
Chapter 4
The Results of Enterprise Architecting

4.1 Introduction

During the process of enterprise architecting several results can be produced. These
results are not limited to principles, models (including their cross-references) and
views alone. Other results are for example intermediate results used to develop the
enterprise architecture and the evaluation of alternative solutions/directions. Some
of the important results of an enterprise architecting effort do not even have to be
tangible, for example shared understanding, shared agreement, and commitment
amongst stakeholders.

The actual set of results that should be produced, and the required level of detail
and form of the results, depends on the stakeholders and their concerns, as well as
the decisions that should be taken based on these results. Even in a simple example it
becomes clear that enterprise architecture can produce a large variety of tangible and
intangible results. Therefore criteria on product quality are needed to make choices
which results should be delivered. In such choices we can also profit from an insight
how the possible results interrelate, as described in architecture frameworks.

The remainder of this Chapter is structured as follows. As a simple basis for the
whole Chapter, we will start providing examples of enterprise architecture results,
using the relatively simple case enterprise: Pizzeria “Perla del Nord”. Then we will
reflect on product quality and its criteria: when is good good enough? Subsequently
we will revisit architecture frameworks as a means to structuring tangible enterprise
architecture results. This is followed by a discussion of a methodical perspective on
the creation of models and views used in enterprise architecture. Before concluding,
we will also argue the point for a language with a unified look and feel for the
representation of architectural models.

49

50 4 The Results of Enterprise Architecting

4.2 Example enterprise architecture: Pizzeria “Perla del Nord”

In the remainder of this Chapter we want to be able to regularly refer to specific
enterprise architecture results. We therefore introduce a running example: Pizzeria
“Perla del Nord”. This running example is primarily inspired by [34], while the
principles used in the example are derived from [36]. It should be noted that the
Pizzeria case is a small case, and is not intended as being exemplary for enterprise
architecture cases in real life. The purpose of the Pizzeria case, however, is to illus-
trate the workings of some key elements in enterprise architecture, and not to mimic
a real-life enterprise architecture. The latter is beyond the goals of this introductory
book.

For Pizzeria “Perla del Nord”,we will discuss its current objectives, its design
principles and some models reporting on its current design. We meet the pizzeria
just at the moment they intend to play a significant role in the business-to-business
(B2B-)market. This is the result of a change of strategy, in the sense that the pizzeria
intends to open up a new market (business-to-business). For this intention we will
subsequently show the impact-of-change, as required by the CEO of Perla del Nord
to govern the intended transformation. As the CEO’s desires are the primary driver
for the creation of this architecture, the focus of the example will be on the business
aspects.

4.2.1 Current situation

The pizzeria is located in the city centre of a medium sized town. In and around
this city centre a large number of offices are located. The mission of the pizzeria
is to offer positive influence in the work-life balance of both yuppies and dinkies.
The desired future state is to be the most renowned pizzeria in the region and be the
number one customer preference which will be accomplished by organic growth
and sharing the profit with employees. This vision is made more specific in terms
of a number of goals (grow from 100 pizzas a day to 150 pizzas per day in the next
three years, improve profitability by 10% per year and to improve quality, measured
by diminishing customer complaints) and policies (management development and
financing programme for talented employees to support them in starting their own
branch).

In the current situation, the pizzeria is designed according to a number of business
principles:

1. Reward valued customers
2. Outside own organisation: get money first
3. Bake to order (not to stock)
4. Bake while driving

4.2 Example enterprise architecture: Pizzeria “Perla del Nord” 51

No explicit technical infrastructure principles have been used in the current or-
ganisational design of the pizzeria. In discussing the pizzeria case, we will consider
the pizzeria at three levels of abstraction (leading to a clear separation of concerns):

Valuation – The value exchange between the pizzeria and its environment, focus-
ing on the value each actor potentially adds to the (economic) goals of other
actors.

Function – The functionality provided by the pizzeria to its environment in terms
of business services, transactions and their orchestration. In the case of the
pizzeria, the business services will be services that are offered to clients, in
line with the business goals identified in the pizzeria’s strategy.

Construction – The construction of the pizzeria in terms of sub-actors.

The distinction between these levels is motivated as follows:

• Depending on the actors, and their goals, a business service (such as deliver
pizza) may provide different values to different actors. This motivates the dis-
tinction between the valuation and function layers.

• A given business service may be realised using different organisational struc-
tures. In other words, for a given business service, several alternative construc-
tions can be used for their realisation. This provides the motivation for a distinc-
tion between the function and construction layers.

In modelling the current design of the pizzeria at these three levels, we use three
different notational styles:

1. e3Value [46],
2. DEMO [114] and
3. ArchiMate [78].

The highest-level view of the pizzeria, the valuation level, is shown in Figure 4.1
in terms of an e3-value diagram. Customers and the Pizzeria may engage in a value
exchange where money flows to the Pizzeria in exchange for a pizza. Customers are
regarded as the initiators of this value exchange.

CustomersCustomers PizzeriaCustomers money

pizza

Fig. 4.1 Pizzeria at the valuation level

At the next level of abstraction, we are interested in the functionality provided by
the Pizzeria to its environment. For this situation we assume that the money/pizza
value exchange is to be realized in terms of two business services, namely complete
purchase and pay purchase. Below we will see how moving to a B2B context will
lead to a third business service. The diagram depicted in Figure 4.2 is a DEMO
construction model, expressing the coherence (chain/network) of business services,

52 4 The Results of Enterprise Architecting

delivered by actors to other actors within a defined scope. In DEMO each business
service is delivered by a transaction, consisting of a production embedded in four
standard phases of co-ordination, as follows:

Request – An actor requests a business service from another actor.
Promise – The requested actor promises to deliver the business service.

Now the requested actor produces the requested result, i.e. the service is exe-
cuted.

State – The requested actor states/claims it has indeed delivered the service.
Accept – The requesting actor accepts the result of the business service.

assortment

complete purchase

pay purchase

pizzeriacustomer

Fig. 4.2 Transactional view of value exchange

The transaction symbol combines a circle, signifying the four coordination
phases, and a 45� rotated square, signifying the production. DEMO also discerns
several exception handling procedures since there are likely to be numerous ways in
which a transaction can break down.

When considering the two transactions between a customer and the pizzeria,
which are involved in a pizza-for-money value exchange, there are several ways to
interleave the four phases of the transactions. Should a pizza be paid before it is de-
livered? Or even before the pizzeria promises it to be produced? A selection between
these options should ultimately be motivated in terms of the pizzeria’s strategy.

In Figure 4.3 we have depicted the current orchestration of the two transactions.
In this orchestration, the customer places an order (e.g. by phone) and immediately
pays for it (e.g. using a credit card). The pizzeria responds to the request for purchase
by a request for payment, which is required to be followed by the actual payment
(promise / state / accept), after which the pizzeria promises to deliver the pizza (and
indeed will do so).

When we decompose the construction of the pizzeria, this leads to the top-level
construction as shown in Figure 4.4. We now see the chain of dependencies within

4.2 Example enterprise architecture: Pizzeria “Perla del Nord” 53

rq rq

pay purchase

pay purchase

pay purchase

ex

st ac

ac

pm

pay purchase

ex

st

pm

rq = request

pm = promise

st = state

ac = accept

ex = execute

customer

complete purchase

complete purchase

complete purchase

complete purchasecomplete purchase

pay purchase

Fig. 4.3 Orchestration of transactions

the pizzeria: it is actually the completer who provides the business service complete
purchase and uses the business service pay purchase. What is not shown in this dia-
gram, is the fact that in executing pay purchase, the completer will offer customers
a discount based on their order history. The completer in turn depends on the baker
for the baking of the purchase and a deliverer for physically delivering the purchase.
Also extra business resources appear now: the baker of course refers to the same as-
sortment, but also uses recipes, the completer uses customer data and the deliverer
uses maps.

The decomposition of the pizzeria’s construction also allows for a refinement
of the transaction orchestration. This is shown in Figure 4.5. After the payment by
the customer has been executed, the completer confirms the order to the customer
and orders the baker and the deliverer to bake and deliver the order to the customer.
Baking and delivering the order are executed in parallel: the baker prepares the pizza
and places it in the oven on the back of the moped. Finally the order is delivered to
the customer.

54 4 The Results of Enterprise Architecting

assortment

complete purchase bake purchase

pizzeria

recipes

mapscustomer data

deliver purchasepay purchase

customer completer

baker

deliverer

Fig. 4.4 Decomposition of the Pizzeria

Looking at the current situation in terms of principles, we see that the principles
have been implemented as follows:

• Reward valued customers. Returning customers get a discount based on their
purchase history.

• Outside own organisation: get money first. The order has to be paid before it is
confirmed.

• Bake to order (not to stock). The order is baked after the customer has ordered.
• Bake while driving. Baking the order and delivering the order are executed in

parallel by using mobile baking technology.

Figure 4.6 provides an overview of the orchestration of transactions including ac-
tor roles responsible for each phase in the transaction. Actor roles are implemented
by functionary types, being a cluster of responsibilities for co-ordination and pro-
duction acts, such that a person can be assigned to that cluster.

As a general rule, the functionary type who performs the promise in a transac-
tion is considered to be the one who is authorized to be the executor of all phases
of that transaction. But due to obvious reasons, the functionary that promises the
transaction complete purchase (order taker) will not physically go to each customer
to state the complete purchase transaction. This authority is, in our case, delegated

4.2 Example enterprise architecture: Pizzeria “Perla del Nord” 55

custom
er

com
pleter

com
plete purchase

com
plete purchase

com
plete purchase

com
plete purchase

com
plete purchase

deliver purchase

deliver purchase

deliver purchase
deliver purchase

EFMJWFSFS

deliver purchase

bake purchase

bake purchase

bake purchase
bake purchase

baker

bake purchase

pay purchase

pay purchase

pay purchase
pay purchase

pay purchase

rq
rq

rqrqac
ac

st
ex

ac

FY
st st

ex
exst

ac

pm

pm

pmpm

rq = request

pm
 = prom

ise

st = state

ac = accept

ex = execute

Fig. 4.5 Composed transaction orchestration

56 4 The Results of Enterprise Architecting

custom
er

com
pleter

com
plete purchase

com
plete purchase

com
plete purchase

com
plete purchase

com
plete purchase

deliver purchase

deliver purchase

deliver purchase
deliver purchase

deliverer

deliver purchase

bake purchase

bake purchase

bake purchase
bake purchase

baker

bake purchase

pay purchase

pay purchase

pay purchase
pay purchase

pay purchase

rq
rq

rqrqac
ac

st
ex

ac

ex
st st

ex
exst

ac

pm

pm

pmpm

rq = request

pm
 = prom

ise

st = state

ac = accept

ex = execute

Functionary types

client

order taker

transporter

cook

Fig. 4.6 Composed transaction orchestration including functionary types

4.2 Example enterprise architecture: Pizzeria “Perla del Nord” 57

to the functionary type transporter. Delegation does not transfer the responsibility:
the order taker remains responsible for the entire transaction.

To support their operations, the pizzeria uses several application services and
technical infrastructure services: a website which contains the assortment customers
can choose from, electronic map software to plan the optimal route to the customer,
accounting software, an external hosting service for the website, a PC for running
the accounting software, a GPS navigation device and a credit card terminal. This
has been illustrated in Figure 4.7, using the ArchiMate notation.

GPS
Navigator

PCWeb server Credit card
terminal

GPS
Navigation

Computing
Web hosting

Credit card
handling

Navigation
software

Navigation

Accounting
software

Assortment
website

Credit card
payment

AccountingAssortment
Advertising

CC Payments

Pizza deliveryPizza orderingBusiness processes

Application services

Applications

Infrastructure services

Infrastructure elements

Fig. 4.7 The current software and technical infrastructure services

4.2.2 Intended change

Management of the pizzeria “Perla del Nord” has decided to enter the business-to-
business (B2B) market within the next three months, primarily to be able to provide
pizza delivery services to offices in and around the city centre. This will enable
them to realize the intended growth from 100 pizzas a day to over 150 a day. As
an additional service, they will allow B2B customers to pay afterwards by sending
them monthly invoices. Before B2B customers are allowed to pay afterwards, their

58 4 The Results of Enterprise Architecting

credit rating is checked first (only B2B customers with a positive rating are allowed
to use this service) and a contract must be signed. The pizzeria will use electronic
3rd party services for the credit rating, because they want to dedicate their resources
to their core business.

Since the intended change will have its impact on the core processes of the pizze-
ria, the CEO decides to use an enterprise architecture for the following purposes:

• to speed up the decision making process of the intended change;
• to outline operational and transformational consequences of the intended change

in terms of organisational change, human resource policy (e.g. required number
of employees, competences), costs and benefits, new business partners. An oper-
ational consequence of the intended change is for instance new business transac-
tion for contracting. Transformational consequences are for instance developing
a contract template for B2B customers and contracting 3rd party services;

• to determine the best implementation scenario;
• to communicate the intended change to different types of stakeholders: e.g. a

view for the CFO which addresses the costs and the necessary additional software
or a view for the HR manager that addresses the new competences.

The enterprise architecture, of the desired situation, should be in line with the new
strategy. In doing so, the first step is to determine the impact of the principles on the
intention of entering the B2B market. Next the impact of the intended change on the
construction or the pizzeria organisation is defined.

By entering the B2B market the principle of Outside own organisation: get
money first needs to be amended to: Outside own organisation: without a contract,
get money first. New principles are introduced as well: Focus on core business:
baking and delivering pizzas (business principle), only control data from own core
processes (information principle) and prefer using controlled data collection from
3rd parties (information principle). Since the pizzeria is going to exchange informa-
tion with 3rd parties, they open their network to the external world. They want to
realise this in a secure way leading to a technical infrastructure principle: controlled
access towards 3rd party networks determined at the level of the enterprise service
bus (ESB).

At the construction level, as illustrated in Figure 4.8, new actor roles are intro-
duced: B2B-contractant and credit rater. It has to be decided whether this role stays
within the organisation of the pizzeria or if this role is to be outsourced or shared.
Note that there is no additional actor role introduced for invoicing B2B-customers.
We see this as a specific process implementation of the transactions complete pur-
chase and pay purchase: the request of pay purchase for B2B-customers is executed
once a month instead of directly after the request complete purchase. We also see
additional transactions appearing: rate credibility and contract-B2B. For the credit
rating an additional business resource (fact bank) is needed. This fact bank is ex-
ternal, since the pizzeria prefers to use controlled data collection from 3rd parties.
We also see that the money/pizza value exchange depicted in Figure 4.1 is now re-
alised in terms of three business services, delivered by three transactions: complete
purchase, pay purchase and contract B2B.

4.2 Example enterprise architecture: Pizzeria “Perla del Nord” 59

customer

collector

contract B2B rate credibility

collect B2B-
receivables

credit rater

deliverer

completer

bake purchase

pizzeria

recipesassortment

baker

maps

customer data

B2B-
contrac-

tant

pay purchase deliver purchase

complete
purchase

Fig. 4.8 Construction of desired situation

Entering the B2B market yields additional needs to for information and software
services: a service to store data of B2B customers (such as contact and delivery
information), a service to store the order history of B2B customers as input for
e.g. invoices, a service to store the credit rating of B2B customers so the pizzeria
does not have to check the credit rating each time the B2B puts an order in, and
a service for checking the credit rating of B2B customers at a third party. Finally,
a financial service for sending and monitoring the payments of invoices to B2B
customers is necessary. The first three services are implemented in a CRM system.
The financial service is implemented by using the existing accounting software. For
the last service, an external Web service is used.

Entering the B2B market also yields additional needs with regards to technical
infrastructure services: a server to run the CRM software (this server will also host
the accounting software), an ESB for securely connecting to the credit rating web-
service, a local area network to connect the server to the ESB and the PC and a fire-

60 4 The Results of Enterprise Architecting

wall to secure the connection to the Internet. The result is illustrated in Figure 4.9.

To demonstrate the impact of the intended change on the activities of the (func-
tionary type) order taker, the artist impression shown in Figure 4.10 was used in
which the changes impacting the work of the order taker have been highlighted. In
the new situation the order taker needs to check whether the customer is indeed em-
ployed by a company that has a contract with Perla del Nord. Therefore, customers
are required to identify themselves using their (company issued) access card and pin
number. The order taker must have access to the administration of B2B contracts.

4.2.3 Enterprise architecture results in the Pizzeria case

To finalise the pizzeria case we briefly discuss a non-exhaustive list of specific enter-
prise architecture results, which can be derived form the pizzeria example. In doing
so, we will distinguish different types of deliverables:

• final deliverables;
• intermediary results;
• intangible results.

The first two result types, which are tangible results, are concerned with de-
signing the architecture, communicating the architecture, performing analysis and
drafting recommendations. Intangible results are mainly concerned with creating
commitment and a shared understanding amongst stakeholders. The pizzeria exam-
ple yields the following final deliverables:

Models – In this example the Construction Model of the DEMO method has been
used. The model presents a univocal, comprehensive, and concrete image of the
desired state. The model is an ontological representation of the pizzeria show-
ing the boundaries of the system, the actor roles and the transactions between
actor roles. This model can be used to determine the implementation of actor
roles in organisations (including sourcing and sharing opportunities), the im-
plementation of the process flow and to identify business services (based on
the transactions) including the quality of business services (QoB). E.g. the QoB
of the business-service pizza-delivery tells what the bakery will deliver, when
the bakery delivers, how much pizzas the bakery delivers and how good the
quality of the baked pizzas is. The model can also be used to identify informa-
tion service, including the quality of information services (QoI). E.g. the QoI of
the information service determine discount states that the information service
must be real-time available, the actuality on the information must be less than 1
minute, meaning that purchases less than a minute ago will not be included in
determining the discount.

Stakeholder-specific views – Views are necessary to provide stakeholders with in-
sight in the potential impact on their concerns. E.g. a view for the completer
to illustrate the changes in his responsibilities due to the expansion to the B2B

4.2 Example enterprise architecture: Pizzeria “Perla del Nord” 61

G
P

S

N
a

v
ig

a
to

r

P
C

W
e

b
 s

e
rv

e
r

C
re

d
it
 c

a
rd

te

rm
in

a
l

G
P

S

N
a

v
ig

a
ti
o

n
C

o
m

p
u

ti
n

g
W

e
b

 h
o

s
ti
n

g
C

re
d

it
 c

a
rd

h

a
n

d
lin

g

N
a

v
ig

a
ti
o

n
s
o

ft
w

a
re

N
a

v
ig

a
ti
o

n

A
c
c
o

u
n

ti
n

g
s
o

ft
w

a
re

A
s
s
o

rt
m

e
n

t
w

e
b

s
it
e

C
re

d
it
 c

a
rd

p

a
y
m

e
n

t

In
v
o

ic
in

g
A

s
s
o

rt
m

e
n

t
A

d
v
e

rt
is

in
g

C
C

 P
a

y
m

e
n

ts

P
iz

z
a

 d
e

liv
e

ry
P

iz
z
a

 o
rd

e
ri
n

g

B
u

s
in

e
s
s
 p

ro
c
e

s
s
e

s

A
p

p
lic

a
ti
o

n
 s

e
rv

ic
e

s

A
p

p
lic

a
ti
o

n
s

In
fr

a
s
tr

u
c
tu

re
 s

e
rv

ic
e

s

In
fr

a
s
tr

u
c
tu

re
 e

le
m

e
n

ts

N
e

tw
o

rk

A
c
c
o

u
n

ti
n

g

In
v
o

ic
in

g

C
R

M

S
to

re
 B

2
B

o
rd

e
r

S
to

re
 B

2
B

c
u

s
to

m
e

r
S

to
re

 B
2

B

c
re

d
it
 r

a
ti
n

g
C

re
d

it
 r

a
ti
n

g
(E

x
te

rn
a

l)

 B
2

B

c
o

n
tr

a
c
ti
n

g

S
e

rv
e

r

C
o

m
p

u
ti
n

g

E
S

B

Fig. 4.9 Software and technical infrastructure services of the desired situation

62 4 The Results of Enterprise Architecting

customer

contract B2Bc rate credibility

credit rater

deliverer

completer

bake purchase

pizzeria

recipesassortment

baker

maps

customer data

B2B-
contrac-

tant

pay purchasech deliver purchase

completee
purchasea

Fig. 4.10 Artist impression of new work environment of order taker

market, a view which shows all internal and external stakeholders or a view
showing the connections with 3rd parties which can be used for determining
the necessary security measures. Views can take any form, not only narrative
descriptions or landscape maps, but also artist impressions, animations, simula-
tions, role plays, games, etcetera.

Specifications and guidelines – The architecture can be used for several specifica-
tions such as:

• Determine process flows;
• Define responsibilities;
• Requirement specifications for software based on the QoB and QoI of

business- and information services. E.g. the software system used for the

4.3 Quality of the produced results 63

information service determine discount should be available real time and
during service times with and actuality less than one minute;

• Security guidelines for access towards 3rd party networks.

In the pizzeria example we have seen how the following intermediate results have
been produced:

Principles – Principles guided the design of the pizzeria. E.g. the business principle
Outside own organisation: without a contract, get money first had its impact on
the physical implementation of the process flow and the technical infrastructure
principle controlled access towards 3rd party networks determined at the level
of the enterprise service bus (ESB) determined the implementation of security
with 3rd party networks.

Solution alternatives – During the design of the pizzeria, some solution alterna-
tives have been identified, for instance a solution alternative where the business
services baking purchase and delivering purchase are being outsourced or a
solution alternative where information about the payment history of B2B cus-
tomers is shared with the credit-rater in order to get a discount on their services.
The enterprise architecture can be used to determine the validity and feasibility
of each solution alternative in order to select the most appropriate alternative.

Traceability of decisions – E.g. the reason why baking and delivering pizzas are
executed in parallel can be traced back to the principle of bake while driving
and the process flow of the pizzeria can be traced back to all business principles.

In the pizzeria example the following intangible results would have played a role
(if it were a real case):

Communications amongst involved organisations – The enterprise architecture
can be used for communications among organisations involved in the system.
E.g. communications between the pizzeria and the 3rd party delivering credibil-
ity data as part of contract negotiations: what is the QoI or data ownership;

Commitment amongst stakeholders – Stakeholder specific views, addressing their
concerns, will increase their commitment for the intended change.

Even in this simple example of the pizzeria, one can see there are several dif-
ferent results enterprise architecture delivers. The challenge is to determine which
products to deliver (when is good, good enough) and to safeguard consistency of
interrelations between these products.

4.3 Quality of the produced results

A lot of resources, such as money, time, emotional energy, and intellectual energy
are invested into the creation of enterprise architecture results. This raises the ques-
tion of whether these resources are spent well. Do the results meet the needs? In
other words: What is the quality of the results? What is the return on modelling
effort (RoME)?

64 4 The Results of Enterprise Architecting

4.3.1 Possible uses of architecture results

In considering the quality of enterprise architecture products, we take the position
that the stakeholders, their concerns, as well as their information, insight and/or
steering requirements as a starting point. Some typical examples of such needs are:

Top-level management – Is the intended transformation still justified given the
(expected) improvements in relation to the (expected) costs of the transforma-
tion? How can we ensure our policies are followed in the development and oper-
ation of processes and systems? What is the impact of decisions (on personnel,
finance, IT, etc.)?

Middle-level management – The current situation with regard to the computerised
support of a business process.

End user – The potential impact of a new system on the activities of a prospective
user.

System administrators – The potential impact of a new system on the work of the
system administrators that are to maintain the new system.

Operational manager – What new technologies do we need to prepare for? Is
there a need to adapt maintenance processes? What is the impact of changes
to existing applications? How secure are my systems?

Architect – The requirements of a specific stakeholder with regard to the desired
situation. What are the consequences for the maintainability of a system with
respect to corrective, preventive and adaptive maintenance?

Project manager – What are the relevant domains and their relations, what is the
dependence of business processes on the applications to be built? What is their
expected performance?

System developer – What are the modifications with respect to the current situa-
tion that need to be performed?In the ArchiMate project [78], three purposes
for models and views have been identified:

Designing – supporting architects and designers in the design process from initial
sketches to detailed design.

Deciding – supporting decision makers in the process of decision making by offer-
ing an insight into the issues/impacts they need to decide upon.

Informing – supporting the informing of any stakeholder about the enterprise ar-
chitecture and its impact on the future enterprise.

In the ArchiMate project, the focus was on architecture level design models as
well as the creation of associated views. Design principles and general business
requirements were not taken into consideration. They are, however, also possible
results produced in an enterprise architecting effort, albeit not of a design nature.
Therefore, it is wiser to generalize the notion of a designing purpose to a specifying
purpose, be it the specification of a design, a set of principles, or general business
requirements. Furthermore, developments such as outsourcing stress the purpose of
architecture results for contracting reasons. Architecture results have become part
of formal contracts governing outsourcing and/or procurement [42]. In sum, we
identify four types of goals for which architecture results may be created:

4.3 Quality of the produced results 65

Specifying – making explicit the requirements, principles or designs pertaining to
the enterprise, ranging from initial sketches to detailed specifications, including
their justification in terms of earlier made decisions.

Deciding – supporting decision makers in the process of decision making by of-
fering an insight into the issues/questions, as well as their consequences and
possible justifications, they need to decide upon.

Informing – supporting the informing of any stakeholder about the enterprise ar-
chitecture and its impact on the future enterprise, possibly including their justi-
fication.

Contracting – providing a formal statement of the architectural requirements of
enterprise/system components to be realized/worked-out by a supplier.

4.3.2 From intended use to the design of a result

Given this spectrum of uses, the creation of an enterprise architecture results re-
quires deliberate planning. It is not just a matter of coming up with the right con-
tent, but also selecting the right depth, subjects, forms, etcetera. In other words, they
need careful designing as well. This “result design” involves the identification of the
intended use of the result, the intended audience, the subject of the result, and the
form to use in representing the result. The subject, and therefore the scope, of the
planned result will be dictated by the concerns/interests of the intended audience,
and may for example be: value exchanges in the value chain, business services of-
fered, technological infrastructure, detailed process designs, process performance,
requirements, principles, etc. The form the result takes refers to the communication
style and languages used. One may, for example, opt for an intangible form or a
tangible form such as a graphical model/view, a textual model/view, a combination
of the latter, or even an animation. For the models one will typically have to make a
selection from languages such as:

ArchiMate – a language [78] to express the (design oriented) architecture of enter-
prises.

DEMO – a language [35, 114] to express the ontology of an enterprise.
e3-Value – a language [46] to express the value exchange between business actors.
UML – even though it [25] is initially designed for software design, has been ex-

tended for business modelling [39].

Some of these languages provide pre-defined mechanisms to create views, for
example, UML’s swimming lanes. The ArchiMate project also defined a number of
such mechanisms in terms of landscape maps, process illustrations, etcetera [78]. In
addition, one may want to construct ad-hoc views for specific uses.

66 4 The Results of Enterprise Architecting

4.3.3 A deeper understanding of the quality of results

The quality of the results of enterprise architecting efforts is relative to its intended
use. Some research has been conducted into the quality of models and the modelling
process [24, 74, 75, 76]. Even though not all enterprise architecture results are mod-
els, these results can be applied more widely. One of the reasons for this is the fact
the notion of model is used in a more general way in the research on quality of mod-
els than we have defined it in this book. For example, a set of design principles can
also be regarded as a model representing the intended restriction of design freedom.

Figure 4.11 shows the Sequal framework for model quality as presented in [74].
In this framework a distinction is made between:

Physical quality – How the model is physically represented and available to stake-
holders; a matter of medium.

Empirical quality – The comprehensibility of the model to its intended audience
in terms of size, complexity, the number of symbols/graphemes used in a model,
etc.

Syntactic quality – Conformity to the syntax of the modelling language.
Semantic quality – How well the model reflects the knowledge (harboured by the

domain expert) of the modelled domain.
Social quality – The level of agreement between the stakeholders involved about

the model.

Given an intended use of a planned enterprise architecture result, this can
be translated to specific requirements with regards to each of the above aspects
of model quality. Based on these requirements, an appropriate subject and form
for the result can be selected, as well as an effective strategy to create the re-
sult [24, 57, 107].

4.4 Enterprise architecture frameworks

As mentioned in the pizzeria Perla del Nord case, apart from establishing which
products to produce, it is also a major challenge to safeguard the consistency of
interrelations between these products. Architecture frameworks have an important
role to play in this. In our view, enterprise architecture frameworks provide:

• a means to order architecture results;
• a means to guard their completeness, both in terms of scoping and level of detail;
• insight into the interrelationships of architecture results, enabling the traceability

of decisions and their impact.

In this Section, we therefore provide an exploration of some of these frame-
works. The aim of this exploration is to illustrate the range of frameworks. In the
next Section we will undertake an attempt to more structurally define the notion of

4.4 Enterprise architecture frameworks 67

Social actor
explicit knowledge

Ks

Modeller
explicit

knowledge
Km

Modeling
domain
D

Goals of
Modeling

G

Model
externalization

M

Technical
actor

interpretation
T

Social
actor

interpretation
I

Language
extension

L

Perceived
semantic
quality

Physical
quality

Semantic
quality

Syntactic
quality

Organisational
quality

Technical
pragmatic

quality

Social
pragmatic

quality

Social Quality

Empirical quality

Fig. 4.11 The Sequal framework for model quality

framework in an enterprise architecture context and the possible dimensions these
frameworks may occupy.

4.4.1 Tapscott & Caston’s views

In [135], the framework as depicted in Figure 4.12 was presented as a way to po-
sition different interests with regards to an enterprise and work towards solutions
which align these different interests. The focus of each of the views is defined as:

Business view – The business view highlights what business is conducted by the
organisation (or organisational sub-unit), in other words ‘the line of business’.
This view considers an organisation as a service providing entity. The business
view aims to describe only what an organisation does in terms of the services it
provides.

Information view – The information view provides the information engineering
perspective of business solution architectures. The view is concerned with re-
quirements for information resources. This will typically include a definition of
what information will be stored, and what business rules this should adhere to.

68 4 The Results of Enterprise Architecting

Work view – The work view is concerned with the how of the business. This view
is expressed in terms of work activities, associated resources, work locations,
and needed information. In our context, an important goal for defining a work
view is to determine the most effective ways in which the work activities can
be supported by IT solutions. An important aspect of the work view is therefore
the distinction between manual work and automated work.

Application view – An application view describes the business realisation activi-
ties that will be automated. It defines how the automated parts of the work view
will operate, which information resources are needed, and how technology will
be used to achieve this. The application view is positioned in the centre of Fig-
ure 4.12 to emphasise the forces that bring about changes to this view. The
dominant forces that will change the application view come from the business
and the technology sides. Any changes to those views will directly or indirectly
result in changes in the application view.

Technology view – The technology view focuses on the technology needed to facil-
itate the other components of the architecture. While the business view focuses
on what an organisation does, this view focuses on what with.

Work
View

Application
View

Information
View

Technology
View

Business
View

Fig. 4.12 Five views on an enterprise and its IT

Each of the five views from Figure 4.12 defines a specific (basic) subject about
the enterprise one is interested in.

4.4.2 The Integrated Architecture Framework.

The Integrated Architecture Framework [30, 45] was developed by Capgemini as
a means to structure architecture projects. It has evolved out of several decades of

4.4 Enterprise architecture frameworks 69

experience in the field of architecting. The diagram in Figure 4.13 shows the ba-
sic structure of Integrated Architecture Framework. The framework is broken down
into aspect areas (business, information, information systems and technology in-
frastructure) and abstraction levels (contextual, conceptual, logical and physical).
To address disciplines of Security and Governance, the framework also recognizes
two distinct views dealing with these issues.

Security

Governance

WHAT?
Conceptual

WHY?
Contextual

HOW?
Logical

WITH WHAT?
Physical

Inform
ation system

s

Technology Infrastructure

Inform
ation

B
usiness

Fig. 4.13 The Integrated Architecture Framework

Abstraction allows a consistent level of definition and understanding to be
achieved in each area of the architecture. The Integrated Architecture Framework
defines four levels of abstraction:

Contextual level – The contextual level is characterised by “Why?” It is not about
understanding what the new architecture will be; the level helps to identify
boundaries (i.e. scope and objectives) for the new architecture and its context.
Specifically, this level focuses on the business aspirations and drivers, capturing
the principles on which the architecture will be based.

Conceptual level – The conceptual level is characterised by “What?”. The require-
ments and objectives are analyzed and elaborated, ensuring that all aspects of
the scope are explored, that relevant issues identified, and resolved, without
concern about the way in which the architecture will be realised.

Logical level – The logical level is characterised by “How?”. The level helps to find
an ideal solution that is independent from implementation. From this, several
“solution alternatives” can be developed that either provide the same outcome,
or alternatively “test” different priorities and scenarios to understand the impli-

70 4 The Results of Enterprise Architecting

cation of different potential outcomes. The outcome of logical level analysis is
the vision of the desired to-be state.

Physical level – The physical level is characterised by “With what?”. It is about de-
termining the real world structure and organisation, and is concerned with trans-
lating the logical level ‘desired’ structure and organisation into an implementa-
tion-specific structure, bounded by standards, specifications and guidelines. At
the physical level, the outcome is a description of how the desired state will
be achieved. The physical level provides standards, guidance and a degree of
specifications within which further design will take place.

The Integrated Architecture Framework recognizes four “Aspect Areas”, which fo-
cus exclusively on the core aspects of the overall architecture:

Business aspect – The business aspect area adds knowledge about business objec-
tives, activities, and organisational structure.

Information aspect – The information aspect area adds knowledge about informa-
tion that the business uses, its structure and relationships.

Information systems aspect – The information system aspect area adds knowl-
edge about types of information systems (packaged or bespoke) that can au-
tomate and support the processing of information used by the business.

Technology infrastructure aspect – The area of technology infrastructure aspect
adds knowledge about types and structure of components that support the in-
formation systems and actors. These may be hardware or network related. They
may include fundamental services such as databases, etc. and key security and
other commodity shared services.

The security and governance views respectively focus on:

Governance view – The governance view focuses on manageability and quality of
the architecture implementation, required to satisfy the service levels (SLAs)
required by the business for its processes and systems. The artefacts for this
area are all fundamentally defined within the core aspects areas although the
outcome from this aspect area will be new specialized Services and Components
to deliver the governance.

Security view – The security view focuses on knowledge to mitigate known risks
to the architecture implementation. The artefacts for this aspect area are all fun-
damentally defined within the core aspects areas. The outcome from this aspect
area will be new specialized Services and Components to deliver the required
security.

4.4.3 The ArchiMate framework

The ArchiMate project also produced an architecture framework. This framework
is depicted in Figure 4.14. The framework identifies a business, application and
technology layer, as well as three columns dealing with passive structure, behaviour

4.4 Enterprise architecture frameworks 71

and active structure. Even though the distinction between the business, application
and technology layers are an integral part of the ArchiMate standard language, the
language has been defined in such a way that in principle an arbitrary number of
abstraction layers can be stacked which are inter-linked with services, where each
layer has the same core concepts as shown in Figure 4.15.

Business

Application

Technology

Passive Structure Active StructureBehaviour

Fig. 4.14 The ArchiMate framework

Figure 4.15 also illustrates the elegance of the ArchiMate language. Rather than
offering a plethora of distinct modelling constructs, the language comprises five
core modelling concepts (object, service, behaviour element, interface and structure
element), which re-appear at each of the layers. In the complete modelling lan-
guage one will indeed see these five concepts repeated at the three identified levels.
However, in essence, they remain the same core concepts. This can be likened to
UML’s Superstructure [92], where more specific modelling concepts are specialisa-
tions from a generic set of basic concepts.

4.4.4 The Zachman framework

The English language, as well as most other languages, contains a class of words
called the interrogatives [137]: Which, when, how, what, why, where, whose, etcetera.
These words may be used to formulate questions concerning situations, people, or
any other phenomenon we may perceive or conceive. In other words, we may use
these interrogatives to identify different relevant aspects of an enterprise. By using
questions based on the interrogative words, insight may be gained into different as-
pects of an enterprise, such as: Actors, timing, processes, functionality, rationale,
purpose, locality, structure, ownership, etcetera. These aspects form the core of the

72 4 The Results of Enterprise Architecting

Behaviour
element

Structure
element

Service

Object

Structure
elementExternal

Internal

Passive
Structure

Behaviour
Active

Structure

Fig. 4.15 Core concepts of the ArchiMate language

Zachman enterprise architecture framework [155] as depicted in Figure 4.16. The
columns cover the following aspects (compiled/taken from [128, 155]):

Data (what) – This column addresses data needed for the enterprise to operates,
the structure of the data, the way it will be stored, etc.

Function (how) – This column is concerned with the operation of the enterprise. It
translates the mission of the enterprise into successively more detailed defini-
tions of its operations.

Network (where) – This column is concerned with the geographical distribution of
the enterprise’s activities.

People (who) – In this column, one is interested in the people who do the work, the
allocation of work, and people-to-people relationships within the enterprise.

Time (when) – Time is abstracted out of the real world to design the event-to-event
relationships that establish the performance criteria and quantitative levels for
enterprise resources.

Motivation (why) – The why column is comprises the descriptive representations
that depict the motivation of the enterprise, and will typically focus on end-
means-end, where ends are objectives (or goals) and means are strategies (or
methods).

In addition to the six columns, the Zachman framework identifies six layers
(compiled/taken from [128, 155]):

Scope – The first architectural sketch is a “bubble chart”, which depicts in gross
terms the size, shape, spatial relationships, and basic purpose of the final struc-
ture. It corresponds to an executive summary for a planner or investor who wants
an estimate of the scope of the system, what it would cost, and how it would
perform.

Enterprise or business model – Next are the architect’s drawings that depict the
final building from the perspective of the owner, who will have to live with it
in the daily routines of business. They correspond to the enterprise (business)
model, which constitutes the design of the business and shows the business
entities and processes and how they interact.

4.4 Enterprise architecture frameworks 73

System model – The architect’s plans are the translation of the drawings into de-
tailed specifications from the designer’s perspective. They correspond to the
system model designed by a systems analyst who must determine the data ele-
ments and functions that represent business entities and processes.

Technology model – The contractor must redraw the architect’s plans to represent
the builder’s perspective, which must consider the constraints of tools, technol-
ogy, and materials. The builder’s plans correspond to the technology model,
which must adapt the information system model to the details of the program-
ming languages, I/O devices, or other technology.

Detailed representations – These correspond to the detailed specifications that are
given to programmers who code individual modules without being concerned
with the overall context or structure, and/or process designers who design de-
tailed workflows.

Functioning enterprise – Finally, a system is implemented and made part of an
organisation. This is a view of the program listings, database specifications, net-
works, and so forth that constitute a particular system. These are all expressed
in terms of particular languages.

e.g. DATA

ENTERPRISE ARCHITECTURE - A FRAMEWORK

Builder

SCOPE
(CONTEXTUAL)

MODEL
(CONCEPTUAL)

ENTERPRISE

Designer

SYSTEM
MODEL
(LOGICAL)

TECHNOLOGY
MODEL
(PHYSICAL)

DETAILED
REPRESEN-
 TATIONS
(OUT-OF-
 CONTEXT)

Sub-
Contractor

FUNCTIONING
ENTERPRISE

DATA FUNCTION NETWORK

e.g. Data Definition

Ent = Field
Reln = Address

e.g. Physical Data Model

Ent = Segment/Table/etc.
Reln = Pointer/Key/etc.

e.g. Logical Data Model

Ent = Data Entity
Reln = Data Relationship

e.g. Semantic Model

Ent = Business Entity
Reln = Business Relationship

List of Things Important
to the Business

ENTITY = Class of
Business Thing

List of Processes the
Business Performs

Function = Class of
Business Process

e.g. "Application Architecture"

I/O = User Views
Proc .= Application Function

e.g. "System Design"

I/O = Screen/Device Formats
Proc.= Computer Function

e.g. "Program"

I/O = Control Block
Proc.= Language Stmt

e.g. FUNCTION

e.g. Business Process Model

Proc. = Business Process
I/O = Business Resources

List of Locations in which
 the Business Operates

Node = Major Business
Location

e.g. Logistics Network

Node = Business Location
Link = Business Linkage

e.g. "Distributed System

Node = I/S Function
(Processor, Storage, etc)
Link = Line Characteristics

e.g. "System Architecture"

Node = Hardware/System
Software

Link = Line Specifications

e.g. "Network Architecture"

Node = Addresses
Link = Protocols

e.g. NETWORK

Architecture"

Planner

Owner

Builder

ENTERPRISE
MODEL

(CONCEPTUAL)

Designer

SYSTEM
MODEL

(LOGICAL)

TECHNOLOGY
CONSTRAINED

MODEL
(PHYSICAL)

DETAILED
REPRESEN-

TATIONS
(OUT-OF

CONTEXT)

Sub-
Contractor

FUNCTIONING

MOTIVATIONTIMEPEOPLE

e.g. Rule Specification

End = Sub-condition
Means = Step

e.g. Rule Design

End = Condition
Means = Action

e.g., Business Rule Model

End = Structural Assertion
Means =Action Assertion

End = Business Objective
Means = Business Strategy

List of Business Goals/Strat

Ends/Means=Major Bus. Goal/
Critical Success Factor

List of Events Significant

Time = Major Business Event

e.g. Processing Structure

Cycle = Processing Cycle
Time = System Event

e.g. Control Structure

Cycle = Component Cycle
Time = Execute

e.g. Timing Definition

Cycle = Machine Cycle
Time = Interrupt

e.g. SCHEDULE

e.g. Master Schedule

Time = Business Event
Cycle = Business Cycle

List of Organizations

People = Major Organizations

e.g. Work Flow Model

People = Organization Unit
Work = Work Product

e.g. Human Interface

People = Role
Work = Deliverable

e.g. Presentation Architecture

People = User
Work = Screen Format

e.g. Security Architecture

People = Identity
Work = Job

e.g. ORGANIZATION

Planner

Owner

to the BusinessImportant to the Business

What How Where Who When Why

Copyright - John A. Zachman, Zachman International

SCOPE
(CONTEXTUAL)

Architecture

e.g. STRATEGY ENTERPRISE

e.g. Business Plan

TM

Zachman Institute for Framework Advancement - (810) 231-0531

Sub Contractor
Time = Interrupt
Cycle = Machine Cycle

People = Identity
Work = Job

Node = Addresses
Link = Protocols

Node = Hardware/System Software
Link = Line Specifi cations

End = Structural Assertion
Means =Action Assertion

Time = System Event
Cycle = Processing Cycle

Node = I/S Function
(Processor, Storage, etc)
Link = Line Characteristics

ENTITY = Class of
Business Thing

Proc.= Language Stmt
I/O = Control Block

Ent = Field
Reln = Address

Fig. 4.16 The Zachman Framework

74 4 The Results of Enterprise Architecting

4.4.5 The Open Group’s Architecture Framework

TOGAF [139], The Open Group’s Architecture Framework, is organised into three
Sections: Architecture Development Method, Enterprise Continuum and Resource
Based. This is illustrated in Figure 4.17. Each of the Sections provides some guid-
ance on what the outputs of a TOGAF-derived architecture should be and how they
should be structured. Below we provide a discussion of these Sections. This discus-
sion is taken from [136].

TOGAF 8.1

Architecture Development
Method

Resource Base

Case Studies

Glossary

Table of Views

Reference
Materials, Tools,

Techniques

Enterprise Continuum

Phase Descriptions

Phase Inputs

Phase Outputs

Use of keywords TOGAF TRM

Phase Inputs

Phase Outputs

Use of keywords

Input and Output Descriptions

Architecture Building Blocks
Concept

Architecture Continuum

Foundation Architectures
Products and Services

Systems Solutions

Industry Solutions

Organization SolutionsOrganization
Architectures

Industry Architectures

Common Systems
Architectures

Solutions Continuum

Fig. 4.17 TOGAF 8.1 content overview

4.4.5.1 The TOGAF Architecture Development Method

The Architecture Development Method (ADM) explains how to derive an organisa-
tion specific enterprise architecture that addresses business requirements. ADM is a
major component of TOGAF and provides guidance for architects on a number of
levels:

• It provides a number of architecture development phases (e.g., Business Archi-
tecture, Information Systems Architectures, Technology Architecture) in a cycle,
as an overall process template for architecture development activity;

• It provides a narrative of each architecture phase, describing the phase in terms of
objectives, approach, inputs, steps, and outputs. The inputs and outputs Sections
provide an informal definition of the architecture content structure and deliver-
ables;

• It provides cross-phase summaries covering requirements management, phase
input, and phase output descriptions.

4.5 Dimensions for architecture frameworks 75

The ADM is primarily a process framework. As such, it can be used in conjunc-
tion with different product frameworks, such as the IAF, ArchiMate and Zachman
frameworks.

4.4.5.2 The Enterprise Continuum

The Enterprise Continuum provides a model for structuring an architecture reposi-
tory – a “virtual repository” of all the architecture assets. This is based on architec-
tures and solutions (models, patterns, architecture descriptions, etc.) that exist both
within the enterprise and in the IT industry at large, and which the enterprise has
collected for use in the development of architectures. Architecture Building Blocks
reside within the Enterprise Continuum. At relevant places throughout the TOGAF
ADM, there are reminders to consider which architecture assets the architect should
use.

4.4.5.3 The TOGAF Resource Base

The TOGAF Resource Base, “the reference content”, is a set of resources, guide-
lines, templates, background information, etc. provided to be of assistance to the
architect in the use of the ADM.

4.5 Dimensions for architecture frameworks

In the previous Section we discussed four architecture frameworks. There are, how-
ever, many more frameworks in existence. In addition to Tapscott and Caston, Zach-
man, IAF, TOGAF, and ArchiMate, some other publicly available frameworks are:
the CRIS framework [91], Multiview [153], Kruchten’s 4+1 framework [77], RM-
ODP [64], eTOM’s business process framework [138], GERAM [61], IAF [30, 45],
EEF [98] and DYA [148]. In addition, several organisations use their own internally
created architecture framework. Usually, these frameworks have been constructed
by their respective authors in an attempt to cover all relevant aspects of the de-
sign/architecture of some class of systems/enterprises.

Each of these frameworks covers several dimensions and comprises a number of
cells. In the remainder of this Section we will explore several of these dimensions.
The list of dimensions is based on work reported in several other publications [42,
49, 56, 64, 67, 77, 78, 91, 101, 104, 105, 107, 135, 139, 138, 148, 153, 154].

Most notably, the authors of [49, 56, 67, 154] have endeavoured to distinguish
the dimensions used to span architecture frameworks. Below we provide a synthesis
of these latter two works combined with our own observations from the other frame-
works in existence. In doing so, we will distinguish three classes of dimensions:

1. Dimensions pertaining to the subject of a view.

76 4 The Results of Enterprise Architecting

2. Dimensions dealing with the purpose of views.
3. Dimensions concerned with the form of views.

When comparing these dimensions in architecture frameworks with the well-
known notion of scope as used in project/program management, we will see that this
notion of scope is potentially related to (selections made in) each of these (classes
of) dimensions. Hence the lists provided below can be used to scope the assignment
of projects/programs.

4.5.1 Subject dimensions

We now first turn our attention to those dimensions for enterprise (engineering or
architecting) frameworks concerned with the subjects of the cells in the framework.
Our aim is not to provide an exhaustive list of dimensions, nor do we claim that the
list is orthogonal. We merely aim to provide an overview of some of the dimensions
used.

Range – The range of the domain that is under consideration. Example classifiers
are: single business processes, business units, the entire enterprise, and the en-
tire value chain or ecology.

Construction abstraction – The level of abstraction from the actual construction
of the enterprise. As used in the pizzeria example, example classifiers would
be: valuation (what value does it provide to its environment/ecology?), function
(which functions does it provide in creating this value?), construction (how does
it realize these functions?).

Implementation abstraction – The level of abstraction from underlying technolo-
gies (including IT, human technology, machines, etc). Example classifiers (in-
spired by [63]) would be: conceptual (what is needed?), logical (how will it
be constructed/composed?) and physical (with which technologies and infras-
tructural elements will it be implemented?). Note: the construction may use
functions provided by other parties within the environment/ecology.

Enterprise system types – When considering an enterprise, several system types
can be discerned covering different facets of the enterprise. Some example
system-types are: business system, information system, production system, IT
infrastructure and management & control system. Most architecture frame-
works, in line with their IT roots, identify a dimension based on system types,
which focuses on business realisation through IT. In these latter frameworks we
usually find classifiers (system types) such as: business, information systems,
applications and infrastructure.

Aspects of dynamic systems – Enterprises are dynamic systems. In such systems
there will be actors/agents which exhibit behaviour, which will impact on ob-
jects in the domain. Typical classifiers are therefore: behaviour (what hap-
pens?), passive structure (what is it happening to?), and active structure (what
is doing it?).

4.5 Dimensions for architecture frameworks 77

System qualities – Models may focus on different qualities of systems. Several
quality attributes are in existence [65, 66]. Some examples are: efficiency, secu-
rity, functionality and reliability.

Interrogatives – The English language, as well as most other languages, contains
a class of words called the interrogatives [137]. These lead to a natural set of
classifiers: which, when, how, what, why, where, whose, ...

4.5.2 Purpose dimensions

With the purpose of an enterprise architecture results, we refer to the combination of
the communicative goal of the result, the intended audience and the process context:

Goal of the result – In the introduction of this Chapter already identified four types
of goals for which architecture results may be created: specifying, deciding,
informing and contracting.

Audience – The audience of the result. Some examples are: decision makers, ac-
tors in the transformation (architects, designers and engineers), actors in the
current/future enterprise.

Transformation stage – The focus with regard to the stages in an enterprise’s de-
velopment. Some possible classifiers might be: existing situation (as-is), re-
quirements on the future enterprise (as-desired), and its design (to-be).

Planning horizon – The planning horizon with which we regard the (future) enter-
prise. Typical examples are: current, near-term and long-term.

4.5.3 Form dimensions

As discussed before, the form of an enterprise architecture result refers to the com-
munication style and languages used. One may, for example, opt for an intangible
form or a tangible form such as a graphical model/view, a textual model/view, a
combination of the latter, or even an animation. The actual form of a result should
be in line with its intended purpose and audience.

In the case of intangible results, three dimensions (related to pragmatic quality
of models [24]) can be applied:

Level of understanding – The level of shared understanding concerning the archi-
tecture results.

Level of agreement – The level of shared agreement with regards to the architec-
ture results.

Level of commitment – The level of commitment concerning the architecture re-
sults.

The distinction between a level of agreement and a level of commitment may
sound artificial. Nevertheless, in practice there is a distinction to be made between

78 4 The Results of Enterprise Architecting

agreeing that something is right for the enterprise, and indeed accepting the con-
sequences these choices will/may have on a stakeholder’s goals and concerns. This
becomes even more critical when such consequences materialize after the decisions
have been made, since the transformation process of an enterprise is likely to im-
pede on the concerns of many stakeholders. An important aspect in the process of
enterprise architecting is therefore the creation of a shared conceptualisation of the
direction, which the enterprise transformation process should take. This makes it
important to obtain the right levels of understanding, agreement and commitment at
the right time. The enterprise architecture ideally is the embodiment of this shared
conceptualisation.

With regards to tangible results, we may distinguish the following dimensions:

Level of detail – The level of detail to be covered in a result, in other words how
detailed the results mimic the intended/existing enterprise. In [78] three levels
are suggested: detailed, coherence and overview. Views at a detailed level typi-
cally focus on one cell of an architecture framework, while views at a coherence
level will generally focus on the relationships between the cells within one di-
mension. Views at the overview level will aim to provide an overview covering
multiple dimensions at the same time.

Level of precision – The precision at which the results are specified. A possible
way to express the level of precision would be in terms of its level of formal-
ity, referring to the level at which it would allow for mathematical/automated
interpretation and/or manipulation. Some example levels would be [101]: infor-
mal, semi-formal and formal. Informal would typically be a graphical sketch or
a loose narrative description. Semi-formal would be using a controlled (graph-
ical or textual) language, i.e. limiting the allowed syntactic variation, yet still
without a well-defined semantics. Formal then implies the use of a (restricted)
language with a well-defined semantics, enabling a precise and unambiguous
interpretation of the results.

In colloquial use, the levels of detail and precision tend to be confused. When
representing something at an overview level, one tends to misinterpret this as an
excuse to provide a vague and imprecise description.

4.6 A methodical perspective on the creation of results

Enterprise architecture results will typically feature numerous models and views.
In an architecture context, these models are created in line with so-called view-
points [60]:A specification of the conventions for constructing and using a view. A
pattern or template from which to develop individual views by establishing the pur-
poses and audience for a view and the techniques for its creation and analysis. To
some extent a viewpoint establishes a method for the creation of views, in particular
where it concerns “the techniques for its creation and analysis”. In [122, 152] a
framework was proposed to dissect a modelling method into a number of aspects:

4.6 A methodical perspective on the creation of results 79

Way of thinking – Articulates the assumptions on the kinds of problem domains,
solutions and modellers. This notion is also referred to as die Weltanschau-
ung [126, 153], underlying perspective [83] or philosophy [12].

Way of modelling – The way of modelling provides an abstract description of the
underlying modelling concepts together with their interrelationships and prop-
erties. It structures the models, which can be used in the information system
development, i.e. it provides a language in which to express the models.

Way of working – Structures (parts of) the way in which a system is developed. It
defines the possible tasks, including sub-tasks, and ordering of tasks, to be per-
formed as part of the development process. It furthermore provides guidelines
and suggestions (heuristics) on how these tasks should be performed.

Way of managing – The managerial aspects of system development. Originally
this was referred to as the way of controlling. It includes such aspects as human
resource management, quality and progress control, and evaluation of plans, i.e.
overall project management and governance (see [72, 127]).

Way of supporting – The support to system development that is offered by (possi-
bly automated) tools. In general, a way of supporting is supplied in the form of
some computerized tool.

The resulting framework is shown in Figure 4.18. As synonyms, one may refer
to a way of working as a (modelling) approach and to a way of modelling as a
(modelling) technique. The way of thinking and way of modelling of a method are
strongly tied to the subject dimensions in architecture frameworks since these di-
mensions determine what is to be modelled. The way of modelling is also tied to the
form dimensions, in particular the levels of detail, specificity and formality needed
in the results.

When using an architecture framework, a large number of viewpoints can be
associated. Starting with the subject dimensions:

• For each cell in the framework there is likely to be a specific viewpoint. For
example: the business aspect at the conceptual level, or the technology aspect at
the logical level.

• For some complete dimensions, there will be viewpoints covering the entire di-
mension. For example, the entire conceptual level.

• There are likely to be viewpoints focusing on the relationships between a cell or
a dimension, and its direct neighbours. For example, relating the conceptual level
to the logical level, or the business aspects to the informational aspects.

In addition, mainly fuelled by the purpose, there are likely to be many, many,
ad-hoc viewpoints depending on specific concerns, audiences and purposes. For ex-
ample, a view showing a design alternative at the physical level, with an associated
cost/benefit analysis at the conceptual level, aiming at answering the concern of the
CFO.

In creating/selecting an architecture framework, organisations should focus on
a framework that is based on structural considerations based on the stakeholder’s
concerns that are key to the enterprise and require enduring attention. Ad-hoc view-
points (and ensuing views) can always be added when needed. This most likely

80 4 The Results of Enterprise Architecting

Way of thinking

Way of supporting

Way of working Way of modelling

Way of managing

Fig. 4.18 Aspects of a modelling method

implies that the framework will primarily comprise subject dimensions, focusing on
view(point)s providing stakeholders with insight, as well as steering abilities, rele-
vant to their concerns. Additional ad-hoc view(point)s can be added on top of that
tuning the structural view(point)s to the specific needs/uses at hand.

4.7 The call for a unified notation

As mentioned in the pizzeria example, there is no single modelling language in
which to model all relevant aspects of the pizzeria domain with a unified look-and-
feel. In the pizzeria example, we showed several aspects of this organisation using
modelling techniques such as: e3Value, DEMO and ArchiMate. Even though it is
doubtful whether it is possible to have a single unified language covering all aspects
of an enterprise, a well integrated language with a unified look and feel covering
at least the core valuation, function and construction aspects of an enterprise is de-
sirable [78]. Note that in expressing this desire, we refer to the modelling language
used to create models of different aspects of an enterprise. When creating views, one
is likely to use different styles and languages that are better attuned to the needs of
the intended audiences. The models will be used primarily by architects and engi-
neers to express the design of the enterprise in all of its richness.

4.7 The call for a unified notation 81

CustomersCustomers PizzeriaCustomers money

pizza

Fig. 4.19 Pizzeria at the valuation level

ArchiMate was designed to play the role of such a unified language. Even though
we only use the ArchiMate notation for the infrastructural aspects of the pizzeria, it
is indeed suitable to represent the construction diagrams used in the pizzeria case.
Even more, the ArchiMate language allows for the definition of extensions, where
new concepts are introduced as specialisation of existing ones and/or combinations
of existing ones. Even though the concept of transaction, as used in our Pizzeria
example, is not explicitly built-in the ArchiMate language, it can be constructed by
defining a transaction concept being a collaboration between the two roles partic-
ipating in the transaction, involving a number of processes (covering the request,
promise, execute, state and accept phases) and associated orchestration. The same
applies to the value exchange between the customer and the pizzeria, which can es-
sentially be constructed in terms of ArchiMate’s value and service concepts. When
using such constructs, one would be able to produce diagrams such as shown in,
Figure 4.19, Figure 4.20, Figure 4.21, Figure 4.22 and Figure 4.23, depicting an
ArchiMate-ish version of Figure 4.1, Figure 4.2, Figure 4.3, Figure 4.4 and Fig-
ure 4.5 respectively. Note that Figure 4.21 and Figure 4.23 also illustrate how a
slightly different perspective leads to additional insight. The original views took the
roles as leading, by showing how the roles participate in transactions, while the flow
of the transactions meanders over them. In the new views we took the transactions
as leading, and show how the transactions are executed by the different roles.

PizzeriaCustomer

complete purchase

pay purchase

Assortment

Fig. 4.20 Transactional view of value exchange

Figure 4.19 shows the value exchange between the customer and the pizzeria as
a value exchange between business roles. Figure 4.20 shows the realisation of this

82 4 The Results of Enterprise Architecting

value exchange in terms of the transactions complete purchase and pay purchase.
Figure 4.21 depicts the orchestration of the complete purchase and pay purchase
transactions as being a collaboration between two business roles: customer and
pizzeria. The construction of the pizzeria in terms of a completer, baker, transporter
and their mutual transactions is shown in Figure 4.22. Finally, Figure 4.23 shows
the orchestration of the transactions when the actual construction of the pizzeria in
terms of the completer, baker and transporter is considered.

Customer Pizzeria

complete purchase

Customer Pizzeria

pay purchase

Fig. 4.21 Orchestration of transactions

In the further evolution, and possible integration, of modelling languages such as
ArchiMate, DEMO and e3Value, there are some wise lessons to be learned from the
development of a language such as YAWL (Yet Another Workflow Language [4]).
In the development of this workflow language, the authors started by surveying pat-
terns used in workflow specifications. In doing so, they first gained insight into the

4.8 Summary 83

constructions, which the language should be able to express naturally. For example,
the desire to discuss/express the impact which a business principle such as “Outside
own organisation: Get money first!” will have on the orchestration of the transac-
tions between a customer and the pizzeria, requires a modelling language supporting
an explicit notion of a transaction and the phases (request, promise, execute, state,
accept) within a transaction. The same applies concerning the modelling of value
exchanges between the pizzeria and the consumer. The desire to be able to reflect
on the value being exchanged between the pizzeria and its consumers, or between
any pair of business roles for that matter, requires explicit modelling constructs.

 Transporter

Completer
Customer

complete purchase

pay purchase

Assortment

Pizzeria

Baker
bake purchase

transport purchase

Recipes

Customer data Maps

Fig. 4.22 Decomposition of the Pizzeria

When the ArchiMate language was developed initially, it was also based on a
survey of needs voiced by the industrial partners in the project [69, 70]. In the mean-
time, however, insight into what one wants to do with enterprise architectures has
evolved, and as a result also the demands on the modelling language used have
evolved. In anticipation of such evolution, the ArchiMate language was equipped
with an extension mechanism to indeed cater for such evolutions.

4.8 Summary

In this Chapter we have explored the results that may be yielded from enterprise
architecting efforts. We have used the pizzeria example to exemplify some of these
results, covering final deliverables, intermediary results and intangible results. Tan-
gible deliverables/results include models, principles and views. We then moved on

84 4 The Results of Enterprise Architecting

C
u

s
to

m
e

r
C

o
m

p
le

te
r

(P
iz

z
e

ria
)

c
o

m
p

le
te

 p
u

rc
h

a
s
e

C
u

s
to

m
e

r
C

o
m

p
le

te
r

(P
iz

z
e

ria
)

p
a

y
 p

u
rc

h
a

s
e

d
e

liv
e

r p
u

rc
h

a
s
e

b
a

k
e

 p
u

rc
h

a
s
e

C
o

m
p

le
te

r
(P

iz
z
e

ria
)

B
a

k
e

r
(P

iz
z
e

ria
)

C
o

m
p

le
te

r
(P

iz
z
e

ria
)

D
e

liv
e

re
r

(P
iz

z
e

ria
)

Fig. 4.23 Composed transaction orchestration

4.9 Discussion statements 85

to the issue of quality of the possible results. Depending on the intended use, dif-
ferent quality requirements should be met. We identified four key types of usage of
results: specifying, deciding, informing, and contracting, also covering justification
of decisions made. This intended use has a great impact of the scope of the architec-
ture results needed. Based on the usage requirements of the involved stakeholders
and their concerns, the intended result can be designed in terms of its subject and
form.

From our desire to have order and completeness in architecture results, we then
turned our attention to architecture frameworks, and started by discussing some ex-
amples of the architecture frameworks in existence. As means to order architecture
results and guard their completeness, a framework gives insight into the interrela-
tionships of architecture results, and therefore enables the traceability of decisions
and their impact.

To better understand the concepts underlying the multitude of frameworks, we
surveyed some possible dimensions for frameworks, distinguishing between dimen-
sions dealing with the subject, purpose and form. We also related the concept of
viewpoint to a pre-existing framework for modelling methods distinguishing be-
tween a way of thinking, a way of managing, a way of supporting and a way of
modelling. A strong link exists between the subject dimensions of an architecture
framework and the way of thinking and way of modelling of the modelling methods
used in creating the results, as well as between the form dimensions and the way
of modelling of these methods. Even more, we took the position that an enterprise
architecture framework should primarily focus on subject dimensions. We also iden-
tified an opportunity to define scoping as a project/program management notion in
terms of the selection of different (classes of) dimensions.

Finally, we argued the case for modelling techniques for (the design-oriented
perspective of) enterprise architectures that cover different aspects of an enterprise,
while still offering a unified look and feel.

4.9 Discussion statements

1. Views that properly address the concerns of stakeholders are of more value than
the underlying architecture as a whole.

2. Artist impressions are more effective than detailed models.
3. An enterprise should standardise on one architecture framework and stick to it.
4. When copying the enterprise architecture of a competitor, one also imports its

underlying vision and strategy. In other words, if an enterprise wants to have a
unique competitive edge, it needs its own architecture.

