
Characterizing Knowledge Intensive Tasks
indicating Cognitive Requirements;

Scenarios in Methods for Specific Tasks

S.J. Overbeek1, P. van Bommel2, H.A. (Erik) Proper2, and D.B.B. Rijsenbrij2

1 e-office B.V., Duwboot 20, 3991 CD Houten, The Netherlands, EU
Sietse.Overbeek@e-office.com

2 Institute for Computing and Information Sciences, Radboud University Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, EU
{P.vanBommel, E.Proper, D.Rijsenbrij}@cs.ru.nl

Abstract. Methods for specific tasks can among others be identified
in conceptual modeling of information systems and requirements engi-
neering in software development. Such methods dictate a specific way of
working by describing necessary knowledge intensive tasks to fulfill while
applying the method. An actor may experience difficulties when trying
to fulfill tasks as part of a method application, related to the cognitive
abilities required to fulfill a certain task versus the specific cognitive
abilities possessed by the actor. This paper specifically focusses on the
cognitive abilities required to fulfill a knowledge intensive task while
applying a method for specific tasks. This is based on a categorization
and characterization of knowledge intensive tasks and on scenarios in
conceptual modeling of information systems and requirements engineer-
ing.

1 Introduction

Methods for specific tasks contain a way of working, which is the strategy de-
termining the manner how the method should be applied. This includes the
necessary knowledge intensive tasks to fulfill when using a method in a certain
context. When fulfilling a certain task, an actor that is applying a method may
experience difficulties during a task’s fulfillment. Independent of other reasons
that may contribute to the existence of those difficulties, the research reported
in this paper is concerned with the cognitive abilities necessary to execute a
certain task while applying a method, as is shown in figure 1. As is described
by Meiran [6] and Schraagen et al. [8], research in task analysis has a cogni-
tive basis in psychological research. Analyzing task fulfillment from a cognitive
viewpoint may yield knowledge underlying an actor’s task performance. The
research reported in this paper is part of an ongoing research effort to better
understand cognitive settings of actors that are applying a method for specific
tasks versus the cognitive abilities required to fulfill a typical task. As part of
this ongoing research, it is also our wish to provide automated support to assist

 Cognitive abilities
Method for

specific
tasks

applies

Actor

includes

Knowledge
intensive

tasks requires

fulfills possesses

Fig. 1. Cognitive abilities during task fulfillment in a method.

an actor (characterized by a certain cognitive setting) in fulfilling a certain task
(characterized by the cognitive abilities required to fulfill it). This automated
support should be able to guide an actor that is applying a method through
task fulfillment if his cognitive setting may cause difficulties in fulfilling a task.

To better understand knowledge intensive tasks and the nature of it, basic
definitions are discussed in section 2.1. Then, the distinguished tasks are clas-
sified by their properties indicating an actor’s requirements from a cognitive
point of view. These properties are further elaborated in sections 2.2 and 2.3
and materialized in methods for specific tasks within conceptual modeling of
information systems and requirements engineering (see sections 3 and 4). This
leads up to two scenarios in which required cognitive abilities are denoted while
fulfilling tasks in conceptual modeling and requirements engineering. Section 5
briefly compares our model with other approaches in the field and outlines
benefits of our approach compared to others. Section 6 concludes this paper.

2 Categorizing and Characterizing Knowledge Intensive
Tasks

Exploring the fundamentals of knowledge intensive tasks is necessary to gain a
better understanding of that what we would like to categorize and characterize.
The following subsections provide definitions and a cognition-based characteri-
zation of knowledge intensive tasks.

2.1 Basic Definitions

As the notion knowledge intensive task suggests, knowledge is very important
and also emphatically present during an actor’s fulfillment of a knowledge in-
tensive task. It is relevant to mention that, according to Liang [4], knowledge
can be regarded as ‘wrapped’ in information, whilst information is ‘carried’ by
data (expressions in a symbol language). To be able to reason about those tasks
on a conceptual level, a general categorization of knowledge intensive tasks is

suggested. For this categorization a parallel with the inductive-hypothetical re-
search strategy mentioned in e.g. [9] has been made. This research strategy
consists of five phases, which are:

1. Initiation, in which empirical knowledge of the problem domain is elicited.
2a. Abstraction, in which the elicited empirical knowledge is applied in a de-

scriptive conceptual model.
2b. Theory formulation, in which the descriptive conceptual model is made

prescriptive.
3a. Implementation, in which the prescriptive conceptual model is empirically

tested.
3b. Evaluation, a comparison of the elicited empirical knowledge (1) with the

prescriptive empirical model (3a).

Following the research approach, possible knowledge intensive tasks that can
be fulfilled can be abstracted to a pattern of three types:

1. Acquisition tasks, which are related with the acquisition of knowledge.
This can be illustrated by a student reading a book in order to prepare
himself for an exam.

2. Synthesis tasks, which are related with the actual utilization of the ac-
quired knowledge. An example is a student who utilizes knowledge (acquired
by reading a book) while performing an exam.

3. Testing tasks, which are related with the identification and application of
knowledge in practice inducing an improvement of the specific knowledge
applied. E.g. a student who failed an exam studies a teacher’s feedback on
his exam. Then a re-examination attempt follows to improve his previously
acquired and utilized knowledge.

The execution of an acquisition task can be compared to going through an initia-
tion phase of the inductive-hypothetical research strategy to acquire knowledge
and to understand the problem domain well enough so that the acquired knowl-
edge can be abstracted to conceptual models as a next step. The abstraction
and theory formulation phases of the aforementioned research strategy can be
compared to the nature of a synthesis task, viz. applying elicited knowledge
into a descriptive and a prescriptive conceptual model. The nature of an imple-
mentation phase and an evaluation phase is comparable to what is conducted
in a testing task, namely to gain feedback by testing earlier elicited and ap-
plied knowledge. In the research strategy this can be translated to testing the
prescriptive conceptual model and further the comparison of the elicited knowl-
edge from the initiation phase with the prescriptive empirical model from the
implementation phase. Now the set of tasks can be represented as:

TA , {acquisition, synthesis, testing} (1)

A specific instantiation of such a task is expressed by Task : TI → TA, where
TI is a set of task instances which are fulfilled by an actor. Given a task instance
i of a task Task(i), we can view the actor that is specifically fulfilling a task
instance as a function Fulfillment : AC → TI. Here, TI is a set of task instances
which are fulfilled by an actor (which is part of a set of actors AC).

2.2 Characterization of Knowledge Intensive Tasks

The following properties are going to be discussed to characterize knowledge
intensive tasks:

– The property of satisfaction is related with a need for knowledge during a
task’s fulfillment and the eventual disappearance of that need.

– Relevance is concerned with whether or not knowledge acquired is deemed
appropriate during the fulfillment of a task.

– The applicability property expresses to what extent knowledge is applicable
in a task.

– When knowledge is applied it should meet its requirements. This is indicated
by the correctness property.

– The faultiness property is necessary to be able to determine whether or not
applied knowledge contains flaws.

– To correct already applied knowledge containing flaws, the rectification prop-
erty can be determined.

Formally, the set of task properties can be represented as:

CP , {satisfaction, relevance, applicability, correctness, faultiness, rectification} (2)

The properties shown in table 1 are globally discussed independent from each

Table 1. Characterization of knowledge intensive tasks by their properties

CP
TA Satisfaction Relevance Applicability Correctness Faultiness Rectification

Acquisition × × – – – –
Synthesis – – × × – –
Testing × – × – × ×

other in the following sections. We understand that there may be other prop-
erties requiring specific cognitive abilities when fulfilling knowledge intensive
tasks, but in this paper we will limit ourselves to the mutually independent
properties mentioned above. The function Characterization : TA → ℘(CP) spec-
ifies which properties belong to a certain task. So following from table 1 an actor
fulfilling e.g. an acquisition task should have the cognitive abilities to adhere to
the satisfaction as well as the relevance property.

2.3 Definitions of Knowledge Intensive Task Properties

Before materializing the six task properties of table 1 in methods for specific
tasks, the properties themselves are elaborated in this section.

Satisfaction The first property that is discussed is the property of satisfaction.
A task has a satisfaction property, if a need for certain knowledge is present
during task fulfillment and that need is indulged if the required knowledge is
acquired. The need for knowledge is influenced by what an actor already has
received in the past. This can be modeled as a function:

Need : AS → (℘(KA) → KA 7→ [0, 1]) (3)

The set AS contains actor states. The introduction of an actor state is necessary
to understand how an actor’s need for knowledge changes over time. The set
KA represents the knowledge assets an actor may receive. These assets are
tradeable forms of knowledge, i.e. knowledge which actors can exchange with
each other. This may include knowledge obtained by viewing a Web site or a
document or by conversing with a colleague. When an instructor explains a
learner how to drive a car for instance, the explanation may contain valuable
knowledge assets for the learner. Needt(S, k) is interpreted as the residual need
for a knowledge asset k of an actor in state t after the set S has been presented
to an actor, where t ∈ AS, k ∈ KA and S ⊆ KA. The set S can be interpreted
as the personal knowledge of an actor (also called a knowledge profile). When
an actor a in state t experiences a knowledge asset k, then this actor will end
up in a new state denoted as tn k:

n : AS ×KA → AS (4)

No more knowledge is required by an actor if his need for knowledge de-
teriorates after experiencing the required knowledge, which is denoted by
Needtnk(S, k) = 0. Note that Needtnk(S, k) ≡ Need(t n k,S, k). However, it
is not always necessary to include an actor’s state for some of the task proper-
ties discussed and can, therefore, be omitted if desired.

An actor’s input and output of knowledge are also considered as important
concepts as part of the task properties. Input and output of knowledge assets
can be represented as:

In, Out : AS → (AC → ℘(KA)) (5)

Now that an indicator of the need for knowledge and the notation for input
and output of knowledge have been explained, the satisfaction property can be
assembled:

Satisfaction : Needt(S, k) > 0 ∧ k ∈ Int(a) ⇒ Needtnk(S, k) = 0 (6)

The satisfaction property includes an actor having a need for knowledge asset
k while experiencing state t. To be able to adhere to the satisfaction property,
such an actor receives knowledge asset k while in state t. When the actor is in a
succeeding state tn k the need for that specific knowledge asset k deteriorates
indicating his specific needs have been satisfied. So if an actor still requires, say,
knowledge assets k1 and k2 to complete a task, that actor should continue to
gather knowledge until Need(S, k1) = 0 and Need(S, k2) = 0. An acquisition
task as well as a testing task have this property. Both tasks require knowledge
input, meaning that an actor is satisfied if the required knowledge has been
obtained.

Relevance A task has a relevance property if, during fulfillment of a task, the
knowledge acquired is indeed needed by an actor. To acquire relevant knowl-
edge, an actor should experience a need for the knowledge to be acquired and
an actor’s knowledge profile should not already contain the knowledge to be
acquired:

Relevance : k ∈ In(a) ⇔ Need(S, k) > 0 ∧ k 6∈ S (7)

To make sure that an actor solely acquires relevant knowledge, the relevance
property should be adhered to when executing an acquisition task.

Applicability A task has an applicability property if knowledge is applied dur-
ing task fulfillment and that applied knowledge has a useful effect on successfully
completing the task. To understand to what extent knowledge is applicable for
a task, i.e. has a useful effect for completing the task, the following function is
necessary:

Applicable : TI × KA 7→ [0, 1] (8)

If a knowledge asset k is not applicable at all for a task instance i the function
equals 0: Applicable(i, k) = 0. If a knowledge asset k is most applicable for a
task, the function equals 1. An actor adheres to the applicability property only
if a certain knowledge asset k is applicable during a task instance:

Applicability : k ∈ Out(a) ⇔ Applicable(i, k) > 0 ∧ k ∈ S (9)

The applicability property is not relevant for an acquisition task, because
knowledge is not applied in such a task.

Correctness A task has a correctness property when the knowledge that is
applied is useful for the specific task and the applied knowledge meets its re-
quirements. To be able to determine whether or not applied knowledge is correct
it should thus meet its requirements. The following function is therefore intro-
duced:

Requirement ⊆ KA× ℘(RQ) (10)

Suppose that a knowledge asset k should meet two requirements r1 and r2

which are part of a set of requirements R. Then if knowledge k is applied and
indeed meets its requirements this is indicated by (k, {r1, r2}) ∈ Requirement.
The correctness property can now be conceived as follows:

Correctness : Applicable(i, k) > 0 ∧ k ∈ Out(a) ⇔ (k,R) ∈ Requirement ∧ k ∈ S (11)

Faultiness A faultiness property is part of a task if it is necessary to indicate
if certain knowledge that has been obtained by an actor is not meeting its
requirements:

Faultiness : In(a) = K ∧ (k,R) 6∈ Requirement ∧ k ∈ K ⇒ Out(a) = {k} (12)

Suppose that an actor a obtains a knowledge set K. If an actor a observes that
a knowledge asset k ∈ K does not meets its requirements this specific asset is
returned as output to indicate that it is faulty.

Rectification A task has a rectification property if it is part of the task to
locate erroneously applied knowledge and then to rectify and return that knowl-
edge so that it does meet its requirements. If an actor receives a knowledge asset
k1 and that knowledge does not meet its requirements R i.e. the knowledge is
wrongly applied, then the actor broadcasts knowledge asset k2 which does meet
the requirements instead. This improvement process by an actor is denoted as
rectification:

Rectification : In(a)={k1}∧(k1,R) 6∈Requirement⇒Out(a)={k2}∧(k2,R)∈Requirement∧k1¹k2 (13)

The notation k1 ¹ k2 is verbalized as the knowledge in k1 is contained within
k2 and is modeled by the function:

¹: KA → KA (14)

In terms of an actor’s need for knowledge, the knowledge containment relation
is defined as:

k1 ¹ k2 ≡ k1 ¹Need k2 ≡ Need({k2}, k1) = 0 (15)

Here, k1 ¹Need k2 represents the knowledge containment relation in the context
of the knowledge need represented by ‘Need’. In the notation of the rectification
property we have omitted Need and denoted knowledge containment as ¹. It is
also possible that a certain knowledge asset is contained within more than one
knowledge asset. Therefore the + operator concatenates knowledge assets:

+ : KA×KA → KA (16)

The concatenation of e.g. knowledge assets k2 and k3 is therefore shown as
k2 + k3. The function k1 ¹ (k2 + k3) expresses that the knowledge in k1 is
contained within k2 and k3.

In order to have a graphical representation of the discussed definitions, an
object-role model (ORM) is presented in figure 2. For details on object-role
models, see e.g. [2]. Thus far we have focussed on a theory about knowledge
intensive tasks and their properties. In the next section a scenario in conceptual
modeling of information systems is introduced to illustrate the theory in the
context of a method for specific tasks.

3 Cognitive Requirements in Conceptual Modeling Tasks

The discussed theoretical model comes to life when it is illustrated by a practical
situation in the process of conceptual modeling. An example of a method for
conceptual modeling of information systems is object-role modeling (ORM).
ORM is a fact oriented method and makes use of natural language statements
by examining them in terms of elementary facts. ORM has a specific way of
working which makes it a suitable method to study the cognitive requirements
needed to fulfill possible knowledge intensive tasks while applying the method.
Halpin [2] shows that the way of working in ORM is called the Conceptual
Schema Design Procedure (CSDP), consisting of seven steps:

1. Transform familiar information examples into elementary facts, and apply quality checks.

Requirement

{‘acquisition’,‘synthesis’,‘testing’}

Knowledge

+

Need

Value
(number)

In

Actor
(id)

State

Task
(name)

CognitiveProperty
(name)

{‘satisfaction’,‘relevance’,
 ‘applicability’,‘correctness’,

 ‘faultiness’,‘rectification’}

Applicable

Requirements

[0,1]

Out

KnowledgeAsset

TaskInstance

Fulfillment

Characterization

CognitiveProperties

u

u

Task

Fig. 2. Object-role model of knowledge intensive task properties.

2. Draw the fact types, and apply a population check.
3. Check for entity types that should be combined, and note any arithmetic derivations.
4. Add uniqueness constraints, and check clarity of fact types.
5. Add mandatory role constraints, and check for logical derivations.
6. Add value, set comparison and sub-typing constraints.
7. Add other constraints and perform final checks.

To let the theoretical model as discussed in section 2 materialize in a practical
ORM modeling situation, suppose that a certain actor a who is acting as an
ORM modeler wishes to create a conceptual model of an information system.
Therefore, the ORM modeler walks through the seven steps as mentioned above.
In this section we will focus on step one only, because the first step is already
complex enough to illustrate our theory in the ORM method.

When initiating step one, an ORM modeler fulfills several knowledge inten-
sive tasks. To understand how our theory materializes in an ORM method, a
fragment of an information system’s intended functionality is considered. One
function of the information system to be modeled is to provide insight in a user’s
own knowledge profile. A partial screen mockup of an information system which
should eventually include such functionality is shown in figure 3. The partial
mockup shown is part of an application called DEXAR (Discovery and eXchange
of Revealed knowledge) which is also currently under development as part of
our research [7]. DEXAR is an application that assists the user in discovering
and retrieving knowledge by implementing a question and answer mechanism
with the user. The knowledge assets retrieved by the user are then stored in a
(searchable) profile as can be seen in figure 3.

Part of the modeling task is to clarify the meaning of the functionality in-
tended. Conversations between a domain expert and the ORM modeler are
therefore needed to clarify the required functionality and to let the ORM mod-

Fig. 3. Showing a (partial) knowledge profile.

eler interpret the example mockup correctly. Discussions with a domain expert
are part of an acquisition task instance acquire information examples denoted
by i1, thus Task(i1) = acquisition. Furthermore we can say that, with respect
to the partial DEXAR functionality, the ORM modeler responsible for acquir-
ing the information examples has a need for those information examples. An
information example can be interpreted as information that is presented to
the modeler, i.e. graphical information, information on forms, tabularly infor-
mation, etc. The need for knowledge k concerning an information example is
formally expressed as Need(S, k) > 0, where S is the personal knowledge profile
of the ORM modeler in this case. During fulfillment of task instance i1 several
knowledge assets can be discerned which can be of importance:
k1 The knowledge profile of a user should be displayed as a lattice.
k2 The user may browse through the lattice to learn about previously acquired knowledge and to

gain insight in his own profile as a whole.
k3 A lattice should consist of index expressions.

When executing the acquisition task instance i1, the modeler needs to satisfy
the satisfaction property, denoted as: ∀n∈{1,2,3}[Needt(S, kn) > 0 ∧ k ∈ Int(a) ⇒
Needtnkn(S, kn) = 0]. In order to acquire knowledge that is not irrelevant, the
modeler should satisfy the relevance property as follows: ∀n∈{1,2,3}[kn ∈ In(a) ⇔
Need(S, kn) > 0 ∧ kn 6∈ S].

The knowledge gathered thus far is to be stated in terms of elementary
facts as step one of the ORM method dictates. Basically, an elementary fact
asserts that a particular object has a property, or that one or more objects
participate in a relationship, where that relationship cannot be expressed as
a conjunction of simpler (or shorter) facts. For example, to say that ORM is
a modeling language and C++ is a programming language is to assert two
elementary facts. Task instance i1 is now followed by a second task instance
i2. Task instance i2 is concerned with the creation of elementary facts based
on the acquired knowledge k1, k2 and k3 thus far. So this task instance can be
referred to as create elementary facts and can be classified as a synthesis task.

The ORM modeler applies the knowledge acquired to generate four different
elementary facts:
k4 User has KnowledgeProfile displayed as Lattice
k5 User browses through Lattice
k6 Lattice contains Knowledge
k7 Lattice consists of IndexExpressions

The applicability property now determines if the elementary facts are applicable
for task instance i2: ∀n∈{4,5,6,7}[Out(a) = {kn} ⇔ Applicable(i2, kn) > 0 ∧ kn ∈ S].
Once applied, the correctness property determines if the knowledge applied
meets the requirements: ∀n∈{4,5,6,7}[Applicable(i2, kn) > 0 ∧ kn ∈ Out(a) ⇔
(kn,R) ∈ Requirement∧kn ∈ S]. The set R contains the requirements for correctly
conceiving elementary facts in ORM. Two possible requirements r1, r2 ∈ R can
be:
r1 The first letter of object types should be capitalized.
r2 Each elementary fact should assert a binary relationship between two object types.

Knowledge asset k4 does not meet requirement r2, however, because three in-
stead of two objects are part of k4. In this case the correctness property fails:
(k4, {r2}) 6∈ Requirement and the modeler should first alter elementary fact k4.

When altering k4, the modeler fulfills a testing task instance i3 denoted as
correct errors in elementary facts. A testing task has four properties as can be
viewed in table 1. The improvement process or ‘quality checks’ that are part of
task instance i3 should satisfy the four properties. The faultiness property of
task instance i3 stipulates that asset k4 does not meet requirement r2: In(a) =

K ∧ (k4, {r2}) 6∈ Requirement ∧ k4 ∈ K ⇒ Out(a) = {k4}. Now when fulfilling task
instance i3, the modeler desires at least one or perhaps more knowledge assets
that do meet requirement r2. To be able to meet the requirement, the modeler,
currently in a state t, has a desire to split up knowledge asset k4 into two new
knowledge assets: k4′ and k4′′ . These assets should be part of the modeler’s
profile S at state t n k4′ n k4′′ . Therefore the satisfaction property is part of
the task: ∀n∈{4′,4′′}[Needt(S, kn) > 0 ∧ kn ∈ Int(a) ⇒ Needtnkn(S, kn) = 0]. When
the newly produced knowledge assets are applied during the task, they should
be relevant enough to reach the task’s goal. The applicability property is thus
also part of the task: ∀n∈{4′,4′′}[kn ∈ Out(a) ⇔ Applicable(i3, kn) > 0 ∧ kn ∈ S].
Finally, the rectification property determines if requirement r2 has been met by
replacing k4 with assets k4′ and k4′′ : In(a) = {k4} ∧ (k4, {r2}) 6∈ Requirement ⇒
Out(a) = {k4′ , k4′′} ∧ (k4′ , {r2}) ∈ Requirement ∧ (k4′′ , {r2}) ∈ Requirement ∧ k4 ¹
(k4′+k4′′). Remember from section 2.3 that the knowledge containment relation
can be determined by the ¹ symbol and that concatenated knowledge assets are
represented by the + symbol. In the property above, the following knowledge
containment relation is depicted: k4 ¹ (k4′ + k4′′). This can be verbalized as:
the knowledge in k4 is contained within the concatenation of k4′ and k4′′ . The
resulting facts are then displayed as follows after the completion of testing task
instance i3:
k4′ User has KnowledgeProfile
k4′′ KnowledgeProfile is displayed as Lattice
k5 User browses through Lattice

k6 Lattice contains Knowledge
k7 Lattice consists of IndexExpressions

The following section shows how the defined task properties can be situated
in a requirements engineering scenario by focussing on the way of working of
COLOR-X, which is an example of a requirements engineering method.

4 Cognitive Requirements in Requirements Engineering
Tasks

In the previous section a scenario in conceptual modeling of information sys-
tems has been presented in which our theory came alive. We will now elaborate
a scenario in the area of requirements engineering. Requirements engineering is
an indication for the first phase of a software development process, in which the
main objective is to correctly understand the needs of the system’s customers or
users: What is the system supposed to do. The process of understanding these
needs or requirements, i.e. requirements engineering, can be defined as the sys-
tematic process of developing requirements through an iterative cooperative
process of analyzing the problem, documenting the resulting observations in a
variety of representation formats, and checking the accuracy of the understand-
ing gained [5]. The Ph.D. thesis of Burg [1] illustrates the COLOR-X method for
requirements engineering. The COLOR-X way of working covers requirements
specification, verification and validation phases. In this section we will limit our-
selves to how the knowledge intensive tasks of section 2.1 can be fulfilled in a
requirements specification phase indicating the cognitive requirements for fulfill-
ing those tasks. The process of requirements specification consists of mapping
real-world phenomena as described in the requirements document onto basic
concepts of a specification language, i.e. describing a certain problem in an as
precise, concise, understandable and correct as possible manner. The COLOR-
X method divides the requirements specification stage in two parts: a natural
language approach and a scenario based approach. In this section we will limit
ourselves to the natural language approach, which equals most how the ORM
method specifies a conceptual model. The COLOR-X natural language approach
for specifying requirements consists of four steps:

1. Select the words and sentences from the requirements document that are relevant for the
COLOR-X models.

2. Break up complex sentences and / or combine several redundant or overlapping sentences into
understandable ones (i.e. structured sentences).

3. Annotate additional syntactic and semantic information, retrieved from the lexicon, to the
words selected from the requirements document.

4. Transform the structured sentences into formal specifications.

In this section, a possible acquisition task as part of step one is dis-
cussed. Furthermore a synthesis task and a testing task as part of step two
are dealt with. Suppose that actor a is a requirements modeler and wishes
to go through the requirements specification phase and therefore applies the
COLOR-X method. Assume that the following snippet is part of the require-
ments document of the DEXAR application:

A partial knowledge profile should be represented by a lattice also

referred to as a power index expression. Such a lattice should be

constructed by using index expressions. A power index expression

contains all index expressions, including the empty index expression

and the most meaningful index expression. An example of an index

expression is ‘(identification of a patient) with (Q fever

pneumonia)’. Simply put, (power)index expressions are used by DEXAR

as a representation for a knowledge profile.

While walking through the first step as mentioned above, the requirements mod-
eler selects the words and sentences from the requirements document snippet.
This is part of an acquisition task instance acquire words and sentences denoted
by i1, thus Task(i1) = acquisition. The requirements modeler has a need for
those words and sentences. The acquired words and sentences i.e. knowledge
assets can be depicted as follows:
k1 A partial knowledge profile is represented by a lattice.
k2 A lattice equals a power index expression.
k3 A power index expression contains all index expressions.
k4 A power index expression includes the empty index expression and the most meaningful index

expression.

When executing the acquisition task instance above, the requirements modeler
needs to satisfy the satisfaction property, denoted as: ∀n∈{1,2,3,4}[Needt(S, kn) >

0 ∧ k ∈ Int(a) ⇒ Needtnkn(S, kn) = 0]. In order to acquire knowledge that is
not irrelevant, the modeler should satisfy the relevance property as follows:
∀n∈{1,2,3,4}[kn ∈ In(a) ⇔ Need(S, kn) > 0 ∧ kn 6∈ S].

Step one can be seen as an intensive knowledge acquirement step, i.e. the
requirements document is sifted for relevant words and sentences. It is not until
step two of the requirements specification process as prescribed by COLOR-
X that a synthesis task can be identified. Task instance i1 is now followed
by a task instance i2. Task instance i2 can be referred to as create struc-
tured sentences and is part of step two. Table 2 represents the knowledge
assets following from task i2. Knowledge assets k5 up to and including k9

Table 2. The created structured sentences

Subject Predicate Direct object

k5 A lattice represents a knowledge profile
k6 A lattice equals a power index expression
k7 A power index expression contains all index expressions
k8 A power index expression includes the empty index expression
k9 A power index expression includes the most meaningful index expression

are mostly similar with assets k1 up to and including k4, but the knowledge
assets of table 2 include additional grammatical knowledge instead. The ap-
plicability property now determines if the structured sentences are applicable

for task i2: ∀n∈{5,6,7,8,9}[Out(a) = {kn} ⇔ Applicable(i2, kn) > 0 ∧ kn ∈ S]. Once
applied, the correctness property determines if the structured sentences meet
the requirements: ∀n∈{5,6,7,8,9}[Applicable(i2, kn) > 0 ∧ kn ∈ Out(a) ⇔ (kn,R) ∈
Requirement ∧ kn ∈ S]. The set R contains the requirements for correctly con-
ceiving structured sentences in COLOR-X. Two possible requirements r1, r2 ∈ R
can be:
r1 Annotate a main sentence structure, i.e. the subject, predicate and direct object.
r2 Annotate special grammatical elements, i.e. the adjectives, adverbs and nominal predicates.

Knowledge assets k5 up to and including k9 do not meet requirement r2, how-
ever, because no special grammatical elements are shown in table 2. In this
case the correctness property fails and the requirements modeler should first
add special grammatical elements.

When altering k5 up to and including k9, the requirements modeler ful-
fills a testing task instance i3 denoted as correct omitted special grammatical
elements. The resulting special grammatical elements are displayed in table 3
after completing testing task instance i3. Now the properties of task instance

Table 3. The created special grammatical elements

Grammatical concept Word Category

k5′ Adjective Partial Property
k6′ Nominal predicate A lattice is a power index expression Specialization
k7′ Adverb All Quantity
k8′ Adjective Empty Property
k9′ Adjective Most meaningful Property

i3 should be analyzed to determine how they are satisfied. For asset k5, the
faultiness property stipulates that the asset does not meet requirement r2:
In(a) = K ∧ (k5, {r2}) 6∈ Requirement ∧ k5 ∈ K ⇒ Out(a) = {k5}. To be able to
meet the requirement, the modeler, currently in a state t, has a desire to create
another knowledge asset k5′ that includes special grammatical elements for the
sentence included in k5. The concatenation of k5 and k5′ , i.e. k5+k5′ should meet
both requirements r1 and r2. The concatenated asset should be part of the mod-
eler’s profile S at state tnk5+k5′ . Therefore the satisfaction property for k5+k5′

results in: Needt(S, k5 + k5′) > 0∧ k5 + k5′ ∈ Int(a) ⇒ Needtnk5+k5′ (S, k5 + k5′) = 0.
When the concatenated knowledge asset k5 + k5′ is applied during the task, it
should be relevant enough to reach the task’s goal. This is expressed by the ap-
plicability property: k5 + k5′ ∈ Out(a) ⇔ Applicable(i3, k5 + k5′) > 0 ∧ k5 + k5′ ∈ S.
Finally, the rectification property determines if requirement r2 has been met
by creating asset k5′ and concatenating it with k5: In(a) = {k5} ∧ (k5, {r2}) 6∈
Requirement ⇒ Out(a) = {k5 + k5′} ∧ (k5 + k5′ , {r2}) ∈ Requirement. Following the
same approach as above, properties k6 up to and including k9 can be concate-
nated with the created grammatical elements. So k6 should be concatenated

with k6′ and so on. This completely satisfies the properties of task instance i3
eventually.

Now that the theoretical part and possible applications of it in methods for
specific tasks have been discussed, it is appropriate to compare our approach
with other approaches in the field. The next section therefore deals with this
matter.

5 Discussion

Literature indicates that characterizing tasks on a cognitive basis is possible in
several different ways. The research of Weir et al. [10] includes a characteriza-
tion of information management tasks by studying activities of workers in the
primary care setting. This has resulted in an abstraction of several information
management tasks during the research, such as: assignment tasks, determina-
tion tasks, organization tasks, etc. First, Weir et al. [10] show that they have
analyzed tasks in primary clinical care and from that specialized analysis an
abstraction has been made constituting a general categorization of tasks. Com-
pared to our study, this is a bottom-up approach from analyzing tasks in a
certain context to the eventual abstraction of tasks. We have analyzed tasks
using a top-down approach by generalizing tasks based on parallels made with
an inductive-hypothetical research approach before materializing the theory in
methods for specific tasks. An advantage of our approach is that the theory is
not stemming from a study in a specialized context and thus does not run the
risk of being useful only in a certain context. Therefore, it is assumed that our
theory is applicable in numerous contexts and can be adapted to that context
if desired. For instance, sections 3 and 4 are an indication that this is possible.

Especially when methods for specific tasks are concerned, it is difficult to
identify significant research related to matching an actor’s cognitive abilities
with the cognitive abilities required to perform a certain task. However, the
research of Zhang et al. [11] shows that the human-centered distributed infor-
mation system design methodology includes user analysis and task analysis as
part of information system design. The methodology has a much broader focus
than only dealing with the match / mismatch between a user’s cognitive abili-
ties and the cognitive abilities necessary to fulfill a specific task. An important
function of task analysis in human-centered distributed information system de-
sign is to ensure that the system implementation includes only the necessary
and sufficient task features that match user capacity and are required by the
task. This contrasts with our research, because we do not wish to exclude the
situations in which an actor / task combination does not match very well, but
instead we would like to provide support for it in the future. We assume that
instead of excluding the situations in which an actor / task combination does
not match it is better to provide support for it, simply because it occurs often
enough in everyday practice. An early attempt by e.g. Harris and Brightman [3]
shows a preliminary attempt to couple potential automated support with cog-

nitive task fulfillment by academics. The proposed automated support however
consists of existing tools only and suggestions for future, possibly better, tools
are not made. Hence it seems that our longer term research goals, as mentioned
in section 1, are worth pursuing.

6 Conclusion

This paper describes a categorization and characterization of knowledge in-
tensive tasks, illustrated by definitions of task properties indicating cognitive
requirements for task fulfillment. Proceeding from these definitions method ap-
plication scenarios in conceptual modeling of information systems respectively
requirements engineering show how the theory can be materialized.

References

1. J.F.M. Burg. Linguistic Instruments in Requirements Engineering. PhD thesis,
Vrije Universiteit Amsterdam, The Netherlands, EU, 1997.

2. T. Halpin. Information Modeling and Relational Databases, from Conceptual
Analysis to Logical Design. Morgan Kaufmann, San Mateo, CA, USA, 2001.

3. S.E. Harris and H.J. Brightman. Design implications of a task-driven approach
to unstructured cognitive tasks in office work. ACM Transactions on Information
Systems, 3(3):292–306, 1985.

4. T.Y. Liang. The basic entity model: A fundamental theoretical model of in-
formation and information processing. Information Processing & Management,
30(5):647–661, 1994.

5. P. Loucopoulos and V. Karakostas. System Requirements Engineering. McGraw-
Hill Book Company Europe, Berkshire, UK, EU, 1995.

6. N. Meiran. Modeling cognitive control in task-switching. Psychological Research,
63(3–4):234–249, 2000.

7. S.J. Overbeek, P. van Bommel, H.A. Proper, and D.B.B. Rijsenbrij. Knowledge
discovery and exchange – Towards a web-based application for discovery and
exchange of revealed knowledge. In J. Filipe, J. Cordeiro, B. Encarnação, and
V. Pedrosa, editors, Proceedings of the Third International Conference on Web
Information Systems and Technologies (WEBIST), pages 26–34. Barcelona, Spain,
EU, INSTICC Press, Setúbal, Portugal, EU, 2007.

8. J. Schraagen, S. Chipman, and V. Shalin. Cognitive Task Analyis. Lawrence
Erlbaum Associates, Mahway, NJ, USA, 2000.

9. H.G. Sol. Simulation in Information Systems. PhD thesis, University of Gronin-
gen, The Netherlands, EU, 1982.

10. C.R. Weir, J.J.R. Nebeker, L.H. Bret, R. Campo, F. Drews, and B. LeBar. A
cognitive task analysis of information management strategies in a computerized
provider order entry environment. Journal of the American Medical Informatics
Association, 14(1):65–75, 2007.

11. J. Zhang, V.L. Patel, K.A. Johnson, J.W. Smith, and J. Malin. Designing human-
centered distributed information systems. IEEE Intelligent Systems, 17(5):42–47,
2002.

