Organising an Information System as Stratified Hypermedia

C.AJ. Burgers, H.A. Proper and Th.P. van der Weide

Computing Science Institute, University of Nijmegen,
Toernooiveld, NL-6525 ED Nijmegen, The Netherlands,
{coenb,erikp,tvdw } @cs.kun.nl

PUBLISHED AS:

C.A.J. Burgers, H.A. Proper, and Th.P. van der Weide. Organising an Information System as
Stratified Hypermedia. In H.A. Wijshoff, editor, Proceedings of the Computing Science in the
Netherlands Conference, pages 109—120, Utrecht, The Netherlands, EU, November 1993.

Abstract

In this paper we investigate a relation between modern hypertext approaches and conventional data
modelling techniques, such as PSM. This relation provides us with the mechanism of query by naviga-
tion, in order to facilitate the query formulation problem.

1 Introduction

The information disclosure problem begins with a person having an information need that they wish to fulfil
(figure 1). Formulation of this need leads to a request ¢, which has to be matched against the characteri-
zation of information objects which are available in the information base (also referred to as information
carriers or documents). This process of matching yields a measure for the relevance of objects to the
request. The formulation of a request is known to be a cause of problems ([SM83]).

information

need

N
character
request ization -
—> -+
W @
‘ matching
Sformulation indexing

Figure 1: The information disclosure paradigm

Next we focus on information modelling problems, in which the analyst has to deal with information
structures of sizes, matching that of wallpaper (even for medium sized modellings problems). Such struc-
tures easily result in diagrams which are unreadable for both domain experts and system analysts. If a user
wants to know something about objects in this information structure, it is very likely that they have prob-
lems in formulating an adequate request. As a consequence, they will retrieve irrelevant (or even wrong)
objects and may miss relevant objects. Retrieving irrelevant objects leads to a low precision, missing
relevant objects has a negative impact on the recall ([SM83]).



relevant | irrelevant
objects | objects

retrieved ideal recision

objects P
unretrieved recall ideal
objects

A way to overcome the query formulation problem is the concept of query by navigation, allowing the
user to navigate through the information characterizations, and meanwhile formulating their request inter-
actively. This interaction mechanism between a searcher and the system is well-known from Information
Retrieval, and has proven to be usefull ((BW92b, Bru93]).

The Predicator Set Modelling technique (PSM) has been introduced as a common denominator for
object-role modelling techniques, covering well-known techniques such as ER ([Che76]) and NIAM ([NH89]).
This makes the presented ideas applicable to object-role modelling techniques in general. Note that the ap-
proach is related to the natural language paradigm of NIAM.

In this paper a PSM information structure will be represented as a stratified hypermedia architecture,
leading to an implementation of the concept of query by navigation in the context of information modelling.
Stratified hypermedia architecture ((BW92b]) features a descriptive level, the so-called hyperindex, com-
prising a hypertext of characterizations, indexing the lower level, the so-called hyperbase. The hyperbase
contains the actual information. Stratified hypermedia architecture offers, by seperating description and
instantiation, the possibility to formulate information needs by an interactive process of navigation through
the descriptive level.

As a result, the hyperindex provides a domain, both for the characterization and query language. The
characterization function x relates hyperindex and hyperbase, and forms the basis for determining the
relevancy (matching) of information objects (hyperbase) to a given query (descriptor from the hyperindex).

2 Traversing an information structure

Before describing a data modelling technique such as PSM as a stratified hypermedia architecture, we
present a demonstration of the benefits of the resulting system. In this paper, we concentrate on query
by navigation, and therefore omit how this architecture can be helpful during the construction process of
information systems. For a description of this latter use, see [HPW92] and [HPW93].

The examples in this section are based on the so-called presidential database, which served as a unified
example in a special issue of Computing Surveys [FS76]. The example was first enuntiated in [WBGW73].
An excerpt of the presidential database is shown in figure 2. The examples show how the system supports
the formulation of queries. The process of query formulation corresponds to a search through the informa-
tion system in order to fulfil some information need. The request of the searcher is formulated by stepwise
refining or enlarging the current description (the focus) of this need, until the searcher recognises the cur-
rent description as sufficiently describing (part of) the information need. Usually the best description will
result from a set of such descriptions (a so-called guide).

The examples, in this paragraph, give an idea of what a searcher subsequently has to do, and what

screens they will encounter, when formulating their information need. Each screen contains, in its header,
the current focus, and in its body the direct environment of the current focus. The first example, figure 3,
shows the screen which corresponds to the starting point of a search in which the searcher has not yet
revealed anything. This screen will be referred to as the starting node of the system.
The starting node contains all object types of the information structure at hand. The searcher can now
choose one of the objects as focus for further processing. This selection then is the first refinement of the
searcher’s information need. A selection of an item in a node is denoted by the symbol <+ in the figures.
The symbol 57 is a button for a refinement step, while A is used for an enlargement step. Finally > is a
button used for an associative link.

In the second example, figure 4, the searcher wants to find those presidents married with someone
involved in politics. The search begins with the starting node. We describe only one path leading to



a descriptor of his information need in which the searcher is directly heading for the goal, without any
backtracking. The searcher starts with selecting president as focus. The associated screen shows about
the direct environment of president. Thereupon the searcher selects president is married as next focus. In
the resulting screen the searcher continues with president is married with person. The screen associated
with this focus shows the sentence president is married with politician, which is a proper description of
the original information need. Now the searcher can satisfy their information need by requiring the result
of the request. The system will present the answer in a standard tabular format, or in the following more
verbose form:
president x is married with politician y

where = denotes a president and y a politician.

In the third example, figure 5, the searcher is interested in the birthyear and age of death of some person.
In order to find these properties of some persons the searcher first has to choose president, as the birthyear
and age of death are only recorded for presidents. Now the searcher can refine their focus by choosing
either president has birthyear or president has died as focus for further processing. When selecting the
former as focus, using A, the sentence president has birthyear in year appears. This satisfies the first part
of the information need. In order to satisfy the second part, the searcher must create another context. They
now focus, using B, on the age of death of persons. After choosing president has died at age, they have
fulfilled their information need and can require the respons by this guide. The system will present all
answers in the following verbose way:

president x has birthyear y,
president x has died at age z

where = denotes a president, y a birthyear and z an age of death.

3 PSM represented as stratified hypermedia

In order to represent PSM as a stratified hypermedia architecture, a PSM information structure is divided
into two levels of abstraction first. For more details on PSM, the reader may refer to [HW93] or [HPW93].

The concrete level consists of all concrete object types, i.e. label types. The non concrete object types
form the abstract level, and corresponds to a defoliated information structure (see [BW92a]). This level
thus consists of the following components:

o entity types (£), fact types (F),
power types (G), sequence types (S),
schema types (C)

e generalisation (Gen), specialisation (Spec)

These two levels of abstraction can be transformed into the layers constituting a stratified hypermedia
architecture (figure 6). The hyperbase is constructed from the instantiation of an information structure
(its population). The instantiations of label types form the fragments of the hyperbase (F;), while the
instantiations of abstract object types form the molecules (IM).

Object role models allow the verbalisation of queries by so-called path expressions, built from names
of object types and role names. These path expressions are used to construct the hyperindex. For example
in figure 7, the expression

Person being_manager_of Project having_budget 10000

describes all persons which are manager of some project with a budget of 10000 dollars. Rather than role
names (such as being_manager_of), we will use predicator names (such as is and has in figure 7). A role name
can be seen as a representation mechanism for (binary) fact types. For example, role name being_manager _of
corresponds to the representation of fact type Manager by deep structure sentences [NH89] of the form:

(Person) being_manager_of (Project)



A role name also corresponds to a connector [HPW93] through fact type Manager. In non-binary fact types,
however, connectors can not be uniquely derived from a unique predicator, as predicators in this case does
not have a unique co-role. For this reason predicator names are used to uniquely identify paths.

Predicators and object types are the elementary parts from which the set of linear path expressions
(P& is constructed. The hyperindex is constructed from this set P&, in the obvious way:

o the elementary paths form the fragments (F;) of the hyperindex,

e the others form the molecules (IM).

In the remainder of this section, we will describe this in more detail.

3.1 Constructing the hyperindex

In [HPW93] the concept of path expression is introduced. A path expression corresponds to a path through
the information structure, via predicators, beginning and ending in some object type. In this paper, we will
restrict ourselves to linear paths. Linear path expressions are constructed from object types O € O and
predicators p € P.

Predicator p corresponds to a path from object type Base(p) to object type Fact(p). For example, in
figure 7, Base(of) = Budget and Fact(of) = Budgets. The reverse path is denoted as p~. Note that a
predicator forms a connection between two object types. Linear path expressions are concatenated using
the composition operator o. For instance in figure 7:

Person o is © Manager o Manager.has™ o Project

is a path from Person to Project.

In the above example, object type Convoy is a so-called power type with underlying element type Ship.
A power type is instantiated with subsets of the (current) instantiation of the underlying element type. The
fact type connecting a power type with its element type is usually omitted in the information structure.
Such a fact type is therefore called an implicit fact type. In the hyperindex, however, implicit fact types
(and their implicit predicators) are taken into account.

Sample sessions in the hyperindex

At this point the basic concepts of the hyperindex layer are defined. In the remainder of this subsection
some examples are given, demonstrating the mechanism of query by navigation.
The following example shows how to deal with objectification. An objectified fact type can be:

e used as an entity type, abstracting from the composition into predicators,

e used as a fact type, taking the decomposition into predicators into account.

The hyperindex makes no difference between both views, the continuation of the linear path leads for both
views to an extension with a predicator and an object. As a concrete example, consider figure 9. When arriv-
ing in p(Part o is 0 Used), the system shows as possible continuations of this path p(Part o is o Used o in“~ o Project),
using Used as a fact type, and p(Part o is o Used o and o Supplied), using Used as an entity type. The function p
is a represents linear path expressions as readable sentences. This function will be introduced in section 4.
Note that unification of these views is not generally applicable. In subsection 3.3 it is shown how these
different views lead to a different treatment in case of characterization.

Two PSM schema’s, containing generalisation and specialisation respectively, are shown in figure 10.
In order to demonstrate the differences between specialisation and generalisation, figure 10 shows a part
of the hyperindex, located around the starting molecule. From this example, the assignment of the asso-
ciative links, and the constructed path expressions will become clear. When generalisation is involved, the
extension of A with r o g results in a substitution of A by B. This substitution denotes that instances of
A, playing g, are actually instances of B. This substitution origines from the fact that generalised objects
inherits all of their properties of its specifiers [HW93].

In specialisation, subtypes inherit their properties from its associated supertype(s) [HW93]. A path
expression however is represented by the most specialised name, so in the representation p(Bopo f), B
is not substituted by A.



3.2 Constructing the hyperbase

The translation of an instantiation of a PSM information structure into a hyperbase will be done bottom-up.
The fragment base (IF;) is defined first, followed respectively by the node base (N;), the schema (G;) and
the views (Vp).

Instances of abstract object types are composed values. Such instances are represented as structural
elements in the hyperbase, thus contributing to the set M, of molecules. These, however, are not the only
molecules in the hyperbase. For fact types with arity > 2, it will be usefull to have disposal of all non-
empty projections {7 (f) of each instance of f. This is motivated by the possibility that a path expression
walks via a connector through part of a fact type. This will occur when the searcher is not interested in the
complete fact instance.

Besides, it will be usefull to have disposal of joins of (different) molecules. Two molecules can be
joined if they share some sub-molecule. This makes it possible to deal with the construction of linear paths
over multiple facts. If a searcher traverses several fact types subsequently, and then performs a beam-down,
the hypermedia will return the combination of the associated fact type instances as a result.

3.3 Characterization

In this section, we relate hyperbase and hyperindex by the introduction of a characterization x. This
function maps information objects (fragments, nodes, molecules) from the hyperbase onto the fragments
of the hyperindex [BW92b].

The characterization function will be defined bottom up, starting with the fragments of the ;. Fragment
y € [, is characterized by all entity types that are associated to y via a bridge type. As a corollary, note
that subtyping and generalisation is covered by this rule as follows:

e XSpecY ANX € x(x) =Y € x(2)
e XGenY AY € x(z) = X € x(x)

The characterization of node N is directly defined in terms of the contained in its presentation. If, however,
N presents a molecule containing an instance of a power type, a sequence type or a schema type then
the characterization has to deal with it differently. This because these object types are presented using
fragments who are concretisations of their elementary types. The characterization of a node N can be
defined using the following four rules. The characterization of a node containing an instance of a power
type G yields:

X(o Tp({z1,... .20 })7) = x(0) U {G} U x(7)

where 7T, is the presentation function for molecules from the hyperbase b, assigning to each molecule a
sequence of fragments. If a node contains an instance of a sequence type .S then the characterization yields:

x(o Tp((z1, ..., 20))7) = x(0) U {S} U x(7)
The characterization of a node containing an instance of a schema type C' yields:
x(o Tp(v)7) = x(0) U {C} U x(7)

In all the other cases the characterization of a node yields:

x(V) = U x(f)

fenNn

For instance, the characterization of
project 1026 has a budget of 10000 dollars
yields {Project, Budget}, because:

x(‘project’) = @



x(1026) = {Project}
Xx(‘has abudgetof’) = &
x(10000) = {Budget}
x(‘dollars’) = &

Note that the structure of the presentation of a molecule is not taken into account.
The characterization of molecule x, representing an instance of object type X is found in two steps.
Firstly, the characterization of the presentation 77, () is taken into account:

Xo (2) = X(T())

This is known as the weak characterization of x. Secondly, the properties of x are included (strong charac-
terization). These properties are found by the predicators based on X.

Xs(x):{PEPU(Z))ZX\/peX}

where t is an instance of some fact type f.
Molecules representing joins are characterized by the union of the characterizations of their sub-
molecules.

3.4 The beam-down operation

Now that the characterization of the hyperbase molecules is completed, we focus on the beam-down oper-
ation. The beam-down operation transfers the searcher from an expression in the hyperindex to the result
of that expression, i.e. molecule(s) in the hyperbase. The hyperbase molecules are characterized using the
fragments within the hyperindex (F;), so, in order to establish a beam-down result, the molecules of the
hyperindex (M) must also be described using these fragments.

The function dissect (Di) yields for each linear path expression its associated set of fragments:

Di : P&in — (F)
The function dissect is defined inductively according to the structure of linear path expressions.

e An object X is dissected in its own name and the entity types on its identification path. The entity
types on an identification path of object type X is denoted by Id(X). A fact type X however is
dissected in its predicators and the bases of those predicators. If a fact type X is connected to an
objectified fact type Y then the dissection of Y is also included in the dissection of X, so:

Di(X) = -
U, o} v i) 55k
{X} v U {y} otherwise

y€eld(X)

e The dissection of a linear path must deal with the possibility that this path contains objectified fact
types (used as entity types). If some path Y contains an objectified fact type Z, used as an entity
type, then the dissection of Y includes the dissection of Z also, so:

Di(P o p o Fact(p)) =

Di(P)U {p}
U Di(Base(p)) if Base(p) € F
Di(P) U {p} otherwise



e If a linear path P is extended with a predicator p and an object type Base(p), then p*~ and the
dissection of Base(p) are added to the dissection of P.

Because there is no difference between connecting two object types using a p or p—, p~ can be
substituted (in the result) by p, so:
Di(P o p~ o Base(p))
= Di(P) U {p} U Di(Base(p))
The BeamDown operator, on some guide G, retrieves hyperbase molecules in the following way. The
function Rel calculates the relevancy of hyperbase molecules for the actual guide. This function yields a
pair as a result, the first component denoting the relevancy of the object types from the dissection of the

guide, the second that of the predicates. Only hyperbase molecules that exceed some treshold € will be
retrieved, and are presented in their (alphabetic) order of relevance.

BeamDown(G) = {M € M, ‘ Rel(M,G) > ¢}
The calculation of the relevancy of some hyperbase molecule M for some guide G yields:

Rel(M,G) =
(relevance object types, relevance predicators)

The calculation of the relevance of the object types takes type relatedness into account. For each object
type X, in some characterization or dissection, only M(X) is regarded relevant for the calculation. This
leads to the following rule:
relevance object types
| (cr(M) N PHG)) U Corr(M) |
| cr(aM) U PH@) |

The function Cr is based on the weak characterization (containing object types):
Cr(M) = N(x., (M))

Similarly, the function Pr yields the set containing the pater familias of each object type from the dissection
of G:

Pr(G)=1| U Di(p)nO
peG
The function Corr corrects for noise, resulting from multiple entity type instances being represented by a
single label type instance. For example in figure 2, object types Politician and President are both identified
by label type Person-name.

Corr(M) = {X } Jaepop(X) Ayem, (ar) [Coner(z) = y] }

where Concr(z) denotes the concrete value used for representing abstract instance x.

The calculation of the relevance of the predicators is done analogously, with the exception that no noise
occurs in this case.
| Co(M) N P(G) |

| cp(M) U PR(@) |

relevance predicators =
The function Cp is defined by:
Cp(M) = x,(M)

The predicators, associated with the dissection of a guide, are found by:

Pp(G) = U Difp) NP

peEG



Beam-down example

In this paragraph we will give two examples of the beam-down process. Consider the following linear path
expression in figure 8:
Project o Budgets.has o Budgets

The dissection belonging to this path expression is:
Di(Project o Budgets.has o Budgets) =
{Project7 Budgets.has}
Suppose Budgets and Manager are populated as follows:
Pop(Budgets)
= {{of: ey, has: cl}, {of: es, has : CQ}}
Pop(Manager)
= {{is 2 dsy, has : 02}, {is 2 dq, has: 03}}
The characterizations of some hyperbase molecules are:

- x({c1)) = {Project, Budgets.has}

- x({c2)) = {Project, Budgets.has, Manager.has}

x({e3)) = {Project, Manager.has}

- x({d2)) = {Person, is}
When performing the beam-down operation on guide G' = {Project o Budgets.has o Budgets} , the hyper-
media system computes the relevancy of these molecules with respect to this guide. Thus:

Rel((c1),G) = (1,1)

1
Re|(<02>7G) = (Lﬁ)
Re|(<03> 7G) = (LO)
Rel((d2) , G) (0,0)
Using (3, 1) as a treshold, only molecules (c1), (c2) are retrieved. These molecules are presented respec-
tively as 7T(c1) and 7T, (c2) to the searcher.

In the next example, we consider the following guide:
G =
{Project o Budgets.has o Budgets,
Project o Manager.has o Manager o is~ o Person }
The dissection of this guide is:
Di(G) =
{Project, Budgets.has, Manager.has, is, Person}

The relevancy of some molecules to this guide is:

Rell(er), G) = (3,3)
Rell(cz),G) = (3,3)
Rell(es) G) = (5:3)
Rel(),G) = (5.5)



Using as treshold (%, i), none of these molecules will be retrieved. However, the retrieval result will not

be empty for this guide. For example, the relevancy of {cads) is (1,1), which clearly exceeds the treshold,
and will be presented as 7T (cad2).

4 Presenting linear path expressions

In this section the function p is introduced. This function maps linear path expressions into readable
sentences. Before defining p we introduce the concepts of object type naming and predicator naming.

4.1 Object type and predicator naming

In order to verbalise linear path expressions, we must first verbalise object types and predicators. Explicit
object types are referenced by a unique name:

ONm: O — N,
Explicit predicators may have assigned a so-called predicator name via the (partial) function:
PNm: P U P~ =N,

These naming functions, however, do not assign names for implicit object types and implicit predicators.
For the latter categories, a general naming mechanism (using keywords) is introduced. For instance in
figure 7, the predicator ¢ could be verbalised in two directions as follows:

has

PNm(Manager.has)
PNm(Manager.has™) = of

The predicator name of a predicator may yield an empty string. The motivation is that an empty string
sometimes enables us to present better readable sentences.

4.2 Verbalising linear paths

Linear path expressions are presented as readable sentences via the function: p : P&;, — N. This function
is defined recursively as follows:

p(0) = ONm(0)

p(Popo X)=

p(P) PNm(p) ONm(X)
if p and X have names

p(P) involved inONm(X)
if p has no name, and X has

some keyword, see below
otherwise

p(P o p~ o X)=
p(P) PNm(p~) ONm(X)

if p~ and X have names
p(P) of ONm(X)

if p~ has no name, and X has

some keyword
otherwise




For instance in figure 7:

p(Project o Manager.has o Manager)
= ONm(Project) PNm(Manager.has)
ONm(Manager)
= project has manager

Now we will introduce keywords. Keywords serve as a naming mechanism for handling implicit object
types and predicators. In figures 11, 12, 13, and 14 the keywords are summarised. For each keyword an ar-
row denotes the path associated with that keyword. (For more information about keywords see [HPW93].)

These keywords also can be used when no predicator names are defined. For instance, if in figure 7
PNm(Manager.has™) is not defined:

p(Manager o Manager.has™ o Project)
= manager of project

When dealing with implicit facts it can be usefull to use keywords instead of defining predicator names and
the name of the implicit fact. If in figure 12:

ONm(Convoy) = convoy
ONm(Ship) = ship

Then the denotation of the following linear paths yields:

p(Convoy o eEjon\/oy,Ship © EConvoy,Ship)

= convoy has elements

p(Ship o e?:on\/oy,Ship © €Convoy,Ship °
p «—
(eConvoy,Ship) o Convoy)

= ship in convoy

5 Conclusions

In this paper we investigated an integration between stratified hypermedia architecture and information
systems. This integration makes it possible to use the concept of query by navigation in information struc-
tures based on object-role modelling techniques. Due to this integration a user can interactively formulate
a query.

The presented mechanism offers several opportunities for further refinement. Firstly, at the moment a
guide connects the comprising linear path expressions like conjunction for boolean expressions. It might
be worthwile to investigate the effects of an extension to full boolean retrieval for combining linear path
expressions.

Secondly, the extension to (general) path expressions seems to be a natural extension of this approach.

Thirdly, applying this mechanism on other database query languages (such as SQL) may be investi-
gated.

References

[Bru93] P.D. Bruza. Stratified Information Disclosure: A Synthesis between Information Retrieval and
Hypermedia. PhD thesis, University of Nijmegen, Nijmegen, The Netherlands, EU, 1993.

[BW92a]  P. van Bommel and Th.P. van der Weide. Reducing the search space for conceptual schema
transformation. Data & Knowledge Engineering, 8:269-292, 1992.

10



[BW92b]

[Che76]

[FS76]

[HPW92]

[HPWO3]

[HWO93]

[NH89]

[SM83]

[WBGW73]

P.D. Bruza and Th.P. van der Weide. Stratified Hypermedia Structures for Information Dis-
closure. The Computer Journal, 35(3):208-220, 1992.

P.P. Chen. The entity-relationship model: Towards a unified view of data. ACM Transactions
on Database Systems, 1(1):9-36, March 1976.

J.P. Fry and E.H. Sibley. Evolution of Data-Base Management Systems. Computing Surveys,
8(1):7-42, 1976.

A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Data Modelling in Complex
Application Domains. In P. Loucopoulos, editor, Proceedings of the Fourth International
Conference CAISE’92 on Advanced Information Systems Engineering, volume 593 of Lecture
Notes in Computer Science, pages 364-377, Manchester, United Kingdom, EU, May 1992.
Springer Verlag, Berlin, Germany, EU. ISBN 3540554815

A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Formal definition of a conceptual
language for the description and manipulation of information models. Information Systems,
18(7):489-523, October 1993.

A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data modelling.
Data & Knowledge Engineering, 10(1):65-100, February 1993.

G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational Database Design: a fact
oriented approach. Prentice-Hall, Sydney, Australia, 1989. ASIN 0131672630

G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill
New York, NY, 1983.

S.E. Willner, A.E. Bandurski, W.C. Gorhan, and M.A. Wallace. COMRADE data manage-
ment system. In Proceedings of the AFIPS National Computer Conference, pages 339-345,
Montvale, New Jersey, 1973. AFIPS Press.

11



Person
(Person-
name)

Admini-
stration
(Adm_nr)

Contested

Vice_president

Inaugu- . Fami-

rated ly

married

State
(State
name)

Year
(Year_nr)

Birthstate

Served

Figure 2: Part of the American president information structure

12



Start

person
politician

president

year
age

state
party
hobby
election

married
won
contested
head

vice president
inaugurated
family
birthyear
died

served
birthstate
member

LI 9]49494D]

spare time

administration

number of years

number of votes

number of children

Figure 3: The starting node

LI 4D]

Start president
person Start
politician president has contested
president — president is head
administration president is vice president
year president has won

age president is married —

number of years
state

party

hobby

election

number of votes
number of children
married

won

contested

head

vice president
inaugurated
Sfamily
birthyear

died

served
birthstate
member

spare time

AL B>

president has birthyear
president has died
president has served
president has birthstate
president is member

president practises in spare time

> person

> politician

president is married

A president
N\ married

\/ president is married with person

president is married with person

4L B>

president is married

married with person

president is married with person has contested
president is married with person is head

president is married with person was vice president

> president is married with politician

> president is married with president

13

Figure 4: The quest for a president who is married with a politician




Start person president
= =
\/ person — A\ Start /N Start
Y politician \/ person has contested \/ president has contested
\/ president N/ personis head \/ president is head
Y administration \/ person is vice president \/ president is vice president
\ year N/ personis married \/ president has won
\V age > politician \/ president is married
\/ number of years > president - \/ president has birthyear — A
Y state \/ president has died — B
\/ party \/ president has served
\V hobby \/ president has birthstate
\/ election \/ president is member
\/ number of votes \/ president practises in spare time
\/ number of children B> person
Y married > politician
Y won
Y contested
Y head
\V vice president A B
Y inaugurated
 family
\/ Dbirthyear
v died president has birthyear president has died
 served
\/ birthstate A president A president
\/ member A birthyear I\ died
\/ spare time \/ president has birthyear in year VY president has died at age

Figure 5: The quest for a persons birthyear and age

hyperbase

hyperindex

molecules

(M)

molecules

(M)

fragments

)

[fragments

)

using
populations

abstract
object

types

composed

7)‘glin

concrete

object elementary
types 7)‘glin
Information
7D‘S’lin
Structure

of death

Figure 6: Transforming a PSM structure into a stratified hypermedia structure

14




being-managerof

having budget

generalisation:

Figure 7: Projects, members and budgets

Convoy

c
€ Convoy,Ship

Ship >

Supplied

e
€ Convoy,Ship

Supplier

€ Convoy,Ship

Figure 8: Implicit fact connecting Convoy and Ship

Figure 9: An example of objectification

Start

YV p(4)
\ »(B)
YV p(C)
\ »(D)
¥ o(f)
YV r(9)

p(A) p(B)
A\ Start AN Start
¥V p(Aopof) \ p(Borog)

V p(Borog)
> p(B)

specialisation:

p(4) p(B)

AN Start A Start

YV p(Aopo f) YV p(Bopof)
V p(Borog)
> p(A)

Figure 10: Hyperindex dealing with generalisation and specialisation

15



INVOLVED IN

Figure 11: Keywords used in fact verbalisation

HAS
ELEMENTS

IS
ELEMENT CONTAINING

Figure 12: Keywords used in power type verbalisation

PART OF COMPRISING
f N 0
[ ) ]
N J U J
COMPRISING PART OF

Figure 13: Keywords used in schema type verbalisation

OCCURRING IN

INDICES HAVING

AT POSITION ELEMENTS

SEQUENCES

Figure 14: Keywords used in sequence type verbalisation

16



PSM Graphical Conventions
This appendix contains an overview of the PSM symbols for object types, generalisations and
specialisations, and graphical constraints used in this article.

object type:
label type z: y is specialisation of x:
single-fact uniqueness constraint:
role:
z
predicator: schema type:

uniqueness constraint:

ower type of x: .
yp P total role or cover constraint:

exclusion constraint:

y sequence type of xz:

GREANONNC)

subset constraint:

©O)

equality constraint:

oFol[o]] @@f 0 |®|O

{zq..2p}
y is generalisation of x: enumeration constraint: O

17



