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Abstract. During the development of theoretical frameworks researchers
often graphically represent formal textual notations as part of a devel-
oped theory. This may lead to enrichments and new insights regarding a
theory. A possibility for graphical representation of formalisms is the uti-
lization of modeling languages such as ORM. This paper deals with the
technique of visualizing formalisms by using ORM models and shows
the advantages of graphically representing a formal theoretical frame-
work. An application of the approach that has already been successfully
practised is elaborated. This application concerns a theoretical frame-
work consisting of knowledge intensive task properties and shows how
the approach to visualize formalisms with ORM can be materialized.

1 Introduction

When developing a formal theory, one may choose to use textual or graphical
techniques (or both) to display formalisms. Formal specifications make use of
mathematical notations that offer precise syntax and semantics. Textual for-
malisms, however, may be complex in nature and not acceptable to many stake-
holders. Visual formalisms offer graphical notations with semantics and also offer
the possibility to model intuitive and well-organized formalisms. Unfortunately,
hand made diagrams become easily unreadable when the complexity of the for-
malisms increases. Conceptual modeling languages incorporating a (semi-)formal
modeling language are, therefore, more suitable to visualize formal theory. In
such a modeling language the syntax and (in case of fully formal languages) the
semantics can be coherently formulated in a mathematical language. The Object-
Role Modeling (ORM) language is useful to visualize formalisms because of its
formal foundations [1], its demonstrable applications in visualizing formalisms [2]
and its long running affiliation with the field of conceptual modeling involving
varied, often non-technical stakeholders [3]. In the Ph.D. thesis of Verhoef [4],
for example, ORM is applied to visualize formalisms of a theory about the use
of modeling knowledge to achieve more effective information modeling support.

This paper deals with the technique of visualizing formalisms by using ORM
models and shows advantages for graphically representing a formal theoretical
framework. Situations in which it is less obvious to visualize formalisms are also



discussed. It is assumed that the reader is familiar with ORM. Section 2 first
introduces the basics of visualizing formalisms with ORM. An application of the
approach that has already been successfully practised is explained in section 3.
Furthermore, other known approaches to visualize formalisms are discussed in
section 4 and are compared with our approach. Eventually, the paper is con-
cluded in section 5.

2 Visualization of Formalisms with ORM Models

In this section is elaborated how formalisms and constraints can be visualized by
means of ORM. Several advantages and disadvantages are considered to indicate
for which situations it is more respectively less obvious to visualize a formal
model with ORM models.

2.1 Visualization of Basic and Complex Formalisms

Throughout this section our ideas are explained how to graphically represent
formal notations as part of a theoretical framework. Assume that a theoretical
framework consists of the functions 1 up to and including 5 as explained below.
First, suppose that function 1 can be depicted as follows:

F : X → Y (1)

The expression F(x) = y states that for an element x as part of the set X
function 1 returns an element y from the set Y. The sets as part of a function are
visualized as object types in ORM. If dictated by the nature of the mathematical
function, constraints such as total role constraints or uniqueness constraints
should be added to a possible ORM model. As such, a uniqueness constraint
should be added to the role of object type X . This ensures that every instance
of object type X that plays a role in the corresponding fact type is unique. A
total role constraint should also be added to object type X , because function 1
prescribes that every instance of object type X should play a role in the fact
type. A bit more complex function such as the one depicted below may also be
part of a formal model:

G : W ×X × Y → Z (2)

The expression G(w, x, y) = z shows that for w ∈ W, x ∈ X and y ∈ Y func-
tion 2 returns an element z ∈ Z. Assume that the set W contains constants,
so that W = {a, b, c}. The set W can now be visualized as a value type in the
ORM model (indicated by parentheses), together with its corresponding values.
Suppose that functions 1 and 2 are part of one and the same formal model.
These two separate functions can now visually integrate in one ORM model as
is shown in figure 1. Normally, when such functions as part of formal models are
depicted one by one in the text and then textually explained, such an overview
cannot be given. In that case, there is a chance that the reader of a formal model
misses the interconnection between the functions of a formal model. This might
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Fig. 1. ORM model of two functions.

make a formal model difficult to understand. To be certain that function 2 is
correctly visualized, the introduction of an objectified fact type is necessary as
can be seen in figure 1.

It is interesting to expand the ORM model with two more functions that
incorporate additional mathematical symbols. The following function takes an
element of the set Z as parameter and returns a (real) value from 0 up to and
including 1:

H : Z → [0, 1] (3)

Thus, the expression H(z) = 0.5 shows that for z ∈ Z the value 0.5 is returned.
The following function returns an element from the powerset of the set Z:

I : W → ℘(Z) (4)

The expression I(w) = Z shows that for w ∈ W the set Z is returned, where
Z ⊆ Z. The powerset of the set Z should be visualized as a power type in the
ORM model, as introduced by [5]. An instance of a power type is identified by its
elements, just as a set is identified by its elements (axiom of extensionality) [6].
Normally, a set denoted in a function is displayed as an object type which equals
the name of the set. Regarding function 3, however, the number range [0, 1] is
unnamed. There is a possibility to visualize this by introducing a value type
named ‘number’, which includes values ranging from 0 up to and including 1.

Before visualizing the functions discussed so far, the following more complex
function is tackled:

J : V → (X → Y) (5)

An example expression of this function can be denoted as Jv(x) = y, where v ∈ V,
x ∈ X and y ∈ Y. Note that function 5 is not the same as J : (V×X ) → Y because
of the placed parentheses. Instead, it can be equated to J : V → ℘(X × Y).
Figure 2 shows a complete overview of the functions defined up till now.

As can be seen in figure 2, an exclusion constraint has been added. Up till
now, the visualization of complex constraints in an ORM model has not been
discussed. The following section deals with this matter.



YX

F

(W)

Z

G

(number)

[0,1]℘(Z)

H

I

{‘a’,‘b’,‘c’}

V

J

p q

r s

K

Fig. 2. ORM model of an example formal model.

2.2 Visualization of Complex Constraints

At least two main reasons underlie the need to visualize more complex con-
straints. A first reason is that during domain analysis (in this case the analysis
of certain formalisms) certain constraints may be necessary. A next step is then
to determine how these constraints, which arise from the formalisms under anal-
ysis, can be modeled in ORM. In this situation the analysis of the formal theory
delivers relevant feed back for an ORM schema. In a second case, it might happen
that every constraint has already been formalized (in an underlying assumably
completely formalized theory). Such formal constraints can then easily be visual-
ized in an ORM model according to their corresponding semantics. For instance,
the semantics of the exclusion constraint of figure 2 must then be part of the
formal theory: πr,s(K) ⊗ πp,q(F). The exclusion constraint expresses that there
is no overlap between X / Y combinations in the fact types F and K. The vi-
sualization of already formalized constraints results in a specific quality check,
because when modeling such a constraint in ORM it is possible to determine
the correctness of the constraint in the underlying theory. In this situation the
analysis of an ORM schema delivers relevant feed back for the formal theory.

As can be seen, ORM is a powerful tool to stipulate relations between func-
tions and to find out if the formalisms are indeed correctly defined. We assume
that flaws in a formal model can more easily be found by visualizing and in-
tegrating formalisms this way. After all, the meaning of a function in a formal
model as a whole is more understandable.

In the following section, we further explore possible advantages when using
ORM models to visualize formalisms as well as situations in which it is less
advantageous to use this approach.



2.3 Advantages and Disadvantages

The following list sums up possible advantages of the approach mentioned so
far:

– Formalisms such as those discussed in section 2 each require a textual expla-
nation for the reader to be able to interpret them. When these formalisms
are visualized, however, additional text is not required provided that the
reader understands ORM.

– Interrelationships between functions are visible in an ORM model by means
of fact types and roles. The textual formal model of section 2 does not provide
insight in these interrelationships.

– In an ORM model it is immediately obvious which instances of an object
type play the most roles in fact types compared to other object types. This
may be useful to identify the most important concept of the formal model
as a whole.

– When creating an ORM model deficiencies in the formalisms may come to
light. This is caused by activities such as the appliance of constraints, the
modeling of fact types and by studying the overall ORM model. When a
deficiency in a formalism is discovered, the formalism is corrected leading to
a modification of the ORM model.

– Hofstede and Proper [2] have formalized ORM in set theoretic, logical based
and category theoretic variants. This makes ORM a modeling language with
a well-defined syntax and semantics. It is natural to use ORM to visualize
textual formalisms of the aforementioned variants.

– ORM has a long running affiliation with domain modeling involving varied,
often non-technical domain experts. This implies that stakeholders able to
interpret ORM have different (and not only technical) backgrounds. This
makes the eventual visualizations of formalisms more comprehensible for a
broader audience than only technical or mathematical domain experts [7].

– Finally, ORM is a richer modeling language, meaning that it is suited to the
visualization of more complex formalisms. This is in contrast with e.g. the
Entity Relationship (ER) family of data modeling techniques [2].

There are, of course, situations in which our approach is a less obvious choice.
Such possible situations can be explained as follows:

– When the number of sets and functions in a formal model are low, the added
value of ORM as a visualization tool is considered negligible.

– The functions of section 2 show which sets are involved in the specific func-
tions. It is probably not obvious to use ORM when the actual semantics of a
function leads to difficult processes to actually populate a typical fact type
with instances. In other words, ORM can be perfectly used to visualize sets
together with their instances which play a role in certain fact types. The
process to create set instances is not always straightforward. Such processes
leading up to the creation of instances can not be shown easily with ORM,
though.



In the following section we explain how we have materialized the approach
discussed so far in the development of a formal model concerning properties of
knowledge intensive tasks as elaborated in [8].

3 Application: ORM Model of Knowledge Intensive Task
Properties

In [8], a formal model has been developed that consists of a characterization of
knowledge intensive tasks based on task properties. We understand a knowledge
intensive task to be a task for which acquisition, application or testing of already
applied knowledge is necessary in order to successfully fulfill the task. Therefore,
a trichotomy of three different task types has been elaborated: an acquisition task
type, a synthesis task type and a testing task type. Each knowledge intensive
task type is characterized (and can be distinguished) by their specific properties.

The knowledge intensive task properties are described in a formal way by us-
ing set theory. Table 1 shows the functions included in the present formal model,
together with a short explanation of each function. The formal model of table 1
is visualized in figure 3. Strikingly enough, the ORM model of figure 3 shows
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Fig. 3. ORM model of knowledge intensive task properties.

that elements of the knowledge assets object type play the most roles in fact
types compared to the other object types. It can be concluded that the knowl-
edge asset is a very important concept of the formal model as a whole. These
assets are tradeable forms of knowledge, i.e. knowledge that is exchangeable be-
tween actors. This may include knowledge obtained by viewing a Web site or a



Table 1. Formal model of knowledge intensive task properties [8]

Function Explanation

Task : TI → TA Task(i) = j expresses that task instance i is of the type j.

Fulfillment : TI → AC Fulfillment(i) = a expresses that task instance i is fulfilled by
actor a.

Characterization : TA → ℘(CP) Characterization(j) = C expresses that task type j is
characterized by the cognitive properties C.

Need : AS → (℘(KA)×KA → [0, 1]) Needt(S, k) is interpreted as the residual need for knowledge
asset k (sometimes also called a knowledge item) of an actor
in state t after the set S has been presented to an actor.
Here, t ∈ AS, k ∈ KA and S ⊆ KA. The set S can be
interpreted as the personal knowledge of an actor (also called
a knowledge profile). Needt(S, k) = 0 means that an actor
has no need for knowledge asset k while in state t. The
expression Needt(S, k) = 1 shows that an actor has maximum
need for knowledge asset k while in state t.

n : AS × KA → AS When actor a in state t experiences knowledge asset k, then
this actor will end up in a new state tn k.

In, Out : AS → (AC → ℘(KA)) If the input of actor a in state t comprises knowledge assets
K, then this is shown by Int(a) = K. Ditto when output
of knowledge is concerned.

Applicable : TI × KA → [0, 1] The applicability of knowledge asset k for fulfilling task
instance i is expressed by Applicable(i, k). Here,
Applicable(i, k) = 0 indicates that knowledge asset k is not
applicable for task instance i. Applicable(i, k) = 1 indicates
that knowledge asset k is fully applicable for task instance i.

Requirement ⊆ KA× ℘(RQ) If knowledge asset k meets requirements R while applied in
task fulfillment, this is indicated as (k, R) ∈ Requirement.

¹⊆ KA×KA The notation k1 ¹ k2 is verbalized as the knowledge in k1 is
contained within k2.

+ : KA×KA → KA The concatenation of e.g. knowledge assets k2 and k3 can be
shown as k2 + k3.

document or by conversing with a colleague. When an instructor explains to a
learner how to drive a car for instance, the explanation may contain valuable
knowledge assets for the learner.

Besides relatively basic set-theoretical functions, table 1 includes two more
comprehensive formalisms. To be able to interpret the visualization of the func-
tion In, Out : AS → (AC → ℘(KA)) in figure 3, it should be noted that this
function can be equated to In,Out : AS → ℘(AC × ℘(KA)). The most compre-
hensive function to visualize, however, is the need function:

Need : AS → (℘(KA)×KA → [0, 1])

To correctly visualize this function, it should be boiled down so that insight is
provided in the possible Cartesian products as part of the function. The need
function can eventually be represented as:

Need : AS → (℘(KA)× ℘(KA× [0, 1]))

A few complex constraints that have been added to the ORM model have not
been explained so far. First, a uniqueness constraint and an inequality constraint



over two roles of the ‘state change’ function denoted by the n symbol can be
identified. The following population is excluded to demonstrate the effect of the
uniqueness constraint:

Pop(n) =
{{{t1, k1}, t2} ,
{{t1, k2}, t2}

}

Note that t1, t2 ∈ AS and k1, k2 ∈ KA. A population Pop is the formal assign-
ment of a finite set of instances to an object type. In this case, the uniqueness
constraint forces that the combination t1 and t2 does not occur more than once.
The following population is excluded to demonstrate the effect of the inequality
constraint:

Pop(n) =
{{{t3, k1}, t3} ,
{{t3, k2}, t3}

}

Here, t3 ∈ AS. The combination of these constraints on the same roles enable
that a state change from one state to another state cannot occur twice and a
state cannot remain the same state (after a state change).

The exclusion constraint on the input and output fact types together with
the total role constraint are also peculiar constraints. For instance, the following
combination of populations is excluded due to the exclusion constraint:

Pop(In) =
{{{{a,K}}, t}}

and Pop(Out) =
{{{{a,K}}, t}}

Here, t ∈ AS, a ∈ AC and K ⊆ KA. This constraint forces that, while in a certain
state t, actor a cannot receive as well as broadcast some set of knowledge items
K at the same time. The total role constraint on the input and output fact types
forces that all the instances of object type F combined should be involved in role
p, role q or in both roles. This implies that there must be instances that play role
p and / or q if object type F also contains instances. Otherwise, the population
of the fact types related to the input and output functions is incomplete.

Now that a materialization of the ideas to visualize formalisms by means of
ORM has been elaborated, we would like to discuss how our approach relates to
others. Therefore, an analysis and comparison of other relevant work is made in
the following section.

4 Other Approaches

The work of Harel [9] shows how formalisms can be visualized by using higraphs.
Higraphs are diagrams that provide a powerful and concise way of visualizing
set-theoretical formalisms, extended with the ability to visualize the Cartesian
product of sets and the relationships between sets. An immediate consequence of
introducing such an additional diagramming technique is that its interpretation
must be learned by the reader before it can be used in practice. In contrast, an
audience that is already capable of understanding ORM is immediately able to
understand our visualizations of set-theoretical formalisms instead. Like ORM,
the higraph models also have a formal (non-graphical) syntax and semantics.



An advantage of higraph models is that they are mainly aimed at visualizing
set-theoretical formalisms, which make the resulting diagrams very clear and
concise. However, this makes it a less suitable diagramming technique for other
types of formalisms. Besides utilizing it for visualizing formalisms, ORM is a con-
ceptual modeling language suitable for a broad range of applications. Amongst
these are the ability to represent conceptual database schemas, the visualiza-
tion of business rules and even the visualization of enterprise architectures [7].
As is explained in section 2.2, ORM is equipped with the ability to extend the
resulting model with an extensive variety of constraints (also based on formal
foundations). This is something which higraphs lack.

Sometimes the advantages of both visual formalisms and textual formalisms
are clearly combined in one effort [10]. Here, visual formalisms are used to create
specifications of reactive systems combined with formal verification and program
transformation tools developed for textual formalisms. A tool is presented that
automatically produces statechart layouts based on information extracted from
an informal specification. Statecharts are extended finite state machines used to
describe control aspects of reactive systems. The tool presented is also capable
of translating the statecharts to specifications in the Z language. Z is a formal
notation based on set theory and predicate logic. Due to these differentiations
the tool cannot be utilized for an audience that is more interested in the relations
between textual and visual formalisms in a broader way. As a consequence, one
can utilize the tool if textual formalisms in Z and visual statechart formalisms
are present. When one would like to visualize textual formalisms as part of
theoretical frameworks based on set theory in general (and when one is not
specifically focussed on the development of reactive systems) the tool is less
suitable. When the latter is the case, the described method of section 2 is more
suitable as a way to relate textual with visual formalisms. On the other hand,
our approach may be less suitable for the visualization of formal frameworks
based on a more specialized formal language.

5 Conclusions & Future Work

This paper describes how set-theoretical formalisms can be visualized by means
of ORM. Several examples of possible textual formalisms are discussed and then
visualized forming an overall visual model. An application of the approach that
has already been successfully practised in earlier work is elaborated. This appli-
cation concerns a theoretical framework consisting of knowledge intensive task
properties and shows how the approach to visualize formalisms with ORM can
be materialized. Finally, other approaches to visualize formalisms are discussed
and compared to our approach.

An obvious possibility for future research is the application of ORM for
visualization of e.g. formal architecture principles as part of enterprise archi-
tectures [7]. The idea here is that formalization by ORM, when properly and
systematically performed, may also lead to better analysis of certain patterns of
meaning underlying enterprise architecture principles. This should lead to im-



provement of the (formulation of) architecture principles as such (even of their
informal formulations).

Another future research path is that of using ORM to reason about domains.
ORM can then be used to model the ontology of domains in general [11]. This
leads to ORM models capturing the concepts of a domain, as well as an associ-
ated language to express rules (such as business rules) governing the behavior of
the domain. When combined with a formal reasoning mechanism, this rule lan-
guage becomes a domain calculus. In the case of ORM, such a domain calculus
has been presented in the form of Object-Role Calculus (ORC) [7]. Remarkably,
it is becoming more and more obvious that ORM, as a modeling language tra-
ditionally developed with the aim of providing conceptual models of database
structures, can be utilized in many more ways related to many different pur-
poses.
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specific tasks. In Ralyté, J., Brinkkempers, S., Henderson-Sellers, B., eds.: Pro-
ceedings of the IFIP TC8 / WG8.1 Working Conference on Situational Method
Engineering: Fundamentals and Experiences, University of Geneva, Switzerland,
Springer, Boston, USA (2007)

9. Harel, D.: On visual formalisms. Communications of the ACM 31(5) (1998) 514–
530

10. Castello, R., Mili, R.: Visualizing graphical and textual formalisms. Information
Systems 28(7) (2003) 753–768

11. Trog, D., Vereecken, J., Christiaens, S., de Leenheer, P., Meersman, R.: T-Lex:
A role-based ontology engineering tool. In Meersman, R., Tari, Z., Herrero, P.,
eds.: OTM Workshops (2). Volume 4278 of Lecture Notes in Computer Science.,
Montpellier, France, EU, Springer, Berlin, Germany, EU (2006) 1191–1200


