
Concepts and Strategies for Quality of Modeling

P. (Patrick) van Bommel1, S.J.B.A. (Stijn) Hoppenbrouwers1,
H.A. (Erik) Proper2, and J. (Jeroen) Roelofs1

1 Institute for Computing and Information Sciences,
Radboud University Nijmegen

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
2 Capgemini, Papendorpseweg 100, 3500 GN Utrecht, The Netherlands

{p.vanbommel, s.hoppenbrouwers}@cs.ru.nl;
 e.proper@acm.org; jeroenroelofs@chello.nl

Abstract A process-oriented framework (QoMo) is presented that aims to fur-
ther the study of analysis and support of processes for modelling. The frame-
work is strongly goal-oriented, and expressed largely by means of formal rules.
The concepts in the framework are partly derived from the SEQUAL frame-
work for quality of modelling. A number of modelling goal categories is dis-
cussed in view of SEQUAL/QoMo, as well as a formal approach to the descrip-
tion of strategies to help achieve those goals. Finally, a prototype implementa-
tion of the framework is presented as an illustration and proof of concept.

1 Introduction

This chapter aims to contribute to the area of conceptual modeling quality
assessment and improvement, in particular by providing some fundamental
concepts concerning the quality of the process of modeling, and for structured
description of ways of achieving quality models. Though operationalization of
the concepts and strategies is still limited in this version of the framework, an
initial application has been realized and is discussed.

There is a clear link between the work presented and the field of Situational
Method Engineering. In particular, the basic idea of combining (patterns of)
language related aspects of methods with process related aspects is common-
place in method engineering (see for example Mirbel and Ralyté, 2006; Ralyté
et al., 2007). We believe the specific contribution of the current chapter lies in
its formal, rule-based nature, and a strong emphasis on combinations of rather
specific modeling goals. Also, we focus only on modeling, whereas method
engineering in general also covers other activities in systems engineering.
Finally, we choose a relatively fine-grained view on the activity of modeling,
whereas method engineering generally deals with process aspects only at the
level of clearly distinguishable phases (i.e. has a more course-grained view,
which is not to say that such a view is not a very useful one in its own right).

 2

We first present a process-oriented ‘Quality of Modeling’ framework
(QoMo), which for a large part is derived from the established SEQUAL
framework for quality of models. QoMo is based on knowledge state transi-
tions, the cost of the activities bringing such transitions about, and a goal
structure for activities-for-modeling. Such goals are directly linked to con-
cepts of SEQUAL.

We then proceed in two steps. In the first, generic step (section 6) we consider
the underlying generic structure of strategies for modeling. We discuss how
QoMo’s goals for modeling can be linked to a rule-based way of describing
processes for modeling. Such process descriptions hinge on strategy frames
and strategy descriptions, which may be used descriptively (for study-
ing/analyzing real instances of processes) as well as prescriptively (for the
guiding of modeling processes). We present a set of concepts for describing
quality-oriented strategies.

In the second, implementation step (section 7) we consider an example im-
plementation involving a concrete operational workflow language. We present
results of a case study in which a specialized version of our generic frame-
work is applied to the description of an elementary method for requirements
modeling, as taught in the 2nd year of an Information Science Bachelor’s cur-
riculum. We discuss and exemplify how concepts from the generic framework
were used, and in some cases how they were amended to fit the task at hand.

2 Background

Interest in frameworks for quality and assessment of conceptual models has
been gradually increasing for a number of years. A generic overview and dis-
cussion can be found in (Moody, 2006). A key framework for analysis of the
quality of conceptual models is the SEQUAL framework (Krogstie et al.,
2006; Krogstie, 2002; Krogstie and Jorgesen, 2002) . This framework takes a
semiotics-based view on modeling which is compatible with our own (Hop-
penbrouwers et al., 2005a). It is more than a quality framework for models as
such, in that it includes not just the model but also the knowledge of the mod-
elers, the domain modeled, the modeling languages, agreement between mod-
elers, etc. (see section 2); it bases quality assessment on relations between
such model-related items, i.e. respects the broader context of the model.

As argued in (Hoppenbrouwers et al., 2005b), in addition to analysis of the
quality of models, the process of which such models are a product should also
be taken into account. We briefly summarize the main arguments here:
1. Though some have written about detailed stages in and aspects of “Ways

of Working” in modeling, i.e. its process or procedure (for example, see
Halpin, 2001), the detailed “how” behind the activity of creating models

 3

is still mostly art rather than science. There is, therefore, a purely scien-
tific interest in improving our understanding of the operational details of
modeling processes.

2. In addition, such a study should enable us to find ways of improving the
modeling process (for example, its quality, efficiency, or effectiveness;
from a more methodological angle: reproducibility, stability, and preci-
sion; also traceability, and so on).

3. Indeed, some aspects of quality, it seems, can be better achieved through a
good modeling process than by just imposing requirements on the end
product and introducing a feedback cycle (iteration). This holds in par-
ticular (though not exclusively) for matters of validation and grounding in
a socio-political context.

4. A score of more practical arguments follow from the ones above. For
example, for improvement of case tool design, a more process-oriented
approach seems promising.

As mentioned, models as such are not the only product of a modeling process.
The related knowledge development, agreements, etc. are arguably as impor-
tant. Hence, our process-oriented view suggests that we take aboard such ad-
ditional model items, and quality concepts related to them. The latest SE-
QUAL version explicitly allows for this approach, though it does not make
explicit use of a meta-concept such as “model item”.

The importance of the modeling process in view of model quality is com-
monly confirmed in the literature in general (Poels et al, 2003; Nelson and
Monarchi, 2007). If we want to evaluate a modeling process, we can take (at
the least) the following four different points of view:
1. Measure the success of the process in fulfilling its goals. This boils down

to using the current SEQUAL framework as-is, and directly link such an
analysis of the model items to the success of the process. However, one
might also analyze intermediate steps in the process against intermediate
or sub-goals set. By evaluating partial or intermediary products (possibly
in view of a prioritization of goals), the process may be steered along the
way. Also, the steps described will eventually become so small that essen-
tial modeling goals/activities can perhaps be identified (steps in the de-
tailed thinking process underlying modeling), opening up the black box of
the modeling process.

2. Calculate the cost-benefit ratio: achievements set against the cost. Such
cost again can hold for the process as a whole, but also for specific parts.

3. We can look at the process and the working environment as an informa-
tion system. This then is a 2nd order information system: an IS that serves
to develop (bring forth) information systems. The information system un-
derlying the modeling process (probably but not necessarily including IT
support) can be evaluated in a way similar to evaluation of information

 4

systems in general. In particular, aspects like usability and actability but
also traceability and even portability are relevant here.

4. Views 1-3 concern operational evaluations of particular process instantia-
tions. At a higher level of abstraction, we can also look at properties and
control aspects of a process in terms of, for example, repeatability, opti-
mization, etc. (Chrissis et al., 2006).

In this paper, we focus on 1 and 2. View 3 depends very much on implemen-
tation and support of some specific process (in particular, tooling), which is
outside the grasp of our current study. View 4 is essential in the long run yet
stands mostly apart from the discussion in this paper, and will not be elabo-
rated on any further now. Admittedly, many fundamental aspects of process
quality (process control) are expected to be covered by 4, rather than 1 and 2.
However, 1 and 2 do provide the concepts we direly need for applying 4 in
any concrete way. This paper, therefore, is arguably a SEQUAL-based ‘step
up’ towards analysis at the level of viewpoint 4.

Our main contribution in this chapter twofold: 1. a preliminary version of a
framework for Quality of Modeling (QoMo), which not only takes into ac-
count the products of modeling but also processes. Analogous to SEQUAL,
QoMo is not yet an operational method for model-oriented quality assessment
and management. The framework is expected to evolve as our knowledge of
dealing with quality of modeling processes increases. 2. We provide a set of
concepts for capturing the basics of strategies for realizing the QoMo goal.
The concepts are made operational for the first time in context of a case im-
plementation.

3 The SEQUAL framework: overview

Since we cannot, nor wish to, present an elaborate overview or discussion of
the SEQUAL framework, we will provide a short summary of its key con-
cepts, as based on its latest substantial update (Krogstie et al., 2006). How-
ever, we take into account all SEQUAL concepts, including those not explic-
itly mentioned in that update. We have rephrased some of the definitions or
added some explanations/interpretations of our own, yet made sure we did not
stray from the intentions of the SEQUAL framework.

SEQUAL Model Items:
• G: goals of modeling (normally organizationally defined).
• L: language extension; set of all statements that are syntactically correct

in the modeling languages used.
• D: the domain; the set of all statements that can be stated about the situa-

tion at hand.

 5

• DO
: the optimal domain; the situation the organization would or should

have wanted –useful for comparison with the actual domain D in order to
make quality judgments.

• M: the externalized model; the set of all statements in someone’s model
of part of the perceived reality written in a language.

• Ks: the relevant knowledge of the set of stakeholders involved in model-
ing (i.e. of the audience at large).

• Km: a subset of Ks; the knowledge of only those stakeholders actively
involved in modeling.

• KN: knowledge need; the knowledge needed by the organization to per-
form its tasks. Used for comparison with Ks in order to pass quality judg-
ments.

• I: the social actor interpretation, that is, the set of all statements that the
audience thinks that an externalized model consists of.

• T: the technical actor interpretation, that is, the statements in the model as
‘interpreted’ by the different modeling tools.

SEQUAL quality definitions:
• Physical quality: how the model is physically represented and available

to stakeholders; a matter of medium.
• Empirical quality: how the model comes across in terms of cognitive

ergonomics, e.g. layout for graphs and readability indexes for text.
• Syntactic quality: conformity to the syntax of the modeling language,

involving L.
• Semantic quality: how well M reflects Ks.
• Ideal descriptive semantic quality: Validity: M/D=∅ ; Completeness:

D/M=∅ .
• Ideal prescriptive semantic quality: Validity: M/DO=∅ ; Completeness:

DO/M=∅ .
• Domain quality: how well the domain fits some desired situation: D

compared with DO.
• Quality of socio-cognitive interpretation: how an individual or group

interprets the model, i.e. how I matches M, in view of how M was in-
tended to be interpreted by one or more of its modelers.

• Quality of technical interpretation: similarly, how a tool or group of
tools interprets the model, i.e. how T matches M.

• Pragmatic quality -actability: how the model, or the act of modeling,
influences the actability of the organization. Note that this enables de-
scription of the effect of the modeling process even in case the model as
such is discarded.

• Pragmatic quality -learning: how the modeling effort and/or the model
as such contribute to organizational learning.

 6

• Knowledge quality: how well actual knowledge Ks matches knowledge
need KN.

• Social quality: the level of agreement about the model among
stakeholders (individuals or groups) about the statements of M.

4 Product goals and process goals

There has been some preliminary process oriented work related to the use of
SEQUAL (e.g. going back to Sindre and Krogstie, 1995). Our current pro-
posal concerns a strongly goal-oriented approach. The model items and quali-
ties of the SEQUAL framework can be used as an abstract basis for express-
ing product quality of a model process, and alternatively to specify goals for
model quality. Note that during a modeling process, each model item (for
example the model (M), stakeholder knowledge (Ks), or the state of agreement
about M (Covered by “Social quality” in SEQUAL) may change, in principle,
at any step in the process. The SEQUAL framework can therefore be used not
only for expressing how well a process as a whole has done in terms of
achieving its goals, but also which specific steps or series of steps in the proc-
ess have contributed to specific advances in achieving specific (sub)goals. We
can thus directly use SEQUAL concepts for expressing product goals: both
product end-goals and intermediary product goals.

In addition, it should be possible to link product goals and sub-goals, and the
level of achievement in view of these goals, to the notion of benefit, and
weigh this against its cost. Note that cost (for example in terms of time or
money) is something that can be especially well calculated in view of a work
process and the people and resources involved in it. This entails that, as is
common in process modeling, account should be taken of the tasks or actions
involved as well as the people (typically, roles) performing them. Both the
cost of the entire process and, again, the cost of steps/parts in the process can
then be calculated. This entails that the cost-benefit ratio for an entire process,
or parts of it, can be calculated. As argued earlier, this is a useful way of
evaluating a modeling process.

In (van Bommel et al., 2006) we presented an initial list of modeling goals
(slightly amended here) of which the relation to SEQUAL will be made clear.
The goals are, or course, generically covered by G in SEQUAL, but they also
relate to most of the other SEQUAL concepts.
Usage goals (including actability and knowledge goals): These stand apart
from our “modeling goals”: they represent the why of modeling; the modeling
goals represent the what. In SEQUAL, the usage goals are covered primarily
by the Pragmatic qualities (both learning and actability) and, related to the
former, Knowledge quality. The overall cost-benefit ratio will mostly relate to

 7

Usage goals, but optimizing (aspects of) modeling methods in an operational
sense requires us to look at the other goals, the “modeling goals”:
Creation goals (list of model items/deliverables): This relates to what we
might generalize as “required deliverables”: M, in a very broad sense (i.e. also
including textual documents etc.). If made explicit, Ks and/or Km are to be
included here. Creation goals are primarily related to the SEQUAL notions of
completeness (as part of “Ideal descriptive/prescriptive semantic quality”) and
validity as defined under “Ideal descriptive/prescriptive semantic quality”.
Note that “Completeness” in an operational sense would in fact be defined as
Ks/M = ∅ ((Krogstie et al., 2006) has it as M/D = ∅). Validity would then be
M/Ks = ∅. There is a complication, however, because some definitions of
validity also strongly involve Social Quality (see Validation goals below),
linking validation with levels of agreement with (parts of) the model by spe-
cific actors. We observe that SEQUAL allows us to differentiate between
these two notions of validity, and yet combine them.
Validation goals: These are related to Social Quality: the level and nature of
agreement between stakeholders concerning the model. As discussed, our
analysis allows us to differentiate between two common notions of “validity”:
one now falling under Creation Goals, one (the one related to Social Quality)
under Validity Goals.
Argumentation goals: In some cases, arguments concerning particular model
items may be required. Though a weak link with Social Quality can be sug-
gested here, it seems that this type of modeling goals is not as of yet explicitly
covered by SEQUAL. Argumentation goals arguably are an extension of
Validation goals.
Grammar goals: Language (L) related: concerns syntactic quality.
Interpretation goals: Related to quality of socio-cognitive interpretation, and
possibly also to technical interpretation. The latter may be covered by Gram-
mar goals if the language and its use are fully formal and therefore present no
interpretation challenges whatsoever. Note that Interpretation Goals may be
seen as a refinement of Validation Goals.
Abstraction goals: This is as of yet a somewhat obscure category. It boils
down to the question: does the model (or parts of it) strike the right level of
abstraction? This seems to be a crucial matter, but also one that is terribly
hard to operationalize. There seems to be a link with Semantic quality (and it
is a different link than the one covered by Creation Goals), but its precise
nature is yet unclear to us. Quite probably, Abstraction Goals are sub-goals of
Usage Goals, related to the utilitarian relevance of various levels of and de-
tails in models.

 8

5 Achieving goals by means of strategies

Given usage goals, modeling goals, and a modeling environment, strategies
can be formulated to best execute the modeling process. In other words:

Usage goal + Modeling goal + Modeling environment ⇒ Modeling strategy

Moving to concepts that are more specifically related to actual modeling proc-
esses, we will now briefly present an approach to describing the detailed steps
in modeling processes. This approach can be used either descriptively or
prescriptively.

It is customary in run-of-the-mill method description to view procedures or
processes in terms of fairly simple flows or “steps”. In view of the many en-
twined goals and sub-goals at play in modeling, and the different sorts of
equally entwined actions taken to achieve these, it seems more helpful at a
fundamental level to let go of (work)flow in the traditional sense as a meta-
phor for modeling procedures. Instead, we advocate a rule-based approach in
which an analysis of the states of all relevant model items, in combination
with a set of rules describing strategies, leads to “run-time” decisions on what
to do next. Importantly, the framework is capable of capturing ad hoc activi-
ties of modeling as well as tightly pre-structured ones. In order to achieve this,
we define constraints on states and activities, i.e. not necessarily fully speci-
fied goals and strategies. As for workflow-like procedures: these are likely to
play a role at some level, as reference procedures. However, we believe that
while such procedures may be valid instruments for supporting a modeling
process, they are not so well suited to capture or reflect actual, individual
modeling processes.

Our view of methods and the processes they govern takes shape in the use of
the following concepts. These concepts are based on some initial studies of
modeling processes (for example, Hoppenbrouwers et al., 2005b).

Results of steps in a method are states. States are typically described by
means of some logic, or a semi-natural verbalization thereof. Goals are a sub-
type of states, and typically describe desired states-of-affairs in the pro-
ject/domain; situations are also a sub-type of state, that describe states-of-
affairs that contribute towards achieving their related goal(s). Importantly,
situations are not mere negative versions of a goal they are linked with: they
are positively stated descriptions of a state of affairs that is a way point on the
way to achieving a goal. If no helpful state-of-affairs can be identified, the
situation is “void”: no particular precondition state is assumed.

States cannot be labeled situations or goals in an absolute sense; such labeling
is linked to the use of some state in relation to some transition(s) and some

 9

other state(s). In other words, a state that is a situation in view of some goal
can also be a goal in view of another situation. Combinations of states and
transitions can be graphically depicted by means of plain directed graphs.
States can be described at type level as well as at instance level. This means
that a state description may be an abstract description of one or more aspects
of actual (instantiated) states. Situation descriptions as well as goal descrip-
tions are typically used as abstract patterns to be matched against factual (in-
stance level) descriptions of the method domain as the operational process
takes place.

The combination of, minimally, two states (a situation and a goal) linked by a
transition, we call a strategy context1. Complex strategy contexts are allowed;
they are composed of three or more states, and two or more transitions. A
strategy is a course of action associated with one or more strategy contexts.
We distinguish three types of strategy in our framework for method descrip-
tion:
Ad hoc strategies. In ad hoc strategies, no concrete modeling guidelines are
available. We know what we have (input) and we have an indication of what
we should produce (output), but we do not know how we should produce
this.
Guided strategies. In guided strategies, a concrete guided description of the
actions to be performed is available. This description can for example have
the form of (a) a piece of text in natural language, (b) a piece of text in some
controlled language such as a subset of natural language (c) an algorithm writ-
ten in pseudo code or (d) a graphical notation (for example, a workflow).
Composed strategies. A composed strategy consists of more (sub) strategies.
The nesting structure of composed strategies may be cyclic, as long as even-
tual termination by means of ad hoc or guided strategies is guaranteed.

Some very basic notions of temporality are also part of our framework. A
strategy (complex or not) may be defined as preceding another strategy:
“strategy s occurs before strategy t”. This may be captured in a (logical) rule
constraining the occurrence in time of s and t. It allows for other strategies to
be executed between execution of s and of t. In addition, a stricter notion of
immediate order is used: if a strategy t is defined as occurring immediately
after strategy s, this means that no strategy may be executed between the
execution of s and t. For the moment, these simple temporal notions are all we
need for our purposes.

1 We use a broad definition of “strategy”. This term corresponds closely to what, for example,

(Mirbel and Ralyté, 2006) call “guidelines”. We use our own terminology for the moment
because our current discussion has a relatively generic focus on method modeling, but this is
not to say we reject Mirbel and Ralyté’s conceptual distinctions as such. We acknowledge
that proper alignment of terminology will require due attention in the near future.

 10

The basic concepts being in place, we need to refine those generic concepts
for more specialized categories of strategy. For this, we use the goals dis-
cussed in the previous section. Note that the distinction in goal types is based
strictly on the terms in which their states are described, and that the various
strategy/goal types can be combined and even tightly interwoven in the fabric
of a method model. For example, validation strategies can be combined with
creation strategies at a low level; alternatively, validation may be seen as an
activity separated in time from creation. To our regret, in the remainder of this
chapter we only have space to consider examples for two goal types: grammar
goals and creation goals. We emphasize, however, our conviction that the
rule-based approach to method modeling can be successfully used beyond the
detailed study and guidance of modeling in some particular modeling lan-
guage.

6 A Generic Rule-Based Meta-Model for Methods and Strategies

We now first focus on generic descriptions of composed modeling strategies.
Our examples in this section concern grammar strategies related to a tech-
nique for formal conceptual modeling called Object Role Modeling (Halpin,
2001). We then proceed with the introduction of the descriptive concepts of
strategy space and strategy frame, and we elaborate on these in order to
achieve further refinement.

6.1 Basic description of (grammar) strategies

In this subsection we focus on basic grammar-related strategy descriptions.
Trivial though the differences between grammar strategies may seem to the
casual observer, they have given rise to considerable debate among experi-
enced modelers, and even schisms between schools of conceptual modeling
that are in principle closely related. In addition, novice modelers often feel
uncertain about ways to proceed in modeling. Where to start? Where to go
from there? What to aim for? Similar questions are raised in any modeling
situation, for any modeling language. In practice, several main ORM grammar
strategies have been observed to co-exist. Several styles are in fact used in the
literature. We consider some styles which are in part reflected in ORM-related
literature and practice. Here we first consider an “object-type-driven” model-
ing strategy. This strategy starts with the introduction of “object types”:

Strategy description 1 Object-type-driven strategy (basic).
a. Provide object types.
b. Provide fact types.
c. Provide facts and constraints.
d. Provide objects.

 11

Thus, strategy description 1 focuses on grammar goals, where a (partial) mod-
eling procedure is initiated by the specification of object types, followed by
fact types. Next, fact instances and constraints are specified. The modeling
procedure is concluded by providing the necessary object instances. Modeling
of other styles of object-type driven strategies is of course also possible, for
example if the requirement is posed that constraints and object instances are
specified before fact instances. However, such an approach goes beyond exist-
ing methodological descriptions of ORM modeling. Note that we do not claim
that the “object-type-driven strategy” is superior (or inferior, for that matter)
to other strategies; finding out which strategy works best in which situation
concerns a research question not addressed here.

We make a distinction between model-items and model-item-kinds. Items
(instance level) reflect the model-in-progress, whereas item kinds (type level)
stem from the method (in this case, the modeling language) used for describ-
ing the domain. Examples of items in our grammar strategy are: ‘John’, ‘per-
son’, ‘John works for the personnel department’, and ‘persons work for de-
partments’. The corresponding item kinds are: ‘object’, ‘object type’, ‘fact’,
and ‘fact type’, respectively.

6.2 Strategy space

In order to facilitate effective definition of composed modeling strategies we
define the notion of strategy space, which is a light-weight representation of
the meta-model of a modeling language. For other approaches to meta-
modeling, see for example (Kensche et al., 2005; OMG, 2001; Saeki, 1995).
A strategy space P is defined as a structure P = <S,T> consisting of states S
and transitions T. States are associated with item kinds. We assume T ⊆ S × S
and a transition <x,y> has x ≠ y. A strategy space provides the context for
setting up strategies, but also for refining and using strategies.

Example 1.
As an example, figure 1 presents the strategy space p1. This space contains the
following states: object, fact, object type, fact type, and constraint. It contains
the transitions c0 , . . . , c9 , where for instance c4 = <object,fact>. In section
6.3 we show how strategy description 1 is embedded within the space p1.
When drawing strategy spaces, a transition is drawn as an arrow. When writ-
ing S and T we assume that the corresponding space P is clear from the con-
text. If this is not the case, we write SP and TP or S(P) and T(P).

 12

Figure 1: Example strategy space p1

6.3 Strategy frame

Many different composed modeling strategies can be described in the context
of a single strategy space. In order to embed the various strategies within a
single strategy space, we define the notion of strategy frame. A strategy
frame F in the context of a space P is a spanning subgraph of P:

– A frame contains all states, so SF = SP.
– A frame contains some of the transitions, so TF ⊆TP.

The set of all frames of a strategy space P is denoted as frames(P). Note that a
frame is not necessarily connected.

Example 2.
As an example, the left hand diagram of figure 2 presents the strategy frame
 f1 ∈ frames(p1). The frame f1 is used as underlying structure of strategy
description 1. In the strategy space p1 the frame f1 focuses on an object-type-
driven strategy by first specifying object types, followed by fact types via
transition c2. Then constraints are specified via transition c9 and facts and
objects are specified via transitions c7 and c5.

Figure 2: Example strategy frames f1 and f2

 13

In basic grammar strategy descriptions we usually have a breadth-first tra-
versal of the underlying strategy frame. Refinements of this default approach
are discussed later; see for example section 6.7.

According to the definitions of strategy space and strategy frame, each strat-
egy space is a strategy frame as well, or P ∈ frames(P). Also, each strategy
frame can be used as a new strategy space consisting of subframes. This en-
ables the systematic treatment of sub-strategies.

Example 3.
If the frame f1 in figure 2 were used as a new strategy space, we would have
several possible subframes. We have, however, only a single connected sub-
frame in this case, which is the frame f1 ∈ frames(f1).

6.4 The rules underlying a strategy frame

We now provide an example of the rules underlying strategy frame f1 . The
relevant goal descriptions for strategy frame f1 are the following2.

G1 There is at least one FactType

This is an instance-level goal. The rest of the goals are type-level; they ex-
press syntactic requirements as dictated by the ORM meta-model (note that
we use a mere selection from the complete set of rules that define the meta-
model). The other goal-rules relevant to f1 are:

G2 Each FactType is populated by at least one Fact
G3 Each ObjectType belongs to at least one FactType
G4 Each FactType is constrained by zero or more Constraints
G5 Each Fact has at least one Object

Next, we define the one situation that is relevant to f1:

S1 There is at least one ObjectType

So we assume that one or more ObjectTypes have already been identified
(presumably as a goal of another strategy) and that these ObjectTypes are
used as input for f1. Next, a series of contexts is defined, consisting of states
(either situations or goals) linked by a transition. Note that these related con-
texts are a 1:1 reflection of f1. The states are selected from the rules above.

2 For sake of readability, we use simple natural language statements for state/rule
description, in ORM verbalization style. Each of these descriptions can in be easily
represented in logic.

 14

The transitions are verbalized as “SHOULD LEAD TO”.

S1 There is at least one ObjectType
C2 SHOULD LEAD TO
G3 Each ObjectType belongs to at least one FactType
G3 Each ObjectType belongs to at least one FactType
C7 SHOULD LEAD TO
G2 Each FactType is populated by at least one Fact
G2 Each FactType is populated by at least one Fact
C5 SHOULD LEAD TO
G5 Each Fact has at least one Object
G3 Each ObjectType belongs to at least one FactType
C9 SHOULD LEAD TO
G4 Each FactType is constrained by zero or more Constraints

So far, our definition does not include temporal ordering. Adding this, we get:

C2 occurs before C7
C2 occurs before C9
C7 occurs before C5
C5 occurs immetiatelyAfter C7

These temporal rules will be elaborated on below. The transitions are to
be linked to further strategies (ad hoc, guided, or composed, as explained in
section 3), which suggest how each particular transition is to be achieved.
This concludes our example. For reasons of space, we will not define other
strategy frames at rule level, as the same descriptive principles hold across all
examples.

6.5 Another composed modeling strategy

Next we consider a fact-driven strategy. In this strategy, is is mandatory that
facts are introduced first. Suppose we have the following basic strategy de-
scription:

Strategy description 2 Fact-driven strategy (basic).
a. Provide facts.
b. Provide fact types and objects.
c. Provide object types and constraints.

Note that strategy description 2 is indeed fact-driven rather than fact-type-
driven. A fact-type-driven strategy would require the specification of fact
types prior to the specification of fact instances. Comparison of strategies is
considered in more detail in section 6.6.

Example 4.
The right-hand side of figure 2 presents the strategy frame f2 ∈ frames(p1).

 15

The frame f2 is used as underlying structure of strategy description 2. In the
strategy space p1 the frame f2 focuses on the specification of facts including
their types via transition c6 and their objects via transition c5, followed by the
specification of object types via transition c3 and constraints via transition c9.

6.6 Comparison of modeling strategies

In order to compare composed modeling strategies, we examine the differ-
ences between their underlying frames. We first consider the reversal of indi-
vidual transitions by the reversal operator rev. Let x = <y,z> ∈ T be a transi-
tion. Then the effect of revx is that <y,z> is removed and a new transition
<z,y> is added.

Example 5.
As an example we compare the frames of object-type-driven and fact-driven
strategies. We see that these frames are quite similar. No transitions are added
or deleted, and some transitions are reversed while others are not. Using the
reversal operator we thus may have:

 f1 = revc6 (revc3 (f2))

In the above example only a selection of individual transitions has been re-
versed. Next we consider dual modeling strategies. For a given strategy frame
x ∈ frames(P), the dual frame dual(x) is obtained by reversal of all transitions.
Note that the dual frame is not necessarily a frame of the same strategy space.
Only if each transition in a strategy space is accompanied by its reversal, the
dual of a frame is again a frame in that same space:

 P = dual(P) ⇔ ∀x ∈ frames(P) [dual(x) ∈ frames(P)]

The above is a basic property of frame duality. Note that the dual frame is
only one way of deriving an entire strategy with completely different organi-
zation. Another way to derive an entirely different strategy is based on the
notion of complement strategy. For a given frame x ∈ frames(P) the comple-
ment frame compl(x,P) contains all states, and exactly those transitions from
P which are absent in the original frame x.

Example 6.
In figure 3 we see two other example strategy frames f3 and f4 . In the left
hand diagram, the frame f3 expresses a dual view on object-type-driven
strategies, since f3 = dual(f1). In the right-hand side, the frame f4 expresses a
complement view on fact-driven strategies, because f4 = compl(f2).

 16

Figure 3: Example strategy frames f3 and f4

The frames f3 and f4 reflect several interesting properties of strategy frames.
These will be considered in later sections. We now first express the basic
property that a complement frame is again a frame of the same space:

∀x ∈ frames(P) [compl(x,P) ∈ frames(P)]

6.7 Strategy refinement

Here we discuss the refinement of basic strategy descriptions. Consider the
following refined object-type-driven strategy:

Strategy description 3 Object-type-driven strategy (refinement).
a. Provide object types.
b. Provide fact types including constraints.
c. Provide facts including objects.

In the above description, we use a refinement of the breadth-first approach
that was assumed in strategy description 1. To be able to express such refine-
ments, the transitions in a strategy frame will be ordered.

We let ≺ be an ordering relation on transitions. For two transitions x, y ∈ T,
the intention of x ≺ y is that transition x is handled prior to transition y.

Example 7.
The transition from the basic strategy description 1 to the refined strategy
description 3 is obtained by the additional ordering requirement c9 ≺ c7 in
frame f1.

Next we consider the following refined fact-driven strategy:

 17

Strategy description 4 Fact-driven strategy (refinement).
a. Provide facts including objects.
b. Provide fact types including object types.
c. Provide constraints.

In terms of the ordering of transitions, the above refinement is expressed as
follows.

Example 8.
The transition from the basic strategy description 2 to the refined strategy
description 4 is obtained by the additional ordering requirements c5 ≺ c6 and
c3 ≺ c9 in frame f2.

Besides the ≺ constraint, we also have a stronger temporal constraint. This
stronger constraint expresses that one transition must be handled immediately
after another transition. Note that more temporal constraints may be embed-
ded within our framework, for example notions occurring in workflow speci-
fications. At this moment, these constraints are not needed for our purposes,
though.

7 Implementing goals and strategies in a concrete workflow language

In this section, we show how the framework presented thus far has been used
in the implementation of a reference method for requirements modelling as
taught in the 2nd year Requirements Engineering course of the BSc Informa-
tion Science curriculum at Radboud University Nijmegen. Please note that the
method as such is not subject to discussion in this paper, just the way of de-
scribing it. This section is based on work by Jeroen Roelofs (Roelofs, 2007).
The original work focused strictly on strategy description; in this paper, some
examples of related goal specification are added. The strategy description was
implemented as a simple but effective web-based hypertext document that
allows “clicking your way through various layers and sub-strategies” in the
model (see below).

7.1 Case study and example: requirements modeling course method

The main goal behind the modelling of strategies of the case method was to
provide a semi-formal, clear structuring and representation thereof that was
usable for reference purposes. This means that the rule-based nature of the
framework was played down, in favour of a clear and usable representation. A
crucial step (and a deviation of the initial framework) was taken by replacing
the plain directed graphs (section 6) by workflow-style models in the formal

 18

YAWL language (Yet Another Workflow Language: van der Aalst and ter
Hofstede, 2005). For a further discussion of this adaptation of the framework,
see section 7.3. Below we show the basic concepts of YAWL (graphically
expressed), which were quite sufficient for our purposes. We trust the reader
will require no further explanation.

Figure 4: basic graphic concepts of YAWL

The main (top) context of the method is depicted in the following schema:

Figure 5: The top strategy context “Create a Requirements Model”

Note that in Figure 5, the square-based YAWL symbols correspond to the
QoMo strategy framework in that they represent states (goals/situations). The
actual strategies match the arrows between states: the actions to be taken to
effectuate the transitions between states. In other words, the diagram is a very
concise way of representing a strategy context. A useful operational addition
to the framework is the use of conditions (circles) for choosing a goal (in go-
ing from “Use Case Survey” to either “Scenario” or “Use Case”): this was
explicitly part of the existing method and possible in YAWL, and therefore
gratefully taken aboard.

 19

All arrows in the diagram have been labelled with activity names (which are
another addition to the framework). Underlying the activities, there are strate-
gies, which in turn consist of one or more steps (another addition). The com-
plete strategy description of the activity “create requirements model” which is
graphically captured by the top context (fig. 5) is the following:

1. Create problem statement
2. Create use case survey
3. Create use case based on use case survey AND create scenario

based on use case
3. Create scenario based on use case survey AND create use case

based on scenario
4. Create domain model based on use case
4. Create domain model based on scenario
5. Create terminological definition
6. Create business rule
7. Create integrated domain model

All steps listed are represented in boldface, which indicates they have under-
lying composed strategies (which implies that each step is linked to a further
activity which is in turn linked to an underlying strategy). Concretely, this
means that in the hypertext version of the description, all steps are clickable
and reveal a new strategy context for each deeper activity. For example, if
“Create domain model based on use case” is clicked, a new (rather smaller)
context diagram in YAWL is shown, with further refinement of what steps to
take (strategy description). We will get back to this particular strategy, but
before we do this, some explanation is in order concerning the irregular num-
bering of steps above. The occasional repetition of numbers (3. 3. and 4. 4.)
serves to match the textual description with the YAWL diagram: the XOR
split and AND-join in figure 5. In addition, the two possible combinations of
steps before the AND-join needed to be combined using an “AND” operator,
but note that the activities linked by AND are separately clickable.

Let us now return to the “Create domain model based on use case“ strategy.
It concerns the creation of a “Domain Model” (ORM) based on a “Use Case”,
which (roughly in line with examples from section 6) boils down to a basic
description of steps in making an ORM diagram based on the interaction be-
tween user and system that is described stepwise in the use case (please note
the participants in the course are familiar with ORM modelling and therefore
need only a sketchy reference process description). The related strategy con-
text is a fragment of the one in the top context:

 20

Figure 6: another strategy context –“create domain model based on use case”

Apart from this context, the underlying strategy is shown:

1. Identify relevant type concepts in use case
2. Create fact types
3. Create example population

• Make sure the example population is consistent with the related
scenario(s)

4. Make constraints complete

Steps one and two, represented in boldface, by way of more activities refer to
more compositional strategies, so they are clickable and each have an underly-
ing strategy. Activities 3. and 4. are represented differently, respectively signi-
fying a guided strategy (underlined and with additional bulleted remark) and
an ad hoc strategy (normal representation). A guided strategy is a strategy of
which a description of some sort is available that helps execute it. In the ex-
ample, this guidance is quite minimal: simply the advice to “Make sure the
example population is consistent with the related scenario(s)”. In view of our
general framework, this guidance could have been anything, e.g. a complex
process description or even an instruction video, but crucially it would not be
part of the compositional structure. In context of our case method, we found
that a few bulleted remarks did nicely.

There still is the ad hoc strategy linked to the activity name “Make constraints
complete” (step 4.). It simply leaves the execution of the activity entirely up
to the executor. As explained in section 6, it is an “empty strategy” –which is
by no means a useless concept because it entails an explicit decision to al-
low/force the executing actor to make up her own mind about the way they
achieve the (sub)goal.

In addition to the strategy context diagrams and the textual strategy descrip-
tions, the hypertext description provided a conceptual diagram (in ORM) for
each strategy, giving additional and crucial insights in concepts mentioned in
the strategy and relations between them. The ORM diagram complementing
the “create domain model based on use case” strategy is given in figure 73. In

3 The ORM diagrams in this paper were produced by means of the NORMA case tool devel-

oped by Terry Halpin and his co-workers at Neumont University:
 http://sourceforge.net/projects/orm.

 21

context of the case, the inclusion of such a diagram had the immediate pur-
pose of clarifying and elaborating on the main concepts used in the strategy
description. In a wider context, and more in line with the more ambitious
goals of the general strategy framework, the ORM diagram provides an excel-
lent basis for the creation of formal rules capturing creation goals. We will
discuss an extension to that wider context in the next section.

Figure 7: ORM diagram complementing the strategy description

7.2 Goal and procedure rules added to the case

The case strategy description as worked out in detail by Roelofs (2007) stops
at providing a workable, well-structured description of the interlinked strate-
gies and concepts of a specific method. Though has been found useful in edu-
cation, the main aim of creating the description was to test the QoMo strategy
framework. However, it could in principle also be a basis for further reaching
tool design involving intelligent, rule-based support combining classical
model checking and dynamic workflow-like guidance. In order to achieve
this, indeed we would need to formalize the goals and process rules of the
strategy descriptions to get rules of the kind suggested in (van Bommel et al.,
2006) and in section 6.4 of this paper. We will go as far as giving semi-formal
verbalizations of the rules.

 22

Fortunately, such rules (closely related to FOL descriptions) are already partly
available even in the case example: they can be derived from, or at least based
on, the ORM diagrams complementing the strategy descriptions, and the
YAWL diagrams that represent the strategy contexts. For example, fig. 6 cor-
responds to a (minimal) strategy frame as introduced in section 6.3. The cor-
responding goals is:

G1 There is at least one Domain Model

This is an instance-level goal. Next, we define the one situation that is rele-
vant to the example strategy “create domain model based on use case”:

S1 There is at least one Use Case

So we assume that one or more Use Cases have already been identified
(presumably as a goal of another strategy) and that these are used as input for
the strategy “create domain model based on use case”. We now can weave a
rule-based definition combining G1, S1, and various C-rules that correspond
to the transitions captured in the strategy description. The key rules raising
demands that correspond to steps in the strategy are represented in boldface.

S1 There is at least one Use Case (situation)
C1 SHOULD LEAD TO
G1 There is at least one Domain Model (main goal)
G1.1 Each Use case has concepts described in exactly one Domain model.
G1.2 Each Domain model describes concepts in exactly one Use case.
C2 SHOULD LEAD TO
G2.1 It is possible that more than one Type concept is part of the same Domain model
and that more than one Domain model includes the same Type concept.
G2.2 Each Type concept, Domain model combination occurs at most once in the
population of Type concept is part of Domain model.
G2.3 Each Type concept is part of some Domain model.
G2.4 Each Domain model includes some Type concept.
G2.5 Each Type concept that is part of an Interaction description of a Use case
that has its concepts described by a Domain model should also be part of that
Domain model (goal underlying step 1).4
C3 SHOULD LEAD TO
G3.1 It is possible that more than one Domain model includes the same Fact type
and that more than one Fact type is part of the same Domain model.
G3.2 Each Fact type, Domain model combination occurs at most once in the popula-
tion of Domain model includes Fact type.
G3.3 Each Domain model includes some Fact type.
G3.4 Each Fact type is part of some Domain model.
G3.5 Each Fact type that is part of a Domain model should include one or more
Type concepts that are part of that same Domain model (goal underlying step 2).
C4 SHOULD LEAD TO
G4 Each Fact type of a Domain Model is populated by one or more Facts of the

4 In expressing this complex rule, we use a controlled language called Object Role Calculus:

see (Hoppenbrouwers et al., 2005c)

 23

Population of that Domain Model.5 (goal underlying step 3)
C4 SHOULD LEAD TO
G5.1 Each Scenario describes concepts of exactly one Population.
G5.2Each Population has concepts described in some Scenario.
G5.3 It is possible that the same Population has concepts described in more than one
Scenario.
G5.4 Each Fact that is part of a Population which describes concepts of a Sce-
nario should include at least one Instance concept that is included in that Sce-
nario. (goal underlying the note with step 3)
C5 SHOULD LEAD TO
G6.1 Each Fact type has some Constraint. (goal underlying step 4)
G6.2 Each Constraint is of exactly one Fact type.
G6.3 It is possible that the same Fact type has more than one Constraint.

Note that further restrictions could be imposed on G6.1, demanding explicitly
that the constraints applying to a fact type should correspond to the population
related to that fact type, and so on. This constraint is left out because it is also
missing in the informal strategy description (step 4).

So far, our definition does not include temporal ordering. The following or-
derings are applied in the C-rules:

C1 no restriction

This reflects the achievement of the main goal, which lies outside the tempo-
ral scope of the strategy realizing it. For the rest, rather unspectacularly:

C2 occurs before C3
C3 occurs before C4
C4 occurs before C5

For a somewhat more interesting example of temporal factors, consider the
XOR-split and AND-join in fig. 5. (splitting at “use case survey” and joining
at “domain model”). Obviously, such split-join constructions involve ordering
of transitions:

C1 occurs before C2
C1 occurs before C3
C2 occurs before C3 (under condition Y) XOR
 C3 occurs before C2 (under condition Z)
C2 AND C3 occur before C6

These expressions of rules covering YAWL semantics are rough indications; a
technical matching with actual YAWL concepts should in fact be performed,
but this is outside the current scope.

5 Rules G4 and G5.4 refer “Facts” and “Instance concepts”, which are not included in figure 7

but in the ORM diagram (not presented in this paper) supporting a different strategy, namely
“create domain model based on scenario”. In the implementation, populations are defined as
included in a domain model.

 24

Finally, note that in the implementation, fulfillment of the main goal, “create
domain model from use case”, is achieved even if the domain model is not
finished. However, the unfinished status of the domain model would lead to a
number of “ToDo” items. This emphasizes that the strategy is a initial crea-
tion strategy (bringing some item into existence), which next entails the pos-
sibility that a number of further steps have to be taken iteratively (triggered by
validity and completeness checks based on, for example, G-rules), hence not
necessarily in a foreseeable order.

7.3 Findings resulting from the implementation

The implementation led to the construction of a specific meta-model reflect-
ing the key concepts used in that implementation (figure 8). We will finish
this section by presenting the most interesting findings in the implementation
with respect to the generic framework, at the hand of fig. 8.

Sources and products
The specific flavour of the implementation led to the introduction of the con-
cepts source, product, intermediate product, raw material, and void. They
were needed to operationalize the only goal/strategy category explicitly used
in the implementation: creation goals. Situations (which are state descriptions)
took the shape of concrete entities (documents) that typically followed each
other up in a straightforward order: void or raw material input leading to
products, possibly after first leading to intermediary products. Clearly, these
concepts classified the items created; such classification emerged as helpful
from the discussions that were part of the implementation process.

Use of YAWL concepts
YAWL concepts (and their graphical representations) were introduced to cap-
ture strategy context, while a simple textual description format was used to
capture the stepwise strategy description. The YAWL concepts were very
helpful in creating easy-to-read context descriptions. In addition, they helped
in operationalizing the concepts required to capture the workflow-like transi-
tions between states (i.e. between creation situations/goals). Whether YAWL
diagrams would be equally useful in describing contexts for other types of
goal (for example, validation goals or argumentation goals) remains to be
explored.

 25

Figure 8: meta-model derived from strategy description case

In addition, YAWL concepts can be used as a basis for formal rule definition
capturing the recommended order of steps. The formal underpinnings of
YAWL would be extra helpful in case of automated (rule-based) implementa-
tion of the strategies, which was still lacking in the prototype (for more on
this, see section 8: the “modelling agenda generator”).

Activity descriptions, names, and steps
A simple but crucial refinement needed to operationalize the general frame-
work was the introduction of the “activity” and “activity name” concepts.
These allowed for the successful implementation of the recursive linking of
activities to strategy contexts to strategies to strategy steps to further
(sub)activities, and so on. We expect this amendment to be useful at the ge-
neric level, and henceforth we will include it in the main framework.

 26

“Immediate” concept not used
The “immediate” concept was in principle included in the case study imple-
mentation but in the end was not used. We still believe it may be required in
some strategy descriptions. The ordering in the creation strategies in the case
is basic step-by-step. In more complex, dynamic setups, the availability of
both immediate and non-immediate ordering still seems useful. However,
admittedly the actual usefulness of the “immediate / non-immediate” distinc-
tion still awaits practical proof.

7.4 Lessons learned from the case study

Apart from he conceptual findings discussed in the previous section, some
other lessons were learned though the case study:

• Syntax-like rules can be successfully applied beyond actual model-
ling language syntax (which amounts to classic model-checking
based on grammar goals) into the realm of more generic “creation
goals” which may concern various sorts of artefacts within a
method.

• The case has shed some light on the fundamental distinction be-
tween creation and iteration in dealing with creation goals. While
iteration is essentially unpredictable and thus can only receive
some ordering (if any at all) through rule-based calculations based
on rules and state descriptions, for initial creation people do very
much like a plain, useful stepwise description of “what to do”: a
reference process. Only after initial creation, the far less obvious it-
eration stage is entered. Also, if a robust rule-based mechanism for
guiding method steps is in place, participants may choose to ignore
the recommendations of the reference process. This can be com-
pared by the workings of a navigation computer that recalculates a
route if a wrong turn has been made.

8 Conclusions and further research

This chapter set out to present a plausible link between the SEQUAL ap-
proach to model product quality and our emerging QoMo approach to process
quality in modeling, and to provide basic concepts and strategies to describe
processes aiming for achievement of QoMo goals. We did not aim to, nor did,
present a full-fledged framework for describing and analyzing modeling proc-
esses, but a basic set of concepts underlying the design of a framework for
capturing and analyzing 2nd order information systems was put forward.

 27

We started out describing the outline of the QoMo framework, based on
knowledge state transitions, and a goal structure for activities-for-modeling.
Such goals were then directly linked to the SEQUAL framework’s main con-
cepts for expressing aspects of model items and its various notions of quality,
based on model items. This resulted in an abstract but reasonably comprehen-
sive set of main modeling process goal types, rooted in a semiotic view of
modeling. We then presented a case implementation of how such goals can be
linked to a rule-based way of describing strategies for modeling, involving
refinements of the framework. We added concrete examples of rules describ-
ing goals and strategies, based on the case implementation.

These process descriptions hinge on strategy descriptions. Such strategies may
be used descriptively, for studying/analyzing real instances of processes, as
well as prescriptively, for the guiding of modeling processes. Descriptive
utility of the preliminary framework is crucial for the quality/evaluation angle
on processes-for-modeling. Study and control of a process requires concrete
concepts describing what happens in it, after which more abstract process
analysis (efficiency, cost/benefit, levels of risk and control) may then follow.
Means for such an analysis were not discussed in this paper: this most cer-
tainly amounts to future work.

Besides continuing development and operationalization of the QoMo strategy
and goal framework for quality modeling by applying it to new and more
complex cases, we need to push forward now to implementations that actively
support our rule-based approach. An initial implementation, using Prolog and
a standard SQL database, is in fact available, but has not been sufficiently
tested and documented yet to report on here. This “modeling agenda genera-
tor” dynamically generates ToDo lists (with ordered ToDo items if C-rules
apply) based on the model states as recorded in the repository. We will finish
and expand this prototype, testing it not only in a technical sense but also its
usability as a system for supporting real specification and modeling processes.
In the longer term, we hope to deploy similar automated devices in CASE-
tool like environments that go beyond the mere model or rule editors available
today, and introduce advanced process-oriented support and guidance to mod-
elers as required in view of their preferences, needs, experience, competen-
cies, and goals.

9 References

Van der Aalst, W. And ter Hostede, A. (2005): YAWL: Yet Another Workflow Lan-
guage. Information systems, 30(4), 245-275.

Bommel, P. van, S.J.B.A. Hoppenbrouwers, H.A. (Erik) Proper, and Th.P. van der
Weide (2006): Exploring Modeling Strategies in a Meta-modeling Context. In
R. Meersman, Z. Tari, and P. Herrero, editors, On the Move to Meaningful In-

 28

ternet Systems 2006: OTM 2006 Workshops, volume 4278 of Lecture Notes in
Computer Science, pages 1128-1137, Berlin, Germany, EU, October/November
2006. Springer.

Chrissis, M.B., M. Konrad, and S. Shrum (2006): CMMI: Guidelines for Process
Integration and Product Improvement, Second Edition. Addison-Wesley.

Halpin, T.A. (2001). Information Modeling and Relational Databases, From Concep-
tual Analysis to Logical Design. Morgan Kaufmann, San Mateo, California,
USA, 2001.

Hoppenbrouwers, S.J.B.A., H.A. (Erik) Proper, and Th.P. van der Weide (2005a): A
Fundamental View on the Process of Conceptual Modeling. In Conceptual
Modeling - ER 2005 - 24 International Conference on Conceptual Modeling,
volume 3716 of Lecture Notes in Computer Science, pages 128-143, June 2005.

Hoppenbrouwers, S.J.B.A., H.A. (Erik) Proper, and Th.P. van der Weide (2005b).
Towards explicit strategies for modeling. In T.A. Halpin, K. Siau, and J. Krog-
stie, editors, Proceedings of the Workshop on Evaluating Modeling Methods for
Systems Analysis and Design (EMMSAD‘05), held in conjunction with the 17th
Conference on Advanced Information Systems 2005 (CAiSE 2005), pages 485-
492, Porto, Portugal, EU, 2005. FEUP, Porto, Portugal, EU.

Hoppenbrouwers, S.J.B.A., H.A. (Erik) Proper, and Th.P. van der Weide (2005c).
Fact Calculus: Using ORM and Lisa–D to Reason About Domains. In R.
Meersman, Z. Tari, and P. Herrero, editors, On the Move to Meaningful Internet
Systems 2005: OTM Workshops – OTM Confederated International Workshops
and Posters, AWeSOMe, CAMS, GADA, MIOS+INTEROP, ORM, PhDS,
SeBGIS, SWWS, and WOSE 2005, Agia Napa, Cyprus, EU, volume 3762 of
Lecture Notes in Computer Science, pages 720–729, Berlin, Germany, Octo-
ber/November 2005: Springer–Verlag.

Kensche, D., C. Quix, M.A. Chatti, and M. Jarke (2005): GeRoMe: A Generic Role
Based Metamodel for Model Management. In R. Meersman, Z. Tari, and P.
Herrero, editors, On the Move to Meaningful Internet Systems 2005: CoopIS,
DOA, and ODBASE – OTM Confederated International Conferences, CoopIS,
DOA, and ODBASE 2005, Proceedings, Part II, Agia Napa, Cyprus, EU, volume
3761 of Lecture Notes in Computer Science, pages 1206–1224. Springer–
Verlag, October/November 2005.

Krogstie, J. (2002). A Semiotic Approach to Quality in Requirements Specifications.
In L. Kecheng, R.J. Clarke, P.B. Andersen, R.K. Stamper, and E.-S. Abou-Zeid,
editors, Proceedings of the IFIP TC8 / WG8.1 Working Conference on Organi-
zational Semiotics: Evolving a Science of Information Systems, pages 231-250,
Deventer, The Netherlands, EU, 2002. Kluwer.

Krogstie, J., and Jorgensen H.D (2002): Quality of Interactive Models. In M. Genero,
Grandi. F., W.-J. van den Heuvel, J. Krogstie, K. Lyytinen, H.C. Mayr, J. Nel-
son, A. Olivé, M. Piattine, G. Poels, J. Roddick, K. Siau, M. Yoshikawa, and
E.S.K. Yu, editors, 21st International Conference on Conceptual Modeling (ER
2002), volume 2503 of Lecture Notes in Computer Science, pages 351-363, Ber-
lin, Germany, EU, 2002. Springer.

Krogstie, J., G. Sindre, and H. Jorgensen (2006). Process models representing knowl-
edge for action: a revised quality framework. European Journal of Information
Systems, 15:91-102, 2006.

 29

Mirbel, I., and J. Ralyté (2006): Situational Method Engineering: combining assem-
bly-based and roadmap-driven approaches. Requirements Engineering, 11:58-
78, 2006.

Moody, D.L., (2006): Theoretical and practical issues in evaluating the quality of
conceptual models: current state and future directions. Data and Knowledge En-
gineering, (55):243-276, 2006.

Nelson, H.J., and Monarchi, D.E. (2007): “Ensuring the Quality of Conceptual Repre-
sentations”. In: Software Quality Journal, 15:213-233. Springer

Object Management Group OMG (2001): Common Warehouse Metamodel (CWM)
metamodel, version 1.0, Februari 2001.

Poels, G., Nelson, J., Genero, M., and Piattini, M. (2003): “Quality in Conceptual
Modeling – New Research Directions”. In: A. Olivé (Eds.): ER 2003 Ws, LNCS
2784, pp. 243-250. Springer.

Ralyté, J., Brinkkemper, S., and Henderson-Sellers, B., eds., (2007): Situational
Method Engineering: Fundamentals and Experiences. Proceedings of the IFIP
WG 8.1 Working Conference, 12-14 September 2007, Geneva, Switzerland. Se-
ries: IFIP International Federation for Information Processing , Vol. 244.

Roelofs, J. (2007): Specificatie van Strategieën voor Requirement Engineering. Mas-
ter’s thesis, Radboud University Nijmegen; in Dutch.

Saeki, M., (1995): Object–Oriented Meta Modelling. In M.P. Papazoglou, editor,
Proceedings of the OOER‘95, 14th International Object–Oriented and Entity–
Relationship Model ling Conference, Gold Coast, Queensland, Australia, vol-
ume 1021 of Lecture Notes in Computer Science, pages 250–259, Berlin, Ger-
many, EU, December 1995. Springer.

Sindre, G. and J. Krogstie (1995): “Process heuristics to achieve requirements specifi-
cation of feasible quality”. In: Second International Workshop on Requirements
Engineering: Foundations for Software Quality (REFSQ'95), Jyväskylä, Fin-
land.

