
An Information System organized as Stratified Hypermedia

C.A.J. Burgers1, H.A. Proper2 and Th.P. van der Weide1

1Computing Science Institute, University of Nijmegen
Toernooiveld, NL-6525 ED Nijmegen, The Netherlands

2Department of Computer Science, University of Queensland
Queensland 4072, Australia

E.Proper@acm.org

PUBLISHED AS:

C.A.J. Burgers, H.A. Proper, and Th.P. van der Weide. An Information System organized as Stratified
Hypermedia. In N. Prakash, editor, CISMOD94, International Conference on Information Systems
and Management of Data, pages 159–183, Madras, India, October 1994.

Abstract

In this paper we investigate the relation between modern hypertext approaches and conventional
data modelling techniques, such as PSM. We show how query formulation in a traditional informa-
tion system can be regarded as a stratified hypermedia featuring two levels of abstraction. The first
level of abstraction covers the structure of the stored information, and the second level the informa-
tion itself.

The investigations provide us with the mechanism of query by navigation as a novel avenue for
improved query formulation in information systems.

1 Introduction

The information disclosure problem begins with persons having an information need they wish to fulfill (figure 1).
Formulation of this need leads to a request q, which has to be matched against the characterization of information
objects which are available in the information base (also referred to as information carriers or documents). This
process of matching yields a measure for the relevance of objects to the request. The formulation of a request is
a known cause of problems ([SM83]).

In information modelling, the analysts and users have to deal with information structures of sizes, matching that
of wallpaper (even for medium sized modelling problems). Such structures easily result in diagrams which are
unreadable for both domain experts and system analysts, giving them a feeling of being lost in conceptual space.
If a user wants to know something about objects in this information structure, it is very likely that they have
problems in formulating an adequate request. As a consequence, they will retrieve irrelevant (or even wrong)
objects and may miss out on relevant objects. Retrieving irrelevant objects leads to a low precision, missing
relevant objects has a negative impact on the recall ([SM83]).

A way to overcome the query formulation problem is the concept of query by navigation, allowing the user to
navigate through the information characterizations, and meanwhile formulating their request interactively. This

1

�� ��
����A �

� A

- request
q

character
ization

χ
�

6

formulation

6

indexing
matching

�
�

�
�information

need
N

Figure 1: The information disclosure paradigm

interaction mechanism between a searcher and the system is well-known from Information Retrieval, and has
proven to be useful ([BW92, Bru93]).

The Predicator Set Modelling technique (PSM) has been introduced as a common denominator for object-role
modelling techniques (such as NIAM [NH89]), and ER ([Che76]) based modelling techniques. This makes the
presented ideas applicable to a broad range of modelling techniques.

�
�

�
�B

p

q

�
�

�
�A

g

�
�

�
�

f r t
�
�

�
�C

�
�

�
�D

s

b6p11 p12

�
�

�
�(L5)

'
&

$
%
E

h
u

l
l
l
l
l

v

�
�

�
�(L1)

�
�

�
�(L2)

�
�

�
�D1

�
�

�
�D2

�
�

�
�(L3)

�
�

�
�(L4)

b1p1 p2

b2p3 p4

b3

p5

p6

b4p7 p8

b5

p9

p10

7 o

@
@
@
@
@
@
@

%
%
%
%

Figure 2: A sample PSM schema

In this paper a PSM information structure is represented as a stratified hypermedia architecture, leading to an
implementation of the concept of query by navigation in the context of information modelling. Stratified hy-
permedia architecture ([BW92]) features a descriptive level, the so-called hyperindex, comprising a hypertext of
characterizations, indexing the lower level, the so-called hyperbase. The hyperbase contains the actual infor-
mation. Stratified hypermedia architecture offers, by separating description and instantiation, the possibility to
formulate information needs by an interactive process of navigation through the descriptive level.

As a result, the hyperindex provides a domain, both for the characterization and query language. The characteri-
zation function χ relates hyperindex and hyperbase, and forms the basis for determining the relevancy (matching)
of information objects (hyperbase) to a given query (descriptor from the hyperindex).

Before representing PSM as a stratified hypermedia system, we briefly introduce both PSM and the stratified
hypermedia architecture. This paper only provides a brief discussion of the underlying ideas, a more elaborate
treatment can be found in chapter 8 of [Pro94], and in [PW95].

2

1.1 Introduction to PSM

The Predicator Set Modelling technique (PSM) [HW93] is a formal model for describing complex data structures.
PSM is an extension of the Predicator Model as presented in [BHW91], which was designed as a formalisation
of NIAM. �

�
�
�X1

R
r1

p1
r2

p2

�
�

�
�X2

Figure 3: A binary fact type

One of the key concepts in data modelling is the concept of relation type or fact type. In figure 3 the graphical
representation of a binary relation R between object types X1 and X2 in the NIAM style is shown. The basic
building element of a fact type is the connection between an object type and a role, the so-called predicator. In
figure 3, p1 is the predicator connecting X1 to r1. In PSM a fact type is considered to be a set of predicators.
A relation type is therefore considered as an association between predicators rather than between object types.
In PSM, and some versions of ER and NIAM, fact types can also be considered as entity types, this is called
objectification.

In [HW93] an information structure is defined, over a set of label typesL, as a structure consisting of the following
basic components:

1. A finite set P of predicators

2. A set O of object types, L ⊆ O

3. A partition F of the set P. The elements of F are called fact types

4. A set G of power types

5. A set S of sequence types

6. A set C of schema types

7. A function Base : P → O. The base of a predicator is the object part of that predicator

8. An auxiliary function Fact : P → F , defined by: Fact(p) = f ⇔ p ∈ f .

9. A function Elt : G ∪S → O. This function yields the element type of a power or sequence type

10. A partial order Spec ⊆ E ×O \ L on object types, capturing specialisation

11. A partial order Gen ⊆ E × O \ L on object types, expressing generalisation. To detect if an object a is
generalised gen(a) is introduced:

gen(a)⇔ ∃x∈O[a Gen x]

An information structure is now captured formally as: I = 〈P ,O,F ,G,S , C, Gen, Spec, Base, Elt〉. The set of
atomic object types is determined by: A = E ∪L. There are two different kinds of atomic object types: entity
types (E) and label types (L). The difference lies in the fact that label types can, in contrast to entity types, be
represented (directly) on a communication medium. An instantiation (population) Pop of an information structure
assigns instances to all object types in a consistent way. The instantiation of object type x is denoted as Pop(x).
It is important to note that instances of object types are not part of the information structure.

3

Object types can have values in common in some instantiation, this is formalised in the concept of type related-
ness. Formally, type relatedness is captured by a binary relation∼ onO. Two objects are type related if and only
if this can be proven from the following derivation rules [HPW93]:

1. ` x ∼ x

2. x ∼ y ` y ∼ x

3. x Spec y ∧ y ∼ z ` x ∼ z

4. x Gen y ∧ y ∼ z ` x ∼ z

5. x, y ∈ G ∧ Elt(x) ∼ Elt(y) ` x ∼ y

6. x, y ∈ S ∧ Elt(x) ∼ Elt(y) ` x ∼ y

7. Ix ∼ Iy ` x ∼ y

where Ix denotes the underlying information structure of schema type x. The function u : O → O, u is called
the pater familias [BHW91]. This function is similar to the top operation from lattice theory.

'

&

$

%�
�
�
�
�

T
T
T
T
T

�
�
�
�
�

T
T
T
T
Tss���
s

���
���

���
���:

6
beam up

?

beam down

hyperbase

structural
navigation

-

associative
navigation

6

'

&

$

%
hyperindex

�
�
�
�

A
A
A
A

�
�
�
�

A
A
A
As s s�

��

XXXXXXXXz

Figure 4: operations of the hypermedia

1.2 Introduction to a stratified hypermedia architecture

Stratified hypermedia architecture in its simplest form is a two level hypermedia architecture, as introduced in
[BW92]. This architecture features a descriptive level (hyperindex) of indexing information which indexes the
lower level, the hyperbase. The hyperbase contains the actual information. An advantage of this architecture is
that searchers can navigate within the descriptive level to a description of their information need and then transfer
to the lower level via interlayer navigation. This process is called query by navigation.

Formally a layer is a structure L = (F, N, G, V) where

4

• F is a set of information fragments. This set is called the fragment base.

• N is a set of presentation units (or nodes). N is called the node base.

• G is a structure (E, P), where E is a set of symbols denoting structural elements, and P is a set of context-
free production rules. G is referred to as the schema of the layer.

• V is a set of views, called the mask.

Fragments are the elementary parts of a document, which can not be decomposed structurally into smaller com-
ponents. Nodes are units of presentation and are used to present the structural elements to the user. Formally,
a node is a partially ordered set of fragments. G is used to structure the information in a layer, and will usu-
ally contain a set of context-free grammar rules. In stratified hypermedia architecture, a view is a structure
V = (S,ω, M,π, L) where

• S ∈ E is the start symbol.

• ω is a set of parse trees generated from S using G. ω is referred to as the actual structure.

• M is the set of vertices within ω. A vertex is also called a molecule.

• π : M→ N maps each molecule from M to a presentation unit.

• L is a set of associative link schemata.

In figure 4 two kinds of navigations between molecules are presented. The movement from one molecule to
another, using the underlying structure, is called structural navigation. Selecting an associative link initiates the
traversal of such a link. This is called associative navigation. Associative navigation leads to a change in context.
Associative links are used to feature cross-references between a fragment in one node, and a fragment in another
node.

The basic concept in the interaction with the searcher is a context. A context in the hyperindex represents (part of)
the information need of the searcher, and corresponds to a path through the information structure. By operating
on one context, the searcher will inevitably reach a point where no improvement of this context is possible. The
searcher will then put a hold on this context, and commence a new search for the missing part of the information
need. During a search searchers will usually have a number of contexts activated, one of which is selected as
focus for further processing. This set of activated contexts is called the guide. The partial information descriptions
in the guide can later be combined into a complex query by means of operators such as the set operations, and
calculations (sum, average, etc).

2 Exploring an information structure

Before formally describing a data modelling technique such as PSM as a stratified hypermedia architecture,
we present a demonstration of the benefits of the resulting system. In this paper, we concentrate on query by
navigation, and therefore omit how this architecture can be helpful during the construction process of information
systems. For a description of this latter use, see [HPW92] and [HPW93].

The examples in this section are based on the so-called presidential database, which served as a unified example
in a special issue of Computing Surveys [FS76]. The example was first enuntiated in [WBGW73]. An excerpt
of the presidential database is shown in figure 5. The examples show how the system supports the formulation
of queries. The process of query formulation corresponds to a search through the information system in order

5

�
�

�
�

Age
(Nr)

�
�

�
�

Nr of
Years
(Nr)

�
�

�
�

State
(State
name)

�
�

�
�

Party
(Party
name)

�
�

�
�

Hobby
(Hobby
name)

�
�

�
�

Year
(Year nr)

�
�

�
�Presi-

dent

�
�

�
�Poli-

tician

�
�

�
�

Person
(Person-
name)

�
�

�
�

Admini-
stration

(Adm nr)

�
�

�
�

Nr of
Votes
(Nr)

�
�

�
�

Election
(Elec nr)

�
�

�
�

Nr of
Children

(Nr)

�

�

�

�

,
,
,
,
,l
l
l
l
l

\
\
\
\

�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

,
,
,
,
,
,

��
�

QQQ

QQ
Q

���

�
�
�
�

Head

Vice president

Contested

Won

Spare time

Member

Birthstate

Served

Birthyear

Died

Inaugu-
rated

Fami-
ly

married

6

6

Figure 5: Part of the American president information structure

6

to fulfill some information need. The request of a searcher is formulated by stepwise refining or enlarging the
current description (the focus) of this need, until the searcher recognises the current description as sufficiently
describing (part of) the information need. Usually the best description will result from a set of such descriptions
(the guide).

The examples, in this paragraph, give an idea of what a searcher subsequently has to do, and what screens they
will encounter, when formulating their information need. Each screen contains, in its header, the current focus,
and in its body the direct environment of the current focus.

Start

5 person
5 politician
5 president
5 administration
5 year
5 age
5 number of years
5 state
5 party
5 hobby
5 election
5 number of votes
5 number of children
5 married
5 won
5 contested
5 head
5 vice president
5 inaugurated
5 family
5 birthyear
5 died
5 served
5 birthstate
5 member
5 spare time

Figure 6: The starting node

The first example, figure 6, shows the screen which corresponds to the starting point of a search in which the
searcher has not yet revealed anything. This screen will be referred to as the starting node of the system. The
starting node contains all object types of the information structure at hand. The searcher can now choose one of
the objects as focus for further processing. This selection then is the first refinement of the searcher’s information
need. A selection of an item in a node is denoted by the symbol← in the figures. The symbol5 is a button for
a refinement step, while4 is used for an enlargement step. Finally � is a button used for an associative link.

In the second example, figure 7, the searcher wants to find those presidents married with someone involved in
politics. The search begins with the starting node. We describe only one path leading to a descriptor of his
information need in which the searcher is directly heading for the goal, without any backtracking. The searcher
starts with selecting president as focus. The associated screen shows about the direct environment of president.
Thereupon the searcher selects president is married as next focus. In the resulting screen the searcher continues
with president is married with person. The screen associated with this focus shows the sentence president is
married with politician, which is a proper description of the original information need. Now the searcher can
satisfy this information need by requiring the result of the request. The system will present the answer in a

7

Start

5 person
5 politician
5 president
5 administration
5 year
5 age
5 number of years
5 state
5 party
5 hobby
5 election
5 number of votes
5 number of children
5 married
5 won
5 contested
5 head
5 vice president
5 inaugurated
5 family
5 birthyear
5 died
5 served
5 birthstate
5 member
5 spare time

←

⇒
president

4 Start
5 president has contested
5 president is head
5 president is vice president
5 president has won
5 president is married
5 president has birthyear
5 president has died
5 president has served
5 president has birthstate
5 president is member
5 president practises in spare time
� person
� politician

←

⇒
president is married

4 president
4 married
5 president is married with person
5 president is married and has family

←

‖
⇓

president is married with person

4 president is married
4 married with person
5 president is married with person has contested
5 president is married with person is head
5 president is married with person was vice president
� president is married with politician
� president is married with president

Figure 7: The quest for a president who is married with a politician

8

standard tabular format, or in the following more verbose form:

president x is married with politician y

where x denotes a president and y a politician.

Start

5 person
5 politician
5 president
5 administration
5 year
5 age
5 number of years
5 state
5 party
5 hobby
5 election
5 number of votes
5 number of children
5 married
5 won
5 contested
5 head
5 vice president
5 inaugurated
5 family
5 birthyear
5 died
5 served
5 birthstate
5 member
5 spare time

←
⇒

person

4 Start
5 person has contested
5 person is head
5 person is vice president
5 person is married
� politician
� president ←

⇒
president

4 Start
5 president has contested
5 president is head
5 president is vice president
5 president has won
5 president is married
5 president has birthyear
5 president has died
5 president has served
5 president has birthstate
5 president is member
5 president practises in spare time
� person
� politician

← A

← B

�����������

HHHHHHHHHHj

A B

president has birthyear

4 president
4 birthyear
5 president has birthyear in year

president has died

4 president
4 died
5 president has died at age

Figure 8: The quest for a persons birthyear and age of death

In the third example, figure 8, the searcher is interested in the birthyear and age of death of some person. In order
to find these properties of some persons the searcher first has to choose president, as the birthyear and age of
death are only recorded for presidents. Now the searcher can refine their focus by choosing either president has
birthyear or president has died as focus for further processing. When selecting the former as focus, using A, the
sentence president has birthyear in year appears. This satisfies the first part of the information need. In order to
satisfy the second part, the searcher must create another context. The searcher now focuses, using B, on the age
of death of persons. After choosing president has died at age, the searcher has fulfilled the information need and
can require the response by this guide. The system will present all answers in the following verbose way:

president x has birthyear y, president x has died at age z

where x denotes a president, y a birthyear and z an age of death.

9

3 PSM represented as stratified hypermedia

To represent PSM as a stratified hypermedia architecture, we will derive the hyperindex from the underlying
information structures, and construct the hyperbase in terms of the instantiations of the information structure (its
population).

�
�

�
�Person

(Name)

�
�

�
�Project

(Proj nr)

�
�

�
�Budget

(Dollar)

being manager of having budget

Manager Budgets
p q r s

Figure 9: Projects, members and budgets

Object role models allow for the verbalisation of queries by so-called path expressions, built from names of object
types and role names. These path expressions are used to construct the hyperindex. For example in figure 9, the
expression

Person being manager of Project having budget 10000

describes all persons which are manager of some project with a budget of 10000 dollars. Rather than role names,
we will use predicator names. A role name can be seen as a representation mechanism for (binary) fact types.
For example, role name being manager of corresponds to the representation of fact type Manager by deep structure
sentences [NH89] of the form:

〈Person〉 being manager of 〈Project〉

A role name also corresponds to a connector [HPW93] through fact type Manager. In non-binary fact types,
however, connectors can not be uniquely derived from a unique predicator, as predicators in this case does not
have a unique co-role. For this reason predicator names are used to uniquely identify paths. Predicators and
object types are the elementary parts from which the set of linear path expressions (PElin) is constructed. The
hyperindex is constructed from this set PElin in the obvious way:

• the elementary paths form the fragments (Fi) of the hyperindex,

• the others form the molecules (Mi).

In the remainder of this section, we describe this in more detail.

3.1 Constructing the hyperindex

In [HPW93] the concept of path expression is introduced. A path expression corresponds to a path through
the information structure, via predicators, beginning and ending in some object type. In this paper, we restrict
ourselves to linear paths. Linear path expressions are constructed from object types O ∈ O and predicators
p ∈ P.

Predicator p corresponds to a path from object type Base(p) to object type Fact(p). The reverse path is denoted
as p←. Note that a predicator forms a connection between two object types. Linear path expressions are concate-
nated using the composition operator ◦. For instance in figure 2

C ◦ v ◦ h ◦ u← ◦ E

is a path from C to E.

10

'
&

$
%

�
�

�
�A

E

∈E

∈p
E

∈e
E

Figure 10: Implicit fact connecting E and A

The information structure in figure 2 is represented according to the modelling technique PSM. In this example,
object type E is a so-called power type with underlying element type A. A power type is instantiated with
subsets of the (current) instantiation of the underlying element type. The fact type connecting a power type
with its element type is usually omitted in the information structure, this fact type is called an implicit fact type
(figure 10). In the hyperindex however implicit fact types (and their implicit predicators) are taken into account.

Formally, the hyperindex is introduced as a structure Li = (Fi, Ni, Gi, Vi). Before going deeper into detail, the
hyperindex layer is introduced beginning with its fragment base.

fragment base: The fragment base (Fi) of the hyperindex contains the elementary parts of the information
structure, i.e., its object types (O) and its predicators (P). So we define:

Fi = O ∪ P ∪ P←

node base: Next we focus on the construction of the hyperindex node base (Ni). Navigation through the
information structure corresponds to the construction of a linear path expression. This path expression represents
the search process. The associated molecule and its direct environment are presented by a node (figure 11). This
environment shows the searcher how they may continue their search, either by enlargement or refinement of the
current expression.

ρ(C)

4 Start
5 ρ(C ◦ t ◦ g)
5 ρ(C ◦ v ◦ h)

Figure 11: Presentation of C and its direct environment

In this figure, the function ρ is a representation function for linear path expressions in the form of readable
sentences (this function will be introduced in section 4). The node contains a header ρ(C), showing the current
focus, all possible refinements (5) and enlargements (4).

schema: The following step in defining the hyperindex is the introduction of its schema, Gi = (Ei, Pi). We
consider PElin as the only syntactic category, so:

Ei = {PElin}

The context-free production rules Pi define the way in which linear path expression can be extended. Suppose
p ∈ P and O ∈ O then the following rules belong to Pi:

PElin → O

PElin → PElin ◦ p ◦ Fact(p)
PElin → PElin ◦ p← ◦ Base(p)

11

Start

5 ρ(A)
5 ρ(B)
5 ρ(C)←

5 ρ(g)

=⇒
ρ(C)

4 Start

5 ρ(C ◦ t ◦ g)
5 ρ(C ◦ v ◦ h)←

=⇒
ρ(C ◦ v ◦ h)

4 ρ(C)
4 ρ(h)
5 ρ(C ◦ v ◦ h ◦ v← ◦ C)
5 ρ(C ◦ v ◦ h ◦ u← ◦ E)⇐= beam-down

Figure 12: An example hyperindex session

views: The hyperindex will contain only one single view. A view is formally introduced as a structure Vi =
(Si,ωi, Mi,πi, Li). The starting point of this view is Si. The presentation π(Si) of this molecule presents all
object types O ∈ O. The molecules Mi are formed by the composed linear path expressions. We already dis-
cussed the presentation of the molecules (figure 11). The actual structure ω i then are the linear path expressions
that are possible in the actual information structure.

Next the associative links (Li) of the hyperindex layer are introduced. Traversing an associative link results in a
change of context [BW92]. The links from Li are used to handle specialisation and generalisation as they occur
in the actual information structure. They are defined in the following way:

• if A SpecB, then we provide an associative link from each node that contains A (as last occurrence) in its
header, to the node in which this A is replaced by B. This replacement is effectuated by a special entry
(�) in the presentation node.

• if A GenB and the header contains B as last occurrence, then a special entry is included where B is replaced
by A

The difference in assignment of the associative links (figure 13) origines from the difference in identification of
specialised and generalised objects [HW93].

Sample sessions in the hyperindex

At this point the basic concepts of the hyperindex layer are defined. In the remainder of this subsection some
examples are given, demonstrating the mechanism of query by navigation.

In a hyperindex session, we use the symbol← to denote the path expression that is selected by the user to continue
the search process. The symbol⇐= denotes a beam-down operation (see subsection 3.4).

A possible hyperindex session, for the PSM-schema in figure 2, is shown in figure 12. The example shows
the screens that the searcher will subsequently encounter. The session starts with the empty path expression,
corresponding to the state in which the searcher has not revealed anything of their interest. The system offers
the searcher the opportunity to select one of the object types as an initial point for departure. The symbol ←
shows that the searcher selected object type C. So the header of the second node is ρ(C). Now the searcher
may choose to step back to a previous state. Or they can refine their information need further, by extending the
formed linear path, to reach some other object type. After making another selection, the searcher is satisfied with
ρ(C ◦v◦h◦u← ◦E) as a description of their information need, and decides to retrieve the associated information
by performing a beam-down operation.

Two PSM schema’s, containing generalisation and specialisation respectively, are shown in figure 13. In order to
demonstrate the differences between specialisation and generalisation, figure 13 shows a part of the hyperindex,

12

generalisation:����A

����B

����C

����D

p

r

q

s

f

g

6

specialisation:����A

����B

����C

����D

p

r

q

s

f

g

6

Start

5 ρ(A)
5 ρ(B)
5 ρ(C)
5 ρ(D)
5 ρ(f)
5 ρ(g)

```````
       ��� HHj ��� HHj

ρ(A)

4 Start

5 ρ(A ◦ p ◦ f)
5 ρ(B ◦ r ◦ g)
� ρ(B)

ρ(B)

4 Start

5 ρ(B ◦ r ◦ g)

ρ(A)

4 Start

5 ρ(A ◦ p ◦ f)

ρ(B)

4 Start

5 ρ(B ◦ p ◦ f)
5 ρ(B ◦ r ◦ g)
� ρ(A)

Figure 13: Hyperindex dealing with generalisation and specialisation

located around the starting molecule. From this example, the assignment of the associative links, and the con-
structed path expressions will become clear. When generalisation is involved, the extension of A with r◦g results
in a substitution of A by B. This substitution denotes that instances of A, playing g, are actually instances of
B. This substitution origines from the fact that generalised objects inherits all of their properties of its specifiers
[HW93].

In specialisation, subtypes inherit their properties from its associated supertype(s) [HW93]. A path expression
however is represented by the most specialised name, so in the representation ρ(B ◦ p ◦ f), B is not substituted
by A.

3.2 Constructing the hyperbase

The translation of an instantiation of a PSM information structure into a hyperbase will be done bottom-up. The
fragment base (Fb) is defined first, followed respectively by the node base (Nb), the schema (Gb) and the views
(Vb).

Instances of abstract object types are composed values. Such instances are represented as structural elements in
the hyperbase, thus contributing to the set Mb of molecules. These, however, are not the only molecules in the
hyperbase. For fact types with arity > 2, it will be useful to have disposal of all non-empty projections ℘+(f)
of each instance of f . This is motivated by the possibility that a path expression can run via a connector through
part of a fact type. This will occur when the searcher is not interested in the complete fact instance.

Besides, it will be useful to have disposal of joins of (different) molecules. Two molecules can be joined if
they share some sub-molecule. This makes it possible to deal with the construction of linear paths over multiple
facts. If a searcher traverses several fact types subsequently, and then performs a beam-down, the hypermedia
will return the combination of the associated fact type instances as a result. Note that molecules, formed by
projections and joins, will (probably) only be virtually available in the hyperbase.

Mb =
⋃

O\L
Pop(x) ∪ joins of molecules ∪ projections of fact type instances

fragment base: Label types play a special role in data modelling, as instances of label types, in contrast to
other object types, are considered to be directly presentable. Let Repr be the presentation function for label types.

13



The presentations of instances of the population of label types then form the fragment base (Fb) of the hyperbase.
Fb is defined as:

Fb =
⋃

L∈L

{

Repr(x)
∣

∣ x ∈ Pop(L)
}

∪
{

,, {, }, (, ), 〈, 〉
}

∪
{

ωi

∣

∣ ωi occurs in identification rule
}

Identification rules are discussed later in this section. The special symbols : {, }, (, ), 〈, 〉 and ‘,’ are included in
Fb for the presentation of object types. For instance the { and } are used to present power types. The readability
fragments

{

ωi

∣

∣ ωi occurs in identification rule
}

provide us with the possibility to present molecules in readable
sentences.

'
&

$
%

Commu-
nity

?
6
?
6

'
&

$
%(C-name)

�-

'
&

$
%Street

?
6

'
&

$
%(S-name)

�-

'
&

$
%House

?
6

'
&

$
%(H-nr)

s

s s s

s

s s s s

s
�� ��u

�� ��u

f1

f2

f3

f4

f5

p1

p2

p3 p4

p6

p5

p7 p8

p10

p9

Figure 14: Schema with complex identification

node base: The node base consists of a set of nodes. Nodes are used as units of presentation. Using πb, each
molecule is mapped to a unique node.

According to the Conformity Rule [BHW91], an instance of a fact type is a mapping from its predicators into val-
ues of the appropriate types. Let

{

r : 1026, s : 10000
}

be an instance of fact type Budgets =
{

r, s
}

, in figure 9.
This instance assigns value 1026 to predicator r, and value 10000 to predicator s. According to our construc-
tion, this tuple is a molecule in the hyperbase. In the remainder of this paragraph the presentation of object
types instances in readable sentences is discussed. We assume each fact type f =

{

p1, . . . , pn

}

has associated a
grammar of the following form: 〈f〉→ω0 〈p1〉 . . . ωn−1 〈pn〉 ωn for readability fragments ω0, . . . , ωn. These
grammar rules denote the structure of the fact type sentences, the so called sentence type [NH89]. For example,
fact type Budgets in figure 9 has associated the following rule: 〈Budgets〉→ project 〈r〉 has a budget of 〈s〉 dollars.
Note that ω0 = ‘project’, ω1 = ‘has a budget of’, while ω2 = ‘dollars’. Now let x ∈ Pop(f), then this instance
is presented by: πb(x) = ω0 πb(x(p1)) . . . ωn−1 πb(x(pn))ωn. So the example instance

{

r : 1026, s : 10000
}

is presented as: project 1026 has a budget of 10000 dollars. The function πb works recursively when presenting an
objectified fact type instance.

The presentation of entity types uses the standard names, as laid down via the identification paths. These standard
names denote the way in which abstract entity type instances are presented. For example, an instance of entity
type House in figure 14 is presented, using its identification path, as: house 〈H-nr〉 in street 〈S-name〉 in community 〈C-name〉
This because House is identified using H-nr and Street. Street is identified using S-name and Community. Community

is identified by C-name. For more details about standard names, see [HPW93] and [Hof93].

The presentation of power types and sequence types can be done according to mathematical conventions. Let
{

x1, . . . , xn

}

be an instance of power type G, then this instance is presented, using the special symbols {, } and

14



‘,’ as: πb(
{

x1, . . . , xn

}

) = ONm(G){πb(x1), . . . ,πb(xn)}. Note that this presentation requires some order on
the elements of power type instances. For an explanation of the function ONm see section 4.

Let 〈x1, . . . , xn〉 be an instance of sequence type S. Then the presentation of 〈x1, . . . , xn〉, using the special
symbols 〈, 〉 and ‘,’ yields: πb(〈x1, . . . , xn〉) = ONm(S)〈πb(x1), . . . ,πb(xn)〉. An instance v of schema type
C, consisting of object types X1, . . . , Xn, is a mapping: v :

{

X1, . . . , Xn

}

→℘(values). The presentation (πb)
of v takes into account that the concept of schema types is not elementary. According to [HW93] and [Hof93],
schema types can be defined using the concepts of power type and fact type. So v is presented, using (, ) and ‘,’
as follows:

πb(v) = ONm(C)(ONm(X1) : πb(v(X1)), . . . , ONm(Xn) : πb(v(Xn)))

where the sets v(Xi) are presented according to the guidelines for instances of power types.

Joins are used to represent combinations of instances, formed by the construction of linear paths over multiple
fact types. These molecules are presented by the concatenation of the presentations of the two joined instances.
The presentations of these two instances are concatenated using the symbol ‘,’. For example, in figure 9 the
instances

{

p : Johnson, q : 1026
}

and
{

r : 1026, s : 10000
}

, can be joined because they share instance 1026.
The molecules, representing these instances, are presented as:

πb
{

p : Johnson, q : 1026
}

= person Johnson is manager of project 1026

πb
{

r : 1026, s : 10000
}

= project 1026 has a budget of 10000 dollars

The presentation of the join of these two molecules yields:

person Johnson is manager of project 1026 , project 1026 has a budget of 10000 dollars

The presentation of molecules, representing projections of fact types instances, shows parts of the sentences of
the original instance. For example, an instance of a ternary fact type is presented as:

person 〈x〉 is married with person 〈y〉 in year 〈z〉

The molecule representing this instance 〈x, y, z〉 can be divided into molecules: 〈x, y〉, 〈x, z〉 and 〈y, z〉. These
molecules then are presented as:

πb 〈x, y〉 = person 〈x〉 is married with person 〈y〉

πb 〈x, z〉 = person 〈x〉 is married in year 〈z〉

πb 〈y, z〉 = person 〈y〉 is married in year 〈z〉

schema: The structure of the hyperbase is described by the grammar Gb = (Eb, Pb). From the construction
of molecules it will be clear that each non-label object type forms a syntactic category. Besides, projections and
joins of fact types are syntactic categories. We will write 〈x〉 if we want to emphasize the usage of object type x

as a syntactic category (both terminal and non-terminal symbol).

The context-free rules (Pb) specifying the structure of these object classes will form, together with the rules
specifying projections and joins, the actual structure ωb of the hyperbase. These context-free rules represent the
way in which instances of object types can be decomposed into smaller structural elements.

The entity types form the first class of molecules in the hyperbase. The instances of entity types can not be
decomposed into smaller structural elements. So these molecules can be seen as terminal symbols.

Next we look at the instances of fact types. A fact type f =
{

p1, . . . , pn

}

corresponds to the syntactic cate-
gory

〈{

p1, . . . , pn

}〉

. For syntactic categories over sets of predicators we introduce the following context-free
production rule:

〈{

p1, . . . , pn

}〉

→
〈{

p1, . . . , pn

}

−
{

pi

}〉

, for each pi, 1 < i ≤ n

15



If the set of predicators contains only one element, the production rule yields:
〈{

p
}〉

→ 〈Base(p)〉

Note that these two rules also define the projections of a fact type instance.

The instances of power types and sequence types are formed by composing sets and tuples of the instances of
their element type respectively. Because these two are structurally the same, assuming some arbitrary order on
the elements of power type instances, the context-free rule yields for both: 〈X〉 → 〈Elt(X)〉∗. Construction of
the production rules dealing with instances of a schema type 〈C〉 is less obvious. Suppose schema type C is
decomposed into the object types x1, . . . , xk. The first production rule for C yields the domain of populations
of C: 〈C〉 → 〈x1〉 . . . 〈xk〉. The range of the instantiantion of object type xi is further refined by the rule:
〈xi〉 → 〈xi〉

∗. There are three production rules dealing with joins of molecules. The first production rule yields
the join of two fact type instances. The second one yields the join of two already joined molecules. The third
production rule yields the join of a joined molecule with a fact type instance. Note that this production rule is only
applicable if that fact type instance has an arity larger then two. This results in the following three production
rules: 〈J〉 → 〈F1〉 〈F2〉, 〈J〉 → 〈J1〉 〈J2〉, and 〈J〉 → 〈J1〉 〈F1〉, where Fi’s and Ji’s molecules represent fact
type instances and joined molecules respectively.

view: Thus far, all parts of the hyperbase view have been discussed, except for associative links. In the minimal
setting, as introduced here, we will omit associative links.

3.3 Characterization

In this section, we relate hyperbase and hyperindex by the introduction of a characterization χ. This function
maps information objects (fragments, nodes, molecules) from the hyperbase onto the fragments of the hyperindex
[BW92].

The characterization function will be defined bottom up, starting with the fragments of the Fb. Fragment y ∈ Fb
is characterized by all entity types that are associated to y via a bridge type (B):

χ(y) =
{

X
∣

∣ ∃x∈Pop(X),f={p, q}∈B [〈p :x, q :y〉 ∈ Pop(f)]
}

As a corollary, note that subtyping and generalisation is covered by this rule as follows:

• X Spec Y ∧X ∈ χ(x)⇒ Y ∈ χ(x)

• X Gen Y ∧ Y ∈ χ(x)⇒ X ∈ χ(x)

The characterization of node N = ω0 . . . ωn is defined in terms of fragments it contains. If, however, N

presents a molecule containing an instance of a power type, a sequence type or a schema type then the char-
acterization has to deal with it differently. This because these object types are presented using fragments
who are concretisations of their elementary types. The characterization of a node N can be defined using
the following four rule. The characterization of a node containing an instance of a power type G yields:
χ(σ πb(

{

x1, . . . , xn

}

)τ) = χ(σ) ∪
{

G
}

∪ χ(τ). If a node contains an instance of a sequence type S

then the characterization yields: χ(σ πb(〈x1, . . . , xn〉)τ) = χ(σ) ∪
{

S
}

∪ χ(τ). The characterization of
a node containing an instance of a schema type C yields: χ(σ πb(v)τ) = χ(σ) ∪

{

C
}

∪ χ(τ). In all the
other cases the characterization of a node yields: χ(N) =

⋃

f∈N

χ(f). For instance, the characterization of

16



project 1026 has a budget of 10000 dollars yields
{

Project, Budget
}

, because:

χ(‘project’) = ∅

χ(1026) = {Project}
χ(‘has a budget of’) = ∅

χ(10000) = {Budget}
χ(‘dollars’) = ∅

Note that the structure of the presentation of a molecule is not taken into account. The characterization of
molecule x, representing an instance of object type X is found in two steps. Firstly, the characterization of the
presentation πb(x) is taken into account: χ

w
(x) = χ(πb(x)). This is known as the weak characterization of x.

Secondly, the properties of x are included (strong characterization). These properties are found by the predicators
based on X . χ

s
(x) =

{

p ∈ P
∣

∣ t(p) = X ∨ p ∈ X
}

, where t is an instance of some fact type f . Molecules
representing joins are characterized by the union of the characterizations of their sub-molecules.

3.4 The beam-down operation

Now that the characterization of the hyperbase molecules is completed, we focus on the beam-down operation.
The beam-down operation transfers the searcher from an expression in the hyperindex to the result of that expres-
sion, i.e. molecule(s) in the hyperbase. The hyperbase molecules are characterized using the fragments within
the hyperindex (Fi), so, in order to establish a beam-down result, the molecules of the hyperindex (Mi) must also
be described using these fragments.

The function dissect (Di) yields for each linear path expression its associated set of fragments:

Di : PElin → ℘(Fi)

The function dissect is defined inductively according to the structure of linear path expressions.

• An object X is dissected in its own name and the entity types on its identification path. The entity types
on an identification path of object type X is denoted by Id(X). A fact type X however is dissected in its
predicators and the bases of those predicators. If a fact type X is connected to an objectified fact type Y

then the dissection of Y is also included in the dissection of X , so:

Di(X) =











⋃

p∈X

(
{

p
}

∪ Di(Base(p)) ) if X is a fact type
{

X
}

∪
⋃

y∈Id(X)

{

y
}

otherwise

• The dissection of a linear path must deal with the possibility that this path contains objectified fact types
(used as entity types). If some path Y contains an objectified fact type Z, used as an entity type, then the
dissection of Y includes the dissection of Z also, so:

Di(P ◦ p ◦ Fact(p)) =

{

Di(P ) ∪
{

p
}

∪ Di(Base(p)) if Base(p) ∈ F

Di(P ) ∪
{

p
}

otherwise

• If a linear path P is extended with a predicator p and an object type Base(p), then p← and the dissection of
Base(p) are added to the dissection of P .

Because there is no difference between connecting two object types using a p or p←, p← can be substituted
(in the result) by p, so:

Di(P ◦ p← ◦ Base(p)) = Di(P ) ∪
{

p
}

∪ Di(Base(p))

17



The BeamDown operator, on some guide G, retrieves hyperbase molecules in the following way. The function Rel

calculates the relevancy of hyperbase molecules for the actual guide. This function yields a pair as a result, the
first component denoting the relevancy of the object types from the dissection of the guide, the second that of the
predicates. Only hyperbase molecules that exceed some treshold ε will be retrieved, and are presented in their
(alphabetic) order of relevance.

BeamDown(G) =
{

M ∈ Mb
∣

∣ Rel(M, G) > ε
}

The calculation of the relevancy of some hyperbase molecule M for some guide G yields:

Rel(M, G) = (relevance object types, relevance predicators)

The calculation of the relevance of the object types takes type relatedness into account. For each object type
X , in some characterization or dissection, only u(X) is regarded relevant for the calculation. This leads to the
following rule:

relevance object types =
| (Cr(M) ∩ Pr(G) ) ∪ Corr(M) |

|Cr(M) ∪ Pr(G) |

The function Cr is based on the weak characterization (containing object types):

Cr(M) = u(χ
w

(M))

Similarly, the function Pr yields the set containing the pater familias of each object type from the dissection of
G:

Pr(G) = u

(

⋃

p∈G

Di(p)∩O

)

The function Corr corrects for noise, resulting from multiple entity type instances being represented by a single
label type instance. For example, in figure 2 object types B and D1 are both identified by label type L2.

Corr(M) =
{

X
∣

∣ ∃x∈Pop(X)∧y∈πb(M)[Concr(x) = y]
}

where Concr(x) denotes the concrete value used for representing abstract instance x.

The calculation of the relevance of the predicators is done analogously, with the exception that no noise occurs
in this case.

relevance predicators =
|Cp(M) ∩ Pp(G) |
|Cp(M) ∪ Pp(G) |

The function Cp is defined by:
Cp(M) = χ

s
(M)

The predicators, associated with the dissection of a guide, are found by:

Pp(G) =
⋃

p∈G

Di(p)∩P

4 The presentation function ρ

In this section the function ρ is introduced. This function maps linear path expressions into readable sentences.
Before defining ρ we introduce the concepts of object type naming and predicator naming.

18



4.1 Object type and predicator naming

In order to verbalise linear path expressions, we must first verbalise object types and predicators. Explicit object
types are referenced by a unique name: ONm : O → Ns. Explicit predicators may have assigned a so-called
predicator name via the (partial) function: PNm : P ∪ P← → Ns. These naming functions, however, do
not assign names for implicit object types and implicit predicators. For the latter categories, a general naming
mechanism (using keywords) is introduced. For instance in figure 9, the predicator q could be verbalised in two
directions as follows:

PNm(q) = has as
PNm(q←) = of

The predicator name of a predicator may yield an empty string. The motivation is that an empty string sometimes
enables us to present better readable sentences.

4.2 Verbalising linear paths

Linear path expressions are presented as readable sentences via the function: ρ : PElin → Ns. This function is
defined recursively as follows:

ρ(O) = ONm(O)

ρ(P ◦ p ◦ X) =















ρ(P ) PNm(p) ONm(X) if p and X have names
ρ(P ) involved in ONm(X) if p has no, and X has a name
some keyword, see below if both p and X have no names

ρ(P ◦ p← ◦ X) =















ρ(P ) PNm(p←) ONm(X) if p← and X have names
ρ(P ) of ONm(X) if p← has no, and X has a name
some keyword if both p← and X have no names

For instance in figure 9:

ρ(Project ◦ q ◦ Manager) = ONm(Project) PNm(q) ONm(Manager)
= project has as manager

Now we will introduce keywords. Keywords serve as a naming mechanism for handling implicit object types and
predicators. In figures 15, 16, 17, and 18 the keywords are summarised. For each keyword an arrow denotes the
path associated with that keyword. (For more information about keywords see [HPW93].)

These keywords also can be used when no predicator names are defined. For instance, if in figure 9 PNm(q←) is
not defined:

ρ(Manager ◦ q← ◦ Project) = manager of project

When dealing with implicit facts it can be useful to use keywords instead of defining predicator names and the
name of the implicit fact. If in figure 16:

ONm(B) = convoy
ONm(A) = ship

Then the denotation of the following linear paths yields:

19



'
&

$
%A

'
&

$
%B

'
&

$
%

� �


 	

-

�

OF

INVOLVED IN

Figure 15: Keywords used in fact verbalisation

'
&

$
%A

'

&

$

%

B

� �
?%

� �6
$

IN

CONTAINING

�

�

�

�

�




�

	

�

�
IS

ELEMENT

HAS
ELEMENTS

∈
p

B

∈
e
B

∈B

Figure 16: Keywords used in power type verbalisation

'
&

$
%A

'
&

$
%B

'

&

$

%
C

� � � �


 	 
 	

- -

� �

PART OF COMPRISING

COMPRISING PART OF

Figure 17: Keywords used in schema type verbalisation

�
�

�
�I

@B

'
&

$
%∈B

�
�

�
�A B

� �-

� ��

� �-

� ��

� �-

� ��

INDICES

AT POSITION

HAVING

ELEMENTS

OCCURRING IN

SEQUENCES

Figure 18: Keywords used in sequence type verbalisation

20



ρ(B ◦ ∈p
B ◦ ∈B) = convoy has elements

ρ(A ◦ ∈e
B ◦ ∈B ◦ ∈

p
B

←
◦ B) = ship in convoy

5 Conclusions

In this paper we investigated an integration between stratified hypermedia architecture and information systems.
This integration makes it possible to use the concept of query by navigation in information structures based on
object-role modelling techniques. Due to this integration a user can interactively formulate a query.

The presented mechanism offers several opportunities for further refinement. Firstly, at the moment a guide con-
nects the comprising linear path expressions like conjunction for boolean expressions. It might be worthwile to
investigate the effects of an extension to full boolean retrieval for combining linear path expressions. Finally, the
query by navigation mechanism should be extended with supporting mechanisms that allow for the formulation
of more complex queries.

References

[BHW91] P. van Bommel, A.H.M. ter Hofstede, and Th.P. van der Weide. Semantics and verification of
object-role models. Information Systems, 16(5):471–495, October 1991.

[Bru93] P.D. Bruza. Stratified Information Disclosure: A Synthesis between Information Retrieval and
Hypermedia. PhD thesis, University of Nijmegen, Nijmegen, The Netherlands, EU, 1993.

[BW92] P.D. Bruza and Th.P. van der Weide. Stratified Hypermedia Structures for Information Disclosure.
The Computer Journal, 35(3):208–220, 1992.

[Che76] P.P. Chen. The entity-relationship model: Towards a unified view of data. ACM Transactions on
Database Systems, 1(1):9–36, March 1976.

[FS76] J.P. Fry and E.H. Sibley. Evolution of Data-Base Management Systems. Computing Surveys,
8(1):7–42, 1976.

[Hof93] A.H.M. ter Hofstede. Information Modelling in Data Intensive Domains. PhD thesis, University of
Nijmegen, Nijmegen, The Netherlands, 1993.

[HPW92] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Data Modelling in Complex Appli-
cation Domains. In P. Loucopoulos, editor, Proceedings of the Fourth International Conference
CAiSE’92 on Advanced Information Systems Engineering, volume 593 of Lecture Notes in Com-
puter Science, pages 364–377, Manchester, United Kingdom, EU, May 1992. Springer Verlag,
Berlin, Germany, EU. ISBN 3540554815

[HPW93] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Formal definition of a conceptual lan-
guage for the description and manipulation of information models. Information Systems, 18(7):489–
523, October 1993.

[HW93] A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data modelling. Data
& Knowledge Engineering, 10(1):65–100, February 1993.

[NH89] G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational Database Design: a fact ori-
ented approach. Prentice-Hall, Sydney, Australia, 1989. ASIN 0131672630

21



[Pro94] H.A. Proper. A Theory for Conceptual Modelling of Evolving Application Domains. PhD thesis,
University of Nijmegen, Nijmegen, The Netherlands, EU, 1994. ISBN 909006849X

[PW95] H.A. Proper and Th.P. van der Weide. Information Disclosure in Evolving Information Systems:
Taking a shot at a moving target. Data & Knowledge Engineering, 15:135–168, 1995.

[SM83] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill New
York, NY, 1983.

[WBGW73] S.E. Willner, A.E. Bandurski, W.C. Gorhan, and M.A. Wallace. COMRADE data management
system. In Proceedings of the AFIPS National Computer Conference, pages 339–345, Montvale,
New Jersey, 1973. AFIPS Press.

22


