
Knowledge-Based Systems 21 (2008) 764–785
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys
Matching cognitive characteristics of actors and tasks in information
systems engineering

S.J. Overbeek a,*, P. van Bommel b, H.A. (Erik) Proper b

a e-office B.V., Duwboot 20, 3991 CD Houten, The Netherlands
b Institute for Computing and Information Sciences, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
a r t i c l e i n f o

Article history:
Received 21 November 2007
Accepted 28 March 2008
Available online 4 April 2008

Keywords:
Cognitive characteristics
Fuzzy match assessments
Information systems
Matchmaking
Task allocation
0950-7051/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.knosys.2008.03.032

* Corresponding author. Fax: +3 184 758 5561.
E-mail addresses: Sietse.Overbeek@e-office.com (S

cs.ru.nl (P. van Bommel), E.Proper@cs.ru.nl (H.A. (Erik
a b s t r a c t

In daily practice, discrepancies may exist in the suitability match of actors and the tasks that have been
allocated to them. A formal framework for cognitive matchmaking and a prototype implementation are
introduced as a possible solution to improve the fit between actors and tasks. A case study has been con-
ducted to clarify how the proposed cognitive matchmaking approach can be utilized in information sys-
tems engineering. The inductive-hypothetical research strategy has been applied as an overall research
approach. A separate iteration of the strategy has been applied within the case study.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The importance of an actor’s (i.e. a human or a computer) abil-
ities to acquire, apply and test knowledge increases due to, e.g.
growing product complexity, the move toward globalization, the
emergence of virtual communities and organizations, and the in-
crease in focus on customer orientation [1]. When the pressure
to acquire, apply and test more knowledge increases, actors strug-
gle to manage their basic cognitive functions like, e.g. the will-
power to fulfill a task or maintaining awareness of the
requirements to fulfill a task. These cognitive functions are also re-
ferred to as volition and sentience, respectively, in cognitive litera-
ture [2,3]. A knowledge intensive task is a task for which
acquisition, application or testing of knowledge is necessary in or-
der to successfully fulfill the task. The framework discussed in this
paper matches cognitive characteristics supplied by actors and the
cognitive characteristics required to fulfill tasks. This may achieve
a better fit between actors and tasks. Difficulties to control basic
cognitive functions influences practice and potentially threatens
the success of task fulfillment [4].

Research in cognitive psychology has demonstrated that indi-
vidual knowledge processing is negatively influenced when experi-
encing an overload of knowledge that needs to be processed. For
example, a burden of knowledge processing events may cause ac-
ll rights reserved.

.J. Overbeek), P.vanBommel@
) Proper).
tors to underestimate the rate of events [5] and to be overconfident
[6]. Within the enterprise, the benefits of cognitive matchmaking
can be found in at least four areas:

Business process reengineering. BPR consists of computer-aided
design of processes and automatic generation of process models
to improve customer service [7]. The design and creation of pro-
cesses and process models may be improved if the business pro-
cess modeler knows beforehand which available actors best fit
the tasks that need to be fulfilled as part of a newly designed busi-
ness process.

Information systems engineering. Information systems engineer-
ing (ISE) is related with the conceptualization, design, develop-
ment and implementation of information systems to support
business functions [8]. Cognitive matchmaking can be utilized to
support in allocating tasks to actors that are involved in every
ISE phase.

Multi-agent systems. Multi-agent systems incorporate several
software agents that may work together to assist humans in per-
forming their tasks [9]. One way of providing assistance is to match
tasks with human actors to understand which tasks fit best with
which human actors.

Workflow management. The primary task of a workflow manage-
ment system is to enact case-driven business processes by joining
several perspectives [10]. One of these perspectives is the task per-
spective. This perspective describes the elementary operations per-
formed by actors while executing a task for a specific case. An
example of a case is a tax declaration. Integration of cognitive
matchmaking in a workflow management system may prescribe

mailto:Sietse.Overbeek@e-office.com
mailto:P.vanBommel@ cs.ru.nl
mailto:P.vanBommel@ cs.ru.nl
mailto:E.Proper@cs.ru.nl
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785 765
which available actors fit best with the tasks that are part of a case.
This may improve the allocation of tasks to actors while enacting a
business process.

The research reported in this paper is specifically concerned
with the matching of cognitive characteristics required to fulfill a
certain task instance with the cognitive characteristics actually
possessed by an actor. There are three main goals of this paper.
First, a formal theoretical framework of cognitive matchmaking is
presented, which includes mathematical functions to calculate
the match of an actor and a task. Second, the prototype implemen-
tation of this framework is discussed. In this prototype, the func-
tions of the framework have been implemented resulting in a
Web-based cognitive matchmaking application. Lastly, the results
of a conducted explorative case study are discussed which show
how the system can be utilized in information systems engineer-
ing. The main concepts illustrated in Fig. 1 provide a first overview
of the aspects that are taken into consideration. Fig. 1 shows that
an actor type and a task type can be instantiated by an actor,
respectively, a task instance. This means that an actor can be clas-
sified as a certain type and a task instance can be classified as a cer-
tain type. While fulfilling a task instance, an actor supplies
cognitive characteristics. Fig. 1 shows that the task instance that
is fulfilled by the actor demands cognitive characteristics for suc-
cessful fulfillment. The match of supply and demand can then be
studied. In [11], we have already provided a preliminary discussion
about several types of knowledge intensive tasks, each characterized
by their characteristics. This earlier work about the characteriza-
tion of task types is used as input for the formal theoretical frame-
work presented here. The results from our initial work about
cognitive matchmaking discussed in [12] are also integrated and
extended in this paper.

The paper is structured as follows. Several cognitive settings of
actors are discussed in Section 3 to be able to characterize the dif-
ferent actors fulfilling a task instance. A framework of cognitive
matchmaking is introduced in Section 5 to be able to compute a
match of the supply of certain cognitive characteristics by an actor
and the demanded cognitive characteristics to fulfill a task in-
stance. The theory is materialized throughout this section in a run-
ning example by matching an actor type from the theory of Section
3 with a task type from theory as discussed in Section 4. The frame-
work includes functions that calculate a match based on numerical
values. An extension of the theory that is able to present linguistic
match values is discussed in Section 6. However, this extension has
not yet been incorporated in the prototype of a cognitive match-
maker system, which is elaborated in Section 7. The cognitive
matchmaking framework and the prototype are evaluated in Sec-
tion 8 by means of a case study in information systems engineer-
ing. Section 9 briefly compares our models with other
approaches in the field and outlines the benefits of our approach
compared to others. Section 10 concludes this paper and gives an
overview of future research plans.
Actor
Type

fulfills

Actor
supplies

Task
Type

instantiated
by

match?

Task
Instance

Characteristics

instantiated
by demands

Cognitive

Fig. 1. Main concepts of cognitive matchmaking.
2. Research approach

The overall research strategy that has been applied is based on
the inductive-hypothetical research strategy (see e.g. [13–16]).
This research strategy consists of the following phases:

1. Initiation, in which empirical knowledge of the problem domain
is elicited.

2. Abstraction, in which the elicited empirical knowledge is
applied in a descriptive conceptual model.

3. Theory formulation, in which the descriptive conceptual model
is made prescriptive.

4. Implementation, in which the prescriptive conceptual model is
empirically tested.

5. Evaluation, a comparison of the elicited empirical knowledge
(1) with the prescriptive empirical model (4).

The application of the strategy for this study results in the fol-
lowing steps:

1. Observation of and reasoning about the issues underlying the
initiation of this study (Sections 1 and 9).

2. Abstraction of the results of phase 1 to our general cognitive
model of actor types and task types (Sections 3 and 4 and in
[11]).

3. Development of a cognitive matchmaking framework including
the fuzzy match extension (Sections 5 and 6).

4. Implementation of the cognitive matchmaking framework.
4.1. Prototype of a cognitive matchmaker system (Section 7).
4.2. Case study in information systems engineering (Section 8).

5. Overall research evaluation (Section 10).

3. Cognitive actor settings

Before elaborating on matching cognitive characteristics pos-
sessed by an actor with the cognitive characteristics required when
fulfilling a task instance, a characterization of possible actor types
and task types is needed.

3.1. Actor types

Actor types may draw from a pool of basic cognitive character-
istics an actor might possess, such as sentience, volition and caus-
ability. An actor type does not need to have all of these
characteristics, and some have more than others. It is assumed that
each of these characteristics can be isolated from the others, and so
should be treated as distinct. Cruse [17] and Dowty [18] utilized
syntactic tests to isolate characteristics from each other. Therefore,
a characteristic has been correlated with a syntactic environment
which admits one characteristic but not the other. The following
characteristics can be distinguished that can be utilized to generate
a framework for cognitive settings of possible different actor types:

� The volition characteristic is concerned with an actor’s will-
power to fulfill some knowledge intensive task instance. For
instance, a skilled software developer may have more willpower
to implement an intelligent search algorithm than implement-
ing source code to access a database.

� Sentience expresses that an actor has much awareness of
required knowledge to fulfill some task instance. When a project
manager creates a project plan he may have all the necessary
knowledge to create such a plan. This may be due to earlier plan-
ning experiences of the project manager or by education.

766 S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785
� The causability characteristic expresses that an actor has the
ability to exert an influence on state changes of knowledge
involved during fulfillment of a task instance. Suppose that a
business consultant facilitates a brainstorm session in which
he or she writes models on a whiteboard. In this case, the con-
sultant causes knowledge that is implicitly present in his or
her head to be made explicit on the white board [19]. This
means that the consultant causes knowledge to change from
one type to another. The concept of causability is further
explored in Section 3.2.3.

� During fulfillment of certain knowledge intensive task instances
an actor should be able to improve its own cognitive abilities.
This is indicated by the improvability characteristic. For instance,
a manager may have recently completed a course about cyber-
netics. During his work he or she successfully applies several
principles that the manager has learned in the course. Partici-
pating in the course may thus have improved his or her cogni-
tive abilities.

� The independency characteristic is necessary to be able to deter-
mine if an actor is able to fulfill a task instance on his own or not.
An example is a journalist who may successfully write a news
article without having to collaborate with others.

Having determined possible cognitive characteristics an actor
may have it is now appropriate to distinguish several actor types.
The combination of an actor type with the cognitive characteristics
belonging to a type forms a cognitive actor setting. This character-
ization is shown in Table 1. The five distinguished actor types are
based on a classification of knowledge worker types [20] and on
linguistic literature [2]. The knowledge worker classification is
more practically oriented than the ideas found in the linguistic lit-
erature. Practical as well as theoretical ideas now intermingle
when developing a framework of cognitive actor settings. Now
the set of actor types can be represented as:

fexperiencer;collaborator;expert;integrator;
transactorg#AT ð1Þ

The set of cognitive characteristics can be represented as:

fvolition;sentience;causability;improvability;
independencyg#CC ð2Þ

An important remark to make here is that the possible actor
types as well as the possible cognitive characteristics are not lim-
ited to five actor types and five cognitive characteristics. However,
in this paper we restrict ourselves to the cognitive actor settings
above. The actor types as shown in Table 1 can now be introduced:

The experiencer. The experiencer actor type has the sentience
characteristic only. An experiencer is thus only aware of knowl-
edge requirements to fulfill some task instance. Consider for exam-
ple the following sentence: John thoroughly reads an article about
balanced scorecards before joining a meeting about balanced score-
cards. This indicates that John, as an experiencer, probably under-
stands that reading an article about balanced scorecards is enough
to successfully prepare himself for a meeting about that topic.
Table 1
Cognitive actor settings characterized

AT CC

Volition Sentience Causability Improvability Independency

Experiencer – � – – –
Collaborator � – � � –
Expert � � � � �
Integrator � – � – –
Transactor � � – – �
The collaborator. This actor type possesses the volition, causabil-
ity, and improvability characteristics. A collaborator has the ability
to exert an influence on state changes of knowledge involved dur-
ing fulfillment of a task instance. During fulfillment of a knowledge
intensive task instance a collaborator is also able to improve its
own cognitive abilities. However, a collaborator does not have
complete awareness of all required knowledge to fulfill a task in-
stance and requires others to fulfill a task instance. Consider the
following example: John works at a hospital and requires knowledge
about a patient’s history. Therefore, he acquires the most recent pa-
tient log from a colleague. This indicates that John, as a collaborator,
understands that in order to acquire knowledge about a patient’s
history he must collaborate with another actor. After that John is
able to update the patient’s log with recent changes.

The expert. An expert possesses all characteristics depicted in
Table 1. Suppose that John is an assistant professor working at a
university and he would like to solve a difficult mathematical
problem when developing a theory. He then uses his own knowl-
edge about mathematics to solve the problem. John is also able
to combine and modify his own knowledge while solving the prob-
lem and he can also learn from that.

The integrator. An integrator is able to fulfill a knowledge inten-
sive task instance by working together and is able to initiate state
changes of knowledge involved during task instance fulfillment. An
integrator primarily wishes to acquire and apply knowledge of the
highest possible quality. An engineer contributing to the construc-
tion of a flood barrier is an example of an integrator.

The transactor. Volition, sentience, and independency are the
characteristics belonging to the transactor actor type. A transactor
can fulfill a task instance without collaborating with others and is
not required to cause modifications in the knowledge acquired and
applied during task fulfillment. A customer support employee
working at a software company is an example of a transactor.

A specific instantiation of an actor type is expressed by
AType : AC!AT, where AC is a set of actor instances that can
be classified by a specific type. The example
ATypeðaÞ ¼ experiencer for instance expresses that an actor
a 2AT can be classified as an experiencer. We can view task in-
stances that are fulfilled by a specific actor as a function
Fulfillment : AC! }ðTIÞ. Here, TI is a set of task instances
which are fulfilled by an actor. An actor a 2AC that fulfills a task
instance i 2TI can be expressed as FulfillmentðaÞ ¼ fig. A specific
instantiation of a task type is expressed by TType : TI!TT,
where TT is a set of task types that can be instantiated by a spe-
cific task instance. The expression TTypeðiÞ ¼ acquisition can be
used to assert that a task instance i is characterized as an acquisi-
tion task.

Now that a characterization of different actor types has been
introduced (resulting in several cognitive actor settings), the differ-
ent cognitive characteristics mentioned in Table 1 need to be
explored.

3.2. Definitions of cognitive characteristics

3.2.1. Volition
An actor has the volition characteristic, if an actor has a certain

willpower to fulfill some knowledge intensive task instance. It can
be said that an actor has a motivation to fulfill a task instance. It is
important to note that for each of the cognitive characteristics an
actor might have, an actor may possess it at a certain level. The le-
vel on which an actor has willpower to fulfill a task is incorporated
in the volition characteristic. The introduction of a motivation
function is necessary to determine an actor’s motivation while ful-
filling a task instance:
Motivation : AS! ðAC�TI!MOÞ ð3Þ

S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785 767
The set AS contains actor states. An actor state is necessary be-
cause an actor’s motivation might change over time. For example,
an actor might be strongly motivated in one state, while an actor
might be weakly motivated in another state. To formally define
an actor state, the actor identity function is required:

Identity : AS! ID ð4Þ

The set ID contains actor identities. If i is the identity of an ac-
tor, then ASi is used to denote the set of actor states of i:

ASi,ftjIdentityðtÞ ¼ ig ð5Þ

When an actor experiences knowledge, then this will lead to a
change in both the actor’s knowledge and mood, or, in a state
change. In this paper, we restrict ourselves to state changes caused
by experiencing knowledge. We do not consider other state
changes. For example, forgetting knowledge may be seen as a spe-
cial change of state. Assume fweak;moderate;
neutral;strongg#MO. The set MO includes possible motiva-
tion types of an actor. An actor a in a state t 2AS with a volition
characteristic may be weakly, moderately, neutrally or strongly
motivated. If an actor a in state t is strongly motivated to fulfill task
instance i it can be denoted as: Motivationtða; iÞ ¼ strong. Note
that the motivation function can not be expressed as
Motivationðt; a; iÞ because of the placed parentheses in the signature
of the function. This has been done to indicate that an actor’s moti-
vation is coupled with its state. Because of these parentheses, it can
be noticed that the domain of the motivation function consists of
the set of actor states. The range of the motivation function consists
of a nested total function including the set of actor instances, the
set of task instances and the set of motivation types. The volition
characteristic can now be modeled as follows. An actor a 2AC

has the volition characteristic, denoted as VolitionðaÞ, if that actor
has a state t 2AS in which that actor has one of the four motiva-
tion types for some task instance to be fulfilled:

9t2AS9i2FulfillmentðaÞ½Motivationtða; iÞ
2 fweak;moderate;neutral;strongg� ð6Þ
3.2.2. Sentience
An actor has the sentience characteristic, if that actor has signif-

icant awareness of required knowledge to fulfill some task in-
stance. In [11] a function has been introduced to understand to
what extent a knowledge asset (as part of the set KA) is applicable
for a task, i.e. has a useful effect for completing the task:

Applicable : TI�KA! ½0;1� ð7Þ

These assets are tradeable forms of knowledge, i.e. knowledge
that is exchangeable between actors. This may include knowledge
obtained by viewing a Web site or a document or by conversing
with a colleague. When an instructor explains a learner how to
drive a car for instance, the explanation may contain valuable
knowledge assets for the learner.

So, Applicableði; kÞ > 0 expresses that knowledge asset k is some-
how applicable for a task instance i. Another function denotes the
need for knowledge of an actor during fulfillment of a task instance
[11]:

Need : AS! ð}ðKAÞ �KA! ½0;1�Þ ð8Þ

The expression NeedtðS; kÞ is interpreted as the residual need for
knowledge k of an actor in state t after the set S has been pre-
sented to an actor, where t 2AS, k 2KA and S#KA. The set
S can be interpreted as the personal knowledge of an actor (also
called a knowledge profile). At this point the sentience
characteristic can be modeled:
9i2FulfillmentðaÞ9k2KA9S #KA½Applicableði; kÞ > 0 ^ NeedðS; kÞP 0� ð9Þ

In other words, an actor a 2AC has the sentience characteris-
tic, denoted as SentienceðaÞ, if that actor fulfills some task instance
and if there exists a knowledge asset k 2KA that is applicable in a
task instance and already possessed by actor a (i.e. part of that ac-
tor’s knowledge profile S #KA) or otherwise required by actor a.
The actor’s state has been omitted because it is not of particular
relevance in the sentience characteristic.

3.2.3. Causability
An actor has the causability characteristic, if an actor has the

ability to exert an influence on changes of the knowledge type in-
volved during fulfillment of a task instance. The level of this influ-
ence is dependent of to what extent an actor masters this
characteristic. Four knowledge types are distinguished [19,21]:

� Implicit & concealed knowledge: e.g. competencies or expertise
of a worker unknown to the organization.

� Explicit & concealed knowledge: e.g. valuable insights concealed
in available data collections (to be discovered by data mining).

� Implicit & revealed knowledge: e.g. known expertise of a worker
which can be appealed to.

� Explicit & revealed knowledge: e.g. best-practice documenta-
tion, knowledge bases, scientific papers, etcetera.

Implicit knowledge comprises knowledge which is implicitly
present in people’s heads, such as skills which are difficult to make
explicit [19]. Implicit knowledge is closely related to what is gen-
erally experienced as intuition. Explicit knowledge comprises
knowledge which can be expressed in terms of facts, rules, specifi-
cations or textual descriptions.

Besides discerning implicit and explicit knowledge, another
relevant distinction can be made. Sometimes knowledge is pres-
ent while one is not aware of that knowledge. This varies from
hidden skills of workers (for an individual or for the organiza-
tion) to knowledge which is hidden in undiscovered patterns in
data collections (the basis for data mining). This results in re-
vealed and concealed knowledge. To be specific, it can be said
that an actor having the causability characteristic can change
knowledge from one type to another type. This can be modeled
as a function:

n : AC! ðKA�KT!KTÞ ð10Þ

The set KT comprises the possible knowledge types. The four
discussed knowledge types can formally be depicted as:

fimplicit� concealed;implicit� revealed;
explicit� concealed;explicit� revealedg#KT ð11Þ

The knowledge type of a specific knowledge item k can easily be
found by using the function KType : KA!KT. For example,
KTypeðkÞ ¼ s expresses that knowledge k 2KA is of the type
s 2KT. When knowledge asset k of type s is changed to another
type by actor a 2AC, this type change is denoted as:naðk; sÞ. When
applying the infix notation this would result in: naðk; sÞ � knas. At
this point the causability characteristic can be modeled:

9i2FulfillmentðaÞ9k2KA9s2KT½Applicableði; kÞ > 0 ^ knas� ð12Þ

In other words, an actor a 2AC has the causability characteris-
tic, denoted as CausabilityðaÞ, if that actor fulfills some task instance
and if there exists a knowledge asset k 2KA of some type
s 2KT that is changed to some other type knas 2KT by actor a.

3.2.4. Improvability
An actor has the improvability characteristic, if that actor is able

to improve its own cognitive capabilities while fulfilling some task

768 S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785
instance. An actor may have a certain level to improve its own
capabilities, ranging from, e.g. a low level to a high level. First, it
is necessary to introduce a �� operator that expresses an actor’s
state change after fulfilling some task instance:

�
� : AS�TI!AS ð13Þ

Thus, an actor state t changes to state t��i after experiencing
knowledge during the fulfillment of task instance i. However, to
construct the improvability characteristic the actual improvement
of cognitive characteristics should also be tackled. The following
actor characteristics function can be utilized to solve this
issue:

AChar : AS! ðAC! }ðCCÞÞ ð14Þ

This function specifies which cognitive characteristics as part of
the set CC belong to a certain actor instance (that is classified by an
actor type). The set AS contains actor states. An actor state is nec-
essary here because the characterization of an actor might change
over time. An actor a 2AC possessing cognitive characteristics in-
cluded in a set of cognitive characteristics C while in state t 2AS

can be denoted as: AChartðaÞ ¼ C. The improvability characteristic
can be modeled subsequently:

9i2FulfillmentðaÞ9t2AS½AChartðaÞ# AChart�� iðaÞ� ð15Þ

An actor a 2AC has the improvability characteristic, denoted
as ImprovabilityðaÞ, if the set of cognitive characteristics
AChartðaÞ ¼ C can be complemented with additional characteristics
after fulfilling some task instance while being in some state
t 2AS.
{‘experiencer’,‘collaborator’,
 ‘expert’,‘integrator’,‘transactor’}

ActorType
(name)

AType

Fulfillment

Fulfiller

{‘acq

{‘weak’,

ActorInstance
(id)

Knowledge

KnowledgeType
(name)

{‘implicit-concealed’,‘implicit-revealed’,
 ‘explicit-concealed’,‘explicit-revealed’}

Value
(number)

[0,1]

Applicable

KnowledgeAsset

Need

Actor
Instances

Fig. 2. Object-Role Modeling (ORM) m
3.2.5. Independency
An actor has the independency characteristic, if that actor is able

to fulfill some task instance on its own. If an actor is fully able to
fulfill a task instance on its own, then it can be said that an actor
has the characteristic at a (very) high level and vice versa. A fulfiller
function is necessary to reason specifically about actors that are
fulfilling some task instance:

Fulfiller : TI! }ðACÞ ð16Þ

If it is necessary to determine fulfillers of a task instance i, the
fulfiller function returns actors responsible for the fulfillment of
some task. The independency characteristic can be modeled as
follows:

9i2TI½FulfillerðiÞ ¼ fag� ð17Þ

An actor a has the independency characteristic, denoted as
IndependencyðaÞ, if for task instance i the only fulfiller is actor a.

In order to have a graphical representation of the discussed def-
initions throughout Section 3, an Object-Role Modeling (ORM)
model is presented in Fig. 2. In such a model, ovals represent object
types (which are counterparts of classes), whereas boxes represent
relations between object types. For more details on Object-Role
Modeling, see e.g. [22].

4. Task types

Now that several actor types have been described together with
the cognitive characteristics that can be supplied by actors that
instantiate these types it is necessary to focus on the knowledge
TaskInstances

TaskType
(name)

uisition’,‘synthesis’,‘testing’}

ActorState

Cognitive
Characteristic

(name)

CognitiveCharacteristics

AChar

 {‘volition’,‘sentience’,
 ‘causability’,‘improvability’,

‘independency’}
MotivationType

(name)

Motivation

‘moderate’,‘neutral’,‘strong’}

TaskInstance
(id)

TType

ActorIdentity

Identity

odel of cognitive actor settings.

S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785 769
intensive task types. A knowledge intensive task is a task for which
acquisition, application or testing of knowledge is necessary in
order to successfully fulfill the task. The following types are
distinguished: The acquisition task type, the synthesis task type
and the testing task type. As is elaborated in earlier work, possible
knowledge intensive tasks that can be fulfilled can be abstracted to
a pattern of three types [11]:

(1) Acquisition tasks, which are related with the acquisition of
knowledge. This can be illustrated by a student reading a
book in order to prepare himself for an exam.

(2) Synthesis tasks, which are related with the actual utilization
of the acquired knowledge. An example is a student who uti-
lizes knowledge (acquired by reading a book) while per-
forming an exam.

(3) Testing tasks, which are related with the identification and
application of knowledge in practice inducing an improve-
ment of the specific knowledge applied. E.g. a student who
failed an exam studies a teacher’s feedback on his exam.
Then a re-examination attempt follows to improve his previ-
ously acquired and utilized knowledge.

The following cognitive characteristics characterize these
knowledge intensive task types:

� The satisfaction characteristic is related with a need for knowl-
edge during a task’s fulfillment and the eventual disappearance
of that need. Suppose that a salesman requires insight in future
developments of a certain market. Therefore, the salesman asks
a colleague to provide a forecast of these developments. After
interpreting the forecast, the salesman’s need for this knowledge
may have substantially decreased.

� Relevance is concerned with whether or not knowledge
acquired is deemed appropriate during the fulfillment of a
task. This is the case if, e.g. the salesman is not able to acquire
the necessary knowledge by interpreting the aforementioned
market forecast.

� The applicability characteristic expresses to what extent knowl-
edge is applicable in a task. For instance, a requirements engi-
neer interviews a customer to acquire certain requirements for
an information system to be build. After the interview has been
conducted the engineer has acquired a lot of knowledge about
the customer’s organization but not about requirements for
the future system. In this example, the acquired knowledge is
not very applicable for the task at hand.

� When knowledge is applied it should meet its requirements.
This is indicated by the correctness characteristic. For instance,
when a software developer writes code it should meet the
requirements to be able to compile the code and to achieve a
system that is working correctly.

� The faultiness characteristic is necessary to be able to determine
whether or not applied knowledge contains flaws. For example,
a software tester should be able to find bugs in software.

� To correct already applied knowledge containing flaws, the rec-
tification characteristic can be determined. This may be the case
when a software developer fixes a bug found by a software
tester.
Table 2
Knowledge intensive task types characterized

TA CC

Satisfaction Relevance Applicabi

Acquisition � � –
Synthesis – – �
Testing � – �
These cognitive characteristics indicate which cognitive charac-
teristics are at least demanded to fulfill a task instance of a certain
type. Table 2 shows how the task types are characterized. An
acquisition task, for instance, demands the satisfaction and rele-
vance characteristics. Thus, an actor should be satisfied after fulfill-
ing an acquisition task and the acquired knowledge should also be
relevant enough to fulfill the task. The formal definitions of these
characteristics have already been discussed in [11] and will
therefore not be repeated here. Now the set of task types can be
represented as:

facquisition;synthesis;testingg#TT ð18Þ

The set of cognitive characteristics can be represented as:

fsatisfaction;relevance;applicability;correctness;
faultiness;rectificationg#CC ð19Þ

An important remark to make here is that the possible task
types as well as the possible cognitive characteristics are not lim-
ited to three task types and six cognitive characteristics. However,
in this paper we restrict ourselves to the three defined task types
together with the characteristics. Next, a framework for cognitive
matchmaking can be elaborated. The defined actor types and task
types can now be utilized in the framework of the system together
with the cognitive characteristics.

5. Framework for cognitive matchmaking

In this section, a framework for cognitive matchmaking is intro-
duced that is able to compute a match between cognitive charac-
teristics required for a specific task type and cognitive
characteristics that are provided by a specific actor type. As a run-
ning example, we use the matchmaking framework to match the
cognitive characteristics offered by the transactor actor type with
the required cognitive characteristics of a synthesis task. Fig. 3
shows the architecture of the system on a conceptual level, which
is translated into the formalisms throughout this section. In Sec-
tion 3.2.4, a function ACharjðaÞ ¼ C indicated the cognitive charac-
teristics that characterized an actor instance of a certain type,
where j is a task type belonging to the set of task types TT, a is
an actor instance belonging to the set of actor instances AC and
C is a set of cognitive characteristics that is a subset of or equal
to CC. Recall from Section 3.1 that the corresponding actor type
can be found by using the actor type function: ATypeðaÞ ¼ j. With
this in mind, a supply function can be modeled that returns a value
expressing to what extent an actor type offers a certain cognitive
characteristic:

Supply : AT! ðCC! CRNÞ ð20Þ

The expression SupplytransactorðsÞ ¼ 10 shows that an actor
characterized by the transactor type offers the sentience character-
istic and is at least capable to perform this characteristic at level
10. Note that the word ‘sentience’ has been abbreviated to the let-
ter ‘s’. For readability reasons we will continue to use this abbrevi-
ation for the remaining example expressions. The resulting value
‘10’ is part of a characteristic rank domain CRN which contains
integer values within the range [0,10]. The hard values as part of
a domain of values can be found using the following function:
lity Correctness Faultiness Rectification

– – –
� – –
– � �

770 S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785
Numerical : }ðRNÞ ! R ð21Þ

Here, the set RN contains rank values and CRN#RN. For-
mally, the characteristic rank domain includes the following hard
values:

NumericalðCRNÞ ¼ ½0;10�

A value of 0 means that an actor is not able to offer a certain
characteristic, a value of 5 means that an actor is able to offer a
characteristic at an average level and a value of 10 means that an
actor is able to offer a characteristic at the highest level. So, in
the case of the example, the transactor is able to offer the sentience
characteristic at the highest level.

It is possible here to introduce a characteristic rank set contain-
ing linguistic (soft) values instead of a characteristic rank set that
contains numerical (hard) values. A linguistic value differs from a
numerical value in that its values are not numbers but words or
sentences in some language. The resulting values of the examples
reported, however, are mapped on a domain containing hard val-
ues only. In the case of the match example above, this would mean
that we are able to reason that the transactor is able to offer the
sentience characteristic at, e.g. a very high level. These capabilities
have not been added to the framework yet because successful
development of the match algorithm itself has been the main con-
cern so far. However, an exploration of how fuzzy assessments can
be used to indicate a certain capability level can be found in Sec-
tion 6. It is planned to integrate this in the next version of the cog-
nitive matchmaking framework and the prototype.

Besides modeling a supply function, a demand function is
needed that returns a value expressing to what extent a cognitive
characteristic is required for a certain task type:

Demand : TT! ðCC! CRNÞ ð22Þ

The expression DemandsynthesisðsÞ ¼ 10 indicates that a sen-
tience characteristic is required at the highest level in order to ful-
fill a task of the synthesis type. The supply and demand functions
can now be used together to compute the characteristic match.

5.1. Characteristic match

In this section, a characteristic match function is defined to
compare the resulting values from the supply and demand func-
tions. This comparison should provide insight in the way supply
and demand of cognitive characteristics are matched. In order to
model a characteristic match function, an actor type as well as a
task type are required as input, together with a cognitive charac-
teristic from the set CC of cognitive characteristics:

CharMatch : AT�TT! ðCC!MRNÞ ð23Þ

As can be seen in Fig. 3, the characteristic match function re-
turns a value from the match rank domain, where MRN#RN.
The match rank domain includes the following values:
NumericalðMRNÞ ¼ ½0;10�.
Supply

Demand

CharMatc

Normaliz
Proximit

Fig. 3. Framework for cog
To compute the actual characteristic match value, a proximity
function is necessary to be able to define the characteristic match
function. This proximity function should compute the proximity of
the level an actor offers a certain cognitive characteristic related to
the level that is required in order to fulfill a task of a certain type.
The values that should be used as input for the proximity function
are part of the characteristic rank domain. The resulting proximity
value is then a value that is part of the match rank domain:

Proximity : CRN� CRN!MRN ð24Þ

A normalization function can be introduced that calculates the
numerical proximity of supply and demand when a cognitive char-
acteristic is concerned:

Normalize : R! ½0;1� ð25Þ

The normalization function can be defined by using the supply
and demand functions and two additional constants min and max:

NormalizeðSupplyiðcÞ � DemandjðcÞÞ

,
SupplyiðcÞ � DemandjðcÞ þ max� min

2 � ðmax� minÞ ð26Þ

Here, i is an actor type of the set AT, j is a task type of the set
TT and c is a cognitive characteristic of the set CC. The values of
the constants min and max can be determined by interpreting the
minimum and the maximum value of the characteristic rank do-
main. So, in the case of the running example min ¼ 0 and
max ¼ 10. The minimum value that can be returned by the normal-
ization function is 0. This occurs if there is absolutely no supply
(i.e. an incapable actor is concerned) but there is a maximum de-
mand of a certain cognitive characteristic in order to fulfill a task
of a certain type. This situation is depicted below:

Normalizeð0� 10Þ ¼ 0� 10þ max� min
2 � ðmax� minÞ ¼ 0

The normalization function returns 1 in case of an overqualified
actor that is capable to perform a cognitive characteristic at the
highest level whilst the characteristic is not demanded at all:

Normalizeð10� 0Þ ¼ 10� 0þ max� min
2 � ðmax� minÞ ¼ 1

This means that the normalization function normalizes the prox-
imity of supply and demand between 0 and 1. Using the normaliza-
tion function, the proximity function can now be defined as follows:

ProximityðSupplyiðcÞ;DemandjðcÞÞ,NormalizeðSupplyiðcÞ�DemandjðcÞÞ
ð27Þ

Regarding the running example the proximity function as de-
fined above results in:

Proximityð10;10Þ ¼ Normalizeð10� 10Þ ¼ 0:5

Now with the introduction of a proximity function the charac-
teristic match can be defined by computing the proximity of sup-
ply and demand in the context of a given characteristic:
h MatchWeigh

e
y

Metric

CharWeigh ⊕⊗

nitive matchmaking.

S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785 771
CharMatchði; jÞ , kc2CC � ProximityðSupplyiðcÞ;DemandjðcÞÞ ð28Þ

Recall from Section 5 that an actor of the transactor type is able
to perform the sentience characteristic at level 10, which equals
the level to what extent a sentience characteristic should be mas-
tered for a synthesis task type. In the case of our example the char-
acteristic match results in:

CharMatchðtransactor;synthesisÞ ¼
ProximityðSupplytransactorðsÞ;DemandsynthesisðsÞÞ ¼
Proximityð10;10Þ ¼ 0:5

This example shows that if an actor characterized as a transac-
tor masters a sentience characteristic at level 10 and if it is also
needed to master the sentience characteristic at level 10 to fulfill
a task instance of the synthesis type, the eventual proximity value
is 0.5. However, this proximity value is only related to the supply
and demand of one specific cognitive characteristic. To compute
a total match of the required cognitive characteristics in a task type
and the characteristics offered, a weighed suitability match is intro-
duced in the following section.

5.2. Weighed suitability

The cognitive matchmaking framework is completed by intro-
ducing a weighed suitability match, as is shown in the rightmost part
of Fig. 3. The underlying match function has the following signature:

Match : AT�TT!SRN ð29Þ

This function returns a value from the suitability rank domain,
where SRN#RN. The suitability rank domain includes the fol-
lowing values:

NumericalðSRNÞ ¼ ½0;10�

This means that an actor of a certain type can have suitability lev-
els ranging from 0 to 10. To determine the suitability of the transac-
tor fulfilling the synthesis task, the calculated proximity of supply
and demand of a cognitive characteristic c 2 CC can be weighed:

Weigh : ðCC!MRNÞ ! ðCC!SRNÞ ð30Þ

To define the weigh function several other functions are neces-
sary, though. As can be seen in Fig. 3, the weigh function uses the in-
put from the characteristic match function and returns a value from
the suitability rank domain as output. To construct the weigh func-
tion, a function is needed that has a match rank metric (i.e. the prox-
imity value) as its input and a suitability rank metric as its output:

Metric : MRN!SRN ð31Þ

For instance, Metricð0:5Þ ¼ 0:5 shows that the value 0.5, which is
the proximity value, equals the value 0.5 which is a suitability rank
metric. A characteristic weigh function is needed to actually weigh
the importance of a certain cognitive characteristic to fulfill a task
of a certain type:

CharWeigh : CC!SRN ð32Þ

So, CharWeighðsÞ ¼ 1:5 means that a weigh factor of 1.5 is given
to indicate the importance of mastering the sentience cognitive
characteristic (for a certain task). Finally, the 	 operator is also
needed to define a definite weigh function:

	 : SRN�SRN!SRN ð33Þ

The 	 operator is necessary to multiply the metric value with
the characteristic weigh value. If the values mentioned above are
multiplied this results in 0:5	 1:5 ¼ 0:75. In case the underlying
ranking domain contains real members, the 	 operator is the nor-
mal multiplier. Otherwise, a separate	 operator is used. The weigh
function can now be defined as:
Weighðc;CharMatchði; jÞÞ, kc2CC �MetricðCharMatchði; jÞÞ	CharWeighðcÞ
ð34Þ

Here, c 2 CC; i 2AT and j 2TT. Continuing the running
example, we would like to calculate the suitability of the transactor
that is fulfilling a task instance of the synthesis type. Considering
the sentience characteristic only, this can be computed as follows:

Weighðs;CharMatchðtransactor;synthesisÞÞ ¼
Metricð0:5Þ 	 CharWeighðsÞ ¼
0:5	 1:5 ¼ 0:75

In order to calculate the suitability match of the transactor actor
type related to the synthesis task type of our example, it is manda-
tory to determine the cognitive characteristics supplied by the ac-
tor and demanded by the task. The transactor actor type supplies
the volition, sentience, and independency characteristics as is shown
in Table 1. The synthesis task type can be characterized by the
applicability and correctness characteristics as is shown in Table 2.

In the case of the running example (i.e. only when the transac-
tor actor type and the synthesis task type are concerned) the set
CC contains the following characteristics:

fvolition;sentience;independency;applicability;
correctnessg#CC

For all these properties a weigh value needs to be determined
using the functions mentioned throughout Section 5. This is neces-
sary to compute a final suitability match resulting in one suitability
rank value. The calculations leading to weighed characteristic
matches are elaborated in the Tables 3 and 4.

The actual characteristic weigh values (for every cognitive char-
acteristic as part of the set CC) denoted in Table 4 are: 2, 1.5, 0.5, 3
and 3. Note that these characteristic weigh values always summate
to one and the same total value. In the case of our example the
characteristic weigh values summate to 10. Thus, no matter how
the weigh values are divided across the cognitive characteristics,
they should always summate to a total of 10.

5.3. Suitability match

The results of the weighed characteristic matches, which are de-
noted in the rightmost column of Table 4, have to be summated to
generate a single suitability match value. To summate these values
a
 operator is required:

 : SRN�SRN!SRN ð35Þ

Now the final match function can be defined using the afore-
mentioned functions:

Matchði; jÞ ,

c2CC

Weighðc;CharMatchði; jÞÞ ð36Þ

In the match function i 2AT; c 2 CC and j 2TT. For the run-
ning example this means that the suitability match value of the
transactor fulfilling a task instance of the synthesis type is com-
puted as follows:

Matchðtransactor;synthesisÞ ¼ 1
 0:75
 0:35
 1:35
 1:2

¼ 4:65

As a result of the suitability match it can be concluded that the
suitability of an actor characterized by the transactor type fulfilling
a task instance of the synthesis type is 4.65. Remember that the
lowest suitability value is 0 and the highest suitability value that
can be reached is 10. The lowest value is reached if the supply of
every characteristic is 0 and the demand of every characteristic is
10. The highest value is reached in the case of complete overqual-
ification, i.e. if the supply of every characteristic is 10 and the de-
mand of every characteristic is 0. At this point a decision can be

Table 5
Definitions of the cognitive matchmaking framework with examples

Function Example

Supply : AT! ðCC! CRNÞ SupplytransactorðsÞ ¼ 10
Numerical : }ðRNÞ ! R NumericalðCRNÞ ¼ ½0;10�
Demand : TT! ðCC! CRNÞ DemandsynthesisðsÞ ¼ 10
CharMatch : AT�TT!
ðCC!MRNÞ

CharMatchðtransactor;
synthesisÞ ¼
ProximityðSupplytransactorðsÞ;
DemandsynthesisðsÞÞ ¼
Proximityð10;10Þ ¼ 0:5

Proximity : CRN� CRN!MRN Proximityð10;10Þ ¼
Normalizeð10� 10Þ ¼ 0:5

Normalize : R! ½0;1� Normalizeð10� 10Þ ¼ 10�10þmax�min
2�ðmax�minÞ ¼ 0:5

Match : AT�TT!SRN Matchðtransactor;synthesisÞ ¼
1
 0:75
 0:35
 1:35
 1:2 ¼ 4:65

Weigh : ðCC!MRNÞ !
ðCC!SRNÞ

Weighðs;CharMatchðtransactor;
synthesisÞÞ ¼
Metricð0:5Þ 	 CharWeighðsÞ ¼ 0:5	
1:5 ¼ 0:75

Metric : MRN!SRN Metricð0:5Þ ¼ 0:5
CharWeigh : CC!SRN CharWeighðsÞ ¼ 1:5
	 : SRN�SRN!SRN 0:5	 1:5 ¼ 0:75

 : SRN�SRN!SRN 1
 0:75
 0:35
 1:35
 1:2 ¼ 4:65
l : R! ½0;1� lð4:65Þ ¼ 0:93

Table 3
Example calculations for characteristic matches

Item Characteristic Characteristic Match

a. volition CharMatch(transactor,synthesis)
= Proximity(10,10) = 0.5

b. sentience CharMatch(transactor,synthesis)
= Proximity(10,10) = 0.5

c. independency CharMatch(transactor,synthesis)
= Proximity(10,6) = 0.7

d. applicability CharMatch(transactor,synthesis)
= Proximity(7,8) = 0.45

e. correctness CharMatch(transactor,synthesis)
= Proximity(6,8) = 0.4

Table 4
Example calculations for weighed characteristic matches

Item Weighed Characteristic Match

a. Weigh(volition,0.5) = Metric(0.5) 	
CharWeigh(volition) = 0.5 	 2 = 1

b. Weigh(sentience,0.5) = Metric(0.5) 	
CharWeigh(sentience) = 0.5 	 1.5 = 0.75

c. Weigh(indepedency,0.7) = Metric(0.7) 	
CharWeigh(independency) = 0.7 	 0.5 = 0.35

d. Weigh(applicability,0.45) = Metric(0.45) 	
CharWeigh(applicability) = 0.45 	 3 = 1.35

e. Weigh(correctness,0.4) = Metric(0.4) 	
CharWeigh(correctness) = 0.4 	 3 = 1.2

772 S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785
made whether or not the actor is suitable enough to fulfill this spe-
cific task or if another actor is present that is more suitable, i.e. has
a better suitability match value. The suitability of an actor to fulfill
a certain task is best if the resulting suitability value is 5. Under-
qualification as well as overqualification are both considered
undesirable.

A certainty function can now be introduced to make sure how
certain it is that an actor is suitable to fulfill a task:

l : R! ½0;1� ð37Þ

A linear certainty function can be defined as follows:

lðuÞ,
2

minþmax � u min 6 u 6 maxþmax
2

�2
minþmax � uþ 2 minþmax

2 6 u 6 max

(
ð38Þ

For the running example, where min ¼ 0 and max ¼ 10, the fol-
lowing expression shows that the certainty that the transactor is
suitable to fulfill the synthesis task is 0.93:

lð4:65Þ ¼ 2
0þ 10

� 4:65 ¼ 0:93

This can be interpreted as being 93% sure that the transactor is
suitable enough to fulfill the synthesis task. It might be a good
choice to let the transactor fulfill the synthesis task, unless an
available actor characterized by another type provides a better
match.

Throughout Section 5 definitions have been discussed along
with their corresponding examples. Table 5 provides an overview
of the definitions and the examples. In order to also have a graph-
ical representation of the discussed definitions throughout Section
5, another ORM model is presented in Fig. 4. All formalisms men-
tioned up till now are visualized by means of the ORM models of
Figs. 2 and 4.

6. Fuzzy match assessments

The variables used while calculating with the functions of the
cognitive matchmaker system were non-fuzzy. This means that
the variables that were used to compute the eventual suitability
match comprised numerical (hard) values. Zadeh’s fuzzy logic re-
search (see e.g. [23]) can be utilized to reason about fuzzy match
assessments. A linguistic variable differs from a numerical variable
in that its values are not numbers but words or sentences in some
language. For example, the linguistic variable length might take
very small, small, average, tall, or very tall as its values. Throughout
the running example of Section 5, the ‘numerical’ function re-
turned the hard values as part of a domain of values. In case of
the characteristic rank domain the numerical function returned
the values as part of that domain: NumericalðCRNÞ ¼ ½0;10�. These
values could then be used to determine to what extent a character-
istic was supplied by an actor, respectively, demanded by a task.
However, it can be more meaningful to express the level of the
supply or demand of a characteristic by using a linguistic value.
For example, the transactor offers the sentience characteristic at le-
vel 10. From a linguistic point of view, this numerical value can be
expressed by the value very high. Furthermore, such linguistic vari-
ables can be used to compute match rank values and eventually
suitability rank values. In this section we will elaborate on this
concept and it is shown how fuzzy assessments can be used in
the cognitive matchmaker system.

First, the linguistic values of a ranking domain RN can be
determined by the following function:

Linguistic : }ðRNÞ ! }ðLVÞ ð39Þ

Here, the set LV contains linguistic values. Recall that the cog-
nitive matchmaking framework incorporates three different rank-
ing domains: the characteristic rank domain, the match rank
domain and the suitability rank domain. The expression
LinguisticðCRNÞ � fvery� low;low;medium;high;very� highg
shows that the characteristic rank variable takes very low, low,
medium, high and very high as its values. To understand the use
of fuzzy assessments in cognitive matchmaking, a membership
function needs to be introduced.

The main distinction between fuzzy variables and non-fuzzy
variables lies in this membership function. In case of fuzzy vari-
ables, the assignment of a value to a variable has a membership de-
gree which expresses to what extent a variable has a certain value.
The membership functions related to the linguistic characteristic
rank values are illustrated in Fig. 5. Note that min ¼ 0 and
max ¼ 10. The membership function can be used to understand
how certain it is that the level on which a characteristic is supplied

Metric

CharWeigh

Weigh

ActorType
(name)

Match

Supply

Proximity

Cognitive
Characteristic

(name)

Demand

TaskType
(name)

MatchRank

CharMatch

SuitabilityRank

Characteristic
Rank

Rank

(RealNumber)

{‘acquisition’,‘synthesis’,‘testing’}

 {‘experiencer’,
 ‘collaborator’,

 ‘expert’,
 ‘integrator’,
 ‘transactor’}

Numerical

=

Ranking
Domain

Value
(number)

[0,1]
Normalize

Fig. 4. Object-Role Modeling (ORM) model of the cognitive matchmaking framework.

Fig. 5. Membership functions for the values of the linguistic variable ‘characteristic rank’.

S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785 773
or demanded will be assessed by one of the available linguistic val-
ues. However, a probability function needs to be defined based on
the membership function to actually calculate certainties. First, the
membership function can be modeled as follows:

M : LV! ðR! ½0;1�Þ ð40Þ

The expression Maverageð5Þ ¼ 1 can be interpreted as being 100%
sure that supply or demand of a cognitive characteristic at level 5 is
interpreted as the supply or demand at an ‘average’ level. In other
words, the membership degree for the linguistic value ‘average’ is
1% or 100%. If we would like to know how certain it is that a cog-
nitive characteristic is supplied or demanded on a certain level, a
probability function is required. Assume that such a probability
function has the same signature as function (40) above:

P : LV! ðR! ½0;1�Þ ð41Þ

The probability function can then be defined as follows:

PvðuÞ ,
Z u

0
MvðuÞdu ð42Þ

Before we can compute Pð5 ¼ averageÞ we must define the
membership function for the linguistic value ‘average’:

Fig. 6. Membership functions for the values of the linguistic variable ‘match rank’.

774 S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785
MaverageðuÞ,

2
5 � u� 1 2 1

2 6 u 6 5
� 2

5 � uþ 3 5 6 u 6 7 1
2

0 otherwise

8><
>: ð43Þ

The expression Paverageð5Þ ¼ 1 indicates that we are approxi-
mately 100% certain that the supply or demand of a cognitive char-
acteristic will be assessed as ‘average’ when it is supplied or
demanded at level 5. For example, the expert supplies the indepen-
dency characteristic at level 5. It is now approximately 100% cer-
tain that the expert is able to offer this characteristic at an
average level. The definitions of the remaining membership func-
tions are presumed to be:

Mvery�lowðuÞ,
� 2

5 � uþ 1 0 6 u 6 2 1
2

0 otherwise

(
ð44Þ

MlowðuÞ,

2
5 � u 0 6 u 6 2 1

2

� 2
5 � uþ 2 2 1

2 6 u 6 5
0 otherwise

8><
>: ð45Þ

MhighðuÞ,

2
5 � u� 2 5 6 u 6 7 1

2

� 2
5 � uþ 4 7 1

2 6 u 6 10
0 otherwise

8><
>: ð46Þ

Mvery�highðuÞ,
2
5 � u� 3 7 1

2 6 u 6 10
0 otherwise

(
ð47Þ

When analyzing the expert and the synthesis task, it is now
trivial to verify that:

� The certainty that the expert’s supply of the causability charac-
teristic is indeed interpreted as ‘high’: Phighð7Þ ¼ 0:80.

� The certainty that the expert’s supply of the causability charac-
teristic is indeed interpreted as ‘average’: Paverageð7Þ ¼ 0:20.

� The certainty that the demand of the synthesis task with respect
to the causability characteristic is indeed interpreted as ‘aver-
age’: Paverageð4Þ ¼ 0:60.

� The certainty that the demand of the synthesis task with respect
to the causability characteristic is indeed interpreted as ‘low’:
Plowð4Þ ¼ 0:40.

Now that fuzzy assessments can be made concerning the supply
and demand of cognitive characteristics, it is logical to explore the
possibility of fuzzy assessments for match results. Table 3 for in-
stance shows the characteristic match results for the transactor re-
lated with a synthesis task. Clarification of the linguistic values
related to the match rank variable is necessary to assess the char-
acteristic matches in a fuzzy way. The expression
LinguisticðMRNÞ � fpoor;fair;good;very� good;excellentg
shows that the match rank variable takes poor, fair, good, very good
and excellent as its values. The corresponding membership func-
tions are shown in Fig. 6. Note that min ¼ 0 and max ¼ 1 in
Fig. 6, because the characteristic match results are never greater
than 1. When a match result of 0.5 is achieved, the certainty is
100% that one assesses that match as ‘excellent’. The more a match
result diverges from this value towards 0 or 1, the worse a match
result is assessed. If the match result lies between 0 and 0.5 an ac-
tor is underqualified for the task. If the match result lies between
0.5 and 1 an actor is overqualified for the task. This causes the
membership functions to be symmetrical. The membership func-
tions for the values of the match rank variable are presumed to be:

MpoorðuÞ,
�8 � uþ 1 0 6 u 6 1

8

0 1
8 6 u 6 7

8

8 � u� 7 7
8 6 u 6 1

8><
>: ð48Þ

MfairðuÞ,

0 0 6 u 6 1
20

13 1
3 � u� 2

3
1

20 6 u 6 1
8

�13 1
3 � uþ 2 2

3
1
8 6 u 6 1

5

0 1
5 6 u 6 4

5

13 1
3 � u� 10 2

3
4
5 6 u 6 7

8

�13 1
3 � uþ 12 2

3
7
8 6 u 6 19

20

0 19
20 6 u 6 1

8>>>>>>>>>>><
>>>>>>>>>>>:

ð49Þ

MgoodðuÞ,

0 0 6 u 6 1
8

8 � u� 1 1
8 6 u 6 1

4

�8 � uþ 3 1
4 6 u 6 3

8

0 3
8 6 u 6 5

8

8 � u� 5 5
8 6 u 6 3

4

�8 � uþ 7 3
4 6 u 6 7

8

0 7
8 6 u 6 1

8>>>>>>>>>>><
>>>>>>>>>>>:

ð50Þ

Mvery�goodðuÞ,

0 0 6 u 6 3
10

10 � u� 3 3
10 6 u 6 2

5

�10 � uþ 5 2
5 6 u 6 1

2

10 � u� 5 1
2 6 u 6 3

5

�10 � uþ 7 3
5 6 u 6 7

10

0 7
10 6 u 6 1

8>>>>>>>>><
>>>>>>>>>:

ð51Þ

MexcellentðuÞ,

0 0 6 u 6 9
20

20 � u� 9 9
20 6 u 6 1

2

�20 � uþ 11 1
2 6 u 6 11

20

0 11
20 6 u 6 1

8>>><
>>>:

ð52Þ

An example of a fuzzy assessment for a characteristic match re-
sult can be given as follows. Table 3 shows that the applicability
characteristic match is 0.45 for the transactor/synthesis task com-

SuitabilityRankRank

Ranking
Domain

Characteristic
RankMatchRank

LinguisticValue

Linguistic
Values

(RealNumber)

Value
(number)

[0,1]

P

{‘poor’,‘fair’,‘good’,
 ‘very good’,‘excellent’}

{‘poor’,‘fair’,‘good’,
 ‘very good’,‘excellent’}

{‘very-low’,‘low’,
‘average’,‘high’,‘very-high’}

Linguistic

M

Fig. 7. Object-Role Modeling (ORM) model of the fuzzy match functions.

S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785 775
bination. The certainty that this applicability characteristic match
is indeed interpreted as ‘good’ is Pgoodð0:45Þ ¼ 0. The certainty that
this applicability characteristic match is indeed interpreted as ‘very
good’ is Pvery�goodð0:45Þ ¼ 0:5. In other words, the certainty that
someone interprets this match result as ‘very good’ is 50%.

Eventually, fuzzy assessments for suitability match results can
also be provided after weighing the characteristic match results
and the summation of the weighed match results. The same
membership functions as pictured in Fig. 6 can be used. Unlike
a characteristic match result, a suitability match result can vary
over the values from 0 up to and including 10. This causes
min ¼ 0 and max ¼ 10. The expression LinguisticðSRNÞ ¼
fpoor;fair;good;very� good;excellentg shows that the
suitability rank variable also takes poor, fair, good, very good
and excellent as its values. The definitions of the membership
functions for the values of the linguistic variable ‘suitability rank’
are considered trivial. Recall that the suitability match of the
transactor/ synthesis task combination shown in Section 5.3,
equalled 4.65. The probability function can be used to determine
the certainty that this suitability match is interpreted as a ‘good’
match. This is specified by the following expression:
Pgoodð4:65Þ ¼ 0. The certainty is 0% that one assesses the suit-
ability of the transactor fulfilling the synthesis task as very good.
The certainty that this suitability match is assessed as ‘very
good’ can be calculated as follows: Pvery�goodð4:65Þ ¼ 0:35. Thus,
the certainty is 35% that one assesses the suitability of the trans-
actor fulfilling the synthesis task as very good. Finally, the cer-
tainty is 30% that the result is assessed as excellent:
Pexcellentð4:65Þ ¼ 0:3. The functions discussed in this section
can be graphically supported by the ORM model of Fig. 7. Now
that the framework and the fuzzy match extension of cognitive
matchmaking have been discussed it is necessary to determine
if a system can be build by means of a prototype
implementation.

7. Prototype of the cognitive matchmaker system

The prototype of the cognitive matchmaker system has been
designed as a Web application according to the three tier soft-
ware architecture depicted in Fig. 8. The graphical user interface
is based on the Microsoft.NET Framework 2.0 Web UI namespace
that provides classes and interfaces to create user interface ele-
ments. The business layer includes the main components of the
application. The most important one is the kernel, which is an
implementation of the formal functions shown in Fig. 3 and in Ta-
ble 5. Furthermore, the ‘matching factory’ instantiates all the ob-
jects involved when a suitability match should be calculated and
enables the application to follow the flow of the matchmaking
process as depicted in Fig. 3. The business layer also includes
an implementation of the possible ranking domains that can in-
clude characteristic ranks, match ranks and suitability ranks.
The data layer includes code to interact with connected dat-
abases. The architecture shows that it is possible to include a pro-
ject-specific database as well as a database including abstract
types and characteristics. This signifies that the prototype of the
cognitive matchmaker system can compute matches between
project-specific actor types and task types as well as between
the abstract actor types and task types we have defined in our
framework. Project-specific actor types and task types are types
that can be defined to categorize all the actors and tasks that
are part of a specific project. For instance, a person called ‘John
Doe’ working on a software project can be categorized as a pro-
ject-specific actor type ‘developer’ for instance meaning that he
acts as a software developer in a specific software project. An
information systems engineering method is often used during
the enactment of a project. An example of such a method is the
Microsoft Solutions Framework (MSF) (see e.g. [24]). Such meth-
ods often include pre-defined actor types and/or task types that
can be instantiated when applying the method. Once these types
are added to a project-specific database they can be used to
determine matches. Section 8.1 includes the project-specific actor
types and task types as part of the elaborated case study. Depen-
dent of the choice the user of the cognitive matchmaker system
makes, the system communicates with one of the available dat-
abases to calculate matches. The data layer is based on the Micro-
soft Enterprise Library 3.0 that already contains pre-defined
chunks of source code for, e.g. data access and exception
handling.

The user of the cognitive matchmaker system has to walk
through six steps to let the system calculate a suitability match.
In the first step, the user should select an actor type and a task type
for which a suitability match should be calculated. Suppose that

Graphical User Interface
(Microsoft .NET Framework 2.0 Web UI)

Data Layer
(Microsoft Enterprise Library 3.0)

Project-specific
Database

(Microsoft SQL
Server 2005)

Abstract
Database

(Microsoft SQL
Server 2005)

Kernel

Functions

...

Ranking
Domains

Matching
Factory

Project-specific profile
Project-specific

Project-specific

actor types

task types

Project-specific
cognitive characteristics

Abstract profile
Abstract actor types

Abstract task types

Abstract
cognitive characteristics

Business Layer

Fig. 8. Cognitive matchmaker system architecture.

776 S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785
the user selects the transactor actor type and the synthesis task
type. This causes the application to generate a list of all the cogni-
tive characteristics that have been used to characterize the trans-
actor actor type and the synthesis task type. In the following
step, the application displays on which level the expert supplies
the involved characteristics and on which level the synthesis task
demands the characteristics for successful fulfillment of the task.
The next part shows the characteristic match results for all cogni-
tive characteristics. This is shown in Fig. 9. The user can provide the
weigh values for the cognitive characteristics by entering them for
each characteristic involved in the next screen that is shown in
Fig. 10. Fig. 11 shows the eventual suitability match result with
the corresponding graph after calculating and summating the
weighed characteristic matches. The resulting graph shows that
in this case the suitability match of the expert fulfilling the synthe-
sis task is 4.65. The certainty that the expert is able to fulfill the
synthesis task is 93%. The source code of the prototype is based
Fig. 9. Characteristi
on the formal framework conceptually shown in Fig. 3. This is nec-
essary to show that the framework can be implemented in a proto-
type application. For example, the code implementation of the
suitability match function depicted in Section 5.3 is shown in
Fig. 12. Recall that the match function has been defined as follows:

Matchði; jÞ,

c2CC

Weighðc;CharMatchði; jÞÞ ð53Þ

The code implementation obviously shows that the match func-
tion takes an actor type and a task type as input parameters and a
suitability rank value as output parameter just like the formal
match function. Then, for each cognitive characteristic involved
in the process of computing the suitability match the results of
the weighed characteristic match function are summated. This also
corresponds with the definition of the suitability match function.
Note that the weighed characteristic match function as well as
the characteristic match functions are nested in the definition of
the suitability match function. This can also be discovered in
c match screen.

Fig. 10. Weigh distribution values screen.

Fig. 11. Suitability match screen.

S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785 777
Fig. 12. The source code of the characteristic match function is de-
picted in Fig. 13. The source code of the weighed characteristic
match function is depicted in Fig. 14. Up till now the framework,
the fuzzy match extension and the prototype of a cognitive match-
maker system have been discussed. In the following section we
will evaluate the cognitive matchmaking framework and the pro-
totype of a cognitive matchmaker system. Therefore, a case study
has been conducted in the area of information systems engineering
(ISE). The case study clarifies the benefits of the system when uti-
lized in ISE.
8. Case study in information systems engineering

The case study that has been conducted is related with a re-
cently completed ISE project at ‘e-office’. This is a company special-
ized in providing computer-aided support for human actors to
support them in their office work. The ISE project has been con-
cerned with the development of an ‘Action Reporting Tool’ (ART
for short) for an international provider of banking and insurance
services to personal, business and institutional customers. The
action reporting tool is a Web application that can generate risk

Fig. 12. Source code of the suitability match function.

Fig. 13. Source code of the characteristic match function.

Fig. 14. Source code of the weighed characteristic match function.

778 S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785
reports for the user. This tool should assist risk management to
better monitor and control insurance risks. This includes monitor-
ing and controlling the risks themselves and also the actions of the
actors involved in providing insurance services.

The case study has been conducted by applying a separate iter-
ation of the inductive-hypothetical research strategy. This separate
iteration is part of phase 4 of the overall research strategy men-
tioned in Section 2 and can be described as follows:

4.2. Case study in information systems engineering
4.2.1. Description of the project phases in which the ISE

project has been divided (Section 8.1). The descrip-
tion includes project-specific actor types and task
types and relations between them.

4.2.2. Abstraction of the results of phase 1 of the research
strategy to our general model of actor types and task
types mentioned in Sections 3 and 4 and in [11]
(Section 8.2).
4.2.3. Formulation of how the cognitive matchmaker sys-
tem can be utilized in every project phase related
to the actor types and task types involved in the pro-
ject (Section 8.3).

4.2.4. Analysis to identify the benefits if the cognitive
matchmaker system had been applied in the studied
ISE project (Section 8.4).

4.2.5. Evaluation by comparing phase 1 with phase 4 (Sec-
tion 8.5).

8.1. Initiation

The ART project is based on the Microsoft Solutions Framework
(MSF) information systems engineering method. The resulting tool
is a Web application running on the Microsoft Office SharePoint
Server 2007 platform (MOSS 2007 for short). Applications based

S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785 779
on this server platform are aimed to facilitate organizational col-
laboration, content management, business process management
and access to information related with organizational goals and
processes. The following project phases are determined as part of
the ART project: the definition phase, the development phase, the
acceptance phase and the implementation phase. During the defini-
tion phase requirements have been engineered by means of inter-
views with the future users of the tool. Interactive workshops have
also been conducted involving multiple users. Proceeding from this
requirements engineering process several use cases have been cre-
ated to determine the interactions between the users and the tool.
Possible screen mockups have then been created based on the use
cases. The tool is developed in an iterative way during the develop-
ment phase. The results after every iteration are tested before pro-
ceeding to the next iteration. The tool is tested integrally during
the acceptance phase in conformity with a test plan. The acceptance
test has been carried out by the banking and insurance service pro-
vider. Eventually, the final version of the tool is implemented at the
banking and insurance provider during the implementation phase.

The actors participating in the project have been categorized
into several project-specific actor types based on the MSF method.
Despite the fact that MSF incorporates many more project-specific
actor types, the following types were identified in the ART project.
First, an integrated program management (IPM) officer can be iden-
tified. The IPM officer is the executive responsible for the overall
organizational scheduling, planning and resource allocation. The
project manager type is charged with planning and scheduling du-
ties including developing project and iteration plans, monitoring
and reporting status, identifying and managing issues to closure,
and identifying and mitigating risk. The product manager insures
that the project stays within budget and that the business case is
realized. Besides these management-oriented actor types, several
actor types can be identified that are more directly involved in
Table 6
Project-specific actor types and task types

Task instance Project phase

Conduct interview with stakeholder Definition
Development

Conduct workshop with stakeholders Definition
Development

Design use case Definition
Development

Design mockup Definition
Design risk report Definition

Write technical tool description Definition
Development

Write project initiation document Definition

Determine hardware requirements Definition
Write security plan Definition

Development
Write project plan Definition

Development
Attend project meeting All phases
Attend steering committee meeting All phases
Set up MOSS 2007 environment Development
Build custom Web part Development
Configure Web part Development
Create risk report Development

Implement security for tool Development
Commit partial system test Acceptance

Commit integral system test Acceptance

Deploy completed tool Implementation
the development of the tool. The infrastructure architect type, for
instance, focuses on the deployment of both the physical and vir-
tual servers and services which run on them. Furthermore, the
solution architect is responsible for defining both the organizational
structure of the application and the physical structure of its
deployment. Finally, the lead developer and the developer actor
types can be identified. The lead developer lends experience and
skill and shows leadership by coaching fellow developers. Lead
developers carry responsibility for source code reviews, design
and testing. The developer is responsible for the bulk of the work
building the product. The developer should suffer a minimum of
communication overhead allowing for a maximum effort on con-
struction of source code.

The project manager of the ART project has created plans for
every phase that include breakdowns of the tasks to be fulfilled
in every phase. Using this documentation a project-specific task
type categorization can be described together with the fulfilled
tasks. Analysis of the project documentation also reveals which
project-specific actor type is related to a project-specific task type.
In other words, it can be made explicit which project-specific actor
is responsible to fulfill a project-specific task. It is also possible that
more than one actor is related to a task. The results of this analysis
are shown in Table 6.

8.2. Abstraction

When performing the second phase of the inductive-hypothet-
ical research strategy, it is possible to abstract the project-specific
actor types and task types. First, it is shown how the project-spe-
cific task types can be abstracted to the abstract task types men-
tioned in Section 4. Second, this section discusses how the
project-specific actor types can be abstracted to the actor types
mentioned in Section 3.1.
Project-specific task type Project-specific actor type

Elicitation task Project manager
Product manager
Solution architect

Elicitation task Project manager
Product manager
Solution architect

Design task Solution architect
Developer

Design task Developer
Design task Lead developer

Developer
Documentation task Developer

Documentation task Project manager
Product manager

Documentation task Infrastructure architect
Documentation task Infrastructure architect

Documentation task Project manager

Meeting task All actor types
Meeting task IPM officer
Code development task Infrastructure architect
Code development task Developer
Code development task Developer
Code development task Lead developer

Developer
Code development task Infrastructure architect
System test task Lead developer

Developer
System test task Lead developer

Developer
Deployment task Lead developer

Developer

Table 7
Actor type and task type abstraction

Project-specific actor
type

Abstract task
type

Abstract actor type

IPM officer Acquisition Collaborator
Project manager Acquisition Collaborator

Synthesis Transactor
Product manager Acquisition Collaborator

Synthesis Transactor
Infrastructure architect Acquisition Experiencer

Synthesis Expert
Solution architect Acquisition Collaborator or Experiencer

Synthesis Expert
Lead developer Acquisition Experiencer

Synthesis Expert or Integrator
Testing Collaborator

Developer Acquisition Experiencer
Synthesis Collaborator or Expert or

Integrator
Testing Collaborator

780 S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785
The distinguished abstract task types are the acquisition task
type, synthesis task type and the testing task type. The project-spe-
cific task types depicted in Table 6 can be abstracted to these task
types as follows. The mentioned elicitation tasks are typical knowl-
edge acquisition tasks. The actors executing an elicitation task ac-
quire and memorize knowledge by means of interviews or
workshops. Design tasks can be abstracted as synthesis tasks. In a
design task, the actor applies already acquired knowledge when
designing a use case, mockup or risk report. Documentation tasks
can also be classified as synthesis tasks. The documentation tasks
mentioned in Table 6 are related with the application of knowledge
when writing a technical tool description, project initiation docu-
ment, hardware requirements report, security plan and project
plan. Next, meeting tasks are abstracted to acquisition tasks. Dur-
ing project meetings and steering committee meetings it is in-
tended to acquire knowledge about, e.g. project planning, project
status and the remaining budget. Code development tasks can be
viewed as synthesis tasks. These tasks are necessary to build the
action reporting tool itself. The build process consisted of setting
up the programming environment, and the creation of Web parts
and risk reports. Web parts are the visual components that are part
of a Microsoft SharePoint application which include functionality,
such as: listed announcements, a calendar, a discussion part, etc.
Testing tasks are related with the project-specific system test tasks.
In a testing task, earlier applied knowledge is thoroughly examined
inducing an improvement of the specific knowledge applied. The
partial and integral system tests are needed to identify and correct
flaws in the action reporting tool. Finally, the deployment task can
be abstracted to a synthesis task. Here, all relevant knowledge that
Table 8
Cognitive matchmaking in the definition phase

Project-specific actor type Task type Actor type

IPM officer Acquisition Collaborator
Project manager Acquisition Collaborator

Synthesis Transactor
Product manager Acquisition Collaborator

Synthesis Transactor
Infrastructure architect Acquisition Experiencer

Synthesis Expert
Solution architect Acquisition Collaborator

Synthesis Expert
Lead developer Acquisition Experiencer

Synthesis Expert
Developer Acquisition Experiencer

Synthesis Collaborator
is applied is related with a successful deployment of the system at
the customer’s location.

Recall that the distinguished abstract actor types are the collab-
orator, experiencer, expert, integrator and the transactor. Table 7
shows the project-specific actor types, the abstract task types that
a project-specific actor type can fulfill and the abstract actor types.
For instance, a project manager may be classified as a collaborator
when fulfilling an acquisition task. However, if a project manager
executes a synthesis task he may act differently and may be classi-
fied as a transactor instead. Note that some project-specific actors
are not related with every abstract task type. For instance, a solu-
tion architect does not fulfill a testing task.

8.3. Theory formulation

The results of applying the third phase of the inductive-hypo-
thetical research strategy are discussed throughout this section.
We will show how the cognitive matchmaker system can be uti-
lized in all four phases of the ART project.

8.3.1. Definition phase
Based on the results of Section 8.1 and 8.2 it is now possible to

calculate the certainty that the actors involved in the definition
phase of the ART project can successfully fulfill the tasks allocated
to them. The results after calculating the cognitive matches are de-
picted in Table 8. Table 6 provides the project-specific task types
and the project-specific actor types that are involved in the defini-
tion phase. The cognitive matchmaker system can be utilized to
calculate the matches between the actor types and task types in-
volved in the definition phase. For this purpose the abstraction of
the project-specific task types and actor types shown in Table 7
must be used. The results of Table 8 can be explained as follows.
The solution architect, for instance, acts as a collaborator when
working on an acquisition task and acts as an expert when working
on a synthesis task, respectively. In the definition phase, the solu-
tion architect conducts interviews and workshops, and attends
project meetings. These tasks can be regarded as knowledge acqui-
sition tasks. Five weigh values have to be provided by the user of
the cognitive matchmaker system when calculating the suitability
match of the collaborator fulfilling an acquisition task. The weigh
values express the importance of the involved cognitive character-
istics when the solution architect needs to fulfill an acquisition task
in the definition phase. Because we were the users of the cognitive
matchmaker system, we have provided the following weigh values
for the volition, causability, improvability, satisfaction and rele-
vance characteristics, respectively: 1.5, 2, 1.5, 3 and 2. At the mo-
ment, the weigh values have to be provided manually by the
user. However, the next version of the prototype should include
an algorithm that determines these weigh values dependent of
Weigh values Suitability match Certainty (%)

2, 1.5, 0.5, 3, 3 4.3 86
2, 1, 1, 3, 3 4.4 88
1, 1.5, 1.5, 3, 3 4.85 97
2, 1, 1, 3, 3 4.4 88
1, 1.5, 1.5, 3, 3 4.85 97
4, 3, 3 3.5 70
1.5, 1, 1, 1, 1.5, 2, 2 4.575 91.5
1.5, 2, 1.5, 3, 2 4.4 88
1, 1.5, 1, 0.5, 1, 2, 3 4.8 96
4, 3, 3 3.5 70
1, 2, 1, 1.5, 1, 1.5, 2 4.6 92
3, 4, 3 3.3 66
2, 1.5, 2.5, 2, 2 4.4 88

S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785 781
how important a cognitive characteristic is in a certain combina-
tion of an actor type and a task type. The highest weigh value
has been applied to the satisfaction characteristic. That the solu-
tion architect should supply the satisfaction characteristic is obvi-
ously very important when fulfilling an acquisition task. This is to
make sure that the solution architect is pleased with the knowl-
edge acquired and that no additional need for knowledge remains.
The cognitive matchmaker system then sums up the resulting
weighed characteristic matches resulting in a suitability match of
4.4. The certainty that the solution architect acting as a collabora-
tor can successfully fulfill an acquisition task is:
lð4:4Þ ¼ 2

0þ10 � 4:4 ¼ 0:88 or 0:88 � 100% ¼ 88%. The solution archi-
tect acts as an expert when working on a synthesis task during the
definition phase. These synthesis tasks are related with the design
of use cases. The solution architect should be able to use his own
knowledge about use cases to correctly design them. The architect
should also be able to combine and modify his own knowledge
while designing use cases and he should also be able to learn from
that process. The expert actor type matches very well with the syn-
thesis task in this case, because the result of the suitability match
calculation is 4.8 and the result of the certainty function is 96%.

8.3.2. Development phase
Notice that the development phase includes a variety of project-

specific task types when analyzing Table 6. Concretely, the
development phase includes elicitation tasks, design tasks, docu-
mentation tasks, meeting tasks and code development tasks. The
code development tasks cover the majority of the development
phase of the ART project. The project-specific task types in the
development phase can be abstracted to acquisition tasks and syn-
thesis tasks. A project-specific actor type can also be classified as a
certain abstract actor type dependent of the task at hand. Table 9
shows how the cognitive matchmaker system can be utilized in
the development phase. We will consider the contributions of
the developer in the development phase to explain the meaning
of the contents of Table 9. Table 6 shows that building a custom
Web part is a specific code development task for a developer. Re-
call that Web parts are the visual components that are part of a
Microsoft SharePoint application which include functionality.
Building a Web part is a typical synthesis task: technical knowl-
edge about creating Web parts in the context of the ART project
is put into practice by a developer. When working on such a syn-
thesis task, the developer acts as an expert. Mostly individual
knowledge about creating Web parts is used to fulfill the task
and the developer is able to combine and modify this knowledge
while working on the code development task. Lessons learned after
fulfilling the task can be taken into account for future code devel-
opment tasks. Seven cognitive characteristics are involved when
matching the suitability of the expert type with the synthesis task:
volition, sentience, causability, improvability, independency, appli-
cability and correctness. In this case, the correctness characteristic
Table 9
Cognitive matchmaking in the development phase

Project-specific actor type Task type Actor type

IPM officer Acquisition Collaborator
Project manager Acquisition Collaborator

Synthesis Transactor
Product manager Acquisition Collaborator
Infrastructure architect Acquisition Experiencer

Synthesis Expert
Solution architect Acquisition Collaborator

Synthesis Expert
Lead developer Acquisition Experiencer

Synthesis Expert
Developer Acquisition Experiencer

Synthesis Expert
weighs most according to the weigh values shown in Table 9. This
means that when the developer applies knowledge it is important
that this knowledge is useful for the specific task and the applied
knowledge meets its requirements. The suitability match of 4.55
implies that the certainty of the developer acting as an expert
can successfully fulfill a synthesis task is 91%.

8.3.3. Acceptance phase
The acceptance phase is less comprehensive than the defini-

tion and development phases. Table 6 reveals that the lead devel-
oper and the developer play the most important role in this
phase, whilst the other project-specific actor types take part in
the regular project meetings that are also part of the acceptance
phase. The results of utilizing the matchmaker system in this
phase are shown in Table 10. Testing the action reporting tool
in its totality is one the testing tasks that is part of the acceptance
phase. The lead developer and developer types are responsible for
fulfillment of this task. Both the lead developer and the developer
types act as collaborators in this testing task. Collaboration with
other project members is necessary to fulfill the testing task, be-
cause neither the lead developer nor the developer possess all
knowledge about the action reporting tool as a whole to complete
the task.

8.3.4. Implementation phase
In the implementation phase the completed action reporting

tool is deployed at the customer organization. The lead developer
and developer types are involved in this deployment, whereas
the other actors commit to participate in project meetings during
this phase. Table 11 shows the results of the cognitive matches
in the implementation phase. The lead developer and the devel-
oper synthesize relevant knowledge to successfully deploy the
tool. Therefore, they primarily wish to apply knowledge of very
high quality by working together and they act as integrators in
the implementation phase.

8.4. Implementation

The results from the theory formulation phase are now utilized
to describe how an ISE project can benefit from the cognitive
matchmaker system. Three viewpoints are distinguished for an
ISE project, namely: Design time, runtime and post-mortem view-
points. From each of these viewpoints the applications of the sys-
tem are described:

Design time. This viewpoint embraces the situation before the
project is initiated (before the definition phase starts). First, the
project-specific actor types and the project-specific task types need
to be conceived. If this is done, there are two options to choose
from: Use the project-specific actor and task profile as a starting
point or the abstract profile including the abstract actor types
and task types from our framework. The latter has been done in
Weigh values Suitability match Certainty (%)

1.5, 1, 0.5, 3, 4 4.3 86
2, 1, 1, 3, 3 4.4 88
2, 1, 1, 3, 3 4.75 95
1, 1, 1, 3, 4 4.35 87
2, 4, 4 3 60
2, 1, 0.5, 1, 0.5, 2, 3 4.75 95
1, 1.5, 0.5, 3, 4 4.25 85
1, 1, 0.5, 0.5, 1, 2, 4 4.725 94.5
2, 3, 5 2.9 58
1, 0.5, 0.5, 0.5, 0.5, 3, 4 4.85 97
3, 4, 3 3.3 66
2, 1, 0.5, 2, 0.5, 1, 3 4.55 91

Table 11
Cognitive matchmaking in the implementation phase

Project-specific actor type Task type Actor type Weigh values Suitability match Certainty (%)

IPM officer Acquisition Collaborator 2, 0.5, 0.5, 6, 1 4.05 81
Project manager Acquisition Collaborator 1.5, 0.5, 1, 5, 2 4.2 84
Product manager Acquisition Collaborator 2, 0.5, 0.5, 5, 2 4.15 83
Infrastructure architect Acquisition Experiencer 0.5, 6, 3.5 2.75 55
Solution architect Acquisition Experiencer 2, 4, 4 3 60
Lead developer Acquisition Experiencer 4, 3, 3 3.5 70

Synthesis Integrator 1, 0.5, 2.5, 6 5.55 89
Developer Acquisition Experiencer 3, 4, 3 3.3 66

Synthesis Integrator 1, 0.5, 3.5, 5 5.5 90

Table 10
Cognitive matchmaking in the acceptance phase

Project-specific actor type Task type Actor type Weigh values Suitability match Certainty (%)

IPM officer Acquisition Collaborator 2, 0.5, 0.5, 4, 3 4.25 85
Project manager Acquisition Collaborator 1, 0.5, 1.5, 4, 3 4.35 87
Product manager Acquisition Collaborator 1.5, 0.5, 1, 4, 3 4.3 86
Infrastructure architect Acquisition Experiencer 1.5, 5, 3.5 2.95 59
Solution architect Acquisition Experiencer 1, 6, 3 2.9 58
Lead developer Acquisition Experiencer 3.5, 3.5, 3 3.4 68

Testing Collaborator 1, 0.5, 0.5, 1.5, 1.5, 2, 3 3.975 79.5
Developer Acquisition Experiencer 2.5, 4, 3.5 3.15 63

Testing Collaborator 1, 0.5, 1.5, 1, 1.5, 3, 1.5 3.925 78.5

782 S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785
the case study as is elaborated in Section 8.2. When using a pro-
ject-specific profile as input for the cognitive matchmaker system,
a project-specific profile of actors and tasks should be generated.
This has also been done in Section 8.1. If not already entered in
the project-specific database as is shown in Fig. 8, the actor and
task data should be provided as a next step. The person that needs
to allocate tasks to actors, the project manager for instance, can
now calculate the suitability matches. Based on these results he
can allocate tasks to actors before starting the project.

Runtime. During the enactment of an ISE project, suitability
matches can be recalculated if changes to task allocations are nec-
essary. This may be the case if a different actor needs to work on a
task than the one specified in the project plan. The cognitive
matchmaker system can then be used again to recalculate the suit-
ability match. New tasks may also be introduced during the project
that need to be allocated to actors. This may entail the need to cal-
culate additional suitability matches during project enactment.
The cognitive matchmaker system can also be utilized to evaluate
task allocations after every project phase. The suitability matches
may be compared with the actual fulfillment of the tasks in a
phase. An in-depth analysis may be necessary if there are striking
differences between the suitability match and the results of task
fulfillment by an actor.

Post-mortem. From a ‘post-mortem’ point of view, task alloca-
tions in the project as a whole can be analyzed. The suitability
matches for every actor/ task combination in the ISE project may
be compared to the actual results brought forward by the actors.
Lessons learned should then be recorded for future projects. This
may help to better decide which actor types are suitable to work
with which types of tasks.

8.5. Case study evaluation

In this section, the results of the initiation phase are compared
with the results of the implementation phase. The evaluation of the
initiation phase is related to the three viewpoints of the implemen-
tation phase:

Design time. First, the choices leading to the project-specific
actor types as shown in Table 6 have not been argued in the ART
project documentation. Recall that the project-specific actor types
originate from the Microsoft Solutions Framework ISE method.
Entering the actor types that MSF distinguishes in the project-spe-
cific database of the cognitive matchmaker system enables a better
argued decision of which actor types to use in a project. For in-
stance, the system test tasks shown in Table 6 are performed by
the (lead) developer actors. However, the MSF method also distin-
guishes the tester and test manager actor types. Including these ac-
tor types in the ART project may have improved the suitability
matches related with the system test tasks. A difficulty is that
the MSF method does not provide a clear description of the cogni-
tive characteristics that characterize an actor type. The MSF meth-
od, however, provides a natural language description of each actor
type included in the method. Proceeding from these descriptions
the administrator of the cognitive matchmaker system should be
able to characterize the project-specific actor types by adding cog-
nitive characteristics to the project-specific database or by reusing
characteristics.

Runtime. The results of the theory formulation phase included
suitability matches for every actor/task combination differentiated
to a specific project phase. At ‘runtime’, these suitability matches
may be reviewed after every project phase. The lowest certainty
percentages shown in Tables 8–11 deserve special attention to dis-
cover the reasons of the lowest match results. For instance, Table 8
shows that the developer acting as an experiencer has a certainty
of 66% to successfully fulfill an acquisition task. When viewing Ta-
ble 6 it can be interpreted that the acquisition task performed by
the developer in the definition phase is related with the attendance
of project meetings. This may be caused in the case if a meeting is
not very relevant for a developer. For instance, when a large part of
a certain meeting is about project management issues a developer
may not have a satisfied feeling after the meeting. Letting develop-
ers attend the most relevant meetings may increase the suitability
matches for these acquisition tasks. In the same way, the other cal-
culated matches can be analyzed for every project phase.

Post-mortem. For instance, the testing tasks shown in Table 6
deserve attention when comparing the actual project results with
the suitability matches. According to Table 6 the partial and inte-
gral system tests are conducted by the developer and lead

S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785 783
developer types. Table 10 shows that the certainty is 78.5% that the
developer can successfully fulfill these testing tasks. The MSF
method includes the tester actor type that may be more suitable
to fulfill testing tasks in general. According to the MSF, a key goal
for the tester is to find and report the significant bugs in the prod-
uct by testing the product. Once a bug is found, it is also the tester’s
job to accurately communicate its impact and describe any solu-
tions that could lessen its impact. The purpose of testing is to prove
that known functions work correctly and to discover new product
issues. Obviously, more bugs could have been found and solved
after testing each iteration and the overall product by the tester ac-
tor type. In the current project situation, the developer has the
responsibility for code development and testing as well. Usability
issues also arose during the system test tasks. What can be seen
in Table 6 is that the developer is also responsible for designing
the mockups. The responsibility of the developer to design, develop
as well as test the system may have contributed to the existence of
some usability problems. The MSF advocates the addition of a user
experience architect to the project to increase the usability of the
tool. According to the MSF, the user experience architect is respon-
sible for the form and function of the user interface, its aesthetics
and the overall product usability. Recall that designing mockups
is a synthesis task. The certainty that the developer can success-
fully fulfill a synthesis task in the definition phase is 88%. This is
not low, but may further increase when the main focus of a devel-
oper is on developing code. So, for future projects it may be a good
idea to introduce a tester and a user experience architect as well.
9. Discussion

Literature indicates that matchmaking in general (i.e. not spe-
cifically from a cognitive point of view) is possible in different
ways. The research of [25] is related with matchmaking between
a Web service provider on the one hand and a Web service reques-
ter on the other hand. Their matchmaking framework matches the
supply of the service provider with the demand of the requester. A
division of the concept of matchmaking is made in two categories:

(1) Syntactic matchmaking: which uses the structure or format
of a task specification to match a requester with a provider
to decide which service providers to recommend.

(2) Semantic matchmaking: which uses the meaning and infor-
mational content of the request to match it with the mean-
ing of the offered services.

Relating this division with the matchmaking problem discussed
in our study, it can be said that syntactic matchmaking determines
a match dependent of the enacted task, which can be an acquisi-
tion task, synthesis task or a testing task in the case of our model.
In the case of semantic matchmaking the meaning and informa-
tional content of the cognitive characteristics provided by an actor
are related with the meaning and informational content of the task
requirements. However, it is not self-evident to categorize our
matchmaking framework in one of these two categories. Our
framework is capable of more matchmaking functionality than
syntactic matchmaking because of the introduced formalisms that
not only take task specifications into account, but also actor spec-
ifications and cognitive characteristics. Semantic matchmaking
however is a matchmaking category that requires an ontology to
determine the informational semantics of that what is required
and that what is supplied. The disadvantages of this type of match-
making are related with the necessity of an ontology and the quite
complex algorithms needed to compute an actual match result. In
principle a different category such as ‘cognitive matchmaking’
based on numerical as well as fuzzy values is more suitable to
classify our model. Advantages of our approach when compared
with syntactic and semantic matchmaking as described above is
that no ontology is needed to define a match and not only task
specifications but also actor specifications are determined. The
weighing of specific characteristics from a cognitive point of view
then adds an additional dimension when determining a match.

A lot of studies in the matchmaking field are especially related
to recommender systems. The research of [26] for instance pre-
sents how opportunities for collaboration between actors can be
determined by matching an actor’s current context (as determined
by the actor’s work environment) with other actors that might
have related interests or work. Their matchmaking framework con-
sists of a 3-step process:

(1) Given the work environment an actor is currently working
on, look for other users currently in similar environments.

(2) Within those found, look for documents in the environments
that are similar to the document currently being worked on.

(3) Ask the document owner whether the documents found can
be sent and furnish information on the user who will be
receiving it.

Matches are made through keyword similarity calculation.
Every document requires an associated keyword list and these lists
are compared to determine similarity between the documents and
find possible matches. A drawback of this approach is that a spe-
cific algorithm is required to create a list of keywords for every
document as part of an actor’s work environment. Vivacqua et al.
[26] use the TFIDF (Term Frequency Inverse Document Frequency)
algorithm to generate a keyword list for every document in order
to determine a match value. Compared to our approach though,
no additional algorithms are necessary to compute a match value
because of the ranking mechanisms that are already implemented
in the theory of Section 5. This might save some time while gener-
ating match values using the cognitive matchmaker system. An-
other aspect relevant for the discussion is that matchmaking
based on document comparison computes a match value based
on documents only. However, to what extent can collaboration
opportunities between actors be determined when only their over-
lapping documents are taken into consideration? Thus, the relation
between the matchmaking framework and the goals that should be
reached by such a system is somewhat difficult to interpret. When
looking at the matchmaking framework of Section 5 this is more
straightforward. For short, a goal of using an implemented version
of such a framework is to find actor/ task matches based on cogni-
tive characteristics to diminish the cognitive load of an actor.

Literature indicates that cognitive matchmaking can be found in
several areas of computer science. One of these initiatives is Cogni-
tive Match Interface Design (COMIND) [27]. COMIND is the design-
ing of system processes so that they proceed and interact with the
user in a manner that parallels the flow of the user’s own thought
processes. It consists of several principles, such as: the user should
be able to express his needs to the computer with constructs which
mirror the user’s own thought processes. Another principle is the
readiness of a computer to solve problems of the user in his/her
area of need. Also, the computer should sanction flexibility just like
the mind. The mind is regarded as a versatile and flexible problem
solver. The authors tried to apply these principles when designing
a medical information system. Unfortunately, a method for inter-
face design that incorporates COMIND is not introduced. Only the
medical information system case is elaborated. Creation of a CO-
MIND framework including the proposed cognitive principles for
user interface design would have possibly enabled reuse of CO-
MIND in different areas. The existence of our cognitive matchmak-
ing framework does enable its specific application in many
different areas.

784 S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785
Another interesting study is the cognitive matchmaking of stu-
dents with e-learning system functionality [28]. A way of working
is presented to design e-learning systems that better adapt to the
cognitive characteristics of students. First, a taxonomy of learning
styles is selected to classify the user. Next, techniques should be
developed to introduce the adaptation into the system that fits
the learning styles. The designed adaptation is then implemented
on a computer. Finally, a selection of the technologies is made that
are adequate for the adaptation. Besides this described way of
working, a cognitive method or a system to match students and
e-learning systems is not proposed. The mentioned concept of
reflection can be very useful for our own work, though. Reflection
is defined as the capability of a computational system to adjust it-
self to changing conditions. This can be seen on, e.g. http://
maps.google.com. The process of adaptation is made stronger
since it is possible to create specific code depending on the sup-
plied characteristics of the user when using the system. Adding
reflection to our system may take situational elements into ac-
count when determining a match, for instance. Concretely, the ac-
tual availability of actors during the studied ART project may be
included when allocating tasks to actors.

Jaspers et al. [29] argue that early involvement of cognitive
matchmaking in ISE may be of importance to design systems that
fully support the user’s work practices. From this perspective, cog-
nitive matchmaking is used for requirements engineering to match
system requirements with the user’s task behavior. To understand
the task behavior of future users of a clinical system, the think
aloud method has been applied [29]. Think aloud is a method that
requires subjects to talk aloud while performing a task. This stim-
ulates understanding of the supplied cognitive characteristics
when performing a task. Unfortunately, the method has only been
utilized to design a user interface for a clinical information system.
The study lacks a more abstract framework that can be reused to
design interfaces in general that better match task behavior of its
users. Task-analysis methods such as the think aloud method can
be useful when refining our research. For instance, these methods
may be very valuable to improve the way we have characterized
the abstract actor types and task types based on cognitive charac-
teristics. Jaspers et al. [29] also included a simplified model of the
human cognitive system. Studying that model may further im-
prove the way we interpret cognitive matchmaking processes.

Cognitive psychology includes important research related to ac-
tors solving a problem and the underlying cognitive processes. In
their earlier work, Newell and Simon [30] proposed a theory which
includes a set of cognitive processes or mechanisms that produce
the behavior of an actor. According to the theory, the task instruc-
tions and previous experience in solving similar tasks contribute
significantly to the determination of an actor’s perception of how
to fulfill a task. The task instructions not only define the task but
also provide a specific representation that helps define ideas of
how to fulfill a task. Building upon Newell and Simon’s work, hu-
man factors research explored the influence of the nature of the
task and the way an actor performs to fulfill the task. The ideas pre-
sented in this paper somehow relate with an important notion
generated from Newell and Simon’s work which is that of cognitive
fit [31]. The basic model of cognitive fit views task fulfillment as
the outcome of the relationship between the actor’s perception
of how to fulfill the task and the nature of the task, which are both
characterized by the type of knowledge they emphasize. When the
types of knowledge emphasized in the actor and task elements
match, the actor can employ processes (and formulate a mental
representation) that also emphasize the same type of knowledge.
Cognitive fit exists because the cognitive processes used to com-
plete the task match. This synergy results in superior task perfor-
mance. Conversely, when a mismatch occurs between the
perception of how to complete a task and the actual requirements
to fulfill a task, cognitive fit will not result and task performance
will deteriorate. A difference with our approach is that an actor
can be classified as an experiencer, a collaborator, an expert, an
integrator or a transactor based on that actor’s current cognitive
profile (i.e. the way an actor is able to perform the defined cogni-
tive characteristics) instead of determining an actor’s perception
of how to complete a task. Elaborating an actor’s perception related
to the fulfillment of every task may be a time consuming process in
practice and therefore an advantage of our approach may be that a
match value can easily be determined once actors and tasks are
classified by their types (by following the system’s flow as pre-
sented in Fig. 3). However, an actor’s cognitive capabilities may
change over time (they may improve or deteriorate) and that
may cause an actor to be classified as a different type in our model
at different points in time.
10. Conclusions and future work

This paper describes how actors and tasks can be matched
based on cognitive characteristics. First, several actor types and
task types are categorized based on cognitive characteristics that
can be supplied, respectively, demanded. Next, a framework for
cognitive matchmaking is elaborated. This framework includes
the functions to calculate the suitability of an actor to fulfill a
task. Furthermore, an extension of this framework shows how
numerical suitability match values can be translated to linguistic
suitability match values. Proceeding from the framework the
prototype implementation of a cognitive matchmaker system is
demonstrated. An information systems engineering project pro-
vided the breeding ground for the case study in which possible
benefits of the cognitive matchmaker system has been evaluated.
The ISE project has been concerned with the development of an
‘Action Reporting Tool’ for an international provider of banking
and insurance services. The action reporting tool is a software
application that can generate risk reports for the user. The suit-
ability matches of the tasks allocated to the actors in every pro-
ject phase have been evaluated using the cognitive matchmaker
system.

By utilizing the actor type and task type categorizations it has
been possible to calculate matches with the functions of the frame-
work. The implementation of these functions in a prototype shows
that it is possible to build a working cognitive matchmaker system
based on the framework. Several conclusions can be drawn when
reviewing the results of the case study. It can be concluded that
the cognitive matchmaker system can provide support for task
allocation in an ISE project in at least three different ways: before
project initiation (at design time), during project enactment (at
runtime) and after the project has finished (post-mortem). At de-
sign time, the person that needs to allocate tasks to actors, the pro-
ject manager for instance, can calculate the suitability matches.
Based on these results he can allocate tasks to actors before start-
ing the project. At runtime, suitability matches can be recalculated
if changes to task allocations are necessary. The cognitive match-
maker system can also be utilized to evaluate task allocations after
every project phase. The calculated suitability matches can be
compared with actual task performance. From a post-mortem
point of view, the suitability matches for every actor/task combina-
tion in the project can be compared to the actual results brought
forward by the actors. Lessons learned may help to better decide
which actor types are suitable to work with which types of tasks.
In this case, the cognitive matchmaker system is related with infor-
mation systems engineering. However, the system may be usable
in other areas as we have already mentioned in the introduction,
such as: multi-agent systems, workflow management and
BPR.

http://maps.google.com
http://maps.google.com

S.J. Overbeek et al. / Knowledge-Based Systems 21 (2008) 764–785 785
Future work is concentrated on improving the theoretical
framework as well as the prototype and further evaluation in case
studies. At this moment, it is only possible to calculate a match
based on one actor type and one task type. However, there are
situations imaginable that multiple actors are working together
to fulfill a set of tasks. If this is the case, it might be interesting
to determine a match based on the total amount of actors and
the total amount of tasks the actors are fulfilling as a group.
The prototype of the cognitive matchmaker system can also be
expanded with the capability to compute a suitability match
based on fuzzy assessments. In other words, the formalisms of
the fuzzy match part can be implemented in a second version
of the prototype. Besides these additions, the future cognitive
matchmaking framework and prototype may consider situational
elements. This may include personal preferences of actors, per-
sonal goals of actors and availability of actors during a project.
Suppose that an actor has a high match value when fulfilling a
certain task but does not like to fulfill that task at all, then this
may negatively influence the actor’s task performance. The next
version of the cognitive matchmaking framework and prototype
should also take the concept of actor contention into account. This
can be explained as follows. Assume that two actors receive the
same best suitability for a task. Let one of these actors be medi-
ocre at all required characteristics, while the other actor is really
good at some and really bad at others. Somehow, the system
should choose an actor to assign the task to. Finally, methods
from cognitive science to better understand task behavior can
be studied to improve the framework. Cognitive task analysis,
protocol analysis and the ‘think aloud’ methods are most common
to analyze in detail the way in which humans perform tasks,
mostly in interaction with a prototype computer system. Natu-
rally, more case studies need to be conducted (most likely in
the aforementioned areas). This is necessary to evaluate and im-
prove the theory and the prototype.

Acknowledgements

This study is partly supported by the Dutch agency for innova-
tion and sustainable development (SenterNovem) under Grant
SO07026170. We cordially thank Martijn Duiveman and Peter
Spronk of e-office for implementing a major part of the prototype.

References

[1] S. Staab, R. Studer, H. Schnurr, Y. Sure, Knowledge processes and ontologies,
IEEE Intelligent Systems 16 (1) (2001) 26–34.

[2] E. Kako, Thematic role properties of subjects and objects, Cognition 101 (1)
(2006) 1–42.

[3] C. Weir, J. Nebeker, L. Bret, R. Campo, F. Drews, B. LeBar, A cognitive task
analysis of information management strategies in a computerized provider
order entry environment, Journal of the American Medical Informatics
Association 14 (1) (2007) 65–75.

[4] N. Meiran, Modeling cognitive control in task-switching, Psychological
Research 63 (3–4) (2000) 234–249.

[5] R. Hertwig, G. Barron, E. Weber, I. Erev, The role of information sampling in
risky choice, in: K. Fiedler, P. Juslin (Eds.), Information Sampling and Adaptive
Cognition, Cambridge University Press, New York, NY, USA, 2006, pp. 72–91.
[6] D. Koehler, Explanation, imagination, and confidence in judgment,
Psychological Bulletin 110 (3) (1991) 499–519.

[7] M. R-Moreno, D. Borrajo, A. Cesta, A. Oddi, Integrating planning and scheduling
in workflow domains, Expert Systems with Applications 33 (2) (2007) 389–
406.

[8] K. Joshi, S. Sarker, S. Sarker, Knowledge transfer within information systems
development teams: examining the role of knowledge source attributes,
Decision Support Systems 43 (2) (2007) 322–335.

[9] E. Shakshuki, O. Prabhu, I. Tomek, FCVW agent framework, Information and
Software Technology 48 (6) (2006) 385–392.

[10] W. van der Aalst, A. ter Hofstede, Verification of workflow task structures: a
Petri-net-based approach, Information Systems 25 (1) (2000) 43–69.

[11] S. Overbeek, P. van Bommel, H. Proper, D. Rijsenbrij, Characterizing knowledge
intensive tasks indicating cognitive requirements – scenarios in methods for
specific tasks, in: J. Ralyté, S. Brinkkemper, B. Henderson-Sellers (Eds.),
Proceedings of the IFIP TC8/ WG8.1 Working Conference on Situational
Method Engineering: Fundamentals and Experiences, vol. 244, Geneva,
Switzerland, Springer, Boston, USA, 2007, pp. 100–114.

[12] S. Overbeek, P. van Bommel, H. Proper, D. Rijsenbrij, Matching cognitive
characteristics of actors and tasks, in: R. Meersman, T. Zari (Eds.), On the Move
to Meaningful Internet Systems 2007: DOA, CoopIS, ODBASE, GADA, and IS,
Vilamoura, Portugal, November 25–30, 2007, Proceedings, Part I, vol. 4803 of
Lecture Notes in Computer Science, Vilamoura, Portugal, EU, Springer, Berlin,
Germany, EU, 2007, pp. 371–380.

[13] H. Sol, Simulation in information systems, Ph.D. thesis, University of
Groningen, The Netherlands, EU, 1982.

[14] C. Churchman, The Design of Inquiring Systems: Basic Concepts of Systems
and Organization, Basic Books, New York, NY, USA, 1971.

[15] G. de Vreede, N. Jones, R. Mgaya, Exploring the application and acceptance of
group support systems in africa, Journal of Management Information Systems
15 (3) (1998) 197–234.

[16] Y. Wang, E. van de Kar, G. Meijer, Designing mobile solutions for mobile
workers: Lessons learned from a case study, in: ICEC’05: Proceedings of the 7th
International Conference on Electronic Commerce, Xi’an, China, ACM Press,
New York, NY, USA, 2005, pp. 582–589.

[17] D. Cruse, Some thoughts on agentivity, Journal of Linguistics 9 (1973) 11–23.
[18] D. Dowty, Thematic proto-roles and argument selection, Language 67 (3)

(1991) 547–619.
[19] I. Nonaka, H. Takeuchi, The Knowledge Creating Company, Oxford University

Press, New York, NY, USA, 1995.
[20] T. Davenport, Thinking for a Living – How to Get Better Performances and

Results From Knowledge Workers, Harvard Business School Press, Boston, MA,
USA, 2005.

[21] S. Hoppenbrouwers, H. Proper, Knowledge discovery: De zoektocht naar
verhulde en onthulde kennis, DB/Magazine 10 (7) (1999) 21–25. in
Dutch.

[22] T. Halpin, Information Modeling and Relational Databases, From
Conceptual Analysis to Logical Design, Morgan Kaufmann, San Mateo,
CA, USA, 2001.

[23] L. Zadeh, Toward a generalized theory of uncertainty (GTU): an outline,
Information Sciences 172 (1–2) (2005) 1–40.

[24] M. Turner, Microsoft Solutions Framework Essentials, Microsoft Press,
Redmond, WA, USA, 2006.

[25] G. Shu, O. Rana, N. Avis, C. Dingfang, Ontology-based semantic matchmaking
approach, Advances in Engineering Software 38 (1) (2007) 59–67.

[26] A. Vivacqua, M. Moreno, J. de Souza, Profiling and matchmaking strategies in
support of opportunistic collaboration, in: R. Meersman, T. Zahir, D. Schmidt
(Eds.), On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and
ODBASE, Springer, Berlin, Germany, EU, 2003, pp. 162–177.

[27] R. Coll, J. Coll, Cognitive match interface design, a base concept for guiding the
development of user friendly computer application packages, Journal of
Medical Systems 13 (4) (1989) 227–235.

[28] M. Ruiz, M. Díaz, F. Soler, J. Pérez, Adaptation in current e-learning systems,
Computer Standards & Interfaces 30 (1–2) (2008) 62–70.

[29] M. Jaspers, T. Steen, C. van den Bos, M. Geenen, The think aloud method: a
guide to user interface design, International Journal of Medical Informatics 73
(11–12) (2004) 781–795.

[30] A. Newell, H. Simon, Human Problem Solving, Prentice Hall, Englewood Cliffs,
NJ, USA, 1972.

[31] I. Vessey, Cognitive fit: a theory-based analysis of the graphs versus tables
literature, Decision Sciences 22 (2) (1991) 219–240.

	Matching cognitive characteristics of actors and tasks in information systems engineering
	Introduction
	Research approach
	Cognitive actor settings
	Actor types
	Definitions of cognitive characteristics
	Volition
	Sentience
	Causability
	Improvability
	Independency

	Task types
	Framework for cognitive matchmaking
	Characteristic match
	Weighed suitability
	Suitability match

	Fuzzy match assessments
	Prototype of the cognitive matchmaker system
	Case study in information systems engineering
	Initiation
	Abstraction
	Theory formulation
	Definition phase
	Development phase
	Acceptance phase
	Implementation phase

	Implementation
	Case study evaluation

	Discussion
	Conclusions and future work
	Acknowledgements
	References

