

4 Communication of Enterprise Architectures

This chapter presents a communication perspective of enterprise architec-
tures. We provide both a theoretical and a practical perspective of the is-

sues involved in the communication of enterprise architectures. The gen-

eral idea is that the chapter helps the reader see how architecture
development and modelling can be optimally supported by discussing why

certain forms of modelling are used in some situation and how this fits the

goals in the process. The theoretical perspective will focus on communica-

tion during system development in general, where the word system should
be interpreted as any open and active system, consisting of both human

and computerised actors, that is purposely designed. The practical perspec-

tive will take shape as a set of practical guidelines that should aid archi-
tects in the selection and definition of architecture description approaches

that are apt for a specific (communication) context.

4.1 Introduction

Describing architectures is all about communication. If some architecture

description is not used as a means of communication in some shape or

form, then this description should not have been created in the first place.

Whatever the role of an architecture description is, it always involves
some communicative aspect. Consider, as an illustration, the potential uses

of architecture descriptions as identified in the IEEE 1471 standard (IEEE

Computer Society 2000):

− Expression of the system and its (potential) evolution.

− Analysis of alternative architectures.

− Business planning for transition from a legacy architecture to a new ar-

chitecture.

− Communications among organisations involved in the development,

production, fielding, operation, and maintenance of a system.

− Communications between acquirers and developers as a part of contract

negotiations.

68 Communication of Enterprise Architectures

− Criteria for certifying conformance of implementations to the architec-

ture.

− Development and maintenance documentation, including material for

reuse repositories and training material.

− Input to subsequent system design and development activities.

− Input to system generation and analysis tools.

− Operational and infrastructure support; configuration management and

repair; redesign and maintenance of systems, subsystems, and compo-
nents.

− Planning and budget support.

− Preparation of acquisition documents (e.g., requests for proposal and

statements of work).

− Review, analysis, and evaluation of the system across the life cycle.

− Specification for a group of systems sharing a common set of features,

(e.g., product lines).

Each of these uses of architecture involves forms of communication. In

this vein, in this chapter we present a ‘communication-aware’ perspective

of enterprise architectures. In doing so, we provide both a theoretical and a
practical perspective of the issues involved in the communication of enter-

prise architectures. The theoretical perspective will focus on communica-

tion during system development in general, where the word system should

be interpreted as any open and active system, consisting of both human
and computerised actors, that is purposely designed. The practical perspec-

tive will take shape as a set of practical guidelines that should aid archi-

tects in the selection (and definition) of architecture description languages
and approaches that are apt for a specific (communication) situation.

Architecture descriptions are used to communicate the architecture of a

planned or pre-existing system. This could be a system that is part of an
enterprise, an organisation, a business, an information system, a software

system, or the hardware infrastructure. The communication about the sys-

tem and its architecture is likely to take place between different stake-

holders of that system.
In this book, the primary focus is on architectural models of a graphical

(as opposed to textual or verbal) nature. One may refer to these as architec-

tural models ‘in the narrow sense’. In this chapter, however, we are con-
cerned with architecture descriptions in ‘the broader sense’. In other

words, textual, verbal, or any other types of architecture descriptions are

included.

At present, many description languages are already available to archi-
tects, while many more are being created by both academia and industry.

Why all these languages? How does one select the language that is most

System Development as a Knowledge Transformation Process 69

apt in a given situation? Such questions beg for a well-conceived answer.

In line with the old adage ‘practice what you preach’, we argue that just as

proper requirements engineering is needed for the development of systems,
proper requirements should also be formulated for languages and ap-

proaches that are to used as vehicles for communication during system de-

velopment. In formulating these requirements, several factors should be
taken into account, such as the development goals, the communication

goals, the concerns, personal goals, abilities, and attitudes of the actors in-

volved, etc.

We set out to provide a theoretical underpinning of the issues involved,
as well as practical guidelines that will aid architects in selecting the best

approach for their architectural communicative needs. We will therefore

start out with a theoretical exploration of the issues involved in communi-
cation during system development (Sects. 4.2 and 4.3), followed by the

application of this exploration to the field of enterprise architecture (Sect.

4.4).

4.2 System Development as a Knowledge Transformation

Process

In essence, we regard system development as a knowledge transformation

process whereby conversations are used to share and create knowledge

pertaining to both the system being developed, as well as the development

process itself. The notion of ‘conversation’ should be interpreted here in
the broadest sense, ranging from a single person producing an (architec-

tural) description, via a one-on-one design or elicitation session, to a work-

shop with several stakeholders, and even the widespread dissemination of
definitive architectures. This way of thinking provides a frame of thought

with which one can better understand the (communicative) requirements

posed on architecture description languages.

4.2.1 System Development Community

Given our focus on communication, it is important to identify the actors

that can play a role in the communication that takes place during the sys-

tem development process. These actors are likely to have some stake with
regards to the system being developed. Examples of such actors are prob-

lem owners, prospective actors in the future system (such as the future ‘us-

ers’ of the system), domain experts, sponsors, architects, engineers, busi-

ness analysts, etc.

70 Communication of Enterprise Architectures

These actors, however, are not the only ‘objects’ playing an important

role in system development. Another important class of objects are the

many different documents, models, forms, etc., that represent bits and
pieces of knowledge pertaining to the system that is being developed. This

entire group of objects, and the different roles they can play, is what we

shall refer to as a system development community.

System development community: a group of objects, such as ac-

tors and representations, which are involved in the development of a

system.

(We will clarify below why we regard documents as being part of the com-
munity.)

The actors in a system development community will (typically as a con-

sequence of their stakes) have some specific interests with regards to the
system being developed. This interest implies a sub-interest with regards to

(the contents of) the system descriptions that are communicated within the

community. This interest, in line with IEEE 1471 (IEEE Computer Society

2000), is referred to as the concern of stakeholders

Concern: an interest of a stakeholder with regards to the architec-

ture description of some system, resulting from the stakeholder’s
goals, and the present or future role(s) played by the system in rela-

tion to these goals.

Some example of concerns are:

− The current situation with regards to the computerised support of a busi-

ness process.

− The requirements of a specific stakeholder with regards to the desired

situation.

− The improvements, which a new system may bring, to a pre-existing

situation in relation to the costs of acquiring the system.

− The potential impact of a new system on the activities of a prospective

user.

− The potential impact of a new system on the work of the system admin-

istrators that are to maintain the new system.

4.2.2 System Development Knowledge

The system development community harbours knowledge about the sys-

tem being developed. The communication occurring within a system de-

velopment community essentially is aimed at creating, furthering, and dis-

System Development as a Knowledge Transformation Process 71

seminating this knowledge. Depending on their concerns, stakeholders will

be interested in different knowledge topics pertaining to the system being

developed.
We will now briefly explore the kinds of knowledge that are relevant to

a system and its development; in other words, the knowledge topics that

can be distinguished. In the next subsections, we will discuss in more de-
tail in what ways this knowledge can be made (more) explicit.

During system development, members of the system development

community will create and exchange knowledge pertaining to different

topics. We can make a first distinction between the target domain pertain-
ing to the system being developed and the project domain, about the de-

velopment process itself. We have borrowed these terms from the Informa-

tion Services Procurement Library (ISPL) (Franckson and Verhoef 1999).
For both of these knowledge domains, further refinements can be made

with regards to the possible topics. We identify the following additional

characterisations:

− Perspective: Artefacts, such as systems, can be considered from differ-

ent perspectives. Some examples are:

• business, application, and infrastructure aspects of a (computerised)

information system;

• social, symbolical, and physical aspects of a system;

• process, information, actors, and technology featuring in a system.

In Chap. 7, the notion of ‘viewpoint’ will be discussed in depth. A

viewpoint takes a specific perspective of a system. The concept of
viewpoint is, however, not synonymous with perspective as the former

includes some additional items, such as the modelling language that is to

be used to describe the system from the given perspective. In contrast, a
perspective is purely ‘topical’.

− Scope: Given a domain, such as a system or a development project, we

can identify several scopes when approaching the domain: enterprise-

wide, department-specific, task-specific, etc.

− Design chain: When considering the design of some artefact, a distinc-

tion can be made between:

• Purpose: to what purpose the artefact is needed.

• Functionality: what functionality the artefact should provide to its en-

vironment.

• Design: how it should realise this functionality.

• Quality: how well it should do so.

• Costs: at what cost it may do so, and may be constructed.

72 Communication of Enterprise Architectures

This distinction applies to the target domain as well as the project do-

main. In the latter case, the project’s execution plan/strategy is the de-

signed artefact.
Based on the above distinction, knowledge topics can be character-

ised in terms of their focus on, for example, functionality or quality in

isolation, or their focus on bridging the gaps between purpose, function-
ality, and design in terms of design rationale.

− Historical perspective: Given an artefact with a design, one may con-

sider different versions of this artefact’s design over time.

In the case of a system, one may consider the current version, the ver-
sion that will be in existence after the development project has finished,

and the (sketchy) version of the ‘future’ system that serves as a naviga-

tional beacon in a sea of possibilities to guide future development. In the

case of a development process, one may consider the execution
plan/strategy that is being used at the moment, or the plan/strategy that

was used before.

− Abstraction level: When considering a domain, one may do so at sev-

eral levels of abstraction. Various forms of abstraction can be distin-
guished: for example, type-instance, generalisation/is-a, encapsulation,

and hiding of implementation details.

As mentioned before, depending on their concerns, stakeholders may be

interested in different knowledge topics. For example, a financial control-
ler will be interested in an investment perspective of the overall scope of a

future system, a designer will be interested in all aspects of the design

chain from different perspectives, etc.

4.2.3 Explicitness of Knowledge

The actors in a system development community have a need to communi-

cate system development knowledge among each other. In the field of

knowledge management, a key distinction is made between explicit and
tacit knowledge (Nonaka and Takeuchi 1991). Explicit knowledge refers to

knowledge that can be externalised in terms of some representation. With

representation of knowledge, we refer to the process of encoding knowl-
edge in terms of some language on some medium, e.g., creating an archi-

tecture model.

However, not all forms of knowledge lend themselves well to explicit

representation. For example, the ability to maintain one’s balance on a bi-
cycle is learned by (painful) trial and error rather than reading instructions.

This knowledge is actively and personally passed on from generation to

generation: parents assist their children in this process by encouraging

System Development as a Knowledge Transformation Process 73

them and by protecting them from serious injury during the trial-and-error

process. In Nonaka and Takeuchi (1991), this is referred to as socialising

as a means to transfer knowledge that cannot be made explicit. The type of
knowledge concerned, which cannot easily be represented on a medium, is

referred to as tacit knowledge.

Our focus is on the communication of system development knowledge
by way of explicit representations, in other words explicit knowledge. In

the context of this book, these representations mainly take the form of ar-

chitecture descriptions. As discussed in Sect. 4.1, our initial theoretical

considerations cover development of systems in general. In accordance
with this generalisation we will, for now, use the terms systems description

and system description language rather than the terms architecture de-

scription and architecture description language.
System descriptions are essentially forms of explicit knowledge per-

taining to an existing/future system: its design, the development process by

which it was/is to be created, the underlying considerations, etc. Given this
focus, we can make a more precise classification with regards to what we

mean by ‘explicitness’. Based on Franckson and Verhoef (1999) and

Proper (2001), we identify the following dimensions of explicitness for

representations of system development knowledge:

− Formality: The degree of formality indicates the type of language used

to represent the knowledge. Such a language could be formal, in other

words a language with an underlying well-defined semantics in some

mathematical domain, or it could be informal – not mathematically un-
derpinned, typically natural language, graphical illustrations, anima-

tions, etc.

− Quantifiability: Different aspects of the designed artefact, be it (part of)

the target or the project domain, may be quantified. Quantification may
be expressed in terms of volume, capacity, workload, effort, resource,

usage, time, duration, frequency, etc.

− Executability: The represented knowledge may, where it concerns arte-

facts with operational behaviour, be explicit enough so as to allow for

execution. This execution may take the form of a simulation, a proto-
type, generated animations, or even fully operational behaviour based

on executable specifications.

− Comprehensibility: The knowledge representation may not be compre-

hensible to the indented audience. Tuning the required level of compre-
hensibility of the representation, in particular the representation lan-

guage used, is crucial for effective communication. The representation

language may offer special constructs to increase comprehension, such

74 Communication of Enterprise Architectures

as stepwise refinements, grouping/clustering of topically related

items/statements, etc.

− Completeness: The knowledge representation may be complete, incom-

plete, or overcomplete with regards to the knowledge topic (see previ-
ous subsection) it intends to cover.

4.2.4 Transformations of Knowledge

During the development of a system, the knowledge about the system and

its development will evolve. New insights emerge, designs are created,
views are shared, opinions are formed, design decisions made, etc. These

all lead to transformations of the ‘knowledge state’ of the development

community as a whole. The transformations of this ‘knowledge state’ are
brought about by conversations. This immediately raises the question:

what are these ‘knowledge states’?

The discussion above already provides us with some insight into the an-
swer to this question. The representations and the actors in a development

community can both be seen as harbouring certain knowledge topics. As

such, both representations and actors are (potential) knowledge carriers.

Knowledge topics refer to some sub-domain of the system being devel-
oped and/or its development process. The knowledge topics can therefore

be classified further in terms of their focus, scope, etc., as discussed in

Sect. 4.2.2.
The actual knowledge that is harboured by a knowledge carrier is not

explicitly taken into account. The knowledge that is available from/on/in a

knowledge carrier is a subjective notion. An aspect of this knowledge that
we can reason about more objectively is its level of explicitness, as we

have seen in Sect. 4.2.3.

The knowledge as it is present in a development community can be seen

to evolve through a number of states. Knowledge first needs to be intro-
duced into the community, either by creating the knowledge internally or

importing it from outside the community. Once the knowledge has been

introduced into a community, it can be shared among members of that
community. Sharing knowledge between different actors may progress

through a number of stages. We distinguish three major stages:

− Aware: An actor may become aware of (possible) knowledge by way of

the sharing by another actor.

− Agreed: Once knowledge is shared, an actor can make up his or her

own mind about it, and decide whether or not to agree to the knowledge
shared.

Conversation Strategies 75

− Committed: Actors who agree to a specific knowledge topic may de-

cide actually to commit to this knowledge. In other words, they may de-

cide to adapt their future behaviour in accordance with this knowledge.

There is no way to determine objectively and absolutely the level of
awareness, agreement, or commitment of a given set of actors. It is in the

eyes of the beholder. Since these ‘beholders’ are actors in the system de-

velopment community, we can safely assume that some of them will be
able to (and have a reason to) judge the level of sharing of knowledge be-

tween sets of actors, and communicate about this.

4.3 Conversation Strategies

The knowledge transformations as discussed in the previous section are

brought about by conversations. These conversations may range from

‘atomic’ actions involving a small number of actors, via discussions and

workgroups, to the development process as a whole. This has been illus-
trated informally in Fig. 4.1.

Fig. 4.1. Example sequence of conversations.

Each conversation is presumed to have some knowledge goal: a knowl-

edge state which the conversation aims to achieve (or to maintain). In

achieving this goal, a conversation will follow a conversation strategy.
Such a strategy is needed to achieve the goal of the conversation, starting

out from the current state.

Conversations take place in some situation that may limit the execution
of the conversation. We may characterise such a situation further in terms

of situational factors:

− Availability of resources: Refers to the availability of resources that

can be used in a conversation. The availability of resources can be re-

76 Communication of Enterprise Architectures

fined to more specific factors such as time for execution, actors, intel-

lectual capacities needed from the actors, or financial means.

− Complexity: The resources needed for the conversation, the knowledge

being conversed about, etc., will exhibit a certain level of complexity.
This complexity also influences the conversation strategy to be fol-

lowed. Examples of such complexity factors, inspired by Franckson and

Verhoef (1999), are the heterogeneity of the actors involved, the quan-
tity of actors, complexity of the technology used, the complexity of the

knowledge being conversed about, and the size of the gap between the

initial knowledge state and the desired knowledge state.

− Uncertainty: If you want to determine a conversation strategy fit for a

given situation, you have to make assumptions about the knowledge

goal, the initial state, the availability of resources, as well as the com-

plexities of these factors. During the execution of a conversation, some

of these assumptions may prove to be wrong. For example, the com-
mitment of certain actors involved may be lower than anticipated (initial

state); materials needed for a workshop may not be available on time

(resources); during a requirements elicitation session it may come to the
fore that the actors involved do not (yet) have enough knowledge about

the future system and its impact to formulate/reflect on the requirements

of the future system (initial state).

Note that it may actually be part of a conversation strategy to first ini-
tiate conversations that aim to reduce these uncertainties, in order to re-

duce potential adverse consequences.

If you formulate a conversation strategy, you should take all of the above-
mentioned factors into account. A conversation strategy should typically

cover at least the following elements:

− Execution plan: As we said before, a conversation can be composed of

sub-conversations. Each of these sub-conversations focuses on a sub-
goal, but they all contribute towards the goal of the conversation as a

whole. The execution plan of a (composed!) conversation consists of a

set of sub-conversations, together with a planned execution order.

− Description languages: The description languages to be used in the

conversation(s).

− Media: The kind of media to be used during the conversation(s).

− Cognitive mode: The cognitive mode refers to the way in which knowl-

edge is gathered or processed by the actors involved in a conversation.

We distinguish two options:

• Analytical approach: When information is processed analytically, the

available information is simplified through abstraction in order to

Conversation Strategies 77

reach a deeper and more invariant understanding. An analytical ap-

proach is typically used to handle complexity.

• Experimental approach: When using an experimental approach the

project actors learn from doing experiments. The purpose is to reduce
uncertainties by generating more information. Experiments can, for

example, be based on prototypes, mock-ups, benchmark tests of mi-

grated components, or other kinds of techniques which make the re-
sults of migration scenarios visible.

You may need to combine the two cognitive modes in specific situa-

tions, in particular in the case of conversations that are composed of
several smaller sub-conversations.

− Social mode: The social mode is the way in which the actors executing

the system development process collaborate with the actors from the

business domain. We distinguish two options:

• Expert-driven: In an expert-driven approach, project actors (the ex-

perts) will produce descriptions on the basis of their own expertise,
and interviews and observations of business actors. The descriptions

can then be delivered to the business actors for remarks or approval.

• Participatory: In a participatory approach, the project actors produce

the descriptions in close cooperation with some or all the business ac-
tors, e.g., in workshops with presentations, discussions and design

decisions. A participatory approach may allow the acquisition of

knowledge, the refinement of requirements and the facilitation of or-

ganisational change.

− Communication mode: We can distinguish a small number of basic

patterns of communication here, as covered by combinations of the fol-

lowing five factors:

• Speaker–hearer ratio: Most typically many to one, one to many, one

to one, many to many.

• Response: Simply whether or not an answer is expected from the

hearer; if a response is indeed expected, one response may lead to a

further response, leading to dialogue and turn taking.

• Time lag: Whether or not communication takes some time between

‘speaking’ and ‘hearing’. Consider the difference between a tele-
phone call and an e-mail message.

• Locality: Whether or not there is a perceived distance between par-

ticipants. Note that this is a relative notion; two people communi-

cating via videophone between Tokyo and Amsterdam may feel

‘close’, while two people from different departments housed in the
same building may feel ‘distant’. Distance can be not only physical,

but also cultural.

78 Communication of Enterprise Architectures

• Persistency: Whether or not a message can be kept after communica-

tion, i.e., can be ‘reread’. This is of course closely linked to the me-

dium used, but it may also be related to the status of a document: per-

sistency of a ‘temporary document’ or intermediary version may
actually be counterproductive.

We can use combinations of these factors to typify many different

modes of communication, which can have a major impact on the re-
sources required for communication and the likelihood that a knowledge

goal is reached. For example, one-to-many communication is relatively

efficient and effective, assuming that no immediate (n:1) response is
given; however, if a time lag is added, n:1 responses become possible

but the one participant will have to invest much time to digest all these

responses. Also, if n:1 responses are given rapidly, but the communica-

tion is persistent (e.g., people respond through altered copies of a file),
then these responses are no problem except for the load on the recipient.

And if many relatively distant people participate, in-depth and context-

dependent communication will be difficult.
In a modelling context, not all combinations (communication modes)

will be relevant, but it is still vital to consider things like ‘Do I expect

anyone to respond to this model?’; ‘How many people will have to re-

spond?’; ‘How distant are they?’; ‘How quick will the response (have
to) be?’; ‘How long will it take me to process responses?’, etc.

A summary of this discussion is provided by Fig. 4.2. Given a knowledge

goal, an initial state, and conversation situation, a conversation strategy
can be determined, which should lead us from the initial state to the

knowledge state as desired by the knowledge goal, taking into account the

conversation situation at hand.

Knowledge goal

Initial state

Conversation situation

Conversation strategy⇒ ? ⇒

Fig. 4.2. From knowledge goal to conversation strategy.

4.4 Architectural Conversations

After the theoretical discussions of the previous sections, we now return to

the practice of communicating enterprise architectures. The situation as
depicted in Sect. 4.2 may indeed portray the underlying mechanics in the-

Architectural Conversations 79

ory, but it still leaves practitioners with the question of how actually to

produce such a conversation strategy. In all fairness, current research into

these matters is still in its initial stages. The theoretical model as discussed
above will have to be scientifically validated and refined. In addition, prac-

tical heuristics should be formulated, matching elements from conversation

strategies to conversation situations and thus addressing the gap between
the knowledge goal and the initial state.

Even so, we can already provide practitioners with some guidance in se-

lecting conversation strategies to communicate about enterprise archi-

tectures, by reducing the discussion of selecting a conversation strategy to
the selection of a class of architectural conversation in conjunction with an

appropriate architectural viewpoint. To direct this selection, we will define

a number of classes of architectural knowledge goals. The selected view-
points identify what shall be conversed about, and what language (and

language conventions) shall be used to do so, while the selected conversa-

tion technique identifies the style of conversation that is to be used.
So this section provides a discussion of the classes of architectural

knowledge goals and conversation techniques that we distinguish within

the context of enterprise architecture, as well as their relationship. In Chap.

7, the notion of viewpoint will be discussed in more detail, and additional
heuristics on the selection of viewpoints and conversation types will be

given.

4.4.1 Knowledge Goals

In Sect. 4.2.4, we identified three major stages in communicating knowl-

edge: awareness, agreement, and commitment. Based on these and on the

levels of sharing of knowledge and explicitness of knowledge as identified

in Sect. 4.2.3, we can identify the following classes of knowledge goals
that you may want to achieve in a conversation:

− Introduction of knowledge: This refers to situations where there is a

need to introduce into or create new knowledge in a (part of a) develop-

ment community. These kinds of knowledge goals typically lead to
training or awareness sessions.

− Agreement to knowledge: With this class of knowledge goals, we refer

to situations in which the mutual agreement of different stakeholders

(with their own specific stakes and concerns!) needs to be improved or

validated.

− Commitment to knowledge: In these cases, the knowledge goal goes

beyond that of achieving agreement. Stakeholders should be willing to

act upon the knowledge they agree to.

80 Communication of Enterprise Architectures

Note that the introduction of knowledge, as described above, may pertain

to a subset of the development community. At the start of a system devel-

opment project, the development team may not (yet!) have knowledge per-
taining to the specific application domain. Domain experts and other in-

formants, by nature of their roles, do have this knowledge. The develop-

ment community as a whole comprises at least both the development team
and the domain experts. A domain analysis session involving, for example,

a business analyst and a domain expert introduces (part of) the domain

knowledge of the domain expert into the development team.

4.4.2 Conversation Techniques

In architecture development, we find a number of common conversation

techniques where it concerns the communication of architectural models:

− Brown-paper session: Structured brainstorm-like group session (up to

about 15 people) in which items (keywords or short phrases) are elicited
from the individuals in the group in answer to a question such as: ‘What

are the key functionality issues in our current IT architecture?’ Typi-

cally, every individual item is written on a small adhesive note (‘Pos-

tIt’). The items are then collected on a sheet of paper (traditionally of
the cheap brown kind) and, by means of an open and creative group

process, structured and categorised. This may involve adding, deleting,

merging, or changing items. Usually, a mediator or facilitator is in-
volved.

− Elicitation interview: An interview where an analyst puts informative

questions to the informants. The aim is to gather knowledge from the in-

formants. Interviews can be more or less ‘open’: they can be strictly fo-
cused or guided, but the conversation can also be left open to go where

the interest of the interviewer or informants leads it.

− Workshop: Involves one to, say, fifteen people, working on a model or

view interactively, mediated by an architect or analyst. This class also

encompasses so-called joint modelling sessions. A popular, effective,
and realistic technique is to project a view or model and have a facilita-

tor adapt it in full view of the participants, thus generating immediate

feedback. With a few participants, a workshop can of course simply take
place behind a screen and keyboard.

− Validation interview: An interview where an analyst will aim to find

out if the view or model matches the views and expectations of an in-

formant. This could be a view or model that has been communicated to
the informants beforehand, or during the interview. A validation inter-

view will typically be much more ‘closed’ than an elicitation interview:

Architectural Conversations 81

there will have to be some systematic approach by which validity of the

view or model is checked.

− Committing review: A group of stakeholders are presented with a num-

ber of alternative models or views and their impact. They are requested
to select one alternative and commit to this alternative based on their in-

sights into the potential impact. This typically involves a formal deci-

sion-making processes (Franckson and Verhoef 1999).

− Presentation: Involves one to three people presenting a model or view

to a group of, say, up to a hundred people. One may decide to elicit

feedback, but this is usually gathered afterwards, in a more personal

way, or at least 1:1 (e.g., through a feedback round).

− Mailing: A form of ‘mass’ communication, where a model or view is

presented or handed over to a large number of people. Feedback may or

may not be encouraged (feedback round).

Even though we have not yet discussed viewpoints, we can already relate

the identified knowledge goals to the conversation techniques. This is
shown in Table 4.1, which is based on interviews and discussions with

many architects from industry.

Table 4.1. Knowledge goals and conversation techniques.

 Knowledge Goal�

Conversation Technique� Introduce� Agree� Commit�

Brown-paper session � ++� +� -�

Elicitation interview � ++� +� -�

Workshop � +� ++� +�

Validation interview � -� ++� +�

Committing review � -� -� ++�

Presentation � ++� -� -�

Mailing � +� -� -�

A + indicates that a certain conversation class is well suited for the selected tech-

nique of knowledge goals, while ++ indicates that it is particularly well suited. On

the other hand, a - indicates that a certain conversation technique is ill-suited for

the selected class of knowledge goals, while -- indicates that it is particularly ill-

suited.

This table can fruitfully be used in practice to choose the conversation

technique for the task and knowledge goal at hand. In Chap. 7, we will

82 Communication of Enterprise Architectures

have a more in-depth look at the use of viewpoints to assist communica-

tion between the different stakeholders.

4.5 Summary

In the previous sections, we have presented both a theoretical and a practi-

cal perspective of the issues involved in the communication of enterprise

architectures. The theoretical perspective described the communication
during system development in general. Based on the one hand on this theo-

retical view and on the other hand on the experiences of architects, the

practical perspective presented a number of practical guidelines and con-
versation techniques that should aid architects in the selection and defini-

tion of architecture description approaches that are fit for a specific com-

munication situation.

