubenko, J. (1986). Information
System Methodologies - A Research View. In Olle,
T., Sol, H., and Verrijn-Stuart, A., editors, Infor-
mation Systems Design Methodologies: Improving
the Practice, pages 289–318. North-Holland/IFIP
WG8.1, Amsterdam, The Netherlands, EU.

[Campbell et al., 1996] Campbell, L., Halpin, T.,
and Proper, H. (1996). Conceptual Schemas with
Abstractions – Making flat conceptual schemas
more comprehensible. Data & Knowledge Engi-
neering, 20(1):39–85.

[Creasy and Proper, 1996] Creasy, P. and Proper, H.
(1996). A Generic Model for 3-Dimensional Con-
ceptual Modelling. Data & Knowledge Engineering,
20(2):119–162.

[Cruse, 2000] Cruse, A. (2000). Meaning in Lan-
guage, an Introduction to Semantics and Pragmat-
ics. Oxford University Press, Oxford, United King-
dom, EU. ISBN 0-198-70010-5

[Derksen et al., 1996] Derksen, C., Frederiks, P., and
Weide, T. v. d. (1996). Paraphrasing as a Tech-
nique to Support Object-Oriented Analysis. In
Riet, R. v. d., Burg, J., and Vos, A. v. d.,
editors, Proceedings of the Second Workshop on
Applications of Natural Language to Databases
(NLDB’96), pages 28–39, Amsterdam, The Nether-
lands.

[Embley et al., 1992] Embley, D., Kurtz, B., and
Woodfield, S. (1992). Object-Oriented Systems
Analysis – A model-driven approach. Yourdon
Press, Englewood Cliffs, New Jersey, USA. ASIN
0136299733

[Falkenberg et al., 1998] Falkenberg, E., Verrijn-
Stuart, A., Voss, K., Hesse, W., Lindgreen, P.,
Nilsson, B., Oei, J., Rolland, C., and Stamper,
R. a., editors (1998). A Framework of Information
Systems Concepts. IFIP WG 8.1 Task Group
FRISCO. ISBN 3-901-88201-4

[Finkelstein et al., 1992] Finkelstein, A., Kramer, J.,
Nuseibeh, B., Finkelstein, L., and Goedicke, M.
(1992). Viewpoints: a framework for integrating
multiple perspectives in system de-velopment. In-
ternational Journal on Software Engineering and
Knowledge Engineering, Special issue on Trends
and Research Directions in Software Engineering
Environments, 2(1):31–58.

[Frederiks and Weide, 2004] Frederiks, P. and Weide,
T. v. d. (2004). Information modeling: the pro-
cess and the required competencies of its partici-
pants. In F. Meziane, E. M., editor, 9th Interna-
tional Conference on Applications of Natural Lan-
guage to Information Systems (NLDB 2004), vol-
ume 3136 of Lecture Notes in Computer Science,
pages 123–134, Manchester, United Kingdom, EU.
Springer Verlag.

[Halpin, 2001] Halpin, T. (2001). Information Mod-
eling and Relational Databases, From Conceptual
Analysis to Logical Design. Morgan Kaufman, San
Mateo, California, USA. ISBN 1-55860-672-6

[Hofstede and Weide, 1993] Hofstede, A. t. and
Weide, T. v. d. (1993). Expressiveness in concep-
tual data modelling. Data & Knowledge Engineer-
ing, 10(1):65–100.

[Hoppenbrouwers et al., 1997] Hoppenbrouwers, J.,
Vos, B. v. d., and Hoppenbrouwers, S. (1997). Nl
structures and conceptual modelling: Grammal-
izing for KISS. Data & Knowledge Engineering,
23(1):79–92.

[Hoppenbrouwers, 2003] Hoppenbrouwers, S. (2003).
Freezing Language; Conceptualisation processes in
ICT supported organisations. PhD thesis, Univer-
sity of Nijmegen, Nijmegen, The Netherlands, EU.
ISBN 9090173188

[IEEE, 2000] IEEE (2000). Recommended Practice
for Architectural Description of Software Inten-
sive Systems. Technical Report IEEE P1471-2000,
IEEE Standards Department, The Architecture
Working Group of the Software Engineering Com-
mittee. ISBN 0-738-12518-0
http://www.ieee.org

[ISO, 1998] ISO (1998). Information technology –
Open Distributed Processing – Reference model:
Overview. ISO/IEC 10746-1:1998(E).
http://www.iso.org

[Jonkers et al., 2003] Jonkers, H., Hoppenbrouwers,
S., Iacob, M.-E., Janssen, W., Lankhorst, M.,
Leeuwen, D. v., Proper, H., Stam, A., Torre, L.
v. d., Veldhuijzen van Zanten, G., Buuren, R. v.,
Arbab, F., Boer, F. d., Bonsangue, M., Bosma,
H., Doest, H. t., Groenewegen, L., and Guillen
Scholten, J. (2003). Towards a Language for Coher-
ent Enterprise Architecture Descriptions. In Steen,
M. and Bryant, B., editors, 7th IEEE International
Enterprise Distributed Object Computing Confer-
ence (EDOC 2003), pages 28–39, Brisbane, Aus-
tralia. IEEE Computer Society Press, Los Alami-
tos, California, USA. ISBN 0769519946

[Jonkers et al., 2004] Jonkers, H., Lankhorst, M.,
Buuren, R. v., Hoppenbrouwers, S., Bonsangue,
M., and Torre, L. v. d. (2004). Concepts for Mod-
eling Enterprise Architectures. International Jour-
nal of Cooperative Information Systems, 13(3):257–
288.

[Kishore et al., 2004] Kishore, R., Zhang, H., and
Ramesh, R. (2004). A helix-spindle model for onto-
logical engineering. Communications of the ACM,
47(2):69–75.

[Kotonya and Sommerville, 1992] Kotonya, G. and
Sommerville, I. (1992). Viewpoints for require-
ments definition. IEE/BCS Software Engineering
Journal, 7(6):375–387.

[Kruchten, 1995] Kruchten, P. (1995). The 4+1 view
model of architecture. IEEE Software, 12(6):42–50.

[Kruchten, 2000] Kruchten, P. (2000). The Rational
Unified Process: An Introduction. Addison-Wesley,
Reading, Massachusetts, USA, 2nd edition. ISBN
0201707101

[Mylopoulos, 1998] Mylopoulos, J. (1998). Tech-
niques and languages for the description of infor-
mation systems. In Bernus, P., Mertins, K., and
Schmidt, G., editors, Handbook on Architectures of
Information Systems, International Handbooks on
Information Systems. Springer, Berlin, Germany,
EU. ISBN 3-540-64453-9

[Nijssen and Halpin, 1989] Nijssen, G. and Halpin,
T. (1989). Conceptual Schema and Relational
Database Design: a fact oriented approach.
Prentice-Hall, Sydney, Australia. ASIN 0131672630

[Olle et al., 1988a] Olle, T., Hagelstein, J., Macdon-
ald, I., Rolland, C., Sol, H., van Assche, F., and
Verrijn-Stuart, A. (1988a). Information Systems
Methodologies: A Framework for Understanding.
Addison-Wesley, Reading, Massachusetts, USA.
ISBN 0-201-54443-1

[Olle et al., 1983] Olle, T., Sol, H., and Tully, C., ed-
itors (1983). Information Systems Design Method-
ologies: A feature analysis, York, England, EU.
North Holland/IFIP WG8.1. ISBN 0-444-86705-8

[Olle et al., 1982] Olle, T., Sol, H., and Verrijn-
Stuart, A., editors (1982). Information Sys-
tems Design Methodologies: A Comparative Re-
view. North-Holland/IFIP WG8.1, Amsterdam,
The Netherlands, EU. ISBN 0-444-86407-5

[Olle et al., 1986] Olle, T., Sol, H., and Verrijn-
Stuart, A., editors (1986). Information Sys-
tems Design Methodologies: Improving the prac-
tice, Noordwijkerhout, Netherlands, EU. North
Holland/IFIP WG8.1.

[Olle et al., 1988b] Olle, T., Sol, H., and Verrijn-
Stuart, A., editors (1988b). Information Sys-
tems Design Methodologies: Computerized assis-
tance during the information systems life cycle.
North Holland/IFIP WG8.1, Malham, England,
EU. ISBN 0-444-70512-0

[Peirce, 1969a] Peirce, C. (1969a). Volumes I and II
– Principles of Philosophy and Elements of Logic.
Collected Papers of C.S. Peirce. Harvard University
Press, Boston, Massachusetts, USA. ISBN 0-674-
13800-7

[Peirce, 1969b] Peirce, C. (1969b). Volumes V and
VI – Pragmatism and Pragmaticism and Scien-
tific Metaphysics. Collected Papers of C.S. Peirce.
Harvard University Press, Boston, Massachusetts,
USA. ISBN 0-674-13802-3

[Proper and Hoppenbrouwers, 2004] Proper, H. and
Hoppenbrouwers, S. (2004). Concept evolution in
information system evolution. In Gravis, J., Pers-
son, A., and Stirna, J., editors, Forum proceedings
of the 16th Conference on Advanced Information
Systems 2004 (CAiSE 2004), pages 63–72, Riga,
Latvia, EU. Faculty of Computer Science and In-
formation Technology.

[Proper and Weide, 1994] Proper, H. and Weide, T.
v. d. (1994). EVORM - A Conceptual Modelling
Technique for Evolving Application Domains. Data
& Knowledge Engineering, 12:313–359.

[Putnam, 1975] Putnam, H. (1975). The meaning of
meaning. In Mind, Language, and Reality, Cam-
bridge, United Kingdom, EU. Cambridge Univer-
sity Press.

[Reeves et al., 1995] Reeves, J., Marashi, M., and
Budgen, D. (1995). A software design framework or
how to support real designers. IEE/BCS Software
Engineering Journal, 10(4):141–155.

[TOGAF, 2004] TOGAF (2004). TOGAF – The
Open Group Architectural Framework. The Open
Group.
http://www.togaf.org

[Veldhuijzen van Zanten et al., 2004] Veldhuijzen
van Zanten, G., Hoppenbrouwers, S., and Proper,
H. (2004). System Development as a Rational
Communicative Process. Journal of Systemics,
Cybernetics and Informatics, 2. To appear.

[Verrijn-Stuart and Olle, 1991] Verrijn-Stuart, A.
and Olle, T., editors (1991). Methods and Associ-
ated Tools for the Information Systems Life Cycle,
Maastricht, Netherlands, EU. North Holland/IFIP
WG8.1. ISBN 0-444-82074-4

[Wood-Harper et al., 1985] Wood-Harper, A., Antill,
L., and Avison, D. (1985). Information Systems
Definition: The Multiview Approach. Blackwell
Scientific Publications, Oxford, United Kingdom,
EU. ISBN 0-632-01216-8

[Zachman, 1987] Zachman, J. (1987). A framework
for information systems architecture. IBM Systems
Journal, 26(3).

