

7 Viewpoints and Visualisation

Establishing and maintaining a coherent enterprise architecture is clearly a
complex task, because it involves many different people with differing

backgrounds using various notations. In order to get to grips with this com-

plexity, researchers have initially focused on the definition of architectural
frameworks for classifying and positioning the various architecture de-

scriptions with respect to each other. A problem with looking at enterprise

architecture through the lens of an architectural framework is that it cate-

gorises and divides architecture descriptions rather than providing insight
into their coherence.

To integrate the diverse architecture descriptions, we advocate an ap-

proach in which architects and other stakeholders can define their own
views of the enterprise architecture. In this approach views are specified by

viewpoints. Viewpoints define abstractions on the set of models repre-

senting the enterprise architecture, each aimed at a particular type of stake-

holder and addressing a particular set of concerns. Viewpoints can be used
both to view certain aspects in isolation, and for relating two or more as-

pects.

This chapter focuses on the use of views of enterprise architectures, both
to create and manipulate architectural models and to give others insight

into the architectures being describe. We describe the use of viewpoints in

communication, and the distinction between an architecture model, a view
of that model, and its visualisation and manipulation. We give guidelines

for the selection and use of viewpoints, and we outline a number of view-

points on the ArchiMate language that can be used by architects involved

in the creation or change of enterprise architecture models.

7.1 Architecture Viewpoints

In this section we discuss the notion of views and viewpoints as basic tools

in communicating about architectures. In the context of enterprise architec-
tures, a viewpoint is typically used for activities like design, analysis, ob-

taining commitment, formal decision making, etc. As we argued in Chap.

4, we regard all of these activities to be communicative in nature.

148 Viewpoints and Visualisation

As defined in Sect. 3.2.4, a viewpoint essentially prescribes the con-

cepts, models, analysis techniques, and visualisations that are to be used in

the construction of different views of an architecture description. A view is
typically geared towards a set of stakeholders and their concerns. Simply

put, a view is what you see, and a viewpoint describes from where you are

looking.
In discussing the notion of viewpoint, we will first provide a brief over-

view of the origin of viewpoints. This is followed by a more precise defi-

nition of viewpoints, and the concept of viewpoint frameworks.

7.1.1 Origin of Viewpoints

The concept of viewpoint is not new. For example, in the mid 1980s, Mul-

tiview (Wood-Harper et al. 1985) already introduced the notion of views.

In fact, Multiview identified five viewpoints for the development of (com-
puterised) information systems: Human Activity System, Information

Modelling, Socio-Technical System, Human–Computer Interface, and the

Technical System. During the same period in which Multiview was devel-

oped, the so-called CRIS Task Group of IFIP Working Group 8.1 de-
veloped similar notions, where stakeholder views were reconciled via ap-

propriate ‘representations’. Special attention was paid to disagreement

about which aspect (or perspective) was to dominate the system design
(namely, ‘process’, ‘data’, or ‘behaviour’). As a precursor to the notion of

concern, the CRIS Task Group identified several human roles involved in

information system development, such as executive responsible, develop-
ment coordinator, business analyst, business designer (Olle et al. 1988).

The use of viewpoints is not limited to the information systems commu-

nity, it was also introduced by the software engineering community. In the

1990s, a substantial number of software engineering researchers worked
on what was phrased as ‘the multiple perspectives problem’ (Finkelstein et

al. 1992, Kotonya and Sommerville 1992, Nuseibeh 1994, Reeves et al.

1995). By this term, the authors referred to the problem of how to organise
and guide (software) development in a setting with many actors, using di-

verse representation schemes, having diverse domain knowledge, and us-

ing different development strategies. A general framework has been devel-

oped in order to address the diverse issues related to this problem
(Finkelstein et al. 1992, Kotonya and Sommerville 1992, Nuseibeh 1994).

In this framework, a viewpoint combines the notion of actor, role, or agent

in the development process with the idea of a perspective or view which an
actor maintains. A viewpoint is more than a partial specification; in addi-

tion, it contains partial knowledge of how further to develop that partial

Architecture Viewpoints 149

specification. These early ideas on viewpoint-oriented software engineer-

ing have found their way into the IEEE 1471 standard for architecture de-

scription (IEEE Computer Society 2000) on which we have based our
definitions below.

7.1.2 Architecture Viewpoints

In the context of architecture, viewpoints provide a means to focus on par-

ticular aspects of an architecture description. These aspects are determined
by the concerns of the stakeholders with whom communication takes

place. What should and should not be visible from a specific viewpoint is

therefore entirely dependent on argumentation with respect to a stake-
holder’s concerns. Viewpoints are designed for the purpose of serving as a

means of communication in a conversation about certain aspects of an ar-

chitecture. Though viewpoints can be used in strictly uni-directional, in-
formative conversations, they can in general also be used in bi-directional

classes of conversations: the architect informs stakeholders, and stake-

holders give their feedback (critique or consent) on the presented aspects.

What is and what is not shown in a view depends on the scope of the
viewpoint and on what is relevant to the concerns of the stakeholders. Ide-

ally, these are the same, i.e., the viewpoint is designed with the specific

concerns of a stakeholder in mind. Relevance to a stakeholder’s concern,
therefore, is the selection criterion that is used to determine which objects

and relations are to appear in a view.

Below we list some examples of stakeholders and their concerns, which
could typically serve as the basis for the definition/selection of viewpoints:

− Upper-level management: How can we ensure our policies are followed

in the development and operation of processes and systems? What is the

impact of decisions (on personnel, finance, ICT, etc.)? Which improve-

ments can a new system bring to a pre-existing situation in relation to
the costs of acquiring that system?

− Middle-level management: What is the current situation with regards to

the computerised support of a business process?

− End user: What is the potential impact of a new system on the activities

of a prospective user?

− Architect: What are the consequences for the maintainability of a system

with respect to corrective, preventive, and adaptive maintenance?

− Operational manager: What new technologies do we need to prepare

for? Is there a need to adapt maintenance processes? What is the impact

of changes to existing applications? How secure are the systems?

150 Viewpoints and Visualisation

− Project manager (of system development project): What are the relevant

domains and their relations? What is the dependence of business proc-

esses on the applications to be built? What is their expected perform-

ance?

− System developer: What are the modifications with respect to the cur-

rent situation that need to be performed?

− System administrators: What is the potential impact of a new system on

the work of the system administrators that are to maintain the new sys-

tem?

In line with the IEEE 1471 standard, and based on the detailed definition

given in Proper (2004) we define a viewpoint as follows:

Viewpoint: a specification of the conventions for constructing and

using views.

This should also involve the various ‘ways of …’ that we outlined in Sect.

3.2.5, but in this chapter we will focus on the selection of the content of

views, the visual representation of this content, and the typical use of these
viewpoints, i.e., on the ways of modelling, communicating, and using. The

‘way of supporting’, i.e., tool support for views, will be addressed in Chap.

10, and the ‘way of working’ has already been addressed in Chap. 6.

7.1.3 Viewpoint Frameworks

In the context of architecture descriptions, a score of viewpoint frame-

works exists, leaving designers and architects with the burden of selecting

the viewpoints to be used in a specific situation. Some of these frameworks

of viewpoints are: the Zachman framework (Zachman 1987), Kruchten’s
4+1 view model (Kruchten 1995), RM-ODP (ITU 1996), and TOGAF

(The Open Group 2002). These frameworks have usually been constructed

by their authors in an attempt to cover all relevant aspects/concerns of the
architecture of some class of systems. In practice, numerous large organi-

sations have defined their own frameworks of viewpoints by which they

describe their architectures. We shall discuss two of these framework in
more detail below.

The ‘4+1’ View Model

Kruchten (1995) introduced a framework of viewpoints (a view model)

comprising five viewpoints. The use of multiple viewpoints is motivated
by the observation that it ‘allows to address separately the concerns of the

Architecture Viewpoints 151

various stakeholders of the architecture: end-user, developers, systems en-

gineers, project managers, etc., and to handle separately the functional and

non-functional requirements’.
The goals, stakeholders, concerns, and meta-model of the 4+1 frame-

work can be presented, in brief, as in Table 7.1. Note that in Kruchten

(2000), the viewpoints have been renamed; physical viewpoint � deploy-
ment viewpoint, development viewpoint � implementation viewpoint, and

scenario viewpoint � use-case viewpoint, better to match the terminology

of UML.

The framework proposes modelling concepts (the meta-model) for each
of the specific viewpoints. It does so, however, without explicitly discuss-

ing how these modelling concepts contribute to the goals of the specific

viewpoints. One might, for example, wonder whether object classes, asso-
ciations, etc., are the right concepts for communication with end users

about the services they require from the system. The 4+1 framework is

based on experiences in practical settings by its author.

Table 7.1. Kruchten’s ‘4+1’ view model.

Viewpoint Logical Process Development Physical Scenarios

Goal

Capture the

services

which the

system

should pro-

vide

Capture

concurrency

and sychro-

nisation as-

pects of the

design

Describe static

organisation of

the software and

its development

Describe

mapping of

software onto

hardware, and

its distribu-

tion

Provide a

driver to dis-

cover key

elements in

design

Validation

and illustra-

tion

Stake-

holders

Architect

End users

Architect

System de-

signer

Integrator

Architect

Developer

Manager

Architect

System de-

signer

Architect

End users

Developer

Concerns Functional-

ity

Performance

Availability

Fault toler-

ance

...

Organisation

Reuse

Portability

...

Scalability

Performance

Availability

...

Understand-

ability

Meta-model

Object

classes

Associations

Inheritance

...

Event

Message

Broadcast

...

Module

Subsystem

Layer

...

Processor

Device

Bandwidth

...

Objects

Events

Steps

...

RM-ODP

The Reference Model for Open Distributed Processing (RM-ODP) (ITU

1996) was produced in a joint effort by the international standard bodies

152 Viewpoints and Visualisation

ISO and ITU in order to develop a coordinating framework for the stan-

dardisation of open distributed processing. The resulting framework de-

fines five viewpoints: enterprise, information, computation, engineering
and technology. The modelling concepts used in each of these views are

based on the object-oriented paradigm.

The goals, concerns, and associated meta-models of the viewpoints
identified by the RM-ODP can be presented, in brief, as in Table 7.2.

Table 7.2. The RM-ODP viewpoints.

Viewpoint Enterprise Information Computational Engineering Technology

Goal Capture

purpose,

scope, and

policies of

the system

Capture se-

mantics of in-

formation and

processing

performed by

the system

Express distri-

bution of the

system in in-

teracting objects

Describe de-

sign of distri-

bution-ori-

ented aspects

of the system

Describe

choice of

technology

used in the

system

Concerns Organisa-

tional re-

quirements

and struc-

ture

Information

and process-

ing required

Distribution of

system

Functional de-

composition

Distribution

of the system,

and mecha-

nisms and

functions

needed

Hardware and

software

choices

Compliancy

to other views

Meta-model Objects

Communi-

ties

Permissions

Obligations

Contract

...

Object classes

Associations

Process

...

Objects

Interfaces

Interaction

Activities

...

Objects

Channels

Node

Capsule

Cluster

...

Not stated ex-

plicitly

RM-ODP provides a modelling language for each of the viewpoints
identified. It furthermore states: ‘Each language [for creating views/models

conforming to a viewpoint] has sufficient expressive power to specify an

ODP function, application or policy from the corresponding viewpoint.’

RM-ODP does not explicitly associate viewpoints to a specific class of
stakeholders. This is left implicit in the concerns which the viewpoints aim

to address.

7.2 Models, Views, and Visualisations

An important principle in our approach is the separation of the content and

the presentation or visualisation of a view. This separation is not explicitly

made in the IEEE standard, but it has important advantages. It facilitates
the use of different visualisation techniques on the same modelling con-

Models, Views, and Visualisations 153

cepts, and vice versa. Operations on the visualisation of a view, e.g.,

changing its layout, need not change its content.

The view content, referred to as the ‘view’ in the remainder of this chap-
ter, is a selection or derivation from a (symbolic) model of the architecture,

and is expressed in terms of the same modelling concepts. The presenta-

tion or notation of this view, referred to as ‘visualisation’ in the remainder,
can take many forms, from standard diagrams to tables, cartoons, or even

dynamic visualisations like movies. Editing operations on this visualisation

can lead to updates of the view and of the underlying model. The creation

and update of both the view and the visualisation are governed by a view-
point. This viewpoint is jointly defined and/or selected in an iterative proc-

ess by architect and stakeholder together. This is illustrated in Fig. 7.1.

select

derive

visualise

update update

Viewpoint

View Visualisation Model

Architect Stakeholder

Fig. 7.1. Separation of concerns: model, view, visualisation, and viewpoint.

The separation between view and visualisation is based on the notion of

‘meaning’. In Chap. 3 we introduced the concept of the signature of an ar-

chitecture as its alphabet: that is, the set of symbols used to describe the
concepts of the architecture and the relations among these concepts. This

idea can also be used to clarify the distinction between view and its visu-

alisation. A further discussion of these formal foundations can be found in
Chap. 8.

A view stripped from its visual properties can be formalised just like

any other model, e.g., by defining its signature, as outlined in Chap. 3. By

formalising its relation with an underlying model, a view’s quality and
consistency can be greatly enhanced and new opportunities for its use may

arise, e.g., in changing the underlying models by interacting with such a

view.

154 Viewpoints and Visualisation

7.2.1 Example: Process Illustrations

To illustrate the difference between a view and its visualisation, we intro-

duce the process illustration viewpoint. This viewpoint illustrates a pro-
cess model in an informal way for employees and managers. A process il-

lustration is derived from a model of the architecture using a set of transla-

tion and abstraction rules. As process illustrations are meant for

communicating the coherence between business processes, they typically
abstract from details regarding the applications and technology involved.

Moreover, process illustrations do not apply abstract concepts and nota-

tions, but rather use recognisable terms and intuitive notations.
A process illustration of the Car Tax Collection process is depicted in

Fig. 7.2. The figure shows the various subprocesses involved and the in-

formation flows between them. The figure is derived from an ArchiMate
model via a series of translation and abstraction rules, for instance to re-

place abstract shapes with meaningful symbols, abstract from complex re-

lations, and visually group all objects and relations that belong to or hap-

pen within a certain actor.

BPM

declaration point

Customs unit
BPM

17

ex2

Collection

RDW

Administration

B/CICT

Desk

Handling

Archive

$$
Vault

Catalogue

value

Declaration

file

BPM

workstation

(Customs

unit)

BPM

server

(BCICT)

RIN

server

(Collection)

BPM

17

ex3

BPM
17

ex1

invoice

payment

decaration

payment

payment

check

Fig. 7.2. Process illustration of the Car Tax Collection process.

Models, Views, and Visualisations 155

$$$$

Fig. 7.3. Translation rules.

In Fig. 7.3 you can see a number of presentation rules that can be ap-
plied in the ‘model-to-illustration’ derivation. The basic idea behind these

rules is to find suitable and intuitive graphic symbols that will replace Ar-

chiMate shapes. These rules apply to ArchiMate concepts for which there

is an immediate correspondent in the process illustration notation (i.e., ac-
tor, role, device, service, business object, etc.).

Of course, many other rules can be added here. For instance, rules refer-

ring to a specific layout of the final drawing or to the more extensive usage
of 3D graphic symbols can increase the readability and usability of the fi-

nal drawing.

7.2.2 Example: Landscape Maps

A more complex example to illustrate the differences between a model, a
view, and its visualisation, is the landscape map viewpoint. Landscape

maps, as defined in van der Sanden and Sturm (1997), are a technique for

visualising enterprise architectures. They present architectural elements in
the form of an easy-to-understand 2D ‘map’. A landscape map view of ar-

chitectures provides non-technical stakeholders, such as managers, with a

high-level overview, without burdening them with the technicalities of ar-
chitectural drawings.

156 Viewpoints and Visualisation

Maintaining
Customer &

Intermediary
Relations

Claim
Handling

Contracting

Document
Processing

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Document management system

Home & Away
Financial application

Business

Functions

Products

Financial
Handling

Car insurance
application

Fig. 7.4. Landscape map of ArchiSurance.

Many systems used by many processes realising various products and

services comprise too much detail to display in a single figure. This is a

typical example of where landscape maps can help. In Fig. 7.4, a landscape
map is depicted that shows which information systems support the opera-

tions of our fictitious insurance company ArchiSurance. The vertical axis

represents the company’s business functions; the horizontal axis shows its
insurance products. An application rectangle covering one or more cells

means that this particular function/product pair is supported by the appli-

cation, e.g., contracting of a legal aid insurance is supported by the legal
aid back-office system. The visualisation chosen makes it immediately ob-

vious to the viewer that there is (possibly unwanted) overlap between ap-

plications, as is the case in the Car insurance application and the Legal Aid

CRM system. Clearly, landscape maps are a richer representation than
cross-reference tables, which cover only two dimensions. In order to ob-

tain the same expressive power of a landscape map two cross-reference ta-

bles would be necessary; but even then, you would get a presentation that
is not as insightful and informative as a landscape map.

The dimensions of the landscape maps can be freely chosen from the ar-

chitecture that is being modelled. In practice, dimensions are often chosen
from different architectural domains, for instance business functions,

products and applications, etc. In most cases, the vertical axis represents

Visualisation and Interaction 157

behaviour such as business processes or functions; the horizontal axis

represents ‘cases’ for which those functions or processes must be executed.

These ‘cases’ can be different products, services, market segments, or sce-
narios. The third dimension represented by the cells of the matrix is used

for assigning resources like information systems, infrastructure, or human

resources.
The visualisation of architecture models as landscape maps is based on

architecture relations. The dimensions that are used in the landscape maps

determine which relations are used. For instance, the landscape map in Fig.

7.4 relates business functions (Contracting, Claim Handling, etc.) to prod-
ucts (Home insurance, Travel insurance, etc.) to applications (Web portal,

Car insurance application, etc.). The relation between business functions,

products, and applications is not directly supported by relations in the un-
derlying model. Rather, this needs to be inferred indirectly: a product

comprises a number of business services, which are realised by business

processes and functions, which use (the application services of) application
components. For this inference, the formalisation of the underlying sym-

bolic models and the rules for the composition of relations described in

Chaps. 3 and 4 are indispensable.
For landscape maps to be of practical use, the visualisation must be in-

tuitive and easy to understand. To a large extent, the choice of the axes and
the ordering of the rows and columns determine the layout of a landscape
map. If adjacent cells in the plane have the same value assigned, they can
be merged to form a single shape. If there are no other criteria for ordering
the axes such as time or priority, changes to the ordering can be used to
optimise the layout of shapes in the plane, and also to limit their number.
Various layout optimisation algorithms can be employed, and user ma-
nipulation of, for example, the order of rows and columns may also help in
creating a pleasing visualisation.

Summarising, in developing the landscape map viewpoint, it has been
fruitful to distinguish the operation on the model from the visualisation of
the view, because they are completely different concerns. The same holds
for the other viewpoints we have defined. To separate these concerns,
views have to be distinguished from their visualisation.

7.3 Visualisation and Interaction

The distinction we make between a model and its visualisation naturally

leads to the concept of interactive visualisation; that is, visualisation which

can change the model due to interaction with a stakeholder. Interaction has
traditionally been considered as something completely outside the model

158 Viewpoints and Visualisation

and the view. Interaction is at least partly a visualisation issue: for exam-

ple, when a user draws an object on the canvas of some tool. However, it

can also partly be defined as part of the model and view, since the object
the user draws may be put in the underlying model or view as well.

These two considerations have led to a new visualisation and interaction

model for enterprise architectures in ArchiMate. Its goal is that interaction
is separated from updating the model, or from its visualisation.

7.3.1 Actions in Views

The effect of a user interacting with the visualisation can be an update of

the view. But where will this be defined? Clearly, the visualisation itself is
‘dumb’ and does not know about the semantics of the view. Hence, rules

for changing the view cannot be tied to the visualisation and must be de-

fined in the view itself. This is why we introduce the notion of actions in

views. Consider for example a landscape map view, and a user who inter-

acts with this view by moving an application to another business function.

Does the relation between the interaction with the landscape map and the

update of the model mean something? Obviously the relation between the
move in the landscape map leads to an update of the underlying model or

view, and thus means something.

In Sect. 6.2.3 we have identified a number of basic modelling actions,
such as introducing, refining, abandoning, abstracting, and translating a

concept in a model. These actions operate on the architecture model or

view, not on its visualisation. However, most changes to a model will be
conducted by a user who changes a visualisation of that model. Hence, we

need to define the ways in which a user can manipulate these visualisations

and the effects on the underlying model in terms of these basic modelling

actions. We can then relate these actions to the manipulations of the visu-
alisation by making the actions part of the view being visualised.

Thus, a clear separation of model and visualisation leads to a separation

of concerns in tool building. An extremely generic visualisation engine can
be constructed that does not need to know about the semantics of the mod-

els it displays. If we define the possible actions together with the views, a

generic editor can be configured by this set of actions.

The actions in views should be defined in terms of the effects they have
on elements of the underlying model. For example, consider a view of a

business process model, and an action that merges two processes into a

single process. Issues that are relevant for the action of merging processes
are the effects of the merger: for example, the removal of processes, addi-

Visualisation and Interaction 159

tion of a new process, transferring some relations from an old, removed

process to a new process.

For each viewpoint, we define a set of actions. For example, for the
landscape map viewpoint we define the move of an application to another

cell, we define changing the columns and rows of the matrix, and we de-

fine the addition and deletion of applications. Moreover, we must deter-
mine for each action which parameters it needs as input, and define the

consequences of executing the action.
When actions for each view have been defined, we can go one step fur-

ther and define the relation between actions. One important relation is that
one action may consist of a set of simpler actions. For example, consider
an architect or stakeholder that wishes to change an existing landscape
map. First the effects of this change on the underlying model need to be
assessed. Some changes may be purely ‘cosmetic’ in nature, e.g., changing
the colour of an object. Other changes need to be propagated to the under-
lying model by invoking one of the basic modelling actions of Sect. 6.2.3,
e.g., if an object is added or deleted.

Mapping a seemingly simple change to the map onto the necessary
modifications of the model may become quite complicated. Since a land-

scape map abstracts from many aspects of the underlying model, such a

mapping might be ambiguous: many different modifications to the model
might correspond to the same change of the landscape map. Human inter-

vention is required to solve this, but a landscape map tool might suggest

where the impact of the change is located.
In the example of Fig. 7.4, you may for instance want to remove the

seemingly redundant Legal aid CRM system by invoking a ‘remove over-

lap’ operation on this object. This operation influences both the visualisa-
tion and the architectural model. The effects of the operation on the under-

lying model are shown in Fig. 7.5. First, you select the object to be

removed, in this case the Legal Aid CRM system. The envisaged tool col-
ours this object and maps it back onto the underlying object in the archi-

tecture. Next, the relations connecting this object to its environment are

computed, possibly using the impact-of-change analysis techniques de-
scribed in Chap. 8 (the second part of Fig. 7.5). Here, this concerns the re-

lations of Legal Aid CRM to the Web portal and the Legal Aid back-office

system. These relations will have to be connected to one or more objects

that replace the objects that are to be removed. Since we have chosen a
‘remove overlap’ operation, the landscape tool computes with which other

objects Legal Aid CRM overlaps, in this case the CRM system. The rela-
tions formerly connecting Legal Aid CRM are then moved to the other

CRM system, unless these already exist (e.g., the relation with the Web

portal).

160 Viewpoints and Visualisation

Maintaining
Customer &

Intermediary
Relations

Claim
Handling

Contracting

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Home & Away
Financial application

Business

Functions

Products

Financial
Handling

Car insurance
application

Maintaining
Customer &

Intermediary
Relations

Claim
Handling

Contracting

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Home & Away
Financial application

Business

Functions

Products

Financial
Handling

Car insurance
application

ArchiSurance

Home

&

Away

Car

Legal

Aid

Customer Relations

& Sales

H ome & Aw ay

Pol icy

administra tion

H ome & Aw ay

Financia l

appl ication

Car

Insurance

appl ication

Legal Aid

backoffice

system

Web

porta l

Call center

application

CRM system
Legal Aid

CRM

ArchiSurance

Home
&

Away

Car

Legal
Aid

Customer Relations
& Sales

Home & Away
Policy

admin istration
Home & Away

Financial
application

Car
Insurance

application

Legal Aid
backoffice

system

Web

portal

Call center

application

CRM system
Legal Aid

CRM

Fig. 7.5. Editing a landscape map.

Creating, Selecting, and Using Viewpoints 161

Naturally, this scenario presents an ideal situation with minimal user in-

tervention. In reality, a tool cannot always decide how a proposed change
is to be mapped back onto the model, and may only present the user with a

number of options. For example, if the functionality of the Legal Aid CRM

system overlaps with more than one other system, remapping its relations
requires knowledge about the correspondence between these relations and

the functions realised by these other systems.

Implementing a tool that realises this ‘actions in views’ concept is not a
trivial task. In Chap. 10, we will describe the design of a prototype tool

that provides a proof of concept of these ideas.

7.4 Creating, Selecting, and Using Viewpoints

It is interesting to note that both of the discussed frameworks of view-

points (Sect. 7.1.3) do not provide an explicit motivation for their choice

regarding the modelling concepts used in specific viewpoints. When using

one of the two frameworks, architects will not find it difficult to select a
viewpoint for the modelling task at hand. However, this ‘ease of choice’ is

more a result of the limitation of the selections of options available (one is

limited to the number of viewpoints provided by the framework) than the
result of a well-motivated choice about the viewpoint’s utility towards the

tasks at hand.

One should realise that a well-integrated set of viewpoints (such as the
ArchiMate viewpoints) brings more (utility!) to a development project than

the sum of its parts! Among other things, it allows views to be more easily

related and integrated into a consistent whole. However, defining such an

integrated viewpoint framework is an expensive undertaking. This means
that even though a pre-existing (off-the-shelf) viewpoint framework may

not be the ideal answer to an architect’s specific communication needs, the

alternative strategy of defining a tailor-made viewpoint framework for
each development project is likely to be too costly. Hence our attention to

defining ‘ad hoc’ viewpoints relative to a predefined modelling language

(i.e., meta-model) as a compromise between fixed viewpoints and free

viewpoints.

7.4.1 Classification of Viewpoints

As we can see from the list of stakeholders in Sect. 7.1.2, an architect is

confronted with many different types of stakeholders and concerns. To
help the architect in selecting the right viewpoints for the task at hand, we

162 Viewpoints and Visualisation

introduce a framework for the definition and classification of viewpoints

and views. The framework is based on two dimensions, purpose and con-

tent. The following three types of architecture support define the purpose
dimension of architecture views (Steen et al. 2004):

− Designing: Design viewpoints support architects and designers in the

design process from initial sketch to detailed design. Typically, design

viewpoints consist of diagrams, like those used in UML.

− Deciding: Decision support views assist managers in the process of de-

cision making by offering an insight into cross-domain architecture rela-

tions, typically through projections and intersections of underlying

models, but also by means of analytical techniques. Typical examples
are cross-reference tables, landscape maps, lists, and reports.

− Informing: These viewpoints help to inform any stakeholder about the

enterprise architecture, in order to achieve understanding, obtain com-

mitment, and convince adversaries. Typical examples are illustrations,

animations, cartoons, flyers, etc.

The goal of this classification is to assist architects and others to find suit-

able viewpoints given their task at hand, i.e., the purpose that a view must

serve and the content it should display. With the help of this framework, it
is easier to find typical viewpoints that might be useful in a given situation.

This implies that we do not provide an orthogonal categorisation of each

viewpoint into one of three classes; these categories are not exclusive in

the sense that a viewpoint in one category cannot be applied to achieve an-
other type of support. For instance, some decision support viewpoints may

be used to communicate to any other stakeholders as well.

B
u
s
in
e
s
s

A
p
p
lic
a
tio

n
T
e
c
h
n
o
lo
g
y

Passive structure Behaviour Active structure

business objects
business services

and processes actors and roles

applications and

components

application services

and functions
data objects

artifacts
infrastructure services

and system software

devices and

networks

Fig. 7.6. Elements of an enterprise architecture.

Creating, Selecting, and Using Viewpoints 163

For characterising the content of a view we define the following abstrac-

tion levels:

− Details: Views of the detailed level typically consider one layer and one

aspect from the framework that was introduced in Chap. 5 (Fig. 7.6).
Typical stakeholders are a software engineer responsible for the design

and implementation of a software component or a process owner re-

sponsible for effective and efficient process execution. Examples of
views are a BPMN process diagram and a UML class diagram.

− Coherence: At the coherence abstraction level, multiple layers or multi-

ple aspects are spanned. Extending the view to more than one layer or

aspect enables the stakeholder to focus on architecture relations like
process–use–system (multiple layer) or application–uses–object (multi-

ple aspect). Typical stakeholders are operational managers responsible

for a collection of IT services or business processes.

− Overview: The overview abstraction level addresses both multiple lay-

ers and multiple aspects. Typically such overviews are addressed to en-
terprise architects and decision makers such as CEOs and CIOs.

In Fig. 7.7, the dimensions of purpose and abstraction level are visualised

in a single picture, together with examples of stakeholders. Table 7.3 and
Table 7.4 summarise the different purposes and abstraction levels.

architect,

software

developer,

business process

designer

Deciding

Designing Informing

Details

Coherence

Overview

Deciding

Designing Informing

Details

Coherence

Overview

product manager,

CIO, CEO

customer,

employee,

others

architect,

software

developer,

business process

designer

Deciding

Designing Informing

Details

Coherence

Overview

Deciding

Designing Informing

Details

Coherence

Overview

product manager,

CIO, CEO

customer,

employee,

others

Fig. 7.7. Classification of enterprise architecture viewpoints.

164 Viewpoints and Visualisation

Table 7.3. Viewpoint purpose.

 Typical stakeholders Purpose Examples

Designing Architect, software

developer, business

process designer

Navigate, design,

support design de-

cisions, compare

alternatives

UML diagram,

BPMN diagram,

flowchart, ER dia-

gram

Deciding Manager, CIO, CEO Decision making Cross-reference ta-

ble, landscape map,

list, report

Informing Employee, customer,

others

Explain, convince,

obtain commitment

Animation, cartoon,

process illustration,

chart

Table 7.4. Viewpoint abstraction levels.

 Typical stake-

holders

Purpose Examples

Details Software engi-

neer, process

owner

Design, manage UML class diagram,

Testbed process diagram

Coherence Operational man-

agers

Analyse dependen-

cies, impact of-
change

Views expressing rela-

tions like ‘use’, ‘realise’,
and ‘assign’

Overview Enterprise archi-

tect, CIO, CEO

Change manage-

ment

Landscape map

The landscape map viewpoint described in Sect. 7.2.1 is a typical exam-

ple of a decision support view, which give a high-level overview and can,

for example, be used to identify redundancies or gaps in the application
landscape of an enterprise.

The process illustration viewpoint described in Sect. 7.2.1 is an example

of a viewpoint intended for ‘informing’ others. It depicts workflows in a
cartoon-like fashion, easily readable for employees and managers. Process

illustrations can be on the detailed, coherence, or overview abstraction

level.

To assist the architect in designing an enterprise architecture, we present
a set of basic design viewpoints in the next sections. These viewpoints are

all diagrams for designing architectures. Some viewpoints are multiple-

aspect and multiple-layer overviews at the ‘coherence’ level of abstraction,
while others are at the ‘details’ level.

Creating, Selecting, and Using Viewpoints 165

7.4.2 Guidelines for Using Viewpoints

To help you in selecting and using viewpoints for tasks at hand, we present

a number of guidelines, based on our own experience and interviews with
architects from practice.

In general, the use of an architectural viewpoint will pass through a

number of phases. These phases roughly are:

1. Scoping: Select one or more appropriate viewpoints, select the (sub-
)domain that needs to be represented or modelled, and determine the

constraints that apply to the domain being modelled.

2. Creation of views: Create or select the actual content of the viewpoint,
i.e., create or select a view conforming to the viewpoint used. This can

pertain to the selection of a part of the larger (pre-existing) architecture

model, or the creation or refinement of a part of the architecture model
(in terms of a view).

3. Validation: Validate the resulting view. Do the stakeholders agree that

the view is a correct representation of the actual or intended situation?

4. Obtaining commitment: If agreement has been reached among the key
stakeholders involved, the next step will be to create commitment for the

results. In other words, do the stakeholders commit themselves to the

(potential) impact of what is described by the view?
5. Informing: Inform other stakeholders of the results. These stakeholders

will be those members of the development community, whose explicit

commitment has, in a conscious decision, been considered not to be cru-
cial.

Note that these phases will not necessarily be executed in a linear order.

Practical circumstances usually dictate a more evolutionary approach. The

viewpoints to be used for architectural communication will have to support
the activities of each of the phases. The guidelines resulting from the inter-

views are divided over them. They are discussed in the next sections.

7.4.3 Scoping

The importance of focusing on the concerns of stakeholders, and the extent
to which a specific view(point) addresses these concerns, was confirmed

by the outcomes of the interviews. When you communicate with business

managers, you only need those views or models that enable a discussion of
factors deserving special attention. Typically these are factors that have a

high impact if they fail and also have a high risk of indeed failing. For

communication with the actual software developers, on the other hand,
more detailed models are crucial.

166 Viewpoints and Visualisation

The selection of viewpoints should be done consciously and based on

rational considerations. Furthermore, architects state that this decision, and

its rationalisation, must be readily available. It is quite possible that a
stakeholder (usually a technology-oriented one) will ask for more detail in

a model than you can give, or want to give, in that particular phase of the

project. An architect should be prepared to clarify better the goals of the
particular model and phase, and why the requested details are not yet rele-

vant (or even harmful).

Determining the constraints that should guide the ensuing creation phase

is also considered to be important. Numerous IT projects suffer from the
problem that designers have too much ‘design freedom’ when producing a

model of a desired future system. This increases the risk of ending up with

lengthy design processes. Limiting design freedom by means of ar-
chitecture principles, a higher-level architecture, or any other means, re-

duces this risk considerably.

7.4.4 Creation of Views

During the creation of a view, in particular when it involves actual model-
ling, you should try to put a limit on the number of participants in a con-

versation. Graphical models may or may not be used in communication

with stakeholders, but most actual modelling is done by individuals (or
two people at most). Genuine group modelling sessions are very rare.

During the early stages of system design, it is often considered bad to

‘think’ in terms of ‘solutions’. However, when detailed modelling takes
place in a cooperative setting, give informants some room to think in terms

of ‘solutions’ even if pure requirements thinking (what, not how) does not

officially allow for this. Most people just think better in terms of concrete

solutions; it is a vital part of their creativity. Just be sure that requirements
thinking is returned to in due course. In general, when you discuss models

with stakeholders and informants, in particular when you try to establish a

common understanding, you should discuss different scenarios and alterna-
tives to the model being considered. Doing so leads to an exploration of

the meaning and impact of the model taking shape, and also leads to im-

proved mutual understanding.

The graphical notation that is part of a viewpoint should be approached
flexibly when it comes to communicating with non-technical stakeholders.

If people are not used to or prepared to deal with abstract graphical mod-

els, do not use them. Use other forms of visualisation, text, or tables. Icon-
ised diagrams work particularly well. However, be prepared to point out

Creating, Selecting, and Using Viewpoints 167

the relation between the alternative visualisation and your abstract models

if asked to.

Even if graphical models play a big role in architecture, text is the chief
form in which (written) communication takes place. Two main ways in

which this occurs are:

− Graphical (partial!) models that are used to support textual descriptions

(‘illustration by diagram’).

− Text explaining and elaborating on a graphical model (‘textual model-

ling’).

In fact, text is often better than a graphical model for conveying large

amounts of detail.
Language studies have indeed shown how the specific form of a lan-

guage does have an impact on what is expressed by means of the language

(Cruse 2000). In the case of modelling languages, the modelling concepts

offered by the language will, in general, influence the level of detail or ab-
straction that the resulting models will exhibit.

Finally, during a modelling session, several things may come to the fore

that will influence the further process. External events may occur that are a
threat to the process as a whole. Be prepared to stop modelling if executive

commitment is withdrawn. It may be frustrating, but from a business per-

spective it may also be crucial. It is simply part of a flexible project setup.

If the informants turn out to be less informed than expected, it is better to
stop than to try and ‘make the best of it’ and produce an ill-conceived

model.

In the field of agile development (Martin 2002, Rueping 2003, Ambler
2002), a refreshing perspective can be found on such considerations.

7.4.5 Validation

In validation of an architecture with stakeholders, a clear difference should

be made between validation of content (qualitative validation, by model-
lers and experts) and validation in terms of commitment (by executives).

Both are crucial, but very different. Obtaining (and validating) commit-

ment is discussed in the next subsection.
Whether good mutual communication and understanding about a model

is being reached is often a matter of intuition. If the people involved have a

mutual feeling that ‘their thoughts are well in sync’, then dare to trust that

feeling. However, if the opposite is the case, be prepared to invest in sub-
stantial discussion of concrete examples, or face the dire consequences of

poor validation. If the required ‘level of agreement’ between participants is

168 Viewpoints and Visualisation

high, an atmosphere of mutual trust and cooperation between these partici-

pants is crucial.

Validation is an activity that should be conducted in limited groups.
‘Feedback rounds’ involving a larger number of people, by e-mail or

printed documentation, do not really work. If you want feedback that is

worth something, find key people and discuss the models/views, preferably
face to face. Make sure the ‘opinion leaders’ in an organisation agree to the

model.

Also, you should take care that the languages used to express a view do

not have a wrong connotation that may result in incorrect impressions
about the scope and status of models. A language like UML cannot be

used in a discussion with business people. Even though the language is

suitable to express the models, the notation has an implementation-
oriented connotation to this audience.

Furthermore, do not show a concrete view of the desired system too

early on in the development process. The concreteness of the diagram may
give the stakeholders a feeling that important decisions have already been

made.

With regards to the last observation, an interesting statement on this is-

sue can also be found in Weinberg (1988). He argues that when the design
of a system, or a model in general, is still in its early stages, and different

aspects are not yet clear and definite, the graphical notation used should

also reflect this. He suggests using squiggly lines rather than firm lines, so
as to communicate to the reader of a view that specific parts of the view

are still open to debate. We use this principle in the Introductory viewpoint

discussed in Sect. 7.5.1.

7.4.6 Obtaining Commitment

Obtaining commitment for a specific architectural design involves obtain-

ing commitment for the impact of this design on the future system and its

evolution, as well as the costs/resources needed to arrive at this future sys-
tem. This means that the message that one needs to get across to the stake-

holders involves:

− What are the major problems in the current situation?

− How bad are these problems (to the concerns and objectives of the

stakeholders)?

− How will this improve in the new situation? (Benefits!)

− At what costs will these improvements come?

Creating, Selecting, and Using Viewpoints 169

When discussing costs and benefits with stakeholders, make these costs

and benefits as SMART (Specific, Measurable, Attainable, Realisable, and

Time-bound) as possible. Make sure that the stakeholders agree, up front,
with the criteria that are used to express/determine costs and benefits. It is

their commitment that is needed. They will be the judge. Let them also de-

cide what they want to base their judgement on! Create shared responsibil-
ity towards the outcomes.

Selecting the stakeholders that should be involved when obtaining com-

mitment is also of key importance. Involving the wrong stakeholders, or

leaving out important ones, will have obvious repercussions. At the same
time, selecting a too large a group of stakeholders may bog down the proc-

ess. Too much communication may be a bad thing: it may create unnoticed

and uncontrolled discussion outside the main discussion, leading to twisted
conceptualisations and expectations.

Though ideally ‘everyone’ should be heard, this is generally a practical

impossibility. Therefore, choose your experts carefully. Aim for the opin-
ion leaders, and also accept that you cannot please everyone. Realise that

some people will not be perfectly satisfied, prepare for it, and deal with it.

People who actually make the decisions are usually those who are just

outside the group of people who really know what is going on. Make sure
that the former people are also involved and aware of what is happening.

Getting executive commitment may actually be dictated technologically.

If their business is highly technological, business people do not see tech-
nology as secondary, and will only commit to something if they are as-

sured that ‘their organisation will be able to run it’.

Sharing design decisions and their underlying considerations at a late
stage has a negative impact on the commitment of stakeholders. Start

building commitment early on in the process. This implies that the linear

ordering of the ‘viewpoint use phases’ as provided at the start of this sec-

tion should not be applied strictly.
Once agreement has been reached, you should document this explicitly.

Models are never accepted as sufficient statements to base agreements and

commitment on. Commitments and agreements also need to be spelled out
separately, in text.

7.4.7 Informing Stakeholders

Once commitment from the opinion leaders has been obtained, other

stakeholders may be informed about the future plans and their impact. In
doing so, it still makes sense to concentrate on cost/benefit considerations

when trying to ‘sell’ the new system. Below, we have gathered some ob-

170 Viewpoints and Visualisation

servations that apply to the informing phase. However, due to their general

communicative nature, some of these observations are also applicable to

the creation, validation, and commitment phases.
Do not impose presumed architectural terminology on true business

people. Use their terminology. Even a concept like ‘service’ is suspect be-

cause it is relatively technology oriented and often unknown by stake-
holders that are strictly on the business side.

Models are particularly important in giving stakeholders a feeling that

they are ‘part of the larger whole’. Often, just knowing where in the model

‘they can be found’ is important to stakeholders, even if they do not under-
stand the fine points of the model.

Communication is the crucial factor in enterprise architecture. It will

even pay off actually to employ some communication experts (think mar-
keting, PR, even entertainment!) in larger projects. As a result, you will

end up with stakeholders that are genuinely prepared to change the way

they and their business work, not just with some interesting looking plans
and models. Crucially, communication can be quite different for various

stages of system development. Therefore, it is important to have a good

communication strategy and a framework guiding you in this.

Even if people are willing to and able to read models thoroughly, text
(spoken or written) needs to be added. Models alone never suffice.

7.5 Basic Design Viewpoints

The most basic type of viewpoint is the selection of a relevant subset of the
ArchiMate concepts and the representation of that part of an architecture

that is expressed in the concepts in this selection. This is sometimes called

a ‘diagram’, akin to, for instance, the UML diagrams.
In Sect. 6.3.2, we introduced the following four metaphorical directions

from which we can identify relevant model elements:

1. ‘inwards’, towards the internal composition of the element;

2. ‘upwards’, towards the elements that are supported by it;
3. ‘downwards’, towards its realisation by other elements;

4. ‘sideways’, towards peer elements with which it cooperates.

We also use these directions to identify possibly useful viewpoints.
For the ‘composition’ viewpoints, we start from the basic structure of

our modelling language. In its elementary form, the generic meta-model

that is behind the language consists of active structural elements such as
actors, behavioural elements such as functions and processes, and passive

informational elements such as business and data objects, which are pro-

Basic Design Viewpoints 171

essed by the active elements in the course of their behaviour (see also Fig.

7.6).

From this basic structure, we can deduce a first set of viewpoint types,
containing three viewpoints that are centred around one specific type of

concept:

1. active elements, e.g., the composition of a business actor from sub-
actors, i.e., an organisation structure;

2. behaviour elements, e.g., the structure of a business process in terms of

subprocesses;

3. passive elements, e.g., the information structure in terms of data objects.

Although these viewpoints take a specific type of concept and its structure

as their focus, they are not limited to these concepts, and closely related

concepts are also included.
For the ‘upwards’ support of elements in their environment, the active

elements offer interfaces through which their services can be used.

‘Downwards’ services are realised by processes and functions, and appli-
cation components are deployed on infrastructure elements. ‘Sideways’

cooperation is achieved through collaborations between active elements

and their behaviour in the form of interactions, and flows of information

and value that relate the elements. Passive elements often play a role in
these relations, e.g., by being passed from one element to another, but are

not the focus. Hence we concentrate on the relations between the active

and behaviour elements.
Next to the design viewpoints resulting from these metaphorical direc-

tions, which focus on a limited part of an enterprise architecture, we also

need to represent the whole architecture, but in a simplified form. Espe-
cially early in the design process, when we do not yet know all the details

that are added later on, we want to express an architecture using a subset of

the ArchiMate language denoted in an informal, simplified form. This

helps to avoid the impression that the design is already fixed and immuta-
ble, which may easily arise from a more formal diagram. Furthermore,

such a high-level overview is very useful in obtaining commitment from

stakeholders at an early stage of the design (see also Sect. 7.4.6). To this
end, we introduce the Simplified viewpoint.

In each of the viewpoint types, concepts from the three layers of busi-

ness, application, and technology may be used. However, not every com-

bination of these would give meaningful results; in some cases, for exam-
ple, separate viewpoints for the different layers are advisable. Based on

common architectural practice, our experiences with the use of ArchiMate

models in practical cases, and on the diagrams used in other languages like
UML, we have selected the most useful combinations in the form of a

172 Viewpoints and Visualisation

‘standard’ set of basic viewpoints to be used with the ArchiMate concepts

(Table 7.5).

Table 7.5. Design viewpoints.

Early design Cooperation

Introductory, p. 173 Actor Cooperation, p. 175

Business Process Cooperation, p. 180
Application Cooperation, p. 182

Composition Realisation

Service Realisation, p. 179

Implementation & Deployment, p. 187

Support

Organisation, p. 175

Business Function, p. 177

Business Process, p. 181

Information Structure, p. 182

Application Behaviour, p. 185

Application Structure, p. 186

Infrastructure, p. 186

Product, p. 178

Application Usage, p. 184

Infrastructure Usage, p. 187

Some of these viewpoints have a scope that is limited to a single layer or

aspect: the Business Function and Business Process viewpoints show the

two main perspectives on the business behaviour; the Organisation view-

point depicts the structure of the enterprise in terms of its departments,
roles, etc.; the Information Structure viewpoint describes the information

and data used; the Application Structure, Behaviour, and Cooperation

viewpoints contain the applications and components and their mutual rela-
tions; and the Infrastructure viewpoint shows the infrastructure and plat-

forms underlying the enterprise’s information systems in terms of net-

works, devices, and system software. Other viewpoints link multiple layers

and/or aspects: the Actor Cooperation and Product viewpoints relate the
enterprise to its environment; the Application Usage viewpoint relates ap-

plications to their use in, for example, business processes; and the De-

ployment viewpoint shows how applications are mapped onto the underly-
ing infrastructure.

In the next subsections, we will explain these design viewpoints in more

detail and provide examples of each one. In these examples, we have made
extensive use of the abstraction rule that can be applied on chains of struc-

tural relations in ArchiMate, which was explained in Sect. 5.7. Note that it

is explicitly not the intention to limit the user of the ArchiMate language to

these viewpoints; neither do we expect an architect to draw all these dia-
grams in a given situation! They are meant to assist the modeller in choos-

ing the contents of a view, but combinations or subsets of these viewpoints

could well be useful in specific situations.

Basic Design Viewpoints 173

It is important in the examples that these views exhibit considerable

overlap., e.g., in Fig. 7.13, which shows the high-level business functions

of our ArchiSurance example, there is a business function Customer Rela-
tions. This reappears in Fig. 7.18, which shows how the Handle Claim

business process is related to a number of business functions. Different as-

pects of this business process are shown, for example, in Fig. 7.19 (its use
of information), Fig. 7.16 (realisation of services by business processes),

and Fig. 7.17 (its relations with other business processes), and there are

many more of these overlaps between views. This shows that underlying

these different views there is a single model, and each view is a projection
of the relevant elements in that model. We will use two examples through-

out the description of the basic design viewpoints to illustrate this coher-

ence:

− The handling of insurance claims;

− The policy administration systems and infrastructure.

7.5.1 Introductory Viewpoint

The Introductory viewpoint forms a subset of the full ArchiMate language

using a simplified notation. It is typically used at the start of a design tra-

jectory, when not everything needs to be detailed, or to explain the essence
of an architecture model to non-architects who require a simpler notation.

Another use of this basic, less formal viewpoint is that it tries to avoid the

impression that the architectural design is already fixed, an impression that
may easily arise when using a more formal, highly structured, or detailed

visualisation.

We use a simplified notation for the concepts (Fig. 7.8), and for the rela-
tions. All relations except ‘triggering’ and ‘realisation’ are denoted by

simple lines; ‘realisation’ has an arrow in the direction of the realised ser-

vice; ‘triggering’ is also represented by an arrow. The concepts are denoted

with slightly thicker lines and rounded corners, which give a less formal
impression. The example in Fig. 7.9 illustrates this notation.

On purpose, the layout of this example is not as ‘straight’ as an ordinary

architecture diagram; this serves to avoid the idea that the design is already
fixed and immutable. This conforms to the suggestion made in Weinberg

(1988) to use squiggly lines rather than firm lines, to show to the reader of

a view that specific parts of the view are still open to debate.

174 Viewpoints and Visualisation

Application
service

Application
component

Business
service

Business actor/role

Device Network

Business
process/
function

Business object

Data object

Event

Fig. 7.8. Concepts and notation for the Introductory viewpoint.

 Handle Claim

Customer
information

Claims
payment

 CRM
 application

 Policy
 administration

 Financial
 application

Claim
registration

Client
ArchiSurance

MainframeUnix
servers

Network

 Register Accept Valuate Pay

Fig. 7.9. Example of an Introductory view which conforms to the viewpoint of

Fig. 7.8.

Basic Design Viewpoints 175

7.5.2 Organisation Viewpoint

The Organisation viewpoint shows the structure of an internal organisation

of the enterprise, department, or other organisational entity. It can be rep-
resented in the form of a nested block diagram, but also in more traditional

ways like the organigram. An Organisation view is typically used to iden-

tify authority, competencies, and responsibilities within an organisation.

ArchiSurance

Back Office

Front Office

Home

&

Away

Car
Legal

Aid

Customer

Relations

HRM
Product

Development
Finance

Intermediary

Relations

Document

Processing

SSC

Fig. 7.10. ArchiSurance organisation structure.

In Fig. 7.10, we can see the high-level subdivision of ArchiSurance into
a front and back office, and a finance department. Within the back office,

there are three departments responsible for specific products, e.g., car,

travel, or legal aid insurance, and the shared service centre for document
processing. The front office comprises two departments that handle the re-

lations with customers and intermediaries, respectively.

7.5.3 Actor Cooperation Viewpoint

The Actor Cooperation viewpoint focuses on the relations of actors with
each other and their environment. A common example of this is what is

sometimes called a ‘context diagram’, which puts an organisation into its

environment, consisting of external parties such as customers, suppliers,

and other business partners. It is useful in determining external dependen-
cies and collaborations and shows the value chain or network in which the

organisation operates. Another important use of this viewpoint is in show-

ing how a number of cooperating (business and/or application) actors to-
gether realise a business process, by showing the flows between them.

176 Viewpoints and Visualisation

The main roles involved in the insurance business are the customer, the

insurer, the intermediary, and the customer’s bank. These cooperate in dif-

ferent settings. For example, closing an insurance contract involves the
customer, insurer, and intermediary, whereas premium collection involves

the insurer, the customer and the customer’s bank. The main collaborations

of ArchiSurance, which fulfils the role of the insurer, are shown in Fig.
7.11.

Intermediary

Customer Insurer

Contracting
Premium

Collection

Claim

Fulfilment

Customer’s

Bank

Negotiation

ArchiSurance

Fig. 7.11. Collaborations of ArchiSurance and its partners.

ArchiSurance

Back Office
Customer

Relations

Finance
Document

Processing SSC

Customer

Payment order

Claim form

(paper)

Claim form

(paper)

Claim form

(electronic)

Claim file

Customer’s

Bank

Payment

Notification

Fig. 7.12. Information flows between ArchiSurance’s departments and partners in

handling insurance claims.

Basic Design Viewpoints 177

If we look more closely at the relations between actors and roles, it is

useful to focus on the information flows between them to identify, for ex-

ample, important dependencies. In Fig. 7.12, we see the information flows
that are associated with the Handle Claim business process that is used as

an example throughout the description of these viewpoints. The types of

business objects passed between the actors are put as annotations to the
flow arrows; these correspond to the business objects used by the Handle

Claim process shown in Fig. 7.19. If needed, we could also include the in-

terfaces used in exchanging this information, e.g., telephone or e-mail.

7.5.4 Business Function Viewpoint

The Business Function viewpoint shows the main business functions of an

organisation and their relations in terms of the flows of information, value,

or goods between them. Business functions are used to represent what is
most stable about a company in terms of the primary activities it performs,

regardless of organisational changes or technological developments. Busi-

ness function architectures of companies that operate in the same market

therefore often exhibit many similarities. The Business Function viewpoint
thus provides high-level insight into the general operations of the com-

pany, and can be used to identify necessary competencies, or to structure

an organisation according to its main activities.

Insurer

Maintaining

Intermediary

Relations

Contracting

Financial

Handling

Claim

Handling

Claims

Insurance

policies

Customer information

Money

Maintaining

Customer

Relations

Asset

Management

Contracts

Product

information

Customer

information

Claims

Insurance

information

Insurance

premiums

Claim

payments

Insurance

policies

Customer

information

Product

information

Claims

Money

Claim

information

Intermediary

Customer

Customer’s

Bank

Fig. 7.13. Business functions and flows of information and money.

178 Viewpoints and Visualisation

Finance

Home

&

Away

Car Legal

Aid

Customer RelationsIntermediary Relations

Maintaining

Intermediary

Relations

Contracting

Financial

Handling

Claims Handling

Maintaining

Customer

Relations

Asset

Management

Fig. 7.14. Business functions and organisation structure.

In the example of Fig. 7.13, we can see the information flow associated
with the handling of insurance claims. Claims are submitted to the Main-

taining Customer Relations business function, processed by Claim Han-

dling, and paid by Financial Handling. In the Business Process viewpoint
(Sect. 7.5.5), we will see a more detailed depiction of this process. In Fig.

7.14, these business functions are mapped onto the responsible organisa-

tional units that were shown in Fig. 7.10.

7.5.5 Product Viewpoint

The Product viewpoint depicts the value this product offers to the custom-

ers or other external parties involved and shows the composition of one or

more products in terms of the constituting (business or application) ser-
vices, and the associated contract(s) or other agreements. It may also be

used to show the interfaces (channels) through which this product is of-

fered, and the events associated with the product.
A Product view is typically used in designing a product by composing

existing services or by identifying which new services have to be created

for this product, given the value a customer expects from it. It may then

serve as input for business process architects and others that need to design
the processes and IT systems that realise this product.

Basic Design Viewpoints 179

Travel Insurance

Claim

registration

service

Customer

information

service

Claims

payment

service

Insurance policyInsurance

application

service

Premium

payment

service

Customer

data mutation

service

"be insured"

(security)

Customer

Fig. 7.15. The travel insurance product.

A typical insurance product of ArchiSurance is depicted in Fig. 7.15.

The value to the customer of an insurance is typically the added security it

provides. The services mentioned here are realised by various business
processes, an example of which is given in Sect. 7.5.6.

7.5.6 Service Realisation Viewpoint

The Service Realisation viewpoint is used to show how one or more busi-
ness services are realised by the underlying processes (and sometimes by

application components). Thus, it forms the bridge between the Product

viewpoint and the Business Process viewpoint. It provides a ‘view from

the outside’ of one or more business processes.

Claim

registration

service

Customer

inform ation

service

Claims

paym ent

service

Customer

Handle ClaimClose Contract Col lect Prem iumInform Customer

Insurance

appl ication

service

Premium

paym ent

service

Fig. 7.16. Realisation of business services by ArchiSurance business processes.

180 Viewpoints and Visualisation

Business services are realised by business processes. In Fig. 7.15, we

saw the services that constitute the travel insurance product. The business

processes that realise these services are shown in Fig. 7.16. For example,
the Claim registration service is realised by the Handle Claim business

process that we use as an example throughout this chapter.

7.5.7 Business Process Cooperation Viewpoint

The Business Process Cooperation viewpoint is used to show the relations
of one or more business processes with each other and/or their surround-

ings. It can be used both to create a high-level design of business processes

within their context and to provide an operational manager responsible for
one or more such processes with insight into their dependencies. Important

aspects of coordination are:

− causal relations between the main business processes of the enterprise;

− the mapping of business processes onto business functions;

− realisation of services by business processes;

− the use of shared data;

− the execution of a business process by the same roles or actors.

Each of these can be regarded as a ‘sub-viewpoint’ of the Business Process
Cooperation viewpoint. Below, we give examples of some of the resulting

views.

Handle Claim

Close Contract Collect Premium
Request for

insurance

Damage

occurred

Request for

information

Inform Customer

Develop Product Manage Assets
Opportunity

identified

Request for

information

Inform Intermediary

Fig. 7.17. Some of the main business processes, triggers, and relations of Archi-

Surance.

Basic Design Viewpoints 181

Customer

Relations

Claim

Handl ing

Financial

Handl ing

 Handle Claim

Register PayValuateAccept
Damage

occurred

Fig. 7.18. The Handle Claim business process mapped onto the business func-

tions.

In Fig. 7.17, the most important business processes of ArchiSurance are

depicted. It also shows their relations, e.g., the Collect Premium process

needs to be preceded by the Close Contract process, since of course no
premium can be collected before the insurance policy has been issued.

This figure also shows the Handle Claim process that occurs in many of

the other viewpoints. In Fig. 7.18, the Handle Claim business process of

Fig. 7.19 is mapped onto the business functions of Fig. 7.13.

7.5.8 Business Process Viewpoint

The Business Process viewpoint is used to show the high-level structure

and composition of one or more business processes. Next to the processes
themselves, this viewpoint contains other directly related concepts such as:

− the services a business process offers to the outside world, showing how

a process contributes to the realisation of the company’s products;

− the assignment of business processes to roles, which gives insight into

the responsibilities of the associated actors;

− the information used by the business process.

Each of these can be regarded as a ‘sub-viewpoint’ of the Business Process
viewpoint.

 Handle Claim

Register PayValuateAccept

Damage claim
Claim

form

Customer file Insurance pol icy

Damage

occurred

Fig. 7.19. The Handle Claim business process and its use of information.

182 Viewpoints and Visualisation

In Fig. 7.19, the Handle Claim business process is shown, together with

the information it uses. This shows in more detail which subprocesses are

carried out in handling insurance claims.

7.5.9 Information Structure Viewpoint

The Information Structure viewpoint is basically identical to the traditional

information models created in the development of almost any information

system. It shows the structure of the information used in the enterprise or
in a specific business process or application, in terms of data types or (ob-

ject-oriented) class structures. Furthermore, it may show how the informa-

tion at the business level is represented at the application level in the form
of the data structures used there, and how these are then mapped onto the

underlying infrastructure, e.g., by means of a database schema.

In Fig. 7.20, the most important business objects of ArchiSurance are
shown. Some of these are used in the Handle Claim business process, as

depicted in Fig. 7.19.

Damage claim
Claim

form

Customer file

Insurance policyInsurance request

Car insurance

policy

Home insurance

policy

Travel insurance

policy

Liability

insurance policy

Legal aid

insurance policy

Custom er

Fig. 7.20. Information model of ArchiSurance.

7.5.10 Application Cooperation Viewpoint

The Application Cooperation viewpoint shows the relations of a number of

applications or components. It describes the dependencies in terms of the

information flows between them, or the services they offer and use. This
viewpoint is typically used to create an overview of the application land-

scape of an organisation.

Basic Design Viewpoints 183

This viewpoint is also used to express the coordination or orchestration

(i.e., internal coordination) of services that together support the execution

of a business process. By modelling the interdependencies between ser-
vices, the coordination of the underlying applications is established in a

more independent way. If this coordination is centralised and internal to

the enterprise, we speak of ‘orchestration’; in the case of coordination be-
tween independent entities, the term ‘choreography’ is often used.

The front- and back-office applications of ArchiSurance are shown in

Fig. 7.21. It is clear that the back office is structured according to the dif-

ferent types of products, whereas the front office is already more inte-
grated. One of the applications shown is the Home & Away policy admini-

stration used in several other viewpoints as well.

Front office appl ications

Back office applications

Home & Away
Policy

administration

Home & Away
Financial

application

Car Insurance
application

Legal Aid
backoffice

system

Web
portal

Call center
application

CRM appl ication
Legal Aid

CRM

Bank
system

Fig. 7.21. Applications and information flow of ArchiSurance.

Some of the connections between the ArchiSurance applications are
shown in Fig. 7.22, which shows that ArchiSurance uses the Enterprise

Service Bus concept to link its applications. In Fig. 7.23, we see in more

detail how the Claim information service from the Home & Away Policy
administration is used by the department’s Financial application, through

an interface in which the message queuing service from the lower-level in-

frastructure is used (see also Fig. 7.28).

184 Viewpoints and Visualisation

ArchiSurance Service Bus

Home & Away

Policy

administration

CRM

application

Home & Away

Financial

application

Customer

information

service

Policy

information

service

Bank

system

Money transfer

service

Fig. 7.22. Applications connected through the ArchiSurance Service Bus.

Home & Away

Policy

administration

Home & Away

Financial

application

Policy

information

service

Messaging

service

Fig. 7.23. Details of the connection between the Home & Away Policy admini-

stration and Financial application.

7.5.11 Application Usage Viewpoint

The Application Usage viewpoint describes how applications are used to

support one or more business processes, and how they are used by other

applications. It can be used in designing an application by identifying the
services needed by business processes and other applications, or in de-

signing business processes by describing the services that are available.

Furthermore, since it identifies the dependencies of business processes
upon applications, it may be useful to operational managers responsible for

these processes.

In Fig. 7.24 it is shown how the Handle Claim business process uses the
application services offered by several applications. Each of these services

is realised by the behaviour of an application, an example of which is

given in Fig. 7.25.

Basic Design Viewpoints 185

 Handle Claim

Register PayValuateAccept

Home & Away

Policy

administration

CRM

appl ication

Home & Away

Financial

appl ication

Customer

administration

service

Claims

administration

service

Payment

service

Printing

service

Scanning

service

Document

management

system

Fig. 7.24. Application usage by the Handle Claim business process.

7.5.12 Application Behaviour Viewpoint

The Application Behaviour viewpoint describes the internal behaviour of
an application or component, for example, as it realises one or more appli-

cation services. This viewpoint is useful in designing the main behaviour

of applications or components, or in identifying functional overlap be-
tween different applications.

Hom e & Away Policy adm inistration

Policy creation

Calculate

prem ium

Calculate

risk

Create

policy

Store

policy

Policy

creation

service

Custom er file

data

Insurance policy

data

Insurance request

data

Hom e & Away

Financial

adm inistration

Prem ium

col lection

Policy

inform ation

service

Fig. 7.25. Behaviour of the Home & Away Policy administration in realising the

Policy creation service.

Part of the behaviour of the Home & Away Policy administration is

shown in Fig. 7.25. The individual application functions are chained to-
gether and collectively realise the Policy creation application service. The

186 Viewpoints and Visualisation

communication with the Financial administration takes place in an interac-

tion that realises the Policy information service.

7.5.13 Application Structure Viewpoint

The Application Structure viewpoint shows the structure of one or more

applications or components. This viewpoint is useful in designing or un-

derstanding the main structure of applications or components and the asso-

ciated data, e.g., to create a first-step work breakdown structure for build-
ing a system, or in identifying legacy parts suitable for migration.

Home & Away Policy administration

Risk

Assessment

Policy data

management

Customer

data access

Damage claim data Customer file dataInsurance policy

data

Claim data

management

Insurance request

data

Fig. 7.26. Main structure of the Home & Away Policy administration.

Fig. 7.26 shows the main components that constitute the policy admini-

stration of ArchiSurance’s Home & Away department. It also depicts some
of the important data objects used by these components. These data objects

are realisations of the business objects of Fig. 7.20.

7.5.14 Infrastructure Viewpoint

The Infrastructure viewpoint comprises the hardware and software infra-
structure upon which the application layer depends. It contains physical

devices and networks, and supporting system software such as operating

systems, databases, and middleware.
The physical infrastructure of ArchiSurance and its intermediaries is

shown in Fig. 7.27.

Basic Design Viewpoints 187

ArchiSurance

Unix server farm

Mainframe

Intermediary

Admin

server
LAN

NAS

File server

LAN
TCP/IP

Network
Firewall Firewall

Unix
server

Unix
server

DBMS

Message
Queing

CICS

Fig. 7.27. Infrastructure of ArchiSurance.

7.5.15 Infrastructure Usage Viewpoint

The Infrastructure Usage viewpoint shows how applications are supported

by the software and hardware infrastructure: infrastructure services deliv-
ered by the devices, system software, and networks are provided to the ap-

plications.

An example of this viewpoint is given in Fig. 7.28, which shows the

use, by a number of back-office applications, of the messaging and data
access services offered by ArchiSurance’s infrastructure.

Mainframe

DBMS (DB2)
Message
Queing

Messaging

service

Data access

service

Home & Aw ay
Policy

adm inistration

Home & Away
Financial

appl ication

Car Insurance
appl ication

Legal Aid
backoffice

system

Fig. 7.28. Use of infrastructure services by ArchiSurance’s back-office applica-

tions.

This viewpoint plays an important role in the analysis of performance

and scalability, since it relate the physical infrastructure to the logical

188 Viewpoints and Visualisation

world of applications. It is very useful in determining the performance and

quality requirements of the infrastructure based on the demands of the

various applications that use it. In Chap. 8, we will describe a quantitative
analysis technique that can be used to determine, for example, the load on

the infrastructure, based on its use by applications (and their use by busi-

ness processes).

7.5.16 Implementation & Deployment Viewpoint

The Implementation & Deployment viewpoint shows how one or more ap-

plications are deployed on the infrastructure. This comprises the mapping

of (logical) applications and components onto (physical) artifacts like, for
instance, Enterprise Java Beans, and the mapping of the information used

by these applications and components onto the underlying storage infra-

structure, e.g., database tables or other files. In security and risk analysis,
Deployment views are used to identify critical dependencies and risks.

Fig. 7.29 shows the mapping of logical application components of the

Home & Away Policy administration (see Fig. 7.26) used in several of the

other examples onto physical artifacts such as Enterprise Java Beans.

Integrated Web access

Home & Away Policy administration

Policy data

management

Customer

data access

Claim data

managem ent

Web access

Client-side

(browser)

Web access

Server-side

(JSP)

Customer data

Business logic

(EJB)

Policy data

Business logic

(EJB)

Claim data

Business logic

(EJB)

Customer data

Persistence

(EJB)

Policy data

Persistence

(EJB)

Claim data

Persistence

(EJB)

DBMS

(DB2)

Logical

Physical

Fig. 7.29. Implementation of the Home & Away Policy administration.

Summary 189

7.6 Summary

In the previous sections, we have advocated a viewpoint-oriented approach

to enterprise architecture modelling, in which architects and other stake-
holders can define their own views of the architecture. In this approach

views are specified by viewpoints, which define abstractions on the set of

models representing the enterprise architecture, each aimed at a particular
type of stakeholder and addressing a particular set of concerns.

We have described the use of viewpoints in communication, and the dis-

tinction between an architecture model, a view of that model, and its visu-
alisation and manipulation. We have presented guidelines for the selection

and use of viewpoints, and outlined a number of viewpoints in the Archi-

Mate language that can be used by architects involved in the creation or

change of enterprise architecture models.

