
Modeling Linguistically Complex Business Domains

S.J.B.A. Hoppenbrouwers1, A.I. Bleeker2 and H.A. Proper1

1 University of Nijmegen?, Sub-faculty of Informatics, IRIS Group, Toernooiveld 1, 6525 ED Nijmegen,
The Netherlands, EU stijnh@cs.kun.nl, e.proper@acm.org

2 Luminis, IJsselburcht 3, 6825 BS Arnhem, The Netherlands, EU araminte.bleeker@luminis.nl

Published as:

S.J.B.A. Hoppenbrouwers, A.I. Bleeker, and H.A. (Erik) Proper. Facing the Conceptual
Complexities in Business Domain Modeling. Computing Letters, 1(2):59–68, 2005.

Abstract. The paper focuses on business domain modeling as part of requirements engi-
neering in software development projects. Domain modeling concerns obtaining and model-
ing the language (concepts, terminologies; ontologies) used by stakeholders to talk about a
domain. Achieving conceptual clarity and consensus among stakeholders is an important yet
often neglected part of requirements engineering. Domain modeling can play a key role in
supporting it. This does, however, require a nuanced approach to language aspects of domain
modeling as well as ambition management concerning its goals, and the procedure followed.
We provide an analysis of the linguistic complexities involved, as well as of various levels
of ambition concerning the domain modeling process. On top of the “classic” approach to
modeling singular, stable domains, we distinguish aspects like incremental modeling, mod-
eling of multiple terminologies within a domain, and domain evolution; we will elaborate on
the first two aspects.

1 Introduction

In today’s business, software projects still often fail and/or cost much more than initially estimated
[1]. Various different reasons underlie this problem: political, organizational, economic (budgets)
and software development reasons. This article focuses on the latter.

Software developers tend to be good at thinking in terms of technology enabled solutions; they
focus on sound engineering. In the ideal case, this leads to software systems that are properly
engineered and that operate well technically. However, projects may still fail because it is unclear
what their underlying business need is and what problem is actually being solved. Not only do
we want to build the system right, but we also want to build the right system for the business
environment it is built for [2]. This requires sound analysis of the business domain3.

Indeed we believe that a main cause of failure of system development projects lies in the require-
ments part. People involved (i.e. stakeholders) rarely know precisely what they want in the initial
phases of a project; in addition (and partly as a consequence), there usually is a rather high level
of “vagueness” concerning the very concepts used to formulate the initial requirements [4]. Also,
? This paper results from the ArchiMate project (http://archimate.telin.nl), a research consortium

that aims to provide concepts and techniques to support enterprise architects in the visualisation,
communication and analysis of integrated architectures. The ArchiMate consortium consists of ABN
AMRO, Stichting Pensioenfonds ABP, the Dutch Tax and Customs Administration, Ordina, Telematica
Instituut, Centrum voor Wiskunde en Informatica, Katholieke Universiteit Nijmegen, and the Leiden
Institute of Advanced Computer Science.

3 In [3] a distinction is made between usage world, subject world, system world and development world,
when discoursing about information system development. What refer to as business domain is essentially
the subject world.



in any multi-stakeholder development project, the language used by stakeholders to formulate re-
quirements can be expected to differ between stakeholders –at least initially. Not only will different
stakeholders often use different terms to verbalize similar ideas, but –rather more treacherously–
even if the same terms are used, their underlying meaning may differ to a considerable extent.
Finding out what everyone means by the terms they use is an activity that may demand con-
siderable effort, but it is a highly useful if not unavoidable part of the requirements engineering
process. This line of thought is explored in the paper, in particular in relation to the activity of
domain modeling.

In many contemporary projects, a chief item in the process of constructing, formulating and com-
municating about requirements is some sort of business domain model. The absence of explicit and
well managed [5] business domain models4 plays an important part in the failure of a significant
number of system development projects. Given that business domain models are central in stake-
holder communication, terminological aspects of modeling can best be tackled in direct relation
to such models (i.e. rather than in relation to, for example, construction models; see section 2).
This should ensure timely identification of terminology-related issues, yet keeps options open as
to how such issues are to be solved or managed (that is, in which way, and in which development
phase).

It should be noted that the fields of conceptual modelling, requiremens specification, ontology
engineering, etc, all provide means to define concepts. The aim of this article is, to investigate the
relationship between the definition of concepts (in particular as part of requirements engineering)
and the use of language by human beings. This requires a bridging between modeling as it occurs
in system development and theories of a more linguistic origin.

The structure of this paper is as follows: first we further explore the relation between domain
modeling, natural language, and requirements engineering (section 2). In section 3, we provide
some theoretical background concerning our notion of ‘linguistic complexity’. In section 4, we
present an analysis of the domain modeling challenge as we envisage it, and its tight relation
to matters of language and the process of conceptualization. We also introduce a distinction
between four levels of ambition for domain modeling. Three of these are elaborated on in section
5; we focus on the modeling process, referring to some prominent existing natural language-based
domain modeling methods. Section 6 provides a brief conclusion.

2 Domain Modeling and Natural Language in Requirements
Engineering

Traditionally, the definition part of a software development process focuses on the requirements
which should be met by the system:

1. What should the system do? (functional requirements)
2. How well should it do this? (non-functional requirements)

There is, however, a third aspect that needs to be considered when specifying the right system: what
are we talking about, in other words, what are the concepts in the domain in terms of which the
system to be developed will provide its functionality? For stakeholders to trust the language they
speak among each other is a crucial aspect of building general confidence and consensus. The need
to involve natural language in this specification process [6, 7], and the impact of terminology control
for over-all quality management [8], should not be underestimated. If confusion and imprecision
concerning the use and definition of concepts enter a software development project from the start,
unless it is dealt with appropriately they will continue to haunt all concept use in the project.
4 In the rest of this paper, if we use the term “domain”, we refer to a “business domain” unless indicated

otherwise.



The language aspect of software development can be strongly improved upon by means of business
domain modeling, i.e. modeling the intrinsic structure and boundaries of the business domain in
terms of the language spoken in it. Its results constitute a domain model. Such a model defines
the relevant concepts in the business domain and the relationships between them. Its purpose is
to clearly and explicitly define and scope the business domain in language that the stakeholders
understand and agree upon. Consequently, it is in terms of business domain concepts that the
functional requirements and qualities of the planned system should be specified (e.g. in terms of
use cases from the UML [9]) to assure that the (non)functional requirements are specified in a
language that stakeholders understand and appreciate. We focus on explicit domain modeling,
that is, domain modeling that results in explicit models that play an official role during system
development.

Towards the stakeholders in the business environment, the domain model provides a terminology
[10, p13-4] and an understanding of the scope of the system; towards software engineers it provides
guidance in making design decisions (for example, database design). For project leaders it can be
an aid in planning and prioritizing a project.

The question: what are we talking about is not only limited to the world of requirements. It
equally well applies to system design. In fact, one might state that it is a question that forms an
undercurrent in system development as a whole. It should be noted that during the initial stages of
system development, one may chose not to provide a precise meaning for relevant concepts (yet).
For example, using a metaphorical meaning of concepts pertaining to a future business/system,
may actually stimulate innovative thinking. Focussing on a precise definition to early may stifle
innovation.

The software development life cycle generally consists of four essential stages: definition, design,
construction and deployment. The definition stage focuses on what system is needed, and why
it is needed. The design stage concerns how the system will be constructed. The construction
stage deals with the actual building of the system, i.e. putting all the components together. In the
deployment stage, the system is actually brought to life in its organizational context.

There is no single mandatory order in which to execute the work involved in the above mentioned
stages. Several strategies exist, for example, linear, incremental and iterative. (Business) domain
modeling cannot be very strictly placed in any specific stage; however, most of the work is done
during the definition stage. In this stage, the relevant stakeholders, sub-domains and terminologies
are identified, and the boundaries of the domain are explored.

In the design stage the domain model may be further refined, but as during the construction stage,
the domain model will guide developers. During the design stage the domain is transformed into
a construction (domain) model. The construction model extends the business domain model with
concepts that are introduced for sound engineering reasons only. The business stakeholders do not
necessarily recognize any of these concepts, nor do they need to.

Note that the construction model should never introduce new business concepts by itself. It should
“inherit” all business concepts from the domain model. If during construction new concepts appear,
then it should be carefully assessed whether they are really new and need to be incorporated. If so,
their place is in the business domain model. Conversely, if the planned system precisely covers the
modeled domain then each business domain concept must be present in the construction model.
If not, then there apparently are irrelevant concepts after all. Obviously, a planned system does
not always have to precisely cover a modeled domain: the planned system may be delivered in
releases, or the domain model may contain a part that is not realized in a system, for example
manual business processes.

3 Linguistic complexity in domain modeling

We do not refer to syntactic or lexical complexity of the domain as such. With “linguistic com-
plexity of domains” we primarily refer to the possible existence of multiple terminologies within



a designated domain, related to particular stakeholders (either individuals or groups) involved in
that domain. Also, it may be relevant to consider other, related domains and how their terminolo-
gies/concepts influence (or are influenced by) the chief domain focused on. This type of complexity
will be later on referred to as pluriformity of domains. In addition (and secondarily), we refer to
the linguistic complexity caused by different stages in refinement of and agreement about a do-
main model. This type of complexity will later on be referred to in relation to the elusiveness of
domains.

To ensure a precise and concise definition of the first sort of linguistic complexity, we will now
indulge in some basic defining using some standard set theory, loosely based on [11, 79-82].

Our starting point is not the domain model (a conceptual representation), but the actors (typically
people) that are somehow –and relevantly– involved in discoursing about a domain. They operate
in an environment of discourse5. Let DS be a set of domains and let ED be a set of environments
of discourse. An environment of discourse corresponds to one domain that is discoursed about:

Domain : ED→DS

Within each environment of discourse, we can identify a number of actors involved with the
environment, and the complete set of concepts they use in discourse.

Let AC be the set of actors in the universe and let CO be the set of concepts. Following [13, 11], we
define a concept as the combination of a form and a meaning. The community of actors involved
in an environment of discourse is provided by:

Community : ED→℘(AC)

The set of concepts used in an environment of discourse is yielded by:

Concepts : ED→℘(CO)

Note that Concepts(d) is what is traditionally called a universe of discourse: the set of concepts
used in the discourse about some domain.

Next, let LA be a set of languages. Thus, under our definition, which is strongly pragmatic in
nature, a language is a language only if it is actually used in some environment of discourse. We
model this as a function:

EoD : LA→ED

Consequently, a language is used by a community of actors:

Community : LA→℘(AC)

This community is a part of the community of the environment of discourse:

Axiom 1
∀l∈LA [Community(l) ⊆ Community(EoD(l))]

A language also has a set of concepts associated with it:

Concepts : LA→℘(CO)

This set of concepts is part of the concepts used in the environment of discourse:

Axiom 2
∀l∈LA [Concepts(l) ⊆ Concepts(EoD(l))]

5 For an in-depth discussion of the notion of “environment of discourse” in relation with the classic notion
of “universe of discourse”, see [12].



Consequently, it is quite possible that different actors within one environment of discourse use
different concepts in that discourse (implying possible hampering or even failing of communication
between actors). Such linguistic complexity may or may not be acceptable or manageable, but at
least in the initial stages of the domain modeling process it is normally a fact of modeling life.
This complexity does, however, not prevent the environment of discourse to be related to a single
domain: the domain is not identical to the domain model, it is more like a topic, or a focus.
Therefore (in line with [14]), strictly speaking the domain cannot be charted objectively, only
constructively through the various conceptualizations occurring in the environment of discourse.

So it is possible that within one environment of discourse, a number of sub-languages is distin-
guished, possibly related to sub-groups of actors within the language community belonging to
the environment of discourse. It is also possible that various environments of discourse are distin-
guished that are related to one and the same domain, and even that a particular concept may be
used by a group or individual active in various different environments of discourse. Finally, it is
possible that a particular terminology (i.e. an explicitly agreed (sub)language) is imported or even
imposed from outside an environment of discourse.

As for the secondary form of linguistic complexity, it can theoretically be seen simply as our
primary complexity extended with the concept of time (i.e. different states/terminologies over
time). However, the practical implications of this are more interesting. They center round prop-
erly managed awareness of and communication about the particular terminology appropriate for
a particular conversation: with a particular stakeholder, at a particular time. Importantly, this
requires some conceptual/linguistic flexibility from actors involved, or alternatively a rather ad-
vanced mechanisms for the administration of and translation between different terminologies within
one environment of discourse. Cumbersome as this may seem, it reflects the reality of linguistic
complexity in (business) domains; complexity that has to be dealt with one way or another.

4 The domain modeling challenge

In this section we turn to the question how to model a domain; a question to which there is no
simple, one-size-fits-all answer.

4.1 Goal-bounded and communication-driven

Some modeling approaches, such as NIAM [15] and ORM [16], suggest or prescribe a detailed
procedure. Practice shows, however, that experienced modelers frequently deviate from such pro-
cedures [17]:

In most cases, [the information engineers] stated that they preferred to pay attention to
a specific part of the problem domain, usually to fill clear lacunae in their insights in
the problem domain. Their momentary needs strongly influenced the order in which the
several modelling techniques were used. Modelling techniques were used as a means to
increase insights or to communicate insights, be it in the problem domain itself or in a
specific solution domain.

Yet deviating from a modeling procedure should be done with some caution. While a pre-defined
modeling procedure should never become “an excuse to stop thinking”, situational specificity
should not become an excuse for taking an ad-hoc approach to the modeling effort. A more stable
anchor is needed upon which modelers can base themselves when making decisions during the
modeling process. We believe that domain modeling requires a goal-bounded and communication-
driven approach. With goal-bounded we hint at the fact that when modeling a domain, a modeler
is confronted with a plethora of modeling decisions. These decisions range from the modeling
approach used, the intended use of the results, to decisions pertaining to the model itself. For
example:



– What parts of the domain should be considered relevant?
– What is the desired level of detail and formality?
– To what level should all stakeholders agree upon the model?
– Should the model be a representation of an actual situation (system analysis) or of a desired

situation (design)?
– Should the model be a representation of what a system should do, or should it be a represen-

tation of how a system should do this?
– Should a certain phenomenon in the domain be modeled as a relationship, or is it an object

on its own?

Modeling goals essentially provide the means to bound modeling space.

In most situations where a domain needs to be modeled, the modeler cannot merely passively
observe the domain. Modelers will need to interact with representatives from the domain. These
representatives then become informers (who are likely to also have a stake with regards to the
system being developed). Therefore, modelers will need to communicate intensively with the in-
formers in order to refine the model. What is more, numerous domain models that are produced
during system development will need to be accepted and agreed upon –validated– by the inform-
ers (being stakeholders of the future system). The claim has often been voiced that in modeling
practice, ‘the process is just as important as the end result’, suggesting that a correct end-result
is not always a guarantee for success. A domain model should ideally be a product of a shared
understanding of a domain’s stakeholders. It requires a ‘buy-in’ by all stakeholders involved. A
domain model that is correct from a theoretical or technical point of view but does not have the
required support from the key stakeholders is arguably worse than a domain model with some
flaws that does have such support.

A modeling process can thus be seen as a communication-driven process [18, 4]. The principles of
natural language driven modeling approaches [15, 19, 20, 16] can be used as a basis for shaping
the communication process between informer and modeler.

4.2 Aspects of a method

When considering a modeling approach or method, several aspects thereof can be discerned [21, 22].
An important distinction to be made is that between a product oriented perspective and a process
oriented perspective. In terms of the framework presented in [21, 22] these are referred to as the
way of modeling and way of working, respectively:

Way of modeling: The way of modelling provides an abstract description of the underlying
modelling concepts together with their interrelationships and properties. It structures the
models which can be used in the information system development, i.e. it provides an abstract
language in which to express the models.

Way of working: The way of working structures the way in which an information system is
developed. It defines the possible tasks, including sub-tasks and ordering of tasks, to be per-
formed as part of the development process. It furthermore provides guidelines and suggestions
(heuristics) on how these tasks should be performed.

In the case of domain modeling, the way of working represents the process followed when modeling
a domain. In the following sections, we will mainly elaborate on this aspect. The way of modeling
used for domain modeling is likely to be prescribed by a diagramming technique such as ORM
diagrams [16], ER diagrams [23] or UML class diagrams [9].



4.3 The process of domain modeling

In general, the goals underlying (business) domain modeling are [5]:

1. articulate clear and concise meanings of business domain concepts and
2. achieve a shared understanding of the concepts among relevant stakeholders.

Based on the results reported in [11], we consider domain modeling in the context of system
development to chiefly concern three streams of (mutually influencing) activities:

Scoping environments of discourse: The aim of this stream of activities is to scope the envi-
ronments of discourse that are relevant to the system being developed, and determine the set
of actors associated to each of these environments.

Concept specification: For each of the identified environments of discourse, the relevant busi-
ness domain concepts should be specified in terms of their:
– meaning
– relationships to other concepts (and the constraints governing these relationships)
– possible names used to refer to them

Concept integration: The concepts as identified and defined in the different environments of
discourse may well clash. As a part of this, homonyms and synonyms are likely to hold between
different terminologies. The aim of this stream of activities is to determine how to deal with
this, and act upon it. In section 5.3 we will elaborate on this.

Since these streams of activities can be expected to influence each other, it is not likely that they
can be executed in a strict linear order.

In general, the processes that aim to arrive at a set of concepts together with their meaning and
names, are referred to as conceptualization processes [11]. When, as in the context of software
development, conceptualization is performed deliberately, as a specific task and with a specific
goal in mind, it is referred to as an explicit conceptualization process. The above mentioned stream
of activities called concept specification is such an explicit conceptualization process. In [11, 5]
a reference model for conceptualization processes is provided. This reference model distinguishes
five streams of activities or phases:

Assess domain and acquire raw material: Domain modeling always begins with a brief scan
or assessment of the domain to get a feeling for scope, diversity and complexity of the domain,
as well as to identify the relevant stakeholders for the domain. In addition, the activity aims
to bring together input documents of all sorts that provide a basic understanding of the
environment of discourse that is relevant to the environment of discourse under consideration.

Scope the concept set: In this phase, formal decisions are to be made regarding the concepts
that somehow play a role in the environment of discourse and how these concepts interrelate.6

Select relevant concepts: The goal of this phase is to focus on those concepts in the environ-
ment of discourse that bear some relevance to the system to be developed. These are the
concepts that should be defined and named formally in the next step.

Name and define concepts: All of the concepts selected in the previous phase should be named
and defined. Defining the concepts may also include the identification of rules/laws/constraints
governing instances of the defined concepts.

Quality checks: Final quality checks on the validity, consistency and completeness of the set of
defined concepts.

These streams should essentially be regarded as sub-streams of the concept specification stream.

6 In an earlier version of this framework, this was referred to as scoping the universe of discourse.



4.4 Ambition levels for dealing with linguistic complexity

In the remainder of this article we discuss several aspects of the domain modeling process and the
role of natural language therein. We have made a distinction between four levels of ambition at
which a modeler may approach the task of modeling a domain. These levels can also be regarded
as the order in which a novice modeler may learn the art of domain modeling:

Singular: This level of ambition corresponds to the modeling approaches as described in e.g.
NIAM [15] and ORM [16]. It involves the modeling of a single environment of discourse based
on complete input; usually in terms of a complete verbalization of (only) the relevant parts of
the domain.

Elusive: At this level of ambition, modelers need to cope with the unavoidable iterative nature
of the modeling process. As a modeling and/or system development process proceeds, the
insight into the domain may increase along the way. This replaces the idealized notion of
completeness of input with one of incremental input. The increments in the model are not
related to a changing domain, but rather to improved ways of conceptualizing it. Also see
section 3.

Pluriform: At this next level of ambition, we recognize the fact that when developing a real-
istic system, we do not simply deal with one single unified environment of discourse (and
related terminologies and concepts), but rather with a number of interrelated environments of
discourse [12]. Also see section 3.

Evolving: The final ambition level recognizes the fact that domains themselves are not stable;
they evolve over time [12]. As a result, what may have started out as a correct model of a
domain, may become obsolete due to changes in the domain. New concepts may be introduced,
or existing ones may cease to be used. However, subtle changes may occur as well, such as
minor changes in the meaning of concepts, or the forms used to represent them.

In the next section, we will discuss domain modeling at the singular, elusive and pluriform levels
of ambition. The evolving level is omitted from this article, as it is applies generally, i.e. is not
typically language-related.

5 Meeting the challenge

This section aims to discuss the domain modeling process with respect to three of the identified
levels of ambition: singular, elusive and pluriform. We will structure our discussion by using the
framework of activity streams for domain modeling as introduced in the previous section.

5.1 Modeling a singular domain

At this level of ambition we are only interested in the modeling of a single environment of discourse
based on complete input. In terms of the above framework for domain modeling, this ambition
level assumes that:

– No (further) scoping of the environment of discourse is needed
– The domain has been assessed and raw material is available
– Concept integration only needs to take place within the given environment of discourse

Natural language driven modeling approaches like NIAM [15] and ORM [16] concern elaborately
described ways of executing a domain modeling process at this ambition level. For example, the
modeling procedure as described in ORM [16] identifies the following steps:



Step 1 – Transform familiar examples into elementary facts
Step 2 – Draw the fact types and apply a population check
Step 3 – Trim schema and note basic derivations
Step 4 – Add uniqueness constraints and check the arity of fact types
Step 5 – Add mandatory role constraints and check for logical derivations
Step 6 – Add value, set-comparison, and subtyping constraints
Step 7 – Add other constraints, and perform final checks

In terms of our framework for domain modeling processes, this procedure constitutes a rather
specific way of executing the concept specification stream of activities. It is really geared towards
the (conceptual) analysis of a domain in order to design a database, rather than a general analysis
of concepts playing a role in a domain. The procedure presented above is not applicable to all
situations and all modelers.

Even though the above order is very explicit, and therefore well suited for educational purposes,
a goal-bounded approach to domain modeling requires a more refined view. The key question
concerns the goal for which a domain is modeled. During the definition phase of the software
development life-cycle, when the main goal is to support requirements engineering activities, the
seven steps as described above are likely to be overkill. In such a context, modelers are likely to
skip steps 6 and 7.

During the design phase of a software system most of the seven identified steps are indeed needed.
However, experienced modelers are also likely to merge steps 1-3, steps 4-5, as well as steps 6-7,
into three big steps. The resulting three steps will generally be executed consecutively on a ‘per
fact’ base. In other words:

1. For each fact type, execute 1-3
2. For each fact type, execute 4-5
3. For each fact type, execute 6-7

ORM is not the only modeling approach that is based on analysis of natural language. However,
providing a full survey of such approaches is beyond the scope of this article. Nevertheless, two
approaches are worth mentioning here. In [19] the Object-Oriented Systems Analysis method is
presented. It uses a natural-language based approach to produce an Object-Relationship Model
(accidently also abbreviated as ORM) that serves as a basis for further analysis. The way of working
used is not unlike that of ORM. Its way of modeling, however, has a more sketchy nature and has
been worked out to a lesser degree. The KISS approach, as reported in [20], also uses natural
language analysis as its basis. It provides some support in terms of a way of working, but does
this in a rather prescriptive fashion that presumes some very particular (and limited) intermediary
goals. A wide spectrum of modeling concepts are introduced (way of modeling) covering a wide
range of diagraming techniques (not unlike the UML [9]).

Independent of the approach used, a modeling process always needs to be flanked by a continu-
ous communication process with the stakeholders [4]. Communication brings along the aspect of
documentation. Modeling itself can hardly do without face-to-face discussions; however, the (in-
termediate) results need to be recorded in such a way that they can be communicated effectively
to the stakeholder community [6, 7]. In this respect we could argue that any modeling approach
also needs a way of communication/documenting. Since documentation serves the purpose of com-
munication, the documentation language should align with the accepted language concepts in the
domain. In practice it turns out that graphical notations such as ORM or UML diagrams are not
the most obvious way to communicate a model to stakeholders, since most domain stakeholders
do not comprehend this kind of “IT language”. Often, it is better to use more intuitively readable
diagrams and natural language to communicate concepts and their relationships and constraints,
while occasionally, a more mathematical or algorithmic style may be useful in certain expert
domains.



5.2 Dealing with elusiveness

At this level of ambition we are still only interested in modeling a single and uniform environment of
discourse. However, the assumption that we can base ourselves on complete input is dropped. This
is quite realistic, as most real life domains can only be charted as we go along. The past decades
have seen a move away from linear software development to more iterative forms [24]. At the root of
this development lies the observation that as the development process progresses, the insight into
the domain, the requirements, the set of relevant stakeholders, and technological (im)possibilities
increases. This is supported by the observation that real life software development projects have
a tendency to involve so-called wicked problems [25, 26]. A crucial property of wicked problems
is that one does not understand the real problem, until a possible solution has been developed.
Developing such a possible solution provides the necessary insights to enable developers to better
understand the actual problem that needs solving [27].

The role of domain modeling in software development is to serve as a basis for the different stages
(definition, design, construction and deployment) of the development process. Domain modeling
should therefore closely follow the iterations of the development process as a whole. The ambition
levels (i.e. the modeling goal) of each of the iterations of a domain model should be attuned to the
ambition levels of the iterations of the entire development process. This entails that at times, a less
than perfect and/or completed domain model needs to be settled for. For example, incremental
software development [24] typically requires tangible results in an early stage. This requires domain
modelers to be pragmatic about the quality of their initial models. Also, due to the wicked nature
of real life development projects [26, 27], there is quite often no such thing as the final or the best
domain model.

Elusiveness in domains also changes the nature of the stakeholder communication process. Assum-
ing complete input, the modeler is mainly busy capturing and structuring what the stakeholders
already know. The stakeholders mostly play an informing and validating role but probably do not
gain many new insights in their domain. Yet elusiveness introduces uncertainty, so stakeholders
may need to become more creative, and willing to develop new insights or change existing ones,
together with the modeler. The role of the stakeholders shifts from mostly informing towards more
constructive.

Neither of the three earlier reported modeling approaches ORM [16], OOSA [19] and KISS [20]
provide mechanisms to deal appropriately with the iterative nature of software development. The
UML [9] may seem to provide this through its associated development process RUP [24]. However,
the UML modeling approach as such only provides a way of modeling and can hardly be seen to
provide modelers with modeling guidelines in terms of a way of working. RUP, on the other hand,
focuses on the software development process as a whole, and could just as well be combined with
ORM, OOSA or KISS.

5.3 Dealing with pluriformity

As discussed at some length in section 3, pluriformity concerns the existence of multiple termi-
nologies within an environment of discourse, or the occurrence of similar concepts in different
environments of discourse. The most obvious way in which pluriformity surfaces –and is dealt
with– in domain modeling is in relation to homonyms and synonyms7.

In [16, p74, p202], the occurrence of homonyms in stakeholder interaction is mentioned briefly,
and is broadly approached as a problem that is to be solved: “you should get [stakeholders] to
agree upon a standard term, and also note any synonyms that they might still want to use” (ibid,
p74). This is the attitude towards homonyms and synonyms that, explicitly or not, is embraced

7 Concepts are homonyms if they have a similar form (label) and different meaning. Concepts are syn-
onyms if they have a different form but a similar meaning.



by most current domain modeling approaches. A similar attitude is voiced in [20, p194], where it
is recommended that lists are kept of homonyms and synonyms from the domain under analysis.
Generally, the existence of a homonym in a domain model is seen as ranging from mildly undesir-
able to damaging to the model; often, the very presence of a homonym in the model is considered
a sign that the model is ‘wrong’.

A somewhat more nuanced treatment of the phenomenon is provided by [19, p206, p208]. Here it
is made explicit that under their approach, “We may [...] choose not to resolve homonym conflicts.
Our [...] model does not assume, as many models do, that a reoccurrence of a name for the same
construct makes the construct the same. For example, we may have name of person and name of
preferred customer group. Here, name and name are homonyms and we may choose to leave them
as they are. When we leave them the same, we have to disambiguate them by their context in
the same way we disambiguate homonyms in everyday life”. The option of relating pluriformity
to context is thus modestly taken aboard.

However, there is more to pluriformity than just the resolving of homonyms/synonyms. In partic-
ular in the case of homonyms, a wold of conceptual difference may be hidden behind what seems
at first a mere matter of ‘labeling’. [19, p206] hint at this when they say that “resolution of struc-
tural conflicts is much more difficult than resolutions of name conflicts”. Indeed, the occurrence
of homonyms may trigger further exploration of a part of the domain that perhaps was before
considered unproblematic. In the authors’ experience, amazingly fundamental differences between
(and disagreements about) the conceptions of a domain may surface through the exploration of
what at first seems to be a minor matter of terminological alignment. Consequently, from a process
point of view there is much more to pluriformity than getting rid of form/meaning ambiguity; an
extensive process of conceptual negotiation and gradual construction of a shared conceptual model
is often required to achieve genuine mutual acceptation of and agreement about a domain model.

Unfortunately, such consensual modeling is often too much to ask for. If stakeholder are inflexible
in their concept use (for whatever reason), it may be simply impossible to “get them to agree upon
a standard term”. In such a case, pluriformity may well have to be modeled explicitly, in relation
to the particular context(s) (environments of discourse, communities) the respective conceptual
variations are associated with. This may or may not lead to design decisions later on. It is quite
possible that some pluriformity cannot be resolved, for example if some stakeholder is not willing
or capable of the conceptual flexibility required to reach consensus, or if the system designed
incorporates multiple ‘use domains’. Ignoring this point is counterproductive.

6 Conclusion

We have presented an overview and discussion of language-related issues in business domain mod-
eling, in particular as part of the requirements engineering phase of software development. We
emphasized the central role of communication with various parties (stakeholders, modelers) in
this process. We focused on linguistic complexity in domain modeling stemming from the variety
of languages spoken in the environments of discourse related to a domain: its pluriformity. In ad-
dition, some linguistic complexity occurs because of what we have called the elusiveness of domain
models.

We presented an analysis of process-oriented aspects of domain modeling (mostly in relation to
ways of working) and how they are influenced by various language and communication related
issues. This led us to emphasize the importance of a goal bounded approach to modeling.

We defined four levels of ambition concerning business domain modeling. In view of our subsequent
discussion concerning ways to meet the challenges involved, we conclude only the first level of
ambition (singular domain) is satisfactorily covered by current domain modeling methods. The
second and third level (elusive and pluriform domains) call for more nuanced approaches and better
guided modeling processes. The fourth level (evolution) has not been discussed at any length, and
is left for future research.



References

1. The Standish Group International: CHAOS: A Recipe for Succes. Technical report, The Standish
Group International, West Yarmouth, Massachusetts, USA (1999).
http://www.standishgroup.com/sample_research/PDFpages/chaos199%9.pdf

2. Vliet, J.v.: Software Engineering – Principles and Practice. 2nd edn. John Wiley & Sons, New York,
New York, USA (2000). ISBN 0471975087

3. Mylopoulos, J.: Techniques and Languages for the Description of Information Systems. In Bernus, P.,
Mertins, K., Schmidt, G., eds.: Handbook on Architectures of Information Systems, Berlin, Germany,
EU. International handbooks on information systems edn. Springer, Berlin, Germany, EU (1998).
ISBN 3540644539

4. Veldhuijzen van Zanten, G., Hoppenbrouwers, S., Proper, H.E.: System Development as a Rational
Communicative Process. In Callaos, N., Farsi, D., Eshagian-Wilner, M., Hanratty, T., Rish, N., eds.:
Proceedings of the 7th World Multiconference on Systemics, Cybernetics and Informatics. Volume
XVI. (2003) 126–130. ISBN 9806560019

5. Bleeker, A., Proper, H.E., Hoppenbrouwers, S.: The Role of Concept Management in System De-
velopment – A practical and a theoretical perspective. In Grabis, J., Persson, A., Stirna, J., eds.:
Forum proceedings of the 16th Conference on Advanced Information Systems 2004 (CAiSE 2004),
Riga, Latvia, EU, Riga, Latvia, EU, Faculty of Computer Science and Information Technology (2004)
73–82. ISBN 998497670X

6. Frederiks, P., Weide, T.v.d.: Deriving and paraphrasing information grammars using object–oriented
analysis models. Acta Informatica 38 (2002) 437–88.

7. Frederiks, P.: Object–Oriented Modeling based on Information Grammars. PhD thesis, University of
Nijmegen, Nijmegen, The Netherlands, EU (1997). ISBN 9090103384

8. Wright, S.: Terminology and Total Quality Management. In Wright, S., Budin, G., eds.: Handbook
of Terminology Management – Volume 2: Application–Oriented Terminology Management. John
Benjamins, Amsterdam, The Netherlands, EU (2001). ISBN 9027221553

9. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modelling Language User Guide. Addison Wesley,
Reading, Massachusetts, USA (1999). ISBN 0201571684

10. Wright, S., Budin, G., eds.: Handbook of Terminology Management – Volume 1: Basic Aspects of Ter-
minology Management. John Benjamins, Amsterdam, The Netherlands, EU (1997). ISBN 9027221545

11. Hoppenbrouwers, S.: Freezing Language; Conceptualisation processes in ICT supported organisations.
PhD thesis, University of Nijmegen, Nijmegen, The Netherlands, EU (2003). ISBN 9090173188

12. Proper, H.E., Hoppenbrouwers, S.: Concept Evolution in Information System Evolution. In Gravis,
J., Persson, A., Stirna, J., eds.: Forum proceedings of the 16th Conference on Advanced Informa-
tion Systems 2004 (CAiSE 2004), Riga, Latvia, EU, Riga, Latvia, EU, Riga, Latvia, EU, Faculty of
Computer Science and Information Technology (2004) 63–72. ISBN 998497670X

13. Hoppenbrouwers, J.: Conceptual Modeling and the Lexicon. PhD thesis, Tilburg University, Tilburg,
The Netherlands, EU (1997). ISBN 9056680277

14. Falkenberg, E., Verrijn-Stuart, A., Voss, K., Hesse, W., Lindgreen, P., Nilsson, B., Oei, J., Rolland,
C., Stamper, R.a., eds.: A Framework of Information Systems Concepts. IFIP WG 8.1 Task Group
FRISCO, IFIP, Laxenburg, Austria, EU (1998). ISBN 3901882014

15. Nijssen, G., Halpin, T.: Conceptual Schema and Relational Database Design: a fact oriented approach.
Prentice–Hall, Englewood Cliffs, New Jersey, USA (1989). ASIN 0131672630

16. Halpin, T.: Information Modeling and Relational Databases, From Conceptual Analysis to Logical
Design. Morgan Kaufmann, San Mateo, California, USA (2001). ISBN 1558606726

17. Verhoef, T.: Effective Information Modelling Support. PhD thesis, Delft University of Technology,
Delft, The Netherlands, EU (1993). ISBN 9090061762

18. Frederiks, P., Weide, T.v.d.: Information Modeling: the process and the required competencies of
its participants. In Meziane, F., M‘etais, E., eds.: 9th International Conference on Applications of
Natural Language to Information Systems (NLDB 2004), Manchester, United Kingdom, EU. Volume
3136 of Lecture Notes in Computer Science., Berlin, Germany, EU, Springer (2004) 123–134.

19. Embley, D., Kurtz, B., Woodfield, S.: Object–Oriented Systems Analysis – A model–driven approach.
Yourdon Press, New York, New York, USA (1992). ASIN 0136299733

20. Kristen, G.: Object Orientation – The KISS Method, From Information Architecture to Information
System. Addison Wesley, Reading, Massachusetts, USA (1994). ISBN 0201422999

21. Seligmann, P., Wijers, G., Sol, H.: Analyzing the Structure of I.S. Methodologies, an alternative
approach. In Maes, R., ed.: Proceedings of the First Dutch Conference on Information Systems.
(1989).



22. Wijers, G., Heijes, H.: Automated Support of the Modelling Process: A view based on experiments
with expert information engineers. In Steinholz, B., Solvberg, A., Bergman, L., eds.: Proceedings of
the Second Nordic Conference CAiSE‘90 on Advanced Information Systems Engineering, Stockholm,
Sweden, EU. Volume 436 of Lecture Notes in Computer Science., Berlin, Germany, EU, Springer
(1990) 88–108. ISBN 3540526250

23. Chen, P.: The Entity–Relationship Model: Towards a Unified View of Data. ACM Transactions on
Database Systems 1 (1976) 9–36.

24. Kruchten, P.: The Rational Unified Process: An Introduction. 2nd edn. Addison Wesley, Reading,
Massachusetts, USA (2000). ISBN 0201707101

25. Rittel, H., Webber, M.: Dilemmas in a General Theory of Planning. Policy Sciences 4 (1973) 155–169.
26. Conklin, J.: Wicked Problems and Social Complexity. Technical report, CogNexus Institute, Edge-

water, Maryland, USA (2003).
http://cognexus.org

27. Budgen, D.: Software Design. 2nd edn. Pearson Education, Harlow, United Kingdom, EU (2003).
ISBN 0201722194


