
Information Systems Engineering Supported by
Cognitive Matchmaking

S.J. Overbeek1, P. van Bommel2, and H.A. (Erik) Proper2,3

1 e-office B.V., Duwboot 20, 3991 CD Houten, The Netherlands, EU
Sietse.Overbeek@e-office.com

2 Institute for Computing and Information Sciences, Radboud University Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, EU

P.vanBommel@cs.ru.nl
3 Capgemini Nederland B.V.,

Papendorpseweg 100, 3528 BJ Utrecht, The Netherlands, EU
E.Proper@acm.org

Abstract. In daily practice, discrepancies may exist in the suitability
match of actors and the tasks that have been allocated to them. Formal
theory and the prototype of a cognitive matchmaker system are intro-
duced as a solution to improve the fit between actors and tasks. A case
study has been conducted to clarify how the proposed cognitive match-
maker system can be utilized in information systems engineering. The
inductive-hypothetical research strategy has been applied when perform-
ing the case study.

Keywords: cognitive characteristics, matchmaking, task allocation.

1 Introduction

Globalization, the emergence of virtual communities and organizations, and
growing product complexity has an impact on how actors (i.e. a human or a
computer) fulfill tasks in organizations. Notably due to these developments, an
actor working on a task may experience an increase in cognitive load while task
performance decreases [1,2]. The system discussed in this paper matches cogni-
tive characteristics supplied by actors and the cognitive characteristics required
to fulfill tasks. This may achieve a better fit between actors and tasks. Cognitive
characteristics can be the willpower to fulfill a task or maintaining awareness
of the requirements to fulfill a task for example. These characteristics are also
referred to as volition and sentience, respectively in cognitive literature [2,3].
Within the enterprise, the benefits of cognitive matchmaking can be found in at
least three areas: Multi-agent systems, workflow management and business pro-
cess reengineering (BPR). (1) Multi-agent systems incorporate several software
agents that may work together to assist humans in performing their tasks [4].
One way of providing assistance is to match tasks with human actors to un-
derstand which tasks fit best with which human actors. (2) The primary task
of a workflow management system is to enact case-driven business processes by

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 495–509, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

496 S.J. Overbeek, P. van Bommel, and H.A. (Erik) Proper

joining several perspectives [5]. One of these perspectives is the task perspective.
This perspective describes the elementary operations performed by actors while
executing a task for a specific case. An example of a case is a tax declaration.
Integration of cognitive matchmaking in a workflow management system may
prescribe which available actors fit best with the tasks that are part of a case.
This may improve the allocation of tasks to actors while enacting a business
process. (3) BPR consists of computer-aided design of processes and automatic
generation of process models to improve customer service [6]. The design and
creation of processes and process models may be improved if the business process
modeler knows beforehand which available actors best fit the tasks that need to
be fulfilled as part of a newly designed business process.

The focus of the research reported in this paper, however, is to analyze how
cognitive matchmaking can provide support for a project during which an in-
formation system is engineered. Therefore, a case study has been carried out at
e-office, a company specialized in providing computer-aided support for human
actors to assist them during office work. First, the framework for cognitive match-
making that has been developed in earlier work [7] is introduced in section 2.
Section 3 discusses the prototype, that has been developed proceeding from the
framework. The conducted case study is explained in section 4. Section 5 briefly
compares our study with other approaches in the field and outlines the benefits
of our approach. Section 6 concludes this paper and gives an overview of future
work.

2 Framework for Cognitive Matchmaking

The main goals of this paper are to discuss the prototype and the case study.
However, it is necessary to briefly introduce the framework for cognitive match-
making as is elaborated in [7]. First, the framework is illustrated in figure 1.

Supply

Demand

CharMatch MatchWeigh

∈

∈

Normalize
Proximity

Metric

CharWeigh ⊕⊗

Fig. 1. Framework for cognitive matchmaking

The different concepts shown in figure 1 are functions that are necessary to calcu-
late the eventual suitability match of an actor fulfilling a task. Even though the
formal signature of these functions are not exhaustively repeated in this section,
we will show some examples for clarification. First, the supply function shows
the level on which an actor type, that is characterized by certain cognitive char-
acteristics, offers a characteristic during task execution. The levels on which an
actor type supplies a cognitive characteristic may vary over the natural numbers

Information Systems Engineering Supported by Cognitive Matchmaking 497

from 0 up to and including 10. These levels are part of the characteristic rank
domain indicated by the set CRN . This ranking domain includes the rank values
that can be used to indicate the level on which a characteristic can be supplied
by an actor or demanded by a task. The demand function depicted in figure 1
shows the level on which a task of a certain type requires a certain cognitive
characteristic if an actor wishes to fulfill the task.

The characteristic match or CharMatch function shown in figure 1 matches
supply and demand of a specific characteristic. There is an optimal characteristic
match if an actor offers a cognitive characteristic at the same level as a certain
task requires the characteristic. A characteristic match is calculated for every
cognitive characteristic that is supplied by an actor type and demanded by a
task type. The result is part of the match rank domain, which may vary over
the real values from 0 up to and including 1. An optimal characteristic match is
indicated by the match rank value 0.5. This is because 0 indicates complete un-
derqualification (an actor is not able to supply a certain characteristic at all) and
1 indicates complete overqualification (the supply of a certain characteristic is
not necessary at all for a task whilst an actor supplies that certain characteristic
at the highest level).

The weighed characteristic match function or Weigh function weighes the
result of the characteristic match function. The user of the system may pro-
vide a weigh value to give more importance to a characteristic match result
than another. The result is part of the suitability rank domain, which may vary
over the real values from 0 up to and including 10. The results of the weigh
function are then summated by the Match function which shows the suitability
match. This suitability match is also expressed by a value from the suitabil-
ity rank domain. To show how we have formalized the functions of the frame-
work, the formal signature of e.g. the match function is modeled as follows [7]:
Match : AT × TT → SRN . Note that the set AT contains actor types, the set
TT contains task types and the set SRN contains suitability rank values. This
function can be defined using the aforementioned functions:

Match(expert, synthesis) �
⊕

c∈CC
Weigh(c, CharMatch(expert, synthesis))

For this example the suitability match of the expert actor type [7] and the syn-
thesis task type [8] has been calculated. The expert uses his own knowledge to
solve a problem. The expert is also able to combine and modify knowledge while
solving a problem and is able to learn from that. A researcher often acts as an ex-
pert. A synthesis task is related with the actual utilization of acquired knowledge.
An example is a student who utilizes knowledge (acquired by reading a book)
while performing an exam. The definition of the match function shows that for
every characteristic the weighed characteristic match function is executed and
the results are then summated. The latter is shown by the ⊕ operator. This op-
erator is used instead of the large Sigma because soft (linguistic) suitability rank
values can also be used instead of hard (numerical) values. The match function
can be expressed as follows: Match(expert, synthesis) = 4.25, which shows that
the numerical suitability match of the expert fulfilling the synthesis task is 4.25.
This is a fairly good result, knowing that 5 is the best suitability match that

498 S.J. Overbeek, P. van Bommel, and H.A. (Erik) Proper

Graphical User Interface
(Microsoft .NET Framework 2.0 Web UI)

Data Layer
(Microsoft Enterprise Library 3.0)

Project-specific
Database

(Microsoft SQL
Server 2005)

Abstract
Database

(Microsoft SQL
Server 2005)

Kernel

Functions

...

Ranking
Domains

Matching
Factory

Project-specific profile
Project-specific

Project-specific

actor types

task types

Project-specific
cognitive characteristics

Abstract profile
Abstract actor types

Abstract task types

Abstract
cognitive characteristics

Business Layer

Fig. 2. Cognitive matchmaker system architecture

can be achieved. Section 3 contains a screen shot of the prototype in which this
match result is shown. An implementation of the match function is shown as a
code snippet in section 3. This is to illustrate that the formalisms mentioned in
figure 1 are implemented in program code. The program code has been tested
by means of unit tests after the implementation of all the formalisms included
in the framework. This is to make sure that individual methods in the code are
working properly.

Finally, a function has been introduced to determine the degree of certainty
that an actor is suitable to fulfill a task [7]: μ : R → [0, 1]. A linear certainty
degree function can be defined as follows:

μ(u) �
{ 2

min+max
· u min ≤ u ≤ min+max

2
−2

min+max · u + 2 min+max
2 ≤ u ≤ max

In the implementation of the prototype the minimum and maximum values of a
suitability match are equated to 0 respectively 10. Thus, min = 0 and max = 10.
The degree of certainty that the expert is suitable to fulfill the synthesis task is:
μ(4.25) = 2

0+10 · 4.25 = 0.85. This can be interpreted as being 85% sure that the
expert is suitable enough to fulfill the synthesis task. It might be a good choice
to let this actor fulfill the task, unless an available actor provides a better match.

3 Prototype of the Cognitive Matchmaker System

The prototype of the cognitive matchmaker system has been designed as a Web
application according to the three tier software architecture depicted in figure 2.
The graphical user interface is based on the Microsoft .NET Framework 2.0
Web UI namespace that provides classes and interfaces to create user inter-
face elements. The business layer includes the main components of the appli-
cation. The most important one is the kernel, which is an implementation of

Information Systems Engineering Supported by Cognitive Matchmaking 499

the formal functions shown in figure 1 and in [7]. Furthermore, the ‘matching
factory’ instantiates all the objects involved when a suitability match should be
calculated and enables the application to follow the flow of the matchmaking
process as depicted in figure 1. The business layer also includes an implemen-
tation of the possible ranking domains that can include characteristic ranks,
match ranks and suitability ranks. The data layer includes code to interact with
connected databases. The architecture shows that it is possible to include a
project-specific database as well as a database including abstract types and
characteristics. This signifies that the cognitive matchmaker system can com-
pute matches between project-specific actor types and task types as well as
between the abstract actor types and task types we have defined in [7]. Project-
specific actor types and task types can be defined to categorize all the actors
and tasks that are part of a specific project. For instance, a person called ‘John
Doe’ can be categorized as a project-specific actor type ‘developer’, meaning
that he acts as a software developer in a specific project. Section 4.1 includes
the project-specific actor types and task types as part of the elaborated case
study. On the contrary, the abstract types categorize actors and tasks based
on the supplied respectively demanded cognitive characteristics. These types
are explained in section 4.2. Dependent of the choice the user of the cognitive
matchmaker system makes, the system communicates with one of the available
databases to calculate matches. The data layer is based on the Microsoft En-
terprise Library 3.0 that contains chunks of source code for e.g. data access.

The user of the system has to walk through six steps to calculate a suitability
match. In the first step, the user should select an actor type and a task type
for which a suitability match should be calculated. Suppose that the user selects
the expert actor type and the synthesis task type. This causes the application
to generate a list of all the cognitive characteristics that have been used to
characterize the expert actor type and the synthesis task type. In the following
step, the application displays on which level the expert supplies the involved
characteristics and on which level the synthesis task demands the characteris-
tics for successful task fulfillment. The next part shows the characteristic match
results for all cognitive characteristics. Then, the user can provide the weigh
values for the cognitive characteristics by entering them for each characteristic
involved. Figure 3 shows the eventual suitability match result with the corre-
sponding graph. Due to space limitations a screen shot of the suitability match
screen is shown only. The resulting graph shows that in this case the suitability
match of the expert fulfilling the synthesis task is 4.25. The certainty that the
expert is able to fulfill the synthesis task is 85%. The implementation of the
prototype is based on the framework shown in figure 1. For example, the code
implementation of the suitability match function depicted in section 2 is shown
in figure 4. The code implementation obviously shows that the match function
takes an actor type and a task type as input parameters and a suitability rank
value as output parameter just like the formal match function in our framework
prescribed. Then, the results of the weighed characteristic match function are
summated for each cognitive characteristic involved in the process of computing

500 S.J. Overbeek, P. van Bommel, and H.A. (Erik) Proper

Fig. 3. Suitability match screen

public static SuitabilityRank Match(TaskType taskTypeObject, ActorType actorTypeObject) {

SuitabilityRank SuitabilityRankObject = new SuitabilityRank();

foreach (Characteristic CharacteristicObj in _matching.RetrieveCharacteristics()) {
SuitabilityRankObject.RankValue += Weigh(CharacteristicObj,
CharMatch(actorTypeObject, taskTypeObject,
CharacteristicObj)).RankValue;

}

return SuitabilityRankObject;
}

Fig. 4. Source code of the suitability match function

the suitability match. This also corresponds with the definition of the suitability
match function as shown in section 2.

4 Case Study and Evaluation

The case study that has been conducted is related with a recently completed in-
formation systems engineering (ISE) project at ‘e-office’. This project has been
concerned with the development of an ‘Action Reporting Tool’ (ART for short)
for an international provider of banking and insurance services. ART is a software
application that can generate risk reports for the user. This tool should assist risk
management to better monitor and control insurance risks. The research strategy

Information Systems Engineering Supported by Cognitive Matchmaking 501

for the case study has been derived from the inductive-hypothetical research
strategy [9], which consists of five phases. Empirical knowledge of the problem
domain is elicited in the initiation phase. Elicited empirical knowledge is applied
in a descriptive conceptual model in the abstraction phase. The theory formula-
tion phase is necessary to make the descriptive conceptual model prescriptive.
The prescriptive conceptual model is empirically tested in the implementation
phase. A comparison of phase 1 with the prescriptive empirical model of phase 4
is needed to fulfill the evaluation phase. The derived research strategy includes
the following steps. (1) Description of the project phases in which the ISE project
has been divided. The description includes project-specific actor types and task
types and relations between them. (2) Abstraction of the results of phase 1 of
the research strategy to our abstract cognitive model of actor types and task
types. (3) Formulation of how the cognitive matchmaker system can be utilized
in every project phase related to the actor types and task types involved in the
project. (4) Analysis to identify the benefits if the system had been applied in
the studied ISE project. (5) Evaluation by comparing phase 1 with phase 4.

4.1 Initiation

The ART project is based on the Microsoft Solutions Framework (MSF) informa-
tion systems engineering method. The resulting tool is a Web application running
on the Microsoft Office SharePoint Server 2007 platform (MOSS 2007 for short).
Applications based on this platform are aimed to facilitate organizational collab-
oration, content management and business process management. The following
project phases are determined as part of the ART project: The definition phase,
the development phase, the acceptance phase and the implementation phase.
The definition phase incorporates requirements engineering by means of inter-
views with the future users of the tool and conducting interactive workshops.
The requirements engineering process is proceeded by the creation of several use
cases to determine the interactions between the users and the tool. These use
cases can be used as input to create screen mockups. The tool is developed in an
iterative way during the development phase. The results after every iteration are
tested before proceeding to the next iteration. The tool is integrally tested dur-
ing the acceptance phase in conformity with a test plan. The acceptance test has
been carried out by the banking and insurance service provider. Eventually, the
final version of the tool is implemented at the service provider during the imple-
mentation phase. The actors participating in the project have been categorized
into several project-specific actor types based on the MSF method. First, an in-
tegrated program management (IPM) officer can be identified. The IPM officer is
responsible for organizational scheduling, planning and resource allocation. The
project manager develops project plans, iteration plans and status reports. The
project manager also mitigates risks. The product manager monitors the budget
and the realization of the business case. The infrastructure architect focuses on
server deployment and the services which run on them. Furthermore, the so-
lution architect is responsible for defining both the organizational and physical
structure of the application. Finally, the lead developer and the developer actor

502 S.J. Overbeek, P. van Bommel, and H.A. (Erik) Proper

types can be identified. The lead developer lends experience and skills to fellow
developers. The developer is mainly responsible for building the product. The
project manager of the ART project has created breakdowns of the tasks to be
fulfilled. Using this documentation a project-specific task type categorization can
be described together with the fulfilled tasks. Analysis of the project documen-
tation also reveals which project-specific actor type performs a project-specific
task type. The results of this analysis are shown in table 1.

Table 1. Project-specific actor types and task types

Task instance Project phase Project-specific task type Project-specific actor type

Conduct interview with stakeholder Definition Elicitation task Project manager
Development Product manager

Solution architect
Conduct workshop with stakeholders Definition Elicitation task Project manager

Development Product manager
Solution architect

Design use case Definition Design task Solution architect
Development Developer

Design mockup Definition Design task Developer
Design risk report Definition Design task Lead developer

Developer
Write technical tool description Definition Documentation task Developer

Development
Write project initiation document Definition Documentation task Project manager

Product manager
Determine hardware requirements Definition Documentation task Infrastructure architect
Write security plan Definition Documentation task Infrastructure architect

Development
Write project plan Definition Documentation task Project manager

Development
Attend project meeting All phases Meeting task All actor types
Attend steering committee meeting All phases Meeting task IPM officer
Set up MOSS 2007 environment Development Code development task Infrastructure architect
Build custom Web part Development Code development task Developer
Configure Web part Development Code development task Developer
Create risk report Development Code development task Lead developer

Developer
Implement security for tool Development Code development task Infrastructure architect
Commit partial system test Acceptance System test task Lead developer

Developer
Commit integral system test Acceptance System test task Lead developer

Developer
Deploy completed tool Implementation Deployment task Lead developer

Developer

4.2 Abstraction

When performing the second phase of the inductive-hypothetical research strat-
egy, it is possible to abstract the project-specific actor types and task types.
First, it is shown how the project-specific task types can be abstracted to the
abstract task types mentioned in [8]. Second, this section discusses how the
project-specific actor types can be abstracted to the actor types mentioned in [7].

The distinguished abstract task types are the acquisition, synthesis and test-
ing types. The project-specific task types depicted in table 1 can be abstracted
to these types as follows. The mentioned elicitation tasks are typical knowledge
acquisition tasks. The actors executing an elicitation task acquire knowledge
by means of interviews or workshops. Design tasks can be abstracted as syn-
thesis tasks. In a design task, the actor applies already acquired knowledge
when designing a use case, mockup or risk report. Documentation tasks can also
be classified as synthesis tasks. The documentation tasks mentioned in table 1

Information Systems Engineering Supported by Cognitive Matchmaking 503

are related with the application of knowledge when writing a technical tool de-
scription, project initiation document, hardware requirements report, security
plan and project plan. Next, meeting tasks are abstracted to acquisition tasks.
During project meetings and steering committee meetings it is intended to ac-
quire knowledge about e.g. project planning, project status and the remaining
budget. Code development tasks can be viewed as synthesis tasks. These tasks
are necessary to build the action reporting tool itself. The build process con-
sisted of setting up the programming environment, and the creation of Web
parts and risk reports. Web parts are the visual components that are part of
a Microsoft SharePoint application which include functionality, such as: Listed
announcements, a calendar, a discussion part, etc. Testing tasks are related with
the project-specific system test tasks. In a testing task, earlier applied knowl-
edge is thoroughly examined inducing an improvement of the specific knowledge
applied. The partial and integral system tests are needed to identify and correct
flaws in the action reporting tool. Finally, the deployment task can be abstracted
to a synthesis task. Here, all relevant knowledge that is applied is related with
a successful deployment of the system.

The distinguished abstract actor types are the collaborator, experiencer, ex-
pert, integrator and the transactor. Only the expert type has been mentioned
up till now. The other types are explained as follows. The collaborator has the
ability to exert an influence on state changes of knowledge involved during task
fulfillment. During task fulfillment the collaborator is also able to improve its
own cognitive abilities. However, a collaborator does not have complete aware-
ness of all required knowledge to fulfill a task and requires others. An experiencer
is aware of all the knowledge requirements to fulfill some task. An integrator is
able to fulfill a task by working together and is able to initiate state changes
of knowledge involved during task fulfillment. An integrator primarily wishes
to acquire and apply knowledge of the highest possible quality. A transactor
can fulfill a task without collaborating with others and is not required to cause
modifications in the knowledge acquired and applied during task fulfillment. A
project-specific actor can be classified as a certain abstract type while performing
an abstract task. For instance, a project manager may be classified as a collabo-
rator when fulfilling an acquisition task. However, if a project manager executes
a synthesis task he may act differently and may be classified as a transactor
instead. These abstractions materialize in the following phase of the research
strategy.

4.3 Theory Formulation

The results of the previous phase of the research strategy are discussed through-
out this section. The cognitive matchmaker system can be utilized in the four
phases of the ART project. However, only the definition phase is elaborated in
this section to understand how ISE can be supported by cognitive matchmak-
ing. The approach can be used for the remaining phases in an identical manner.
Based on sections 4.1 and 4.2 it is now possible to calculate the certainty that
the actors involved in the definition phase of the ART project can successfully

504 S.J. Overbeek, P. van Bommel, and H.A. (Erik) Proper

Table 2. Cognitive matchmaking in the definition phase

Project-specific actor type Task type Actor type Weigh values Suitability match Certainty

IPM officer Acquisition Collaborator 2, 1.5, 0.5, 3, 3 4.3 86%
Project manager Acquisition Collaborator 2, 1, 1, 3, 3 4.4 88%

Synthesis Transactor 1, 1.5, 1.5, 3, 3 4.85 97%
Product manager Acquisition Collaborator 2, 1, 1, 3, 3 4.4 88%

Synthesis Transactor 1, 1.5, 1.5, 3, 3 4.85 97%
Infrastructure architect Acquisition Experiencer 4, 3, 3 3.5 70%

Synthesis Expert 1.5, 1, 1, 1, 1.5, 2, 2 4.575 91.5%
Solution architect Acquisition Collaborator 1.5, 2, 1.5, 3, 2 4.4 88%

Synthesis Expert 1, 1.5, 1, 0.5, 1, 2, 3 4.8 96%
Lead developer Acquisition Experiencer 4, 3, 3 3.5 70%

Synthesis Expert 1, 2, 1, 1.5, 1, 1.5, 2 4.6 92%
Developer Acquisition Experiencer 3, 4, 3 3.3 66%

Synthesis Collaborator 2, 1.5, 2.5, 2, 2 4.4 88%

fulfill the tasks allocated to them. The results are depicted in table 2. The system
can be utilized to calculate the matches between the actor types and task types
involved in the definition phase. For this purpose, the way to abstract the project-
specific actor types and task types as discussed in section 4.2 should be applied.
The results of table 2 can be explained as follows. The solution architect, for
instance, acts as a collaborator when working on an acquisition task and acts
as an expert when working on a synthesis task respectively. In the definition
phase, the solution architect conducts interviews and workshops, and attends
project meetings. These tasks can be regarded as knowledge acquisition tasks.
Five weigh values have to be provided by the user of the cognitive matchmaker
system when calculating the suitability match of the collaborator fulfilling an ac-
quisition task. The weigh values express the importance of the involved cognitive
characteristics. The following weigh values are provided for the five characteris-
tics involved: 1.5, 2, 1.5, 3 respectively 2. The cognitive characteristics used to
characterize actor types and task types are further explained in [7,8]. At the
moment, the weigh values have to be provided manually by the user. However,
the next version of the prototype should include an algorithm that determines
these weigh values dependent of how important a cognitive characteristic is in a
certain combination of an actor type and a task type. The highest weigh value
of 3 has been applied to the satisfaction characteristic. This is to make abso-
lutely sure that the solution architect is pleased with the knowledge acquired and
that no additional need for knowledge remains [8]. The cognitive matchmaker
system then sums up the resulting weighed characteristic matches resulting in
a suitability match of 4.4. The certainty that the solution architect acting as a
collaborator can successfully fulfill an acquisition task is: μ(4.4) = 2

0+10 ·4.4 = 0.88
or 0.88 · 100% = 88%. The solution architect acts as an expert when working on
a synthesis task during the definition phase. These synthesis tasks are related
with the design of use cases. The solution architect should be able to use his
own knowledge about use cases to correctly design them. The architect should
also be able to combine and modify his own knowledge while designing use cases
and he should also be able to learn from that process. The expert actor type
matches very well with the synthesis task, because the result of the suitability
match calculation is 4.8. This results in a certainty of 96%.

Information Systems Engineering Supported by Cognitive Matchmaking 505

4.4 Implementation

The results from the theory formulation phase are now utilized to describe how
ISE can be supported by cognitive matchmaking. The utilization of the system in
ISE is described using three viewpoints. (1) The design time viewpoint embraces
the situation before the project is initiated (before the definition phase starts).
First, the project-specific actor types and the project-specific task types need
to be conceived. If this is done, there are two options to choose from: Use the
project-specific profile as a starting point or the abstract profile. The latter has
been done in the case study as is elaborated in section 4.2. When using a project-
specific profile as input for the system, a project-specific profile of actors and
tasks should be generated. This has also been done in section 4.1. If not already
entered in the project-specific database as is shown in figure 2, the actor and task
data should be provided as a next step. The person who needs to allocate tasks
to actors, the project manager for instance, can now calculate the suitability
matches. Based on these results he can allocate tasks to actors before starting the
project. (2) The runtime viewpoint is related to the recalculation of suitability
matches if changes to task allocations are necessary during the enactment of an
ISE project. This may be the case if a different actor needs to work on a task
than the one specified in the project plan. The cognitive matchmaker system can
then be used again to recalculate the suitability match. New tasks may also be
introduced during the project that need to be allocated to actors. This may entail
the need to calculate additional suitability matches during project enactment.
(3) From a post-mortem point of view, task allocations in the project as a whole
can be analyzed. The suitability matches for every actor / task combination in
the ISE project may be compared to the actual results brought forward by the
actors. Lessons learned should be recorded for future projects. This may help to
better decide which actor types are suitable to work with which types of tasks.

4.5 Evaluation

In this section, the results of the initiation phase are compared with the results of
the implementation phase. The evaluation of the initiation phase is related to the
three viewpoints of the implementation phase. At design time, the choices lead-
ing to the project-specific actor types as shown in table 1 have not been argued
in the ART project documentation. Recall that the project-specific actor types
originate from the Microsoft Solutions Framework ISE method. Entering the ac-
tor types that MSF distinguishes in the project-specific database of the cognitive
matchmaker system enables a better argued decision of which actor types to use
in a project. For instance, the system test tasks shown in table 1 are performed
by the (lead) developer actors. However, the MSF method also distinguishes the
tester and test manager types. Including these actor types in the ART project
may have improved the suitability matches related with the system test tasks.
A difficulty is that the MSF method does not provide a clear description of the
cognitive characteristics that characterize an actor type. The MSF method, how-
ever, provides a natural language description of each actor type included in the

506 S.J. Overbeek, P. van Bommel, and H.A. (Erik) Proper

method. Proceeding from these descriptions the administrator of the cognitive
matchmaker system should be able to characterize the project-specific actor types
by adding or reusing cognitive characteristics to the project-specific database.

At runtime, the results of the theory formulation phase included suitability
matches for every actor / task combination differentiated to a specific project
phase. These suitability matches may be reviewed after every project phase. The
lowest certainty percentages shown in table 2 deserve special attention to dis-
cover the reasons of the lowest match results. For instance, table 2 shows that
the developer acting as an experiencer has a certainty of 66% to successfully
fulfill an acquisition task. When viewing table 1 it can be interpreted that the
acquisition task performed by the developer in the definition phase is related
with the attendance of project meetings. This may be caused in case a meeting
is not very relevant for a developer. For instance, when a large part of a cer-
tain meeting is about project management issues a developer may not have a
satisfied feeling after the meeting. Letting developers attend the most relevant
meetings may increase the suitability matches for these acquisition tasks. In the
same way, the other calculated matches can be analyzed for every project phase.

For instance, the testing tasks shown in table 1 deserve attention when com-
paring the actual project results with the suitability matches from a post-mortem
viewpoint. According to table 1 the partial and integral system tests are con-
ducted by the developer and lead developer types. Assume that it is 78.5% certain
that the developer can successfully fulfill these testing tasks. The MSF method
includes the tester actor type that may be more suitable to fulfill testing tasks
in general. According to the MSF, a key goal for the tester is to find and report
the significant bugs in the product by testing the product. Obviously, more bugs
could have been found and solved after testing each iteration and the overall
product by the tester actor type. In the current project situation, the developer
has the responsibility for code development and testing as well. Usability issues
also arose during the system test tasks. What can be seen in table 1 is that the
developer is also responsible for designing the mockups. The responsibility of
the developer to design, develop as well as test the system may have contributed
to the existence of some usability problems. The MSF advocates the addition of
a user experience architect in the project to increase the usability of the tool.
According to the MSF, the user experience architect is responsible for the form
and function of the user interface, its aesthetics and the overall product usability.
Recall that designing mockups is a synthesis task. Assume the certainty that the
developer can successfully fulfill a synthesis task in the definition phase is 88%.
This is not a low percentage, but may further increase when the main focus of
a developer is on developing code. For future projects it may be a smart idea to
introduce a tester and a user experience architect.

5 Discussion

Literature indicates that cognitive matchmaking can be found in several areas
of computer science. One of these initiatives is Cognitive Match Interface Design

Information Systems Engineering Supported by Cognitive Matchmaking 507

(COMIND) [10]. COMIND is the designing of system processes so that they pro-
ceed and interact with the user in a manner that parallels the flow of the user’s
own thought processes. It consists of several principles, such as: The user should
be able to express his needs to the computer with constructs which mirror the
user’s own thought processes. Another principle is the readiness of a computer
to solve problems of the user in his / her area of need. Also, the computer should
sanction flexibility just like the mind. The mind is regarded as a versatile and
flexible problem solver. The authors tried to apply these principles when design-
ing a medical information system. Unfortunately, a method for interface design
that incorporates COMIND is not introduced. Only the medical information
system case is elaborated. Creation of a COMIND framework including the pro-
posed cognitive principles for user interface design would have possibly enabled
reuse of COMIND in different areas. The existence of our cognitive matchmaker
system framework does enable its specific application in many different areas.

Another interesting study is the cognitive matchmaking of students with e-
learning system functionality [11]. A way of working is presented to design e-
learning systems that better adapt to the cognitive characteristics of students.
First, a taxonomy of learning styles is selected to classify the user. Next, tech-
niques should be developed to introduce the adaptation into the system that fits
the learning styles. The designed adaptation is then implemented on a computer.
Finally, a selection of the technologies is made that are adequate for the adapta-
tion. Besides this described way of working, a cognitive method or a system to
match students and e-learning systems is not proposed. The mentioned concept
of reflection can be very useful for our own work, though. Reflection is defined as
the capability of a computational system to adjust itself to changing conditions.
This can be seen on e.g. http://maps.google.com. The process of adaptation is
made stronger since it is possible to create specific code depending on the sup-
plied characteristics of the user when using the system. Adding reflection to our
system may take situational elements into account when determining a match,
for instance. Concretely, the actual availability of actors during the ART project
may be included when allocating tasks to actors.

Jaspers et al. [12] argue that early involvement of cognitive matchmaking in
ISE may be of importance to design systems that fully support the user’s work
practices. From this perspective, cognitive matchmaking is used for requirements
engineering to match system requirements with the user’s task behavior. To un-
derstand the task behavior of future users of a clinical system, the think aloud
method has been applied [12]. Think aloud is a method that requires subjects
to talk aloud while performing a task. This stimulates understanding of the
supplied cognitive characteristics when performing a task. Unfortunately, the
method has only been utilized to design a user interface for a clinical informa-
tion system. The study lacks a more abstract framework that can be reused to
design interfaces in general that better match task behavior of its users. Task-
analysis methods such as the think aloud method can be useful when refining
our research. For instance, these methods may be very valuable to improve the
way we have characterized the abstract actor types and task types based on

http://maps.google.com

508 S.J. Overbeek, P. van Bommel, and H.A. (Erik) Proper

cognitive characteristics. Jaspers et al. [12] also included a simplified model of
the human cognitive system. Studying that model may further improve the way
we interpret cognitive matchmaking processes.

6 Conclusions and Future Work

This paper describes how actors and tasks can be matched based on cognitive
characteristics. Therefore, the framework for cognitive matchmaking developed
in earlier work is mentioned. Proceeding from this framework the prototype im-
plementation of a cognitive matchmaker system is demonstrated. An information
systems engineering project provided the breeding ground for the case study in
which the system has been evaluated. The ISE project has been concerned with
the development of an ‘Action Reporting Tool’ for an international provider of
banking and insurance services. This tool is a Web application that can gener-
ate risk reports. The suitability matches of the tasks allocated to the actors in
the definition project phase have been determined using the cognitive match-
maker system. It can be concluded that the system can provide support for task
allocation in at least three different ways: Before project initiation (at design
time), during project enactment (at runtime) and after the project has finished
(post-mortem). At design time, the person that needs to allocate tasks to actors
can calculate the suitability matches. Tasks can be allocated to actors before
starting the project based on these results. At runtime, suitability matches can
be recalculated if changes to task allocations are necessary. The system can also
be utilized to evaluate task allocations after every project phase. The calculated
suitability matches can be compared with actual task performance. From a post-
mortem point of view, the suitability matches for every actor / task combination
in the project can be compared to the actual task results. Lessons learned may
help to better decide which actor types are suitable to work with which task
types. In this case, the cognitive matchmaker system is related with ISE. The
system may also be usable in other areas, such as: Multi-agent systems, workflow
management and BPR. Future work is concentrated on improving the theory as
well as the prototype and further evaluation in case studies. More efforts of how
the prototype could prove the usefulness of the framework can be called for.
This may include testing the prototype in real settings with real users. At this
moment, it is only possible to calculate a match based on one actor type and
one task type. However, there are situations imaginable that multiple actors are
working together to fulfill a set of tasks. It might be interesting to determine a
match based on the total amount of actors and the total amount of tasks that
the actors are fulfilling as a group. Besides these additions, the future system
may consider situational elements. This may include the availability of actors as
well as personal preferences and goals. Finally, the notion of human knowledge
can be considered to determine which aspects of human knowledge, its develop-
ment and its synergy in team work can be taken into consideration in the current
version of the framework and the system.

Information Systems Engineering Supported by Cognitive Matchmaking 509

References

1. Staab, S., Studer, R., Schnurr, H., Sure, Y.: Knowledge processes and ontologies.
IEEE Intelligent Systems 16(1), 26–34 (2001)

2. Weir, C., Nebeker, J., Bret, L., Campo, R., Drews, F., LeBar, B.: A cognitive task
analysis of information management strategies in a computerized provider order
entry environment. Journal of the American Medical Informatics Association 14(1),
65–75 (2007)

3. Kako, E.: Thematic role properties of subjects and objects. Cognition 101(1), 1–42
(2006)

4. Shakshuki, E., Prabhu, O., Tomek, I.: FCVW agent framework. Information and
Software Technology 48(6), 385–392 (2006)

5. van der Aalst, W., ter Hofstede, A.: Verification of workflow task structures: A
Petri-net-based approach. Information Systems 25(1), 43–69 (2000)

6. R-Moreno, M., Borrajo, D., Cesta, A., Oddi, A.: Integrating planning and schedul-
ing in workflow domains. Expert Systems with Applications 33(2), 389–406 (2007)

7. Overbeek, S., van Bommel, P., Proper, H., Rijsenbrij, D.: Matching cognitive char-
acteristics of actors and tasks. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part
I. LNCS, vol. 4803, pp. 371–380. Springer, Heidelberg (2007)

8. Overbeek, S., van Bommel, P., Proper, H., Rijsenbrij, D.: Characterizing knowl-
edge intensive tasks indicating cognitive requirements – Scenarios in methods for
specific tasks. In: Ralyté, J., Brinkkemper, S., Henderson-Sellers, B. (eds.) Pro-
ceedings of the IFIP TC8 / WG8.1 Working Conference on Situational Method
Engineering: Fundamentals and Experiences., Geneva, Switzerland, vol. 244, pp.
100–114. Springer, Boston, USA (2007)

9. Sol, H.: Simulation in Information Systems. PhD thesis, University of Groningen,
The Netherlands, EU (1982)

10. Coll, R., Coll, J.: Cognitive match interface design, a base concept for guiding the
development of user friendly computer application packages. Journal of Medical
Systems 13(4), 227–235 (1989)

11. Ruiz, M., Dı́az, M., Soler, F., Pérez, J.: Adaptation in current e-learning systems.
Computer Standards & Interfaces 30(1–2), 62–70 (2008)

12. Jaspers, M., Steen, T., van den Bos, C., Geenen, M.: The think aloud method: A
guide to user interface design. International Journal of Medical Informatics 73(11–
12), 781–795 (2004)

	Introduction
	Framework for Cognitive Matchmaking
	Prototype of the Cognitive Matchmaker System
	Case Study and Evaluation
	Initiation
	Abstraction
	Theory Formulation
	Implementation
	Evaluation

	Discussion
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

