

4 Service Modelling

M.W.A. Steen, M.E. Iacob, M.M. Lankhorst, H. Jonkers, M. Zoet, W. Engelsman,
J. Versendaal, H.A. Proper, L. Debije, K. Gaaloul

The development of enterprise services involves making design decisions at dif-
ferent levels, ranging from strategic to infrastructural choices, and concerning
many different aspects, ranging from customer interaction to information registra-
tion concerns. In order to support an agile development process with short itera-
tions through each of these levels and aspect, we need to manage the inherent
complexity and support rapid feedback on the impact of design decisions across
the various aspects of service development. The use of models can help to manage
the coherence among the different aspects in service design, and in facilitating and
accelerating changes. Therefore, we propose a comprehensive framework and
method for service modelling and model integration as an important ingredient of
an agile service development methodology. This method is aimed at providing a
shorter path between requirements and execution through the use of models to
feed run-time execution engines, fast validation at the model level, support for
communication with stakeholders, integration of different aspects, domains and
fields of expertise, and consistency across the enterprise.

4.1 Introduction

Enterprise services are provided by a complex socio-technical system – the service
system – comprising both human and technological resources. These resources
need to be instructed on what to do, when and how, in order to deliver the required
service. Service development is the entire process of designing, implementing,
maintaining and adapting services. The development of enterprise services in-
volves making design decisions at different levels, ranging from strategic to infra-
structural choices, and concerning many different aspects, ranging from customer
interaction to information registration concerns. Think of information to be man-
aged, partners to involve, channels to be used and processes to execute in order to
deliver the overall service. In addition, the distinction between business and IT
services is blurring, with the ongoing shift from people-delivered, possibly IT-
supported services to IT-delivered, possibly people-supported services.

60

Service providers need to address the question of how to align their business
operations and information technology to market demands, legal and regulatory
requirements, and business strategy. There are many stakeholders involved, each
with their own interests and concerns. In addition, services have to fit with the
needs of customers, the organizational context and the technological infrastruc-
ture. Marketeers will be interested in targeted market segments, channels and pro-
posed customer value; business operations managers in the impact on business
processes; IT managers in the impact on applications and technology infrastruc-
ture; line of business managers in the division of roles and responsibilities; partner
managers in the involvement of key partners; and so on, and so forth.

Next to the many aspects that need to be addressed when developing services,
the other main challenge of service organizations is to deal with change (also see
Chap. 2). They are continuously confronted with changes, such as changing mar-
ket conditions, changing legislation, technological changes, changing volumes,
changing partnerships, and the introduction of new channels. Therefore, we advo-
cate an agile way of working, which is detailed further in Chap. 6. However, in
order to support such an agile development process with short iterations through
each of the design levels and aspect, we need to manage the inherent complexity
and support rapid feedback on the impact of design decisions across the various
aspects of service development.

It is simply not possible to be agile in such a complex endeavour without the
use of suitable and coherent abstractions. In this chapter, we therefore propose a
comprehensive framework for service development that takes the various aspects
of services into consideration. This framework can serve as a map for plotting and
relating the various concerns of stakeholders. The approach for composing a way
of working as outlined in Chap. 6 can then be used to plan a route through this
service development landscape. In particular, we can on the one hand position the
various development artefacts within this framework, and on the other hand use
these to select and combine relevant agile practices (see in particular Sect. 6.7.2).

The framework is complemented with a method for integrating the different as-
pects. In this way, we obtain an integrated, model-based, agile approach to service
development. This method enables a shorter path between requirements and exe-
cution, through the use of models to feed run-time execution engines, fast valida-
tion at the model level, support for communication with stakeholders, integration
of different aspects, domains, expertises, and consistency across the enterprise.

4.2 The Role of Models in Agile Service Development

As we explained in Chap. 1, we strive for an agile engineering approach to service
development. Most mature engineering disciplines are firmly rooted in the use of
formal, mathematical models for predicting the various properties of their design

61

artefacts, in order to make the right decisions. In this context, we use the following
definition of a model:

A model is a purposely abstracted and unambiguous conception of a domain.

This definition is taken from (Lankhorst et al. 2009), and is originally based on
(Falkenberg et al. 1998). In this definition, a ‘domain’ is any subset of a concep-
tion of the universe – i.e., the service world we are talking about – that is viewed
as being some ‘part’ or ‘aspect’ of the universe. For complex worlds, such as the
world of enterprise services, many different domains or abstractions can be envi-
sioned, ranging from the financial and economic structure of the service network,
via the individual organizations involved and their business processes and func-
tions, to the IT implementations and infrastructures.

Models in general serve many purposes. By means of their abstraction from de-
tails, they help us focus on the essence, a specific purpose. This way, they provide
us with more insight into a situation. This insight might be needed towards an in-
forming purpose, analysis, decision making, etcetera. This is the descriptive use of
models.

Models may also be used prescriptively, to provide guidance towards the exe-
cution of work. This could for example concern design activities or operational
work processes. Because of the unambiguous nature of models, the guidance they
provide is often clearer and more explicit than when natural language or simple
pictures are used. In particular when formalized rules or processes must be fol-
lowed, using models may help avoid miscommunication or differences in interpre-
tation, and thus are a great help in project communication.

In Chap. 2, we outlined the various attributes of agility, both of agile processes
and of agile systems. The use of models contributes to the realization of many of
these agility aspects. Models help us in clearly establishing and prioritizing re-
quirements, and in achieving Traceability between business goals, requirements
and design models, which is important to ensure that our designs really fit the
needs of the business. Models also help in estimating the effort needed for a spe-
cific requirement, for example because they give insight in the size of the func-
tionality needed or in the complexity of a system’s interactions. This aids in priori-
tizing requirements, and improves the competency of the service development
team in delivering on its promises.

Assuming that models are easier to create and maintain that software code, the
use of models may help to accelerate and shorten the path between requirements
and execution. If we automatically convert models to implementations, or even
better, if we have an infrastructure that can directly interpret and execute these
models, we can build and change services with less software coding or even no
coding at all. Considering that various kinds of ‘engines’, for example for business
process or business rule execution, are becoming increasingly popular because of
this. Thus, making changes becomes much easier and the development process is
accelerated. The figure below illustrates this.

62

Execution
Engine

Requirements

Executable
Models

Outcome/
Behaviour

Programming
PlatformCode

Shortcut!

Long way around

Fig. 15. Agility through model execution. ; when models are executable, one can take a shortcut
and obtain faster feedback on design decisions.

Furthermore, models may serve as an important means for communication with
business stakeholders (also see Chap. 7). These stakeholders can be more closely
involved in designing or changing a service, or in some cases they may even be
able to make changes themselves. In particular when the infrastructure is built us-
ing engines like those mentioned above, some types of changes may be made di-
rectly by end-users, such as changing business rules or workflows. Thus, using
models may improve stakeholder involvement, increase responsiveness to busi-
ness needs, and speed up the development process.

Models also facilitate the deployment of a change, by shortening the develop-
ment, testing, acceptance and production process. Since less coding is involved,
the development process takes less effort. But you can also use models to validate
or verify a service design offline, for example, by means of simulation and model-
based analysis techniques. You can detect errors at an earlier stage, when they are
usually cheaper to fix, and you can predict behaviour, for example resource con-
sumption under heavy usage.

The usage of models that show the dependencies between different service as-
pects, also helps you in assessing the effects of changes, for example by seeing
how they propagate through the models. This ensures consistency and avoids un-
expected and unwanted side-effects.

Finally, models may facilitate the integration and reuse of services. If you have
model-based descriptions of service interfaces, finding and integrating these ser-
vices is easier and can sometimes even be automated. Service composition and
bundling, offering new combinations of existing services, is also facilitated if you
can already check at the model level whether these services are compatible.

Importantly, and as discussed in Chap 6, we do not advocate ‘big design up-
front’ of the entire service landscape. Rather, the modelling efforts themselves
should be iterative and should follow good practices for agile modelling, as for
example provided by Ambler (2002) and others. But as we already outlined in

63

Chap. 3, an investment in a model-based architecture may well pay off in a much
quicker and cheaper development afterwards. Some design up-front is therefore
required.

4.3 Adoption Levels of Modelling

Although the use of models in service development clearly has advantages in
terms of agility, coherence, consistency and quality, there are also costs involved.
Modelling requires effort, skills, and specialized tools. And scenarios in which
models are directly executed, require an infrastructure consisting of appropriate
execution engines. Unfortunately, the benefits of modelling can usually only be
obtained after these investments in infrastructure, tools, education and human re-
sources have been made. Therefore, a model-driven approach should only be
adopted when the benefits outweigh the costs. Below, we describe a number of
adoption levels for the use of models, each with their own set of benefits and
costs. This can help organizations to choose the right level of adoption.

Table 2. Adoption of modelling.

Level of model adoption Benefits Costs

1. no models none none
2. informal models improved communication low
3. isolated formal models unambiguous specification,

analysis support
know-how and tools for specific
technique(s)

4a. horizontally integrated
formal models

cross-aspect impact of change
analysis, consistency across do-
mains, reuse

integrated tool-suite for modelling
or model integration support, cross
domain modelling expertise

4b. vertically integrated for-
mal models

traceability to requirements, im-
pact of change analysis, forward
and backward engineering sup-
port, e.g. code generation

dedicated tool-chain and target
platform, model transformation
expertise

5. integrated formal models Combined benefits of 3 and 4. integration of tools and infrastruc-
ture components, combined exper-
tise and know-how from 3 and 4.

Level 1 – no models – speaks for itself. If no models are used in the development
process, there are obviously also no benefits and no costs for making models. Be
aware, however, that overall development costs may increase, because there are
limited means to manage the inherent complexity of service design.

At level 2 – informal models – service developers enjoy improved communica-
tion, while the modelling costs are still low. An ‘informal’ model has no formally

64

defined syntax or semantics. Examples include Visio diagrams and PowerPoint
drawings.

At level 3 – isolated formal models – proper modelling tools are employed to
model some aspects of the service design. We use ‘isolated’ here as opposite of
‘integrated’, meaning that multiple models may be used, but without being formal-
ly related to one another. The minimum requirement for a model to be ‘formal’ is
that its syntax conforms to a metamodel. Examples include, BPMN process mod-
els and UML class diagrams. The advantage of formal models over informal mod-
els is that they are unambiguous and amenable to formal analysis, such that they
can be used to predict properties of the service before it is implemented. Obvious-
ly, this level requires know-how and dedicated tools for the selected modelling
techniques.

At the highest adoption level, 5 – integrated formal models – it is assumed that
models are used at most abstraction levels and across most of the aspects of the
service design. Moreover, these models are all assumed to be views on one, usual-
ly left implicit, integrated underlying model of the service. This level demands a
lot in terms of skills, tools and infrastructure. Therefore, it may not be appropriate
for every organization. There are two possible routes to achieve level 5: horizontal
integration first (4a) and vertical integration first (4b). The desired benefits and the
priorities of the organization determine which route is most appropriate and to
what extent the other path is followed.

At level 4a – horizontally integrated formal models – service developers can
reuse elements from one aspect model in another, check and enforce consistency
across the aspects and perform cross-aspect impact-of-change analyses. Models
are ‘horizontally’ integrated when they are at the same level of abstraction, but
possibly addressing different aspects, and consistently referring to each other’s el-
ements. This level of integration requires an integrated tool-suite for modelling or
another form of model integration support and cross-domain modelling expertise.
In Sect. 4.7, we detail further the specific requirements this scenario places on
tools support.

At level 4b – vertically integrated formal models – service developers can trace
design and implementation artefacts back to the requirements that motivate their
existence, analyse the impact of changes in requirements or designs on the lower
abstraction levels, and make use of automated support for forward and backward
engineering, such as code generation. Models are ‘vertically’ integrated when they
are at different levels of abstraction, addressing the same aspects, and have rela-
tionships defined between semantically conformant elements. This level of inte-
gration requires a dedicated tool-chain and target platform as well as model trans-
formation expertise.

65

4.4 The ASD Framework

In this section, we present a model-based framework for agile service develop-
ment. We focus in particular on identifying the kinds of abstractions that are re-
quired to support an integral and coherent service development process. In devel-
oping this framework, our aim was not to develop “yet another” framework, but
rather to combine the features of relevant existing frameworks that are relevant to
(agile) system development.

Of course, we are not the first to propose a framework for enterprise service
development. One of the best-known and oldest frameworks for the describing the
design space of enterprises is the Zachman Framework for Enterprise Architecture
(Sowa & Zachman 1992). It was first introduced in 1987 as the ‘Framework for
Information Systems Architecture’ (Zachman 1987). The Zachman framework is a
logical structure for classifying and organizing the elements and aspects of an en-
terprise (its ontology) that are significant to the management of the enterprise as
well as to the development of the enterprise’s systems. In its most simple form the
Zachman framework depicts the concepts on the intersections between the roles in
the design process, in particular the planner, owner, designer, and builder; and the
product abstractions: that is, what (data) it is made of, how (function) it works and
where (network) the components are located with respect to one another. Three
additional columns of models depict who does what work, when do things happen,
and why are various choices made?

A more recent framework with a strong impact on international standardization
is the framework embedded in the ArchiMate language (The Open Group 2012;
Lankhorst et al. 2009). The core of the ArchiMate language distinguishes between
the structural or static aspect and the behavioural or dynamic aspect of enterprises.
The structural aspect is further subdivided into active structural elements (the
business actors, application components and devices that display actual behaviour,
i.e., the ‘subjects’ of activity), and passive structural elements, i.e., the objects on
which behaviour is performed.

In addition, ArchiMate makes a distinction between an external view and an in-
ternal view on systems. The service concept represents a unit of essential func-
tionality that a system exposes to its environment. For the external users, only this
external functionality, together with non-functional aspects such as the quality of
service, costs, etc., are relevant. Services are accessible through interfaces, which
constitute the external view on the structural aspect.

Finally, ArchiMate distinguishes three layers: The Business layer offers prod-
ucts and services to external customers, which are realized in the organization by
business processes (performed by business actors or roles); the Application layer
supports the business layer with application services which are realized by (soft-
ware) application components; the Technology layer offers infrastructural services
(e.g., processing, storage and communication services) needed to run applications,
realized by computer and communication devices and system software.

66

There are many more framework and reference architectures with some rele-
vance to service development. Standardization organizations, including OASIS,
The Open Group, W3C and OMG, have produced various standards and whitepa-
pers containing guidance for developing service oriented solutions, see (The Open
Group 2009b) for an overview. However, these generally are of a technical nature
and pay less attention to the business, organizational, decision and interaction as-
pects of enterprise service development. Most methodologies and development
tools also boast their own world views. TOGAF, for example, has its own Content
Framework, which categorizes architecture artefacts according to the TOGAF de-
velopment phases (The Open Group 2011). The Design and Engineering Method-
ology for Organizations (DEMO) takes a language-action perspective and looks at
organizations at an ontological, an infological and a datalogical level, and further
distinguishes the construction, process, state, and action aspects (Dietz 2006).

While each of these frameworks has its merits, none of them covered all the as-
pects and perspectives that we encountered in agile service development. Never-
theless, they are complementary and contain many useful concepts that we can re-
use in service development. We therefore saw the need to combine those features
of the existing frameworks that are relevant to agile service development, into a
framework that is comprehensive and specific to agile service development.

4.4.1 Service Aspects

Our framework aims to support agility and flexibility in realizing service require-
ments, while managing the inherent complexity. A good practice for achieving
such flexibility is ‘separation of concerns’. Following Zachman, our framework is
structured along two axes: service aspects and abstraction levels. By dealing with
each aspect separately before dealing with the bigger picture, we can maintain a
grip on the complexity and avoid that design concerns get mixed up. This supports
agility by providing a single point of definition and change for each aspect. A
well-known example of this principle from web application development is the
use of the so-called three-tier architecture, separating presentation, business logic
and data. A similar subdivision applies to service development, where we need to
address the interaction with customers, the provided functionality and the infor-
mation being managed.

However, the functionality or business logic of enterprise services is usually
not so easily captured. Other principles help us to divide this aspect further. Ser-
vice-oriented architecture (Erl 2009) and structured analysis and design techniques
(Marca and McGowan 1987) suggest us to separate, decompose and encapsulate
groups of coherent functionalities into reusable building blocks, providing again
services to their environment, resulting in a hierarchy of functional building
blocks. Workflow thinking has taught us to separate activities or tasks to be exe-
cuted from the (human or system) actors executing them. Business process man-
agement (BPM) (Brocke and Rosemann 2010) thinking suggests to separate the

67

coordination of such functional building blocks. And a final good practice is to
‘separate the know from the flow’, i.e., do not mix decision logic with coordina-
tion logic. Fig. 16 shows the six resulting service aspects and loosely relates them
to the ArchiMate and Zachman frameworks.

In
te

ra
ct

io
n

S
tru

ct
ur

e

Fu
nc

tio
n

C
oo

rd
in

at
io

n

D
ec

is
io

n

P
ro

du
ct

Presentation DataBusiness Logic

Active Structure Behaviour Passive Structure

Who

ArchiMate:

Zachman: Where How When What

3-tier pattern:
Fig. 16. The framework’s aspects and their relationship to other frameworks.

Interaction

The Interaction aspect is concerned with the way in which the enterprise interacts
with its environment. It includes the enterprise’s collaboration with its various
partners and how its clients interact with the business services it provides. These
services may be delivered through an online channel, but traditional, human-
centric services, delivered e.g., via the telephone or over the counter, are also part
of this. Hence, the interaction between user and service may involve graphical us-
er interfaces, online forms, etc., but also the classical person-to-person interaction
and service.

Structure

The Structure aspect concerns the way in which the enterprise organizes its human
and technological resources. This includes the organizational structure, comprising
the definition and allocation of roles, responsibilities, authorizations, reporting
lines, etc., but also the information system structures, i.e., the technical and appli-
cation architectures.

Function

In the Function aspect, we address the individual elements of business and appli-
cation functionality that, orchestrated and coordinated together, deliver the actual
substance of a service. This comprises both the (manual) tasks of employees and
the (automated) service logic of applications. Individual functions (and the ser-
vices they deliver) are coordinated via the Coordination aspect, they use and pro-
duce information from the Information aspect, and they employ rules and calcula-
tions from the Decision aspect.

68

Coordination

The Coordination aspect focuses on the various dependencies between the activi-
ties needed to deliver services. This includes, for example, the specification and
(possibly automated) orchestration of business processes, workflow support, etc. It
comprises both the coordination within an individual organization and the coordi-
nation of activities with other organizations, which may be users of the service or
partners in delivering it.

 Decision

The Decision aspect captures the logic of reasoning used in the service domain, to
reach decisions, i.e., how decisions are (to be) made. For example, in the domain
of insurance policies or banking products, this pertains to decisions based on cal-
culations, and other (logical) derivations. Part of this logic may take the form of
executable specifications, such as decision tables or executable business rules;
other elements are typically used by people, both in delivering the service and in
defining, checking and enforcing an organization’s ‘rules of conduct’. However,
the logic specified here should not include coordination, interaction or organiza-
tion logic, which belong to the other aspects.

Product

Finally, the Product aspect is concerned with the things that the service produces
and consumes, and the way in which these products are registered and managed.
Products can refer both to tangible business objects, such as cars and pizza's, but
also to intangible information items, such as insurance claims and pizza orders.

4.4.2 Abstraction Levels

Each of the service aspects can be considered at different abstraction levels (Fig.
17). We distinguish between the specification space and the human and technical
infrastructure on which specifications are realized and deployed. The specification
space can be divided further into a requirements level, a design level and an im-
plementation level. These abstraction levels are detailed further below.

69

Requirements

Design

Implementation

Infrastructure

Why

What

How

Who

M
od

el
s

an
d

S
pe

ci
fic

at
io

ns

People &
Technology

Fig. 17. The framework’s abstraction levels.

Requirements level

The Requirements level deals with the motivation and rationale behind the service,
i.e., its ‘why’, and comprises the service requirements from the business perspec-
tive. This level not only contains specifications of the requirements on the specific
service under development, but also includes specifications of the context in
which the service is to operate. Therefore, at this abstraction level, we recognize
the need for at least two types of models: a context model and a requirements
model.

Design level

The Design level contains the ‘what’ of the service: the interactions, processes,
functions, rules and objects that are needed to realize the service. Designs are typ-
ically denoted in the form of some kind of model. Models, being formalized ab-
stractions of reality that cover specific aspects of that reality and abstract from the
rest, are a precise way of specifying services. The use of models as executable
specifications is especially valuable from the perspective of agility. Because mod-
els can be checked in various ways before they are implemented, risks of changes
can be managed and their effects can be predicted (within limits) before imple-
mentation. Furthermore, if implementing a change in the IT domain merely
amounts to changing some models, an organization may react much more quickly
to changing requirements than for example when large-scale software changes are
needed.

Implementation level

The Implementation level describes the ‘how’, i.e., how the service will be im-
plemented, in terms of both the people and the technology involved. Ideally, this
level can be skipped, i.e., if the design models are directly executable on the infra-
structure. However, more often than not this is not realistic, which makes it neces-
sary to also look into the implementation artefacts.

70

Infrastructure level

Finally, we have the Infrastructure level. This is where the rubber meets the road:
the people and technology actually delivering the service. One the one hand we
find here people with suitable capabilities who deliver services through physical
channels. To be able to deliver these services, they execute tasks, coordinate activ-
ities, manage other people, and enforce that rules are obeyed. One the other hand,
there is the IT infrastructure which delivers services through online channels and
comprises both generic hard- and software infrastructure and specific applications
on top of that, such as DBMSs, BPMSs, rule engines, and web and application
servers.

4.4.3 Overview and Use of the Framework

Putting all of the abstraction levels and aspects together results in the framework
shown in Fig. 18.

Context and Goals

Interactions

Interface

Channels

Roles

Actors

Resources

Functions

Tasks

Executors

Processes

Orchestra-
tion

Orchestra-
tors

Knowledge

Executable
Rules

Enforcers

Products

Objects

Stores

In
te

ra
ct

io
n

Requirements

Fu
nc

tio
n

C
oo

rd
in

at
io

n

D
ec

is
io

n

P
ro

du
ct

Design

Implementation

Infrastructure

S
tru

ct
ur

e

Fig. 18. Framework overview.

The framework illustrates that enterprise services are realized through combina-
tions of business functions, processes, IT and more, all of which should be devel-
oped jointly. Of course, the framework is no more than that, a frame of reference.
It does not specify a way of working and there is no requirement to fill each cell of
the model individually. Rather, it provides a way to position and relate the various

71

design artefacts, where individual artefacts may cover more than one cell. For ex-
ample, in the infrastructure layer, people (human resources) will often fill multiple
positions at the same time, e.g., being both ‘manager’ and ‘coordinator’. Similarly,
the more advanced IT systems, such as for case management, business process
management or business rule management, cover multiple levels and aspects.
Conversely, some cells may remain empty for a specific service. For example, if
no significant coordination with others is required, business process specifications
may be superfluous.

Service organizations can use the framework to plot the models and abstrac-
tions they are already using in their service development process and highlight
white spots that they currently do not cover. To give an idea on what to put where,
we return to the AgiSurance case study introduced in Chap. 2.

4.4.4 Modelling AgiSurance

While AgiSurance offers many different insurance products, each with their own
unique properties and rules, they also share some characteristics. For each product
there has to be an acceptance process and a claim handling function. In order to
cope with the regularly changing product offering, AgiSurance wants to establish
an agile service architecture, allowing easy configuration of new insurance prod-
ucts on a stable infrastructure. In the following, we focus on the redevelopment of
the claim handling service. Currently, claims are received on paper and handled
manually – a costly and error-prone process. Due to increased sales, AgiSurance
expects a sharp rise in claims. Therefore, they want to optimize and partly auto-
mate the claim handling. The idea is to develop generic business and IT functions,
and processes for handling insurance claims, that are fed with specific rules for
decision making and interaction for each product.

In section 3.2.4, AgiSurance had already decided for a flexible, model-driven
infrastructure, consisting of a database management system (DBMS), a business
rule management system (BRMS) and a business process management system
(BPMS). However, because of the relatively simple and stable processes for claim
handling, they now decide not to use the BPMS, but to implement the processes
directly onto a standard application server.

AgiSurance first constructs a context model and a product model, based on an
analysis of contracts, policies and insurance legislation. The context model is
complemented with a business requirements model to define the stakeholders,
their goals and the requirements on the claim handling service. The organizational
structure and the division of tasks and responsibilities does not really change, so
these models can be copied from the corporate business architecture, defining or-
ganizational units, roles, functions and high-level processes, and the handbook
with guidelines and procedures for employees. Next, the context and product
models are detailed further into a rule model and an information model. The rule
model will be executed directly on a rule engine; the information model is auto-

72

matically transformed into a database schema. In parallel, a user interface model
and a service model are devised. The service model lays the foundations for the
application code and the process model. The user interface model is used to gener-
ate the web pages for the claim handling service.

Fig. 19 plots the identified models and infrastructure elements on the ASD
Framework. Here we can see that all the service aspects are covered to some ex-
tent, and that detailed implementation level models can be traced back to higher
level requirements models. Design artefacts can also be related horizontally, such
as the service, rule and information models, signifying that they refer to each oth-
er. Several models cover more than one aspect and/or level. The product model,
for example, floats between the requirements and design layers, and covers parts
of the information, decision and process aspects. By plotting the models on the
framework, AgiSurance can identify where specifications are missing and where
they should put their effort in verifying the consistency between models.

Business requirements model

Process
model

Rule
model

DB
schema

Web
server
Web

server Application serverApplication server BRMSBRMS

PeoplePeople

Organization Handbook

Business Architecture

Web
pages

DBMSDBMS

PaperPaper

Product model

Service model
UI

model

Context model

Info
model

App
code

Fig. 19. Positioning AgiSurance models on the ASD Framework.

4.5 The ASD Conceptual Model

In this section, we describe the concepts underlying the various service aspects
and their relationships. This gives body to the ASD Framework and is a first step
towards integrating different models and specifications. The conceptual model is
structured along the dimensions of the ASD Framework (see Sect. 4.4.3). First we
describe the concepts pertaining to the Requirements level. At this level models
are increasingly used to formalize service requirements and to use them to relate
design artefacts to organizational goals. Service requirements, in turn, depend on a
conceptualization of the business domain, the context in which the service is to

73

operate. Therefore, we introduce two modelling domains at this level: Context and
Requirements. Second, we define concepts for each of the six design and imple-
mentation aspects. Each aspect constitutes a modelling domain. Finally, we define
the relationships between the defined modelling domains.

The metamodels for each of the modelling domains were constructed by ana-
lysing a number of relevant and popular modelling techniques for the given do-
mains. In a sense, we attempted to extract the best practices in conceptual model-
ling from a large number of existing techniques. Table 2 lists the modelling
techniques that were analysed for each of the modelling domains. Each technique
defines its own set of modelling concepts. Concepts that we encountered more
than once (also those which could be considered synonymous) or which represent
a key abstraction for the given domain, we selected as key concepts for that mod-
elling domain.

Table 3. Relevant modelling techniques for each of the modelling domains.

Modelling domain Modelling techniques
Context ERD, ORM, OWL, SBVR, UML Class diagram
Requirements ArchiMate Motivation extension, i*, KAOS
Interaction ConcurTaskTrees, Diamodl, UML Use Case diagram, UsiXML
Structure ArchiMate, BPMN, DEMO, e3value, UML
Function ArchiMate, DEM, DFD, e3value, IDEF0, SoaML
Coordination ArchiMate, BPMN, DEMO, UML Activity diagram
Decision Decision tables, DMN, ECA rules, SBVR
Product ERD, ORM, UML Class diagram

4.5.1 The Context Domain

A context model is a conceptual model of the domain in which an enterprise con-
ducts its business and in which the service(s) under development should operate. It
describes the vocabulary and key concepts of the business domain, as well as their
properties and relationships. Usually, the context or domain model is only associ-
ated with a structural view of the business domain, but it can equally well contain
dynamic views describing the main business activities and their constraints and
dependencies. A context model is often complemented with the constraints that
govern the integrity of the model. Sometimes the context model is referred to as
knowledge model, because it defines the basic facts and rules of the business do-
main. Thus it is more than a list of dictionary-style definitions of terms.

The context model can be effectively used to verify and validate the under-
standing of the business domain among various stakeholders. It is especially help-
ful as a communication tool and a focusing point both amongst the different mem-
bers of the business team as well as between the technical and business teams. In

74

addition, the context model forms the basis for defining requirements on the ser-
vice(s) to be developed. Therefore, it is important that a context model itself is in-
dependent from design or implementation considerations.

The importance of context or domain modelling has been highlighted by many
before us. As a consequence, many methods and techniques exist for it. The struc-
ture of a domain is often modelled using object-oriented techniques, such as UML
class diagrams, or the more basic Entity Relationship Diagrams (ERD) (Chen
1976). In case UML (OMG 2011a) is used, domain concepts are represented as
classes, their relationships as associations, and their properties as attributes. Con-
straints can be specified using the Object Constraint Language (OCL) (OMG
2010). However, the UML has been criticized a lot for being incomprehensible by
domain experts that are not software engineers.

There are several alternatives from the data and knowledge representation
community, such as the Web Ontology Language (OWL)) (W3C 2009), Object
Role Modeling (ORM)) (Halpin and Morgan 2008) and the Semantics of Business
Vocabulary and Business Rules standard (SBVR)) (OMG 2008), that take a more
fact-oriented approach to modelling the domain. In these techniques, properties,
relationships and other rules or constraints are all seen as ‘fact types’. Sometimes
these techniques enable automatic reasoning, for example to derive new facts.

By analysing and comparing the modelling techniques mentioned above, we
have derived the following set of key concepts for context modelling:

Concept: an abstraction or generalization of a phenomenon that may occur
in the domain.

Property: an attribute, characteristic, or quality of a Concept. Each Property
has a type specifying the range of values it can take.

Relation: an association between two or more Concepts, each having a par-
ticular Role in the Relation.

Value Type: a range of values that Properties can take.

Role: the position of a Concept or the part played by a Concept in a Rela-
tion.

Constraint: a limitation, restriction or rule controlling the possible instances
of concepts and relations, and values of properties.

The figure below depicts the context modelling metamodel, relating the key con-
cepts defined above.

75

Fig. 20. The context metamodel.

An example context model

In finance, context models are to a large extent defined by the legal ‘space’ in
which the financial institution operates. They need to comply with legislation
based on international directives and standards, such as Solvency II, Basel III, and
IFRS. Within this legal space, or more precisely their interpretation of the legal
space, financial institutions define a product model defining their products and
services.Both legislation and financial products and services are generally defined
in legal documents (laws, contracts, policies). Drawing up a context model then
consists of interpreting these documents, formalizing the definitions and rules con-
tained within them.

Below, we show some of the results of such a context modelling exercise for
AgiSurance, our example insurance company. A UML class diagram is used to
model the domain concepts and their relations.

Fig. 21. Part of the AgiSurance context model in UML.

76

4.5.2 Requirements Modelling

Whereas the context model defines the inherent structures and constraints of the
environment in which the enterprise has to operate, the requirements model cap-
tures the strategic direction and desires of the enterprise itself. A requirements
model describes the motivation for the service(s) under development. It identifies
the stakeholders and their concerns, and defines their goals or objectives.

In addition to clarifying and formally specifying the requirements for a service,
requirements modelling is useful to achieve forward and backward traceability be-
tween objectives and design artefacts. Forward traceability is the ability to analyse
the impact of a change in requirements. For example, when a business objective
changes it becomes possible to analyse which services, and the components realiz-
ing those services, are affected by this change. Backward traceability can be used
to determine the value or raison d’être of a design artefact. Backward traceability
answers questions like: ‘why was this service here? Who was responsible for this
service? What is the added value of this service to the enterprise??’

Within the Goal-Oriented Requirements Engineering literature we can identify
a number of relevant modelling techniques, such as KAOS (Van Lamsweerde
2003) and i* (Yu 1997). Several of these were analysed and compared in the de-
sign of the ArchiMate Motivation extension (Engelsman et al. 2011). KAOS is a
language that refines system goals to concrete requirements. In i*, intentions of
stakeholders (goals, beliefs) and their dependencies are modelled. Intentions are
refined into tasks an actor has to perform to realize them.

Since the ArchiMate Motivation extension (The Open Group 2012) is based on
these earlier techniques, we adopt the most essential concepts from ArchiMate as
key to requirements modelling:

Stakeholder: the role of an individual, team, or organization (or classes
thereof) that represents their interests in, or concerns relative to, the outcome
of the architecture.

Goal: an end state that a stakeholder intends to achieve

Requirement: a statement of need that must be realized by a system.

A number of different links are possible between these constructs. A goal can be
associated with one or more stakeholder. There are two relations available for goal
refinement. First, we have the goal decomposition relation. A decomposition of a
goal is the conjunction of the set of subgoals that constitute the goal, in such a way
that an immeasurable goal is decomposed into goals with measurable indicators,
and a goal with measurable indicators is decomposed in subgoals with
subindicators. The decomposition relation is used to operationalize goals. A goal
influence relation is used to demonstrate that the satisfaction of one goal positively
or negatively influences another goal.

77

A third link is the goal conflict relation. Two goals are conflicting if the satis-
faction of one goal prevents the satisfaction of the other and vice versa. In this
case, both goals are mutually exclusive.

Fig. 22. The requirements metamodel.

Fig. 22 illustrates the underlying metamodel for requirements modelling. The
main idea behind this metamodel is that a stakeholder may have a number of de-
sires or intentions. An intention can be anything, most likely a desired state of the
world. An intention only becomes a goal when a stakeholder is willing to commit
resources to reach that state of the world. The previously discussed relations are
used to refine goals into requirements. A requirement is a concrete goal that can
be assigned to a single actor. A goal is a desired state of the world which is not yet
concrete enough to be assigned to a single actor.

An example requirements model

Fig. 23 shows part of the business requirements model for AgiSurance using the
ArchiMate Motivation extension. It shows three stakeholder roles: the Chief Op-
erating Officer (COO) of AgiSurance, whose main goal is cost reduction; an In-
termediary, whose main goal is to reduce the manual work he has in filing claims
on his customers’ behalf; and a Customer, who wants claims to be processed faster
such that he will receive the insurance money in time to cover the incurred dam-
age. The diagram further shows that the main goals and contributing goals will be
realized by the two requirements ‘Provide on-line claim submission service’ and
‘Automate claim handling’.

COO IntermediaryCustomer

Cost reduction Reduce manual
work

Faster claims
processing

Reduction of
personnel costs

Facilitate self-
service

Automate claim
handling

Provide online
claim submission

service
Fig. 23. A business requirements model for AgiSurance.

78

4.5.3 Interaction Modelling

In the interaction aspect we design and model the way in which the various parts
of the enterprise interact with customers, partners, and each other to deliver the
service. Such interactions can be specified at various levels, ranging from an iden-
tification of collaborations and channels to the detailed design of user interfaces.

Although the scope of interaction design for enterprise services is much broad-
er, involving for example also physical channel design, many insights can be
gained from the more established discipline of user interface engineering for soft-
ware applications. In fact, user interfaces are a kind of service interface. User in-
terface engineering involves human factors engineering, user interface design and
graphics design (Nielsen 1993). For each of those subdisciplines, separate devel-
opers and designers with different competences are needed. Such perspectives and
competences are clearly relevant to service interaction design as well (see also
(Dividino et al. 2009)).

In user interface engineering literature, authors have distinguished multiple
levels of interaction modelling (Nielsen 1993; Aquino et al. 2008; Calvary et al.
2003; Vanderdonckt 2005; Versendaal 1991):

• task level;
• concept level;
• interface level (abstract (user) interface);
• navigation and presentation level (concrete (user) interface);
• the implemented (user) interface

In our framework, the task level is largely covered by the structure and function
aspects, while the concept level is covered by what we call the context model.
What remains are abstractions for modelling the actor-actor, actor-system and sys-
tem-system interactions. Most literature in this area focuses on actor-system inter-
actions, i.e., on how to model human-computer interfaces, e.g., (Vanderdonckt
2005) and (Trætteberg 2009). Actor-actor interactions can be modelled in lan-
guages such as ArchiMate and UML, that both support the Collaboration concept.

Collaboration: a (possibly temporary) configuration of two or more Roles
(see Structure aspect) that cooperate to jointly perform certain collective be-
haviour.

Interface: a point through which a Role offers access to its Services.

Interaction Element: part of a user interface, for example, a window, button,
or checkbox. Also non-visible parts of the interface, such as an input event
and a command, are interaction elements.

Since our aim is to integrate multiple modelling techniques, we have chosen here
for the most abstract definition of the interface concept. It can be used to represent
business interfaces or channels, but also to represent user interfaces (screen dia-

79

logs) and application-to-application interfaces (e.g., WSDL). When we dive deep-
er into the implementation level, we may also need concepts to model page navi-
gation and presentation, such as page, field, command, and page flow.

Fig. 24. The interaction metamodel.

In Fig. 24, we present a metamodel for the key concepts of the interaction aspect
and their most important relationships to concepts from other aspects, i.e., the
Role concept from the Structure aspect and the Service concept from the function
aspect.

4.5.4 Structure Modelling

In the structure aspect we design and model the way in which the enterprise is or-
ganized internally to deliver its services. This involves the definition of the hu-
man, organizational and system actors within the enterprise, as well as the rela-
tionships between them. A simple example of a structure model is the
organizational chart, depicting the hierarchy of organizational units and positions
within an enterprise.

Often, the structural aspects of an organization are covered by models that have
a broader scope. Interaction, process, function, and value models usually include a
partial specification of the structure of the service system. In the Business Process
Modelling Notation (BPMN (OMG 2011c), for example (also see Sect. 0), activi-
ties are assigned to pools and lanes representing organizational units, roles and
role hierarchies. In ArchiMate, the Open Group standard for enterprise architec-
ture modelling (The Open Group 2012), the structure aspect is covered by the stat-
ic structure aspect of ArchiMate. This includes business level concepts, such as
Business Actor and Business Role, but also application and infrastructure level
concepts, such as Application Component, Device and Node.

The structure of a service system can be captured using the following key con-
cepts:

Actor: an entity within the enterprise that can be assigned behaviour and re-
sponsibilities, such as a person, organizational unit or application compo-
nent.

80

Role: an abstract kind of Actor and a collection of responsibilities and poten-
tial behaviours. An Actor can be assigned to a Role, indicating that the Ac-
tor will fulfil all responsibilities and behaviours specified by the Role. An
Actor may be assigned to multiple Roles; and a Role may be assigned to
multiple Actors.

Location: a logical or a physical location relevant to the enterprise (such as
branch office, city, or country).

Actors can be related to each other through composition: one actor can contain
other actors. Other relationships can be imagined, such as reporting, ownership, or
assignment (of a role). In addition, actors can be assigned a location. Fig. 25 illus-
trate the key structure modelling concepts and their relationships.

Fig. 25. The structure metamodel.

An example structure model

AgiSurance’s corporate business architecture consists of three models: the organi-
zation model, the business function architecture model and the high-level business
process architecture model. The organization model specifies the organizational
structure and the hierarchical relationships between departments (see Fig. 26). In
this figure, hierarchy is modelled as containment (nesting).

AgiSurance

Back Office

Front Office

Home
&

Away
Car Legal

Aid

Customer
Relations

HRM

Product
Development

MarketingIntermediary
Relations

Document Processing
Shared Service Centre Finance

Fig. 26. An organizational structure model for AgiSurance in ArchiMate.

81

4.5.5 Function Modelling

In the functional aspect we design and model the activities or functional building
blocks that are required to deliver the service under development. Together with
the coordination aspect, it specifies the behaviour of the service. Where the coor-
dination aspect focuses on the flow (the logical or temporal ordering of activities),
the functional aspect focuses on the decomposition of complex behaviour into
smaller, manageable and reusable functions, and their interconnection through in-
put/output-relationships. Functional decomposition makes it possible to structure
the complexity of organizations and systems. The decomposition gives structure to
the tasks and activities in an orderly manner, independent from the executing
mechanism.

Functional decomposition, as a technique for describing systems as a hierarchy
of functions, is a widely applicable principle. It was first introduced in the area of
information systems engineering as the Structured Analysis and Design Technique
(SADT) (Marca and McGowan 1987), later formalized by the IDEF0 (Integration
Definition for Function Modelling) (IDEF 1981) standard. Data flow diagramming
(DFD) (Stevens et al. 1974) is another technique often used in information system
analysis, which focuses more on the flows of information between functions
(called ‘processes’ in DFD).

The principle of functional decomposition is also present in service-oriented
architectures and business function architectures. Therefore, techniques used to
model these, such as SoaML (OMG 2009) and Dynamic Enterprise Modelling
(DEM) (Es and Post 1996), are also relevant to the functional aspect.

The e3value methodology models a network of enterprises creating, distrib-
uting, and consuming things of economic value (Gordijn and Akkermans 2001).
The e3value technique can be used to model value exchanges between enterprises.
This may result in a business value model, clearly showing the enterprises and fi-
nal customers involved and the flow of valuable objects (goods, services, and
money). Such models can be used to analyse the economic viability of each enter-
prise within a service network.

Central to the functional aspect are the concepts of ‘function’ and ‘flow’.

Function: a coherent unit of behaviour with the purpose of performing
and/or fulfilling one or more missions or objectives, and identified by a verb
or verb phrase that describes what must be accomplished.

Flow: a steady, continuous stream or supply of something. Different types of
flow may be distinguished, such as information, physical, and value flows.

Functions consume and produce flows, respectively their inputs and outputs. Each
function can be decomposed into ‘subfunctions’, thus creating a hierarchy of func-
tions. Functions are executed by ‘mechanisms’, which can be automated systems,
individuals, a group of people or a combination of systems and people. In the

82

metamodel, we model this as an assignment to a role (from the structure aspect).
The execution of a function and its subfunctions takes place under ‘control’ of
something or someone. This can be a workflow, a set of rules or some other kind
of control function that is associated with the function.

Once the functions have been named and defined, we can start to think about
the services they realize. We repeat the definition from Chap 1:

Service: a unit of functionality that a system exposes to its environment,
while hiding internal operations, which provides a certain value (monetary
or otherwise).

The key concepts for the function aspect and their relationships are illustrated in
Fig. 27.

Fig. 27. The function metamodel

An example function model

Fig. 28 shows the business function architecture model for AgiSurance in
ArchiMate. It is an example of a model that is mainly concerned with the func-
tional aspect: it defines the functions, their decomposition, and the information
flows relating them to each other and to external roles.

Customer information

Product information

Insurer

Intermediary
Relations

Contracting

Financial
Handling

Claims
Handling

Claims

Insurance
policies

Customer information

Money

Customer
Relations

Asset
Management

Contracts

Product
information

Customer
information

 Claims

Insurance
information

Insurance
premiums

Claim
payments

Insurance
policies

Claims

Money

Claim
information

Intermediary

Customer

Customer’s
Bank

Fig. 28. A business function model for AgiSurance.

83

4.5.6 Coordination Modelling

In the coordination aspect, we design and model the way in which activities, both
automated and human activities, are coordinated to deliver the service under de-
velopment. It comprises both the coordination of activities within the enterprise
and the coordination of the interaction with other organizations, which may be us-
ers of the service or partners in delivering it. The literature on service coordination
generally distinguishes between a centralized form of coordination, called orches-
tration, and a decentralized, emergent form of coordination, called choreography
(Papazoglou and Heuvel 2007).

Many modelling techniques, both tool-independent and proprietary, are availa-
ble to model activities and their dependencies. The concepts that are used in these
techniques show a lot of overlap, although there are some differences in focus.
Some techniques are limited to modelling the processes of a single system or or-
ganization, while others explicitly address the interactions between parties.

The Business Process Modelling Notation (BPMN) is a standardized business
process notation which is defined and specified by the Object Management Group
(OMG 2011c) and has become the de facto standard for graphical process model-
ling. BPMN process models are composed of flow objects such as routing gate-
ways, events, and activity nodes. Activities, commonly referred to as tasks, repre-
sent items of work performed by software systems or humans. Routing gateways
and events capture the flow of control between activities. The Unified Modeling
Language (UML) offers Activity diagrams, to model the flow of activities within a
process, and Sequence diagrams, to model the detailed interactions between actors
in a specific scenario.

Central in coordination modelling are a set of behaviour elements, that express
the way in which an actor (for example, a system, person, or organization) acts in
relation to its environment. Typically, behaviour elements can be defined at dif-
ferent levels of granularity. We distinguish two levels of behaviour elements:

Process: a grouping of behaviour based on an ordering of activities. It is in-
tended to produce a defined set of (internal or external) products. A process
may be decomposed into more fine-grained (sub)processes.

Activity (or action): an atomic behaviour element, performed by a single role
within a certain time frame at a certain location. It can represent a function
or task (from the function aspect) that is subject to coordination.

Some coordination modelling formalisms explicitly discern collective behaviour
of two or more roles:

Interaction: a common behaviour element, carried out by two or more roles,
in which each role is responsible for its part in the interaction. A transaction
is an interaction that is treated as a unit to satisfy a specific request.

84

In general, a process does not consist of a single sequence of activities. It may
contain, for example, branches (choices) or parallel activities. For this purpose, all
process modelling languages provide several types of gateways:

Gateway: a coordination element that controls the flow of a process, han-
dling the forking, merging and joining of paths within a process.

A process can be influenced by internal or external events, which may for example
trigger a new process instance or interrupt a running process. A process may also
raise events.

Event: something that happens (internally or externally) and triggers a
processs or activity.

Finally, some process modelling formalisms explicitly model states. Behaviour el-
ements then result in transitions between states.

Coordination elements can be related in different ways, depending on the par-
ticular modelling technique that is used. We distinguish two main types of rela-
tionship: triggering and dependency:

Triggering: a relationship that defines the control flow, i.e., an explicit or-
dering of activities within a process.

Dependency: a relationship that defines how the execution of one activity
depends on the completion of other activities or on the availability of certain
product items.

The coordination aspect is closely related to other aspects. Processes or activities
may be assigned to roles from the structure aspect. They may access (cre-
ate/read/write/update) product items, and they may refer to decisions or rules.

Fig. 29. The coordination metamodel.

85

In the graphical notation of most process modelling languages there are ‘place-
holders’ for elements from the other aspects. For example, items or data objects
that can be accessed by behaviour elements, or decision activities that refer to de-
cisions.

An example coordination model

One of the processes within the claim handling function of AgiSurance is the ac-
ceptance process (see Fig. 30). AgiSurance first determines the admissibility of
the claim and then the amount of coverage, upon which an acceptance or rejection
letter is sent.

Fig. 30. A coordination model for AgiSurance’s acceptance function in BPMN.

4.5.7 Decision Modelling

As mentioned before, the Decision aspect captures the logic of reasoning used in
the service domain to reach decisions, i.e., how decisions are (to be) made. In this
aspect we therefore design and model the (business) logic to be used by the ser-
vice under development. A decision is made to determine a conclusion regarding a
specific case, based on domain-specific norms (Breuker and Van de Velde 1994).
We illustrate the process of deriving a conclusion from domain-specific norms by
an example based on the AgiSurance case. Consider, for example, the claim ac-
ceptance process at AgiSurance in which the activity ‘determine claim admissibil-
ity’ is executed. First, data is collected from and about the claim and the incidents
that are reported. Second, this data is compared to predefined norms defined by
AgiSurance. Once the data has been compared, a conclusion is derived.

The decision described is a straightforward operational decision. Other kinds of
decision exist, such as strategic/chaotic or strategic/complex decisions. Examples
of such decisions are crisis management and merger and acquisition decisions.
These kinds of decision are outside the scope of this book; here we focus on oper-
ational patterns and fact-based decisions.

Elaborating on the previous paragraph, we further detail a decision by identify-
ing the key concepts it consists of or to which it is closely related. A decision con-

86

sists of a combination of conditions and conclusions. Both conditions and conclu-
sions are represented by fact types. A fact type is a general classification of a real-
world fact, e.g., age, caring criteria, number of accidents and credit rating. De-
pending on the modelling language used, a specific combination of conclusions
and conditions is allowed.

Currently there are multiple techniques within the professional as well as the
scientific domain to describe decisions and underlying facts. Six of the most
common languages to model decisions are (Zoet and Ravesteyn 2011):

1. if-then sentences;
2. decision tables;
3. decision trees;
4. score cards;
5. event-condition-action rules;
6. event-condition-action-and-alternative rules.

Although the six languages display many similarities, differences exist regarding
the underlying concepts as well as the relationships they allow. Nevertheless, Zoet
and Ravesteyn show how the languages can be translated to each other.

In addition to the actual modelling languages, an important topic currently
emerging is the manageability of decision models. The expert system community
long wrestled with this problem, but according to Arnott and Pervan (2005), this
research is focusing on the wrong application areas and has no connection with
industry anymore. Van Thienen and Snoeck (1993) came to the same conclusion
almost a decade earlier, proposing a first solution based on normalization theory.
Currently, multiple decision management methods are being developed. A man-
agement method that is industry-based is The Decision Model (Halle and Gold-
berg 2009). A method emerging from the scientific community is described in
Zoet and Ravesteyn (2011). We discern the following key concepts for modelling
the decision aspect:

Decision: a conclusion reached after consideration of a number of facts and
the way in which that conclusion is drawn from those facts.

Fact Type: a general classification of a fact.

Rule Set: a group of statements that defines or constrains a specific aspect of
the business.

Rule: a logic statement connecting one or more conclusions to a set of con-
ditions.

Condition: an assertion used as antecedent in a rule.

Conclusion: an assertion used as consequent in a rule.

87

The key decision modelling concepts are closely related to the context modelling
concepts, as we can see in Fig. 31.

Fig. 31. The decision metamodel.

An example decision model

The acceptance process of AgiSurance contains two decision activities: ‘determin
claim admissibility’ and ‘determine coverage’. The first is modelled in Fig. 32 us-
ing the Decision Modelling Notation (DMN) from Von Halle and Goldberg
(2009). It shows that the claims admissibility depends on the customer’s payment
behaviour (has he paid his insurance premium) and the correctness of the data in
the claim form. In reality there will of course be many more conditions for the ac-
ceptability of a claim. The picture only shows the graphical representation of the
decision model. Not visible are the decision tables for each of the fact types.

Fig. 32. Decision model for claim admissibility in the Decision Modelling Notation.

88

4.5.8 Product Modelling

In the product aspect of a service, we design and model the products that are pro-
duced and consumed by the service under development. These can be physical
products, but more often these will be informational products. Every service uses
and manages a certain amount of information. For insurance services this can in-
clude information on customers, sold policies and claims received. The product
modelling concepts are highly interwoven with almost all other modelling con-
cepts. The interaction modelling concepts display the information products and
when modelling decisions the fact type refer to information types.

Product modelling is very similar to context modelling and many of the same
techniques can be used, e.g., ERD, ORM, and UML (also see Sect. 4.5.1). A prod-
uct model is usually more detailed and more concrete than a context model, be-
cause it is the basis for implementation in database and message schemas. There-
fore, we adopt a more restrictive set of concepts close to those of ER diagrams,
with the addition of concepts for modelling physical products:

Product: a thing that is produced or consumed by services. There are two
kinds of product: physical Objects, such as people or cars, and informational
Items, such as orders and claims. Often items are used to represent real-
world objects in an information system. Products can be composed of other
products, their parts.

Entity: a specification of a class of information items. One entity can spe-
cialize another, i.e., inherit the more general entity’s properties.

Attribute: a property belonging to an entity, e.g., its name, age, length, or
amount. Attributes have a type, which defines the values it can take.

Reference: a relationship from one entity to another entity, e.g. a car entity
refers to its owner (a person entity).

Fig. 33. The product metamodel.

89

An example product model

Fig. 34 shows a small part of the AgiSurance information model (the entities, their
attributes and references) pertaining to the handling of insurance claims. Here a
UML class diagram is used to model these information products.

Fig. 34. Fragment of the Product model for AgiSurance.

4.5.9 Integrated Service Metamodel

The analysis of existing modelling techniques above has resulted in the identifica-
tion of the key concepts for each of the modelling domains in the ASD frame-
work. These concepts are summarized in Table 4.

Table 4. Key concepts for each modelling domain.

Modelling domain Key concepts
Context Concept, Property, Relationship, Value Type, Constraint
Requirements Stakeholder, Goal, Requirement
Interaction Collaboration, Interface
Organization Actor, Location, Relationship
Function Function, Flow, Service
Coordination Process, Activity, Interaction, Gateway, Event
Decision Decision, Fact Type, Rule, Rule Set
Product Product, Object, Item, Entity, Attribute, Reference

Most existing modelling techniques cover more than one of the modelling do-
mains. This helped us in identifying relationships between concepts across the
domains. ArchiMate in particular covers many of the identified modelling do-
mains. The ArchiMate core language defines and relates concepts for the interac-
tion, organization, function, coordination and information domains. In version 2.0
(The Open Group 2012), this core is extended with concepts for modelling also
the requirements domain. Other languages, such as BPMN (OMG 2011c) and the
Decision Model Notation, cover a smaller intersection of the ASD conceptual
model, but still identify relationships between their concepts and other languages.
In The Decision Model (Halle and Goldberg 2009) the authors clearly specify how

90

decisions are related to activities in BPMN and how fact types are related to con-
cepts and properties in a context model, or, similarly, to entities and attributes in a
product model. Fig. 35 provides an overview of the metamodel for the ASD con-
ceptual model including these relationships. For readability we have left out those
concepts that do not have relations with concepts from other aspects.

Requirements

Coordination ProductFunctionStructureInteraction Decision

Context
Concept Property

Interface

Collaboration Function

Service

Flow

Process

Activity Decision

FactType

Requirement

Coordination
Element

Role Product

Item

Entity

properties
0..*

concept
0..1

property
0..1

elements

0..*

offers

0..*

interface
0..1

roles
2..*

realizes
0..1

realizes

0..1

assigned_to

0..1

type 0..1

elements

0..*

accesses

0..*

decision
0..1

factType

0..1

responsible_for
0..1

concerns

0..1

type
0..1

entity 0..1
Interaction
Element

Fig. 35. Integrated metamodel.

4.6 Model Integration

The ASD framework is an instrument to divide a service design into smaller set of
more manageable abstractions. However, ‘... having divided to conquer, we must
reunite to rule’ (Jackson, 1990). Therefore, the framework must be complemented
with a method for integrating the different aspects and abstractions. To this end,
we propose to use a metamodel-based approach akin to, for example, the approach
suggested by De Lara, Vangheluwe and Alfonseca, 2004. The basic idea is to re-
late different models via a common, integrated metamodel or ontology, in our case
the ASD conceptual model presented above. The conceptual model defines and re-
lates the key concepts for each of the modelling domains. There is no need to cre-
ate some kind of super metamodel that incorporates all possible concepts for all
possible aspects. It is sufficient to focus on the key concepts, because our objec-
tive is to support consistency checking and traceability, not to do fully semantics-
preserving transformations. We presume the latter to be supported by specific
tools, such as BPM suites and model-driven code generators.

The relations between the concepts from the various modelling domains enable
us to relate actual models used in a service design. We use the following proce-
dure to do so:

91

1. First, we define mappings from the used domain-specific modelling languages
(DSMLs) to the ASD integrated metamodel.

2. Second, we use the defined mappings to translate each of the models to a corre-
sponding ASD model, i.e., a model that conforms to the ASD integrated
metamodel.

3. Third, the resulting models are merged into one integrated model. Model ele-
ments that represent the same real world object or phenomenon are matched
and merged into one model element. For example, when a process model refers
to a particular actor and the organizational model contains an actor with the
same name, then these actors are candidates for being merged. Model merging
can be done in a naïve name-matching manner, possibly augmented with the
help of a thesaurus to match synonyms, but it can also be based on more elabo-
rate semantic matching algorithms. In any case, it is sensible to make this an in-
teractive, user-controlled process.

4. Finally, the integrated model can be used to query for the existence and con-
sistency of relations between elements from different aspect models.

Let us illustrate this procedure using the AgiSurance case study. In Sect. 4.4.4, we
already introduced the various models that AgiSurance made for redeveloping its
claim handling service (see Fig. 19). Subsequently, we showed parts of these
models in Sect. 4.5, when we introduced the conceptual model. Different model-
ling languages were used: ArchiMate and its motivation extension, BPMN, the
Decision Modeling Notation (DMN), and UML. The first step now is to map the
used modelling languages onto the ASD integrated metamodel. These mappings
are summarized in Table 5 below. For the sake of simplicity, we present only
those parts of the mappings that are relevant to the case study.

Table 5. Language mappings.

ASD Concept ArchiMate BPMN DMN UML
Role Business Role Pool/Lane
Function Business Function
Flow Flow-relation
Process Business Process (Sub)Process
Activity Business Activity Activity
Gateway Junction Gateway
Decision Decision
Fact Type Fact Type
Rule Set Rule Family
Concept/Entity (Business) Object Class
Property/Attribute Attribute

A Business Role in ArchiMate, and Pools and Lanes from BPMN are mapped to
the Role concept. Processes, Activities and Gateways also occur in both these lan-

92

guages and are mapped to their corresponding concept from the Coordination as-
pect. The Decision aspect concepts, however, only occur in the Decision Model-
ling Notation in this case study. UML was used for context and product models.

Next, we translate the given ArchiMate, BPMN, Decision and UML models us-
ing these mappings (step 2) and integrate the resulting models (step 3). The inte-
grated model we obtained is illustrated in Fig. 36. We use the UML Object dia-
gram notation, with rectangular boxes representing the model elements. The boxes
are labelled with the name of the element and followed by their type (the name of
the corresponding metamodel concept). Due to space constraints, the figure only
shows an excerpt of the model, highlighting the elements related to the determina-
tion of the admissibility of an insurance claim.

Structure Function Coordination Decision Context

Product

Customer
::Role

Claims handling
::Function

Acceptance
::Process

Claim
::Item

Determine
claim admissibility
::Activity

Claim admissibility
::FactType

Determine
claim admissibility
::Decision

Admissible
::Property

Claim
::Concept

Assessor
::Role

Claims
::Flow

Claim
::Entity

Insurer
::Role

Fig. 36. Part of the integrated model for AgiSurance.

The model should be read as follows: Three roles have been defined in the struc-
ture domain as part of the business function architecture (see Fig. 28): ‘Customer’,
‘Insurer’ and ‘Assessor’. The Assessor role is contained within the Insurer role
(not depicted in Fig. 36). From the business function architecture, we can also de-
rive the following elements in the function domain: a ‘Claims handling’ function,
which is the responsibility of the Insurer role, and a ‘Claims’ flow from the ‘Cus-
tomer’ role to the ‘Claims handling’ function. Within the Coordination domain, a
process called ‘Acceptance’ has been defined which belongs to the Claims han-
dling function. This ‘Acceptance’ process contains an activity ‘Determine claim
admissibility’, which has been assigned to the ‘Assessor’ role. The latter activity
refers to a decision called ‘Determine claim admissibility’ in the Decision domain.
The corresponding ‘Claim admissibility’ fact type refers in turn to the ‘Claim’
concept and its ‘Admissible’ property from the context domain. In the product
domain, we also find a ‘Claim’ entity and a ‘Claim’ information item, which are
associated with the corresponding context model concept.

93

4.7 Requirements for Tool Support

The model integration approach presented in the previous sections of course poses
important requirements to service development tools and operational infrastruc-
tures. As we already described in Sect. 4.3, we can distinguish different levels of
adoption of modelling. Up to level 3, ‘isolated formal models’, no additional func-
tionality is needed beyond what individual modelling tools already offer. For the
two highest levels, however, more is required.

At level 4b, ‘vertically integrated formal models’, it should be possible to relate
models from different abstraction levels. This means that the relations from re-
quirements via design and implementation down to the operational infrastructure,
and vice versa, can be traced, and that models are used to configure individual in-
frastructure elements. An example of this would be the use of a business process
management engine that is configured with BPMN 2.0 (OMG 2011c) models,
which in turn are related to more abstract architecture and requirements models.

This type of functionality is already offered by many integrated tool suites.
However, if the upper-level models are designed in different tools than the lower-
level models and the execution environment, a clear interface between these levels
needs to be established. Existing standards such as XMI (ISO/IEC 2008) can be
used to specify the necessary interchange formats and many modelling tools sup-
port this (although they are often better at importing than at exporting models, for
obvious reasons). Usually, however, this is a unidirectional transformation, down
towards the implementation and infrastructure; if we also want traceability back
up the chain, a feedback mechanism needs to be implemented. Such traceability is
currently offered only by single-vendor, integrated tool solutions.

At level 4a, ‘horizontally integrated formal models’, we want to be able to re-
late and integrate models from different aspects. This helps in ensuring consisten-
cy and coherence between these aspects and allows for various kinds of analyses
of these models, as explained before. This integration implies that we must relate
elements in different models with each other, and hence that we need to ‘address’
such elements.

One approach to this is the use of a single tool environment that ‘owns’ the var-
ious models covering different aspects. This is the approach taken by many busi-
ness- and architecture-oriented modelling solutions, such as Be Informed Studio,
Aquima, BiZZdesign Architect and IBM Rational System Architect.

However, at the lower levels of abstraction, different types of models are often
managed by different tools; for example, process models are tied to BPM suites,
business rule models to BRM tools and engines, class and object models to soft-
ware development environments, et cetera. This implies that these tools need to
talk to each other, or at least to some common environment that links them togeth-
er. In that case, each model element would ideally have a globally unique identifi-
er that any tool can use as a reference, even if that particular element is in a model
managed by a different tool. However, at the moment the only realistic solution is

94

to store these models in a single shared repository, on which these different tools
operate. This is the route taken by most vendors of larger modelling and require-
ments management tool suites.

Unfortunately, such repositories are often not open to third-party tools. Alt-
hough many repositories are based on standards such as EMF (Steinberg et al.
2008) or MOF (OMG 2011b), this is not enough. We also need open, standardized
interfaces and (semantic) standards for relating concepts, based on a clear
metamodel such as the one presented in the previous sections.

To demonstrate the feasibility of this integration approach, we have already
connected different tools in both the horizontal and vertical direction. BPMN
models created with the business process tool BiZZdesigner (from BiZZdesign)
were related with the context and product models from the knowledge modelling
solution of RuleManagement Group, via decision models in the Decision Model-
ling Notation. In the previous section, we already showed part of the integrated
AgiSurance model that was developed in this case study (Fig. 36).

The hardest part, however, may turn out to be the integration between the dif-
ferent elements and platforms at the infrastructure level. The complexity of inte-
grating various components, for example via an enterprise service bus, should not
be underestimated. Not only does this integration require clarity about the func-
tionality and semantics of each of these elements, but it must also conform to var-
ious non-functional requirements. If high or bursty volumes must be processed,
for example, the performance may become a bottleneck. The complexity of such a
landscape may require extensive proofs-of-concept. Models may also be of help
here, for example to perform quantitative analyses or simulations. For more on
such analyses, see e.g. (Lankhorst et al. 2009, Chap. 8).

