

3 Foundations

This chapter lays down the fundamental ideas and choices on which our
approach is based. First, it identifies the needs of architects in the design,

communication, realisation, and change of enterprise architectures. It then

describes the central role of architecture models in our approach, the use of
models in communication, the relationship between models and their pres-

entation, and the formalisation of the meaning (i.e., semantics) of models.

3.1 Getting to Grips with Architectural Complexity

Companies have long recognised the need for an integrated architectural
approach, and have developed their own architecture practice. Neverthe-

less, they still experience a lack of support in the design, communication,

realisation, and management of architectures. Several needs can be catego-
rised as follows with respect to different phases in the architecture life cy-

cle:

− Design: When designing architectures, architects should use a common,

well-defined vocabulary to avoid misunderstandings and promote clear
designs. Such a vocabulary must not just focus on a single architecture

domain, but should allow for the integration of different types of archi-

tectures related to different domains. Next to a common language, archi-

tects should be supported in their design activities by providing me-
thodical support, general and organisation-specific guidelines, best

practices, drawing standards, and other means that promote the quality

of the architectures. Furthermore, to facilitate the design process, which
is iterative and requires changes and updates to architectures, support

for tracking architectural decisions and changes is desirable.

− Communication: Architectures are shared with various stakeholders

within and outside the organisation, e.g., management, system design-

ers, or outsourcing partners. To facilitate the communication about ar-
chitectures, it should be possible to visualise precisely the relevant as-

pects for a particular group of stakeholders. Especially important in this

respect is to bring about a successful communication on relations among

48 Foundations

different domains described by different architectures (e.g., processes

vs. applications), since this will often involve multiple groups of stake-

holders. Clear communication is also very important in the case of out-
sourcing of parts of the implementation of an architecture to external

organisations. The original architect is often not available to explain the

meaning of a design, so the architecture should speak for itself.

− Realisation: To facilitate the realisation of architectures and to provide

feedback from this realisation to the original architectures, links should

be established with design activities on a more detailed level, e.g., busi-

ness process design, information modelling, or software development.
Companies use different concepts and tools for these activities, and rela-

tions with these should be defined. Furthermore, integration with exist-

ing design tools in these domains should be provided.

− Change: An architecture often covers a large part of an organisation and

may be related to several other architectures. Therefore, changes to an
architecture may have a profound impact. Assessing the consequences

of such changes beforehand and carefully planning the evolution of ar-

chitectures are therefore very important. Until now, support for this has
been virtually non-existent.

3.1.1 Compositionality

In current practice, enterprise architectures often comprise many heteroge-

neous models and other descriptions, with ill-defined or completely lack-
ing relations, inconsistencies, and a general lack of coherence and vision.

The main driver behind most of the needs identified above is the complex-

ity of architectures, their relations, and their use. Many different architec-
tures or architectural views co-exist within an organisation. These architec-

tures need to be understood by different stakeholders, each at their own

level. The connections and dependencies that exist among these different

views make life even more difficult. Management and control of these
connected architectures is extremely complex. Primarily, we want to create

insight for all those that have to deal with architectures.

The standard approach to dealing with the complexity of systems is to
use a compositional approach, which distinguishes between parts of a sys-

tem, and the relations between these parts. To understand how a car func-

tions we first describe the parts of the car such as the engine, the wheels,

the air conditioning system, and then we describe the relationship among
these parts. Likewise we understand the information system of a company

as a set of systems and their relations, and we understand a company as a

set of business processes and their relations.

Getting to Grips with Architectural Complexity 49

Compositionality also plays a central role in the architectural approach.

For example, the IEEE 1471 standard defines architecture as the funda-

mental organisation of a system embodied in its components, their rela-
tionships to each other, and to the environment (together with principles

guiding its design and evolution). Moreover, compositionality also plays a

role when varying viewpoints on a system are defined. The latter type of
decompositions are usually functional, in the sense that the functionality of

an architecture is decomposed in the functionality of its parts and their re-

lations.

3.1.2 Integration of Architectural Domains

The main goal of our approach is the integration of architectural domains,

to deal with the complexity of architecture as a discipline, and to provide

insight for all those that have to deal with architectures. There are many
instances of this integration problem, of which we discuss two examples

below. These examples also play their role in the remaining chapters of

this book. In general, some integration problems can be easily solved: for
example, by using an existing standard; others are intrinsic to the architec-

tural approach and cannot be ‘solved’ in the usual sense. These hard cases

are intrinsic to the complexity of architecture, and removing the problem
would also remove the notion of architecture itself. We cannot get rid of

the integration problems; we can only develop concepts and tools to make

it easier to deal with these issues. This is illustrated by Example 1 below.

Example 1. As a first example of an integration problem, consider Fig. 3.1, which

contains several architectures. The five architectures may be models expressed in

UML, or models from cells of Zachman’s architectural framework, or any kind of

combination. For instance, there may be a company that has modelled its applica-

tions in UML and its business processes in BPMN. In all these cases, it is unclear

how concepts in one view are related to concepts in another view. Moreover, it is
unclear whether views are compatible with each other.

The integration of the architectures in Fig. 3.1 is problematic because these

five architectures are developed by distinct stakeholders with their own

concerns. Relating architectures means relating the ideas of these stake-
holders, most of which remain implicit. A consequence is that we often

cannot assume to have complete one-to-one mappings, and the best we can

ask for is that views are in some sense consistent with each other. This is
often called a problem of alignment, and the UML–BPMN example is

called a business–IT alignment problem.

50 Foundations

Process architectureProcess architecture

Application architectureApplication architecture Technical architectureTechnical architectureTechnical architecture

Information architectureInformation architecture Product architectureProduct architecture

??

??

??

??

??

Fig. 3.1. Heterogeneous architectural domains.

In the complex integration cases that involve multiple stakeholders, it is

clear that integration is a bottom-up process, in the sense that first concepts
and languages of individual architectural domains are defined, and only

then is the integration of the domains addressed. We can summarise Ex-

ample 1 by observing that the integration of architectures is hard due to the
fact that architectures are given and used in practice, and cannot be

changed. It is up to those who integrate these architectures to deal with the

distinct nature of architectural domains.
When we talk about the integration of architectural domains, we need a

language in which we can describe these domains. For example, some

sources refer to entities and relations, as in entity–relationship diagrams.
Others refer to classes and objects, like in object-oriented modelling and

software engineering. And yet others refer to concepts and instances; for

example, in the area of conceptual modelling. These abstract concepts
have been defined at a high level of abstraction, but often they also contain

some implicit assumptions. For example, entities and relations are assumed
to be finite, because databases are finite, which is not the case with con-

cepts. There are many architecture languages, some of which we have dis-

cussed in Chap. 2, but here also terminology varies.
An architecture language is not only needed for the description of inte-

grated architectures, but also a prerequisite for linking the different tools

used in the various architectural domains. Furthermore, an integrated lan-
guage facilitates the analysis of architectures across domains and the reuse

of analysis results from specific domains on an integrated level.

It would be foolish to suggest an entirely new architecture language that
is built from scratch and ignores already existing developments. In this

Getting to Grips with Architectural Complexity 51

book we therefore take a pragmatic approach, and reuse elements from

other languages, approaches, and techniques whenever possible.
When looking at everyday architectural practice, it is clear that some in-

tegration problems occur more frequently than others. A typical pattern is

that some architectural models describe the structure of an architecture at
some point in time, whereas other models describe how the architecture

changes over time. The second example that we discuss in this chapter ad-

dresses this issue.

Example 2. As a second example of an integration problem, consider the first two

viewpoints of the IEEE 1471 standard (IEEE Computer Society 2000): the struc-

tural viewpoint and the behavioural viewpoint. How are structure and behaviour

related?

The second example touches on a problem that has been studied for a long
time: the integration of structural and behavioural models. One instance of

this problem is how structural concepts like software components are re-

lated to behavioural concepts like application functions. Another area
where this issue has been studied is in formal methods and in simulation.

The enterprise modelling language described in Chap. 5 shows a strong

symmetry between the behavioural and the structural aspects. A service is
an ‘external’ reflection of the ‘internal’ behaviour that realises it, analo-

gous to the way in which an interface is an ‘external’ reflection of the ‘in-

ternal’ structure behind it. For the internal behaviour, we distinguish be-
tween individual behaviour assigned to an individual structural element

and collective behaviour assigned to a collaboration of structural elements.

In the next sections, we will go deeper into the foundations of our ap-
proach to modelling enterprise architectures, and in particular into the in-

tegration of architectures. However, just like architectural diagrams are of-

ten misinterpreted due to the fact that each stakeholder interprets the
picture in its own way, architectural concepts also are often misinterpreted.

This has led to the IEEE 1471 standard which had the ambition to resolve

these ambiguities. Despite the fact that there seems to be increasing con-
sensus on the terminology used, in practice one still finds many distinct

definitions of relevant architectural concepts, such as model, meta-model,

and view.
In this chapter we define the notions we need in the remainder of the

book. These definitions are based on several standards, most importantly

the IEEE 1471 standard, the conventions in UML, and other conventions
used in daily practice. In general, we develop a language to talk about the

integration of architectural domains, and we have to be precise as all con-

cepts have been used in other areas too, and typically are already over-

52 Foundations

loaded. In the architectural definitions we incorporate fundamental notions

of architecture; for example, that an architecture never refers to reality, but
only to some abstraction of it.

3.2 Describing Enterprise Architectures

To cope with the complexity of enterprise architecture, the representation

of the essence of an architecture in the unambiguous form of a model can
be of great value. We do not want to define the details of the individual ar-

chitectural domains themselves. That would be the task of the architecture

discipline within that particular field. Instead, we concentrate on what is
essential for enterprise architecture, and therefore we limit ourselves to the

core elements of these domains and focus especially on the relations and

interactions between them. Precise definitions and constraints will help us
to create insight into the complexity of the enterprise architecture and to

evade conflicts and inconsistencies between the different domains. For

this, we use models.
A model is an abstract and unambiguous conception of something (in

the real world) that focuses on specific aspects or elements and abstracts

from other elements, based on the purpose for which the model is created.
In this context, models are typically represented using a formalised graphi-

cal or textual language. Because of their formalised structure, models lend

themselves to various kinds of automated processing, visualisation, analy-
sis, tests, and simulations. Furthermore, the rigour of a model-based ap-

proach also compels architects to work in a more meticulous way and

helps to dispel the unfavourable reputation of architecture as just drawing

some ‘pretty pictures’.
Different stakeholders, however, have a different view of the world. Not

everyone’s needs can be easily accommodated by a single model. Let us

therefore first consider what happens if some viewer observes ‘the uni-
verse’ around him or her.

3.2.1 Observing the Universe

We assume that any viewer that perceives the world around him or her first
produces a conception, i.e., a mental representation, of that part he or she

deems relevant. The viewer cannot communicate directly about such a

conception, unless it is articulated it somehow. In other words, a concep-
tion needs to be represented. Peirce (1969a–d) argues that both the percep-

Describing Enterprise Architectures 53

tion and conception of a viewer are strongly influenced by the viewer’s in-

terest in the observed universe.
In our case, the viewer is a stakeholder of (part of) the organisational,

technical, or other systems that make up the enterprise, i.e., the universe

that the viewer observes. The conception of this universe then is the archi-
tecture of the enterprise. The representation of this architecture is an archi-

tecture description, which may contain models of the architecture, but also,

for example, textual descriptions.

enterprise

architecture

architecture

description

stakeholder

Fig. 3.2. Relationship between enterprise, stakeholder, architecture, and architec-

ture description.

The underlying relationships between stakeholder, enterprise, architec-

ture, and architecture description can be expressed in the form of a tetrahe-

dron, as depicted in Fig. 3.2, which is based on the FRISCO tetrahedron
(Falkenberg et al. 1998).

3.2.2 Concerns

So in conceiving a part of the enterprise, stakeholders will be influenced

by their particular interest in the observed enterprise, i.e., their concerns.
Note that stakeholders, as well as their concerns, may be regarded at an

aggregated as well as at an individual level. For example, a single business

manager conceiving an information system is a stakeholder. The collective
business management, however, can also be seen as a stakeholder of the

information system.

Yet concerns are not the only factors that influence a stakeholder’s con-
ception of a domain. Another important factor is the preconceptions a

stakeholder may harbour as they are brought forward by his or her social,

54 Foundations

cultural, educational, and professional background. More specifically, in

the context of system development, architects will approach a domain with
the aim of expressing the domain in terms of some set of concepts, such as

classes, activities, constraints, etc. The concepts an architect is used to us-

ing (or trained to use) when modelling some (part of a) domain, will
strongly influence the conception of that architect. As Abraham Maslow

said: ‘If the only tool you have is a hammer, you tend to see every problem

as a nail.’
We therefore presume that when architects model a domain, they do so

from a certain perspective. In general, people tend to think of the universe

(the ‘world around us’) as consisting of related elements. In our view,
however, to presume that the universe consists of a set of elements is al-

ready a subjective choice, made (consciously or not) by the viewer observ-

ing the universe. The choice being made is that ‘elements’ (or ‘things’) and
‘relations’ are the most basic concept for modelling the universe. In this

book, we will indeed make this assumption, and presume that an archi-

tect’s conception of the universe, i.e., an architecture, consists of such ele-
ments.

3.2.3 Observing Domains

Viewers may decide to zoom in on a particular part of the universe they

observe, or, to state it more precisely, they may zoom in on a particular
part of their conception of the universe, in our case the enterprise. This al-

lows us to define the notion of a domain as:

Domain: any subset of a conception (being a set of elements) of the
universe that is conceived of as being some ‘part’ or ‘aspect’ of the

universe.

In the context of (information) system development, we have a particular
interest in unambiguous abstractions from domains. This is what we refer

to as a model:

Model: a purposely abstracted and unambiguous conception of a

domain.

Note that both the domain and its model are conceptions harboured by the

same viewer. We are now also in a position to define more precisely what

we mean by modelling:

Modelling: the act of purposely abstracting a model from (what is

conceived to be) a part of the universe.

Describing Enterprise Architectures 55

For practical reasons, we will understand the act of modelling also to in-

clude the activities involved in the representation of the model by means of
some language and medium. We presume architects not only to be able to

represent (parts of) their conceptions of the enterprise, but also to be able

to represent (parts of) the perspectives they use in producing this concep-
tion. This requires architects to be able to reflect on their own working

process. When modelling a domain in terms of, say, UML class diagrams,

we presume that they are able to express the fact that they are using
classes, aggregations, associations, etc., to describe the domain being

modelled.

3.2.4 Views and Viewpoints

Very often, no stakeholder apart from perhaps the architect is interested in
the architecture in its full scope and detail. As we observed in Sect. 3.2,

different viewers have different conceptions of the universe they perceive.

Their concerns dictate which parts of an enterprise architecture they deem
relevant.

Stakeholders therefore require specific views of an architecture that fo-

cus on their concerns and leave out unnecessary information. Since we put
models central in our description of architectures, this implies that we have

to provide different views of these models to accommodate the stake-

holders’ needs.
A view is specified by means of a viewpoint, which prescribes how

views that address particular concerns of the stakeholders are constructed,

given the architecture under consideration. What should and should not be

visible from a specific viewpoint is thus entirely dependent on the stake-
holder’s concerns.

The IEEE 1471 standard (IEEE Computer Society 2000) defines views

and viewpoints as follows:

View: a representation of a system from the perspective of a related

set of concerns.

Viewpoint: a specification of the conventions for constructing and

using a view; a pattern or template from which to develop individual

views by establishing the purposes and audience for a view and the

techniques for its creation and analysis.

Simply put, a view is what you see, and a viewpoint tells from where you
are looking. For example, you might define a ‘financial viewpoint’ that

tells you how to show, say, the costs for building certain applications. Ap-

56 Foundations

plying that viewpoint to a model of the new customer relationship man-

agement (CRM) system of your company results in a financial view of that

system which shows its costs.

3.2.5 Ways of Working

Creating and using architecture models typically involves several related

‘ways of working’ (Wijers and Heijes 1990):

− A way of thinking: articulates the assumptions about the kinds of prob-

lem domains, solutions, and modellers involved.

− A way of modelling: identifies the core concepts of the language that

may be used to denote, analyse, visualise, and/or animate architecture

descriptions.

− A way of communicating: describes how the abstract concepts from the

way of modelling are communicated to human beings, e.g., in terms of a
textual or a graphical notation (syntax, style, medium).

− A way of working: structures (parts of) the way in which a system is

developed. It defines the possible tasks, including sub-tasks, and order-

ing of tasks, to be performed as part of the development process. It fur-
thermore provides guidelines and suggestions (heuristics) on how these

tasks should be performed.

− A way of supporting: the support that is offered by (possibly auto-

mated) tools for the handling (creating, presenting, modifying, etc.) of

models and views. In general, a way of supporting is supplied in the
form of some computerised tool.

− A way of using: identifies heuristics that:

• define situations, classes of stakeholders, and concerns for which a

particular model or viewpoint is most suitable;

• provide guidance in tuning the viewpoint to specific situations,

classes of stakeholders, and their concerns.

In this book, we try to give attention to each of these ‘ways’, since in our

view they are all essential to the effective use of architectures.

3.2.6 Enterprise Architecture Models

In an ideal situation, we would have a single model for an enterprise archi-
tecture, to ensure coherence and consistency between all its different parts.

In reality, such a model will probably never exist, especially when we talk

about multiple architectural domains. However, it is something we may
‘think into existence’ without actually constructing the model. In practice,

Describing Enterprise Architectures 57

an architecture (and especially an enterprise architecture) will arise in a

bottom-up fashion. Partial models from different domains will be con-

structed according to the needs in those domains. Where these touch upon
each other, inconsistencies may appear, which need to be resolved eventu-

ally since the real-world system being designed must of course be consis-

tent. In this way, we slowly move towards this Platonic underlying model,
and the partial models from which it is constructed can be seen as views of

the total architecture.

Having such a single underlying model makes it possible to create pow-

erful techniques for visualisation and analysis of enterprise architectures,
even if this model is incomplete and not fully consistent. Currently, if a

stakeholder requires information on some aspect of an architecture that

crosscuts several domains, a specialised view of the architecture will
probably be patched together manually by integrating information from

many different sources in these domains.2 If we suppose that there is this

single underlying model of an architecture, a view of this architecture can
be expressed as a projection or subset of this model. Appropriate software

tools can then automatically generate these views.

Consider the example in Sect. 3.1 on the integration of structural and
behavioural views. To relate the two, we have to consider models and tran-

sitions of models. But in relating static and dynamic aspects, a new distinc-

tion appears. Are we talking about changes within a model, or changes of
the modelling concepts, i.e., the conception of the universe? That is, is the

change exogenous or endogenous? This distinction reveals itself only

when we relate the structural and behavioural descriptions, not when we
consider them in isolation.

As another example, consider the change from batch processing systems

to service-oriented architectures. Someone working with batch processing
systems twenty years ago could not explain to us today why they do not

use service-oriented architecture, because the concept of service-oriented

architecture did not yet exist. Since the concept had not been invented yet,
it is not just a structural change within the model, but a change at the meta-

level of the concepts underlying the model.

The importance of the set of concepts which are used to describe an ar-
chitecture is acknowledged in the frequent use of ‘ontology’ within model-

ling. In our case, we refer to the set of concepts as the signature of the ar-

chitecture. Moreover, the change of signatures and models leads to our
notion of actions in views. This is explained in more detail in Sect. 3.3.

2 One of the ArchiMate project partners has in the past invested more than one

man-year in creating one specific view of an existing architecture…

58 Foundations

3.3 Pictures, Models, and Semantics

In many engineering disciplines, modelling a system consists of construct-
ing a mathematical model that describes and explains it. In the fields of en-

terprise and software architecture, however, there is an overwhelming ten-

dency to see pictures and diagrams as a form of model rather than as a
form of language, or, to be more precise, as a form of structure that helps

in visualising and communicating system descriptions. In other words, in

architecture there is a tendency to replace mathematical modelling by ad
hoc visualisations.

In this book we follow the standard practice in engineering disciplines.

Consequently, when we compare architectures like the ones in Fig. 3.1, we
ignore irrelevant issues that have to do with arbitrary visualisation. We

therefore distinguish between the content and the visualisation of a model

or view, where the first refers to the concepts involved, and the second re-
fers to the form in which these are presented.

For example, in one visualisation of an architecture a process may be

visualised as a circle, and in another one by a square. Moreover, the con-
tent may express that one concept is more important than another one,

which is visualised by drawing the first concept above the second one. The

same relation of importance can also be visualised by the intensity of the
colour which is used to visualise the concepts. The architect is motivated

to make explicit whether visual information like ‘above’ or ‘red’ has a

meaning in the model, or is incidental. When something is incidental the
architect is motivated to remove it from the picture, as it only distracts

from the message of the picture. When it is meaningful, its meaning has to

be made explicit. When a new viewpoint is defined, the content and its
visualisation can be defined in two separate phases.

The ‘content’ and ‘visualisation’ should be interpreted here in a loose

way. For example, the visualisation may also include input devices such as
menus or buttons, and the content may also include actions that change the

model by for example adding or deleting concepts. Actions in models are

used here to deal with interaction with the user.
Our motivation to stress the importance of modelling is that there is

something about architecture independent of visualisation. Two distinct

views, which are based on viewpoints from stakeholders with distinct con-
cerns, still have something in common. This is called the semantics of the

architecture. Semantics does not have to be explicitly given, it can also be

an unspoken common understanding among the users of the architecture. It
does not have to be one unified semantics, as there can also be several se-

mantics for different purposes and uses of the architecture. But in the latter

Pictures, Models, and Semantics 59

case, these semantics again have something in common. Perhaps they just

have to be consistent.
The importance of semantics has been emphasised in several other areas

too, with a related motivation. In some parts of computer science, the term

‘semantics’ of something in a model is often used to refer to the ‘effect’ of
that something in the model, referring to the dynamics within that model.

In linguistics there is a much older distinction between syntax, semantics,

and pragmatics. Another example is in the meaning of information on the
Web: Web pages have traditionally been used to describe all kinds of is-

sues, but they often refer to the same objects using distinct terminology.

This led Tim Berners-Lee to the invention of the semantic Web, where on-
tologies play a crucial role.

3.3.1 Symbolic and Semantic Models

To make the notion of semantics explicit, we distinguish between a sym-

bolic model and a semantic model. A symbolic model expresses properties
of architectures of systems. It therefore contains symbols that refer to real-

ity, which explains the name of this type of model.

A symbolic model expresses properties of architectures of systems

by means of symbols that refer to reality.

The role of symbols is crucial, as we do not talk about systems without us-

ing symbols. The reason is that systems are parts of reality, and we can
only talk about reality by using some symbolic form of communication.

When stakeholders refer to architectures and systems, they can do so

only by interpreting the symbols in the symbolic models. We call such an
interpretation of a symbolic model a semantic model.

A semantic model is an interpretation of a symbolic model, ex-

pressing the meaning of the symbols in that model.

A semantic model does not have a symbolic relation to architecture, as it
does not contain symbolic references to reality.

However, there is a relation between semantic model and reality, be-

cause a semantic model is an abstraction of the architecture. To understand
this relation between semantic model and architectures, one should realise

that an important goal of modelling is to predict reality. When a symbolic

model makes a prediction, we have to interpret this prediction and test it in
reality. The relevant issue in the relation between a system and semantic

60 Foundations

models of it is how we can translate results such that we can make test

cases for the symbolic model.
There are various ways in which we can visualise the relation between

the four central concepts of enterprise, architecture, symbolic model, and

semantic model. We put the concept of architecture central, as is illustrated
in Fig. 3.3.

Symbolic

Models

Architecture

Enterprise

Semantic

Models
interpreted by

abstracted byexpressed by

has

Fig. 3.3. The enterprise, its architecture, symbolic and semantic models.

There are three important observations we have to make here. First, the
above four concepts and their relations are used in engineering both for in-

formal as well as formal models. The relevant distinction we emphasise
between symbolic and semantic models is the distinction between using

symbols to refer to reality, and abstractions of reality that only refer to re-

ality by interpreting the symbols of the symbolic model. Note that this is
not the same distinction as that between informal and formal models:

within the class of informal models, expressed for example in natural lan-

guage, both kinds exist, as well as within the class of formal models, ex-
pressed for example in first-order logic.

Second, an architecture may be expressed by multiple symbolic models,

and one symbolic model may in turn be interpreted by several semantic
models. For example, we might define separate semantic models for per-

formance and for cost of a system that is expressed by one symbolic

model, e.g., in UML.
Third, in architecture often a distinction is made between the architec-

tural semantics and the formal semantics of a modelling language. As ex-

plained in Sect. 3.2.1, the enterprise under consideration is thought of in

Pictures, Models, and Semantics 61

terms of architecture concepts, which exist in the minds of, for instance,

the enterprise architect. These concepts can be represented in models,
which are expressed in a modelling language. Architectural semantics is

defined as the relationship between architectural concepts and their possi-

ble representations in a modelling language (Turner 1987). To understand
this distinction, consider Venn diagrams. They are useful structures for the

visualisation of the language of Boolean logic, but they are not a model

themselves. Their semantic model is given by the set-theoretical explana-
tion of their meaning. The formal semantics of a model or language, on the

other hand, is a mathematical representation of specific formal properties

of that model or language. The formal semantics of a computer program,
for example, expresses the possible computations of that program. Differ-

ent branches of formal semantics exist, such as denotational, operational,

axiomatic, and action semantics. Harel and Rumpe (2004) give a clear ex-
planation of the need for rigorously defining the semantics of modelling

languages.

There are two kinds of abstraction we use in creating a model of reality.
The first is abstracting from (properties of) the precise entity in reality to

which a concept refers. This occurs for example when we make a model of

the static structure of an application in terms of its components, leaving out
(i.e., abstracting from) their behaviour. The second kind is abstraction

from differences between entities in reality by grouping them into a single

concept. This is sometimes referred to as generalisation, and occurs for ex-
ample when we use the concept ‘employee’, which groups the individuals

in a company. This is related to the notion of ‘sorts’ discussed below.

3.3.2 Symbolic Models

A symbolic model is the formalisation of one or more aspects of the archi-
tecture of a concrete system. It comprises those parts of an architecture that

can be modelled mathematically, as opposed to the more pragmatic aspects

of an architecture that are concerned with characteristic notions like ration-
ale, goals, and plans.

A symbolic model is expressed using a description language, a represen-

tation of the model that is often confused with its interpretation. For exam-
ple, the expression 3 + 5 may be intended to mean a particular natural

number, but here is just notation for the syntactic model of the natural

numbers. Strictly speaking, a description language describes both the syn-

tactic structure of the model and its notation, i.e., the words or symbols
used for the concepts in the language. As we explained in Sect. 3.3.1, we

62 Foundations

make a strict separation between structure and the notation, and we will

use the term ‘model’ to refer to the structure.

The core of every symbolic model is its signature. It categorises the en-
tities of the symbolic model according to some names that are related, lin-

guistically or by convention, to the things they represent. These names are

called sorts. Relations between entities of some sorts and operations on
them are also declared as relation symbols in the signature. After the rela-

tions have been specified, they can be used in languages for constraining

further or analysing the nature of the symbolic model. An example is in

order here, before we go any further. Fig. 3.4 exhibits a structural descrip-
tion of the employees of a company.

DirectorDirector EmployeeEmployee

Responsible_for

Fig. 3.4. Symbolic model of the director–employee relationship.

We need to recall that the above is a syntactic structure; that is, a de-

scription of a symbolic model with a signature whose sorts are Employee

and Director, and with respective entities related by a relation named Re-
sponsible_for. As yet we have assigned no meaning to it; we have only

categorised the entities of the symbolic model into two categories and

named a relation between the entities belonging to two sorts. The syntactic
names used for the sorts and relations push our intuition some steps ahead:

we know what an employee is, what a director is, and what responsible for

means. However, while these syntactic names help us in our understand-

ing, they are also the main source of confusion in the communication and
analysis of an architecture. We could have named the above sorts X and Y

better to retain the meaningless quality of the syntax, and avoid confusion

with semantics.
A signature thus provides a conceptual glossary in whose terms every-

thing else in the symbolic model must be described, similar to an English

dictionary for the English language. Additionally, a signature comprises
information to capture certain aspects of the ontology of an architecture.

For example, it may include hierarchical information between sorts in

terms of an ‘is-a’ relationship, or containment information in terms of an

‘includes’ relationship, or dependency information in terms of a ‘requires’
relationship. Signatures that contain this additional information are more

general than a glossary. They provide a conceptual schema, similar to the

schema provided to biologists by the species classification.

Pictures, Models, and Semantics 63

DirectorDirector EmployeeEmployee

Responsible_for

Fig. 3.5. Extended symbolic model.

For example, Fig. 3.5 extends the previous signature with an ‘is-a’ rela-

tionship between the sorts Director and Employee (denoted by a UML in-

heritance relation), intuitively suggesting that every director is also an em-

ployee.
Moreover, the symbolic model may also contain a set of actions, and the

signature a set of action symbols, the meaning of which we discuss below.

3.3.3 Semantic Models

The formalised meaning of a symbolic model is given by a semantic
model, an interpretation of the symbolic model. A semantic model usually

assumes the existence of some mathematical objects (sets, for example),
used to represent the basic elements of a symbolic model. Operations and

relations of a symbolic model are mapped to usually better understood op-

erations and relations amongst the mathematical objects.
As an example, the formal semantics of a signature is provided by a col-

lection of sets (one for each sort of the signature), and a set of relations and

functions among them, one for each relation symbol and function symbol
in the signature. Hierarchical information between sorts is captured by the

ordinary subset inclusion, whereas containment information is denoted by

the usual element-of relation.
It is clear that,in general, there can be a large number of different inter-

pretations for the same symbolic model. This reflects the intuition that

there can be many architectures that fit a specific architecture description.
In fact, the signature of a symbolic model of an architecture specifies only

some basic building blocks by means of which the architecture is de-

scribed.
In other words, we see the formal semantics of a symbolic model as a

concrete collection of mathematical objects interpreting a system accord-

ing to a specific architecture description. As such, it involves concrete
components and their concrete relationships which may change in time be-

cause of the dynamic behaviour of a system. Concrete situations of a sys-

tem are described by means of variables typed according to the sort of the
individuals they are referring to. More concretely, for a symbolic model,

we will denote by x:T a variable x which ranges over individuals of sort T.

For example, we could use the logical sentence

64 Foundations

∃ x : Director. ∀y : Employee. Responsible_for(x, y)

to constraint the interpretation of the sort Director to be a non-empty set.
Note that since Director is_a Employee, also the interpretation of the latter

sort will be non-empty.

The actions occurring in a symbolic model are interpreted as changes of
the model based on interaction with the user. To define actions, we have to

define the input variables of the action, and how we can retrieve these in-

put variables from the user. In Chap. 7 we discuss the use of actions in
models in viewpoints and visualisation, and in Chap. 10 we describe some

technical aspects of implementing these actions in models.

Finally, in our approach described more explicitly in Chap. 8, the formal
semantics is rich enough to capture the dynamics of a system by interpret-

ing the symbolic (and often pictorial) information available for describing

business and software processes in the ArchiMate language discussed in
Chap. 5.

In the remainder of the book, whenever we use the unqualified terms

‘model’ or ‘semantics’ of an architecture, we refer to its symbolic model
and formal semantics, which is the common interpretation of these terms

in the architecture discipline.

3.3.4 UML vs. ArchiMate

The ArchiMate approach can be contrasted with the original approach in

UML, which we described in Chap. 2. In this approach, semantics was ex-

plicitly left out of the program. People who used the models could develop
semantics for them, but a general semantics was not supplied. This ap-

proach also stemmed from the origins of UML as a combination of three

existing notations that did not have formal semantics. Hence, the focus of

UML was and is on notation, i.e., syntax, and not on semantics. Although
some of the diagrams of the more recent versions of UML have a formal

semantics (see, e.g., the token-based Petrinet-like semantics of activity

diagrams in UML 2.0), there is no overall semantics for the entire lan-
guage.

We have taken the opposite approach. We do not put the notation of the

ArchiMate language central, but rather focus on the meaning of the lan-

guage concepts and their relations. Of course, any modelling language
needs a notation and we do supply a standard way of depicting the Archi-

Mate concepts, but this is subordinate to the architectural semantics of the

language.

Summary 65

3.4 Summary

An integrated architectural approach is indispensable to control today’s

complex organisations and information systems. It is widely recognised
that a company needs to ‘do architecture’; the legacy spaghetti of the past

has shown us that business and ICT development without an architectural

vision leads to uncontrollable systems that can only be adapted with great
difficulty. However, architectures are seldom defined on a single level.

Within an enterprise, many different but related issues need to be ad-

dressed. Business processes should contribute to an organisation’s prod-
ucts and services, applications should support these processes, systems and

networks should be designed to handle the applications, and all of these

should be in line with the overall goals of the organisation. Many of these

domains have their own architecture practice, and hence different aspects
of the enterprise will be described in different architectures. These archi-

tectures cannot be viewed in isolation.

For example, architectural domains are related, and structural and be-
havioural viewpoints are related. The integration has to deal with the fact

that the various viewpoints are defined by stakeholders with their own

concerns.

The core of our approach to enterprise architecture is therefore that mul-
tiple domains should be viewed in a coherent, integrated way. We provide

support for architects and other stakeholders in the design and use of such

integrated architectures. To this end, we have to provide adequate concepts
for specifying architectures on the one hand, and on the other hand support

the architect with visualisation and analysis techniques that create insight

into their structure and relations. In this approach, relations with existing
standards and tools are to be emphasised; we aim to integrate what is al-

ready available and useful. The approach that we follow is very generic

and systematically covers both the necessary architectural concepts and the

supporting techniques for visualisation, analysis, and use of architectures.
We adopt a framework around a stakeholder, enterprise, architecture,

and architecture description as a viewer with universe, conception, and

representation. The view and viewpoint of the stakeholder are the result of
modelling, an act of purposely abstracting a model from reality, i.e., from a

domain that is conceived to be a part of the universe. These views consist

of a set of enterprise architecture models.
Within this framework, a distinction is made between the content of a

view and its visualisation, and a distinction is also made between a sym-

bolic model, which refers to the enterprise architecture, and a semantic

model as an abstraction from the architecture and which interprets the

66 Foundations

symbolic model. The core of every symbolic model is its signature, which

categorises the entities of the symbolic model.

