
Matching Cognitive Characteristics of Actors
and Tasks

S.J. Overbeek1, P. van Bommel2, H.A. (Erik) Proper2, and D.B.B. Rijsenbrij2

1 e-office B.V., Duwboot 20, 3991 CD Houten, The Netherlands, EU
Sietse.Overbeek@e-office.com

2 Institute for Computing and Information Sciences, Radboud University Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, EU

{P.vanBommel,E.Proper,D.Rijsenbrij}@cs.ru.nl

Abstract. Acquisition, application and testing of knowledge by actors
trying to fulfill knowledge intensive tasks is becoming increasingly impor-
tant for organizations due to trends such as globalization, the emergence
of virtual organizations and growing product complexity. An actor’s man-
agement of basic cognitive functions, however, is at stake because of this
increase in the need to acquire, apply and test knowledge during daily
work. This paper specifically focusses on matchmaking between the cog-
nitive characteristics supplied by an actor and the cognitive characteris-
tics required to fulfill a certain knowledge intensive task. This is based on
a categorization and characterization of actors and knowledge intensive
tasks. A framework for a cognitive matchmaker system is introduced to
compute actual match values and to be able to reason about the suit-
ability of a specific actor to fulfill a task of a certain type.

1 Introduction

The importance of an actor’s (i.e. a human or a computer) abilities to acquire,
apply and test already applied knowledge increases due to e.g. growing prod-
uct complexity, the move toward globalization, the emergence of virtual orga-
nizations, and the increase in focus on customer orientation [1]. A knowledge
intensive task is a task for which acquisition, application or testing of already
applied knowledge is necessary in order to successfully fulfill the task. When the
pressure to acquire, apply and test more knowledge increases, actors struggle
to manage their basic cognitive functions like e.g. the willpower to fulfill a task
or maintaining awareness of the requirements to fulfill a task. These cognitive
functions are also referred to as volition and sentience respectively in cogni-
tive literature [2, 3]. Difficulties to control basic cognitive functions influences
practice and potentially threatens the success of task fulfillment [4]. Research in
cognitive psychology has demonstrated that individual knowledge processing is
negatively influenced when experiencing an overload of knowledge that needs to
be processed. For example, a burden of knowledge processing events may cause
actors to underestimate the rate of events [5] and to be overconfident [6].

In [7] we have discussed several types of knowledge intensive tasks, each
characterized by their characteristics. These task types consist of an acquisition
task, a synthesis task, and a testing task. An acquisition task is related with the
elicitation of knowledge. A synthesis task is related with the actual utilization of
the acquired knowledge. Lastly, a testing task is related with the identification
and application of knowledge in practice inducing an improvement of the specific
knowledge applied. The characteristics belonging to each task type indicate the
cognitive requirements necessary for an actor to successfully fulfill an instance
of a specific task type. Based on this earlier work, the research reported in this
paper is specifically concerned with the matching of cognitive characteristics re-
quired to fulfill a certain task instance with the cognitive characteristics actually
possessed by an actor. The ambition of this paper, however, is not to come up
with a tool that will be concerned with cognitive matchmaking. We will merely
concentrate on determining which aspects play a role in such a matchmaking
process and how these aspects could be tackled. A global matchmaker architec-
ture illustrated in figure 1 provides a first overview of the aspects that are taken
into consideration.

Actor
Type

fulfills

Actor
supplies

Task
Type

instantiated
by

match?

Task
Instance

Characteristics

instantiated
by demands

Cognitive

Fig. 1. Cognitive matchmaker architecture

The paper is structured as follows. Several cognitive settings of actors are
discussed in section 2 to be able to characterize the different actors fulfilling a
task instance. A framework of a cognitive matchmaker system is introduced in
section 3 to be able to compute a match between the supply of certain cognitive
characteristics by an actor and the demanded cognitive characteristics to fulfill a
task instance. During section 3, the theory is materialized in a running example
by matching an actor type from the theory of section 2 with a task type from
theory as discussed in earlier work [7]. Section 4 briefly compares our models
with other approaches in the field and outlines the benefits of our approach
compared to others. Section 5 concludes this paper and gives an overview of
future research plans.

2 Cognitive Actor Settings

Before elaborating on matching cognitive characteristics possessed by an actor
with the cognitive characteristics required when fulfilling a task instance, a char-
acterization of possible actor types is needed.

2.1 Actor Types

Actor types may draw from a pool of basic cognitive characteristics an actor
might possess, such as sentience, volition, and causability [8]. No one actor type
necessarily has all of these characteristics, and some have more than others.
Using a series of linguistic diagnostics, Dowty [8] has shown that each of these
characteristics can be isolated from the others, and so should be treated as
distinct. The following characteristics can thus be distinguished that can be
utilized to generate a framework for cognitive settings of possible different actor
types:

– The volition characteristic is concerned with an actor’s willpower to fulfill some
knowledge intensive task instance.

– Sentience expresses that an actor has complete awareness of required knowledge
to fulfill some task instance.

– The causability characteristic expresses that an actor has the ability to exert an
influence on state changes of knowledge involved during fulfillment of a task in-
stance.

– During fulfillment of certain knowledge intensive task instances an actor should be
able to improve its own cognitive abilities. This is indicated by the improvability
characteristic.

– The independency characteristic is necessary to be able to determine if an actor is
able to fulfill a task instance on its own or not.

Having determined possible cognitive characteristics an actor may have it is
now appropriate to distinguish several actor types. The combination of an actor
type with the cognitive characteristics belonging to a type forms a cognitive actor
setting. This characterization is shown in table 1. The five distinguished actor
types are based on a classification of knowledge worker types [9] and on linguistic
literature [2]. The knowledge worker classification is more practically oriented
than the ideas found in the linguistic literature. Practical as well as theoretical
ideas now intermingle when developing a framework of cognitive actor settings.
Now the set of actor types can be represented as:

{experiencer, collaborator, expert, integrator, transactor} ⊆ AT (1)

The set of cognitive characteristics can be represented as:

{volition, sentience, causability, improvability, independency} ⊆ CC (2)

An important remark to make here is that the possible actor types as well as
the possible cognitive characteristics are not limited to five actor types and
five cognitive characteristics. However, in this paper we restrict ourselves to the
above mutually independent cognitive actor settings. The actor types as shown
in table 1 can now be introduced:

Table 1. Cognitive actor settings characterized

CC
AT Volition Sentience Causability Improvability Independency

Experiencer – × – – –
Collaborator × – × × –
Expert × × × × ×
Integrator × – × – –
Transactor × × – – ×

The experiencer The experiencer actor type has the sentience characteristic only. An
experiencer is thus only aware of all the knowledge requirements to fulfill some task
instance. Consider for example the following sentence: John thoroughly reads an
article about balanced scorecards before joining a meeting about balanced scorecards.
This indicates that John, as an experiencer, probably understands that reading an
article about balanced scorecards is enough to successfully prepare himself for a
meeting about that topic.

The collaborator This actor type possesses the volition, causability, and improv-
ability characteristics. A collaborator has the ability to exert an influence on state
changes of knowledge involved during fulfillment of a task instance. During fulfill-
ment of a knowledge intensive task instance a collaborator is also able to improve
its own cognitive abilities. However, a collaborator does not have complete aware-
ness of all required knowledge to fulfill a task instance and requires others to
fulfill a task instance. Consider the following example: John works at a hospital
and requires knowledge about a patient’s history. Therefore, he acquires the most
recent patient log from a colleague. This indicates that John, as a collaborator,
understands that in order to acquire knowledge about a patient’s history he must
collaborate with another actor. After that John is able to update the patient’s log
with recent changes.

The expert An expert possesses all characteristics depicted in table 1. Suppose that
John is an assistant professor working at a university and he would like to solve
a difficult mathematical problem when developing a theory. He then uses his own
knowledge about mathematics to solve the problem. John is also able to combine
and modify his own knowledge while solving the problem and he can also learn
from that.

The integrator An integrator is able to fulfill a knowledge intensive task instance
by working together and is able to initiate state changes of knowledge involved
during task instance fulfillment. An integrator primarily wishes to acquire and
apply knowledge of the highest possible quality. An engineer contributing to the
construction of a flood barrier is an example of an integrator.

The transactor Volition, sentience, and independency are the characteristics belong-
ing to the transactor actor type. A transactor can fulfill a task instance without
collaborating with others and is not required to cause modifications in the knowl-
edge acquired and applied during task fulfillment. A customer support employee
working at a software company is an example of a transactor.

A specific instantiation of an actor type is expressed by AType : AC → AT ,
where AC is a set of actor instances that can be classified by a specific type. The
example AType(a) = experiencer for instance expresses that an actor a can be

classified as an experiencer. We can view the actor that is specifically fulfilling a
task instance i ∈ TI as a function Fulfillment : AC → ℘(TI). Here, TI is a set of task
instances which are fulfilled by an actor. An actor a that fulfills a task instance
i can be expressed as Fulfillment(a) = {i}. A specific instantiation of a task type
is expressed by TType : TI → TT , where TT is a set of task types that can be
instantiated by a specific task instance. The expression TType(i) = acquisition

can be used to assert that a task instance i is characterized as an acquisition
task.

Now that a characterization of different actor types has been introduced (re-
sulting in several cognitive actor settings), the different cognitive characteristics
mentioned in table 1 need to be explored.

2.2 Definitions of Cognitive Characteristics

Volition An actor has the volition characteristic, if an actor has the willpower
to fulfill some knowledge intensive task instance. It can be said that an actor
has a strong motivation to fulfill a task instance. It is important to note that for
each of the cognitive characteristics an actor might have, an actor may possess
it at a certain level. Once an actor has the volition characteristic, however, the
level of willing to fulfill a task is high because of the present strongness of the
motivation. The introduction of a motivation function is necessary to determine
an actor’s motivation while fulfilling a task instance:

Motivation : AS → (AC × TI →MO) (3)

The set AS contains actor states. An actor state is necessary because an actor’s
motivation might change over time. For example, an actor might be strongly
motivated in one state, while an actor might be weakly motivated in another
state. Assume {weak, moderate, neutral, strong} ⊆ MO. The set MO includes
possible motivation types of an actor. An actor a in a state t ∈ AS with a
volition characteristic, however, has a strong motivation. This is denoted as:
Motivationt(a, i) = strong. The volition characteristic can now be modeled as fol-
lows. An actor a ∈ AC has the volition characteristic, denoted as Volition(a), if
that actor has a state t ∈ AS in which that actor has a strong motivation for
some task instance to be fulfilled:

∃t∈AS∃i∈Fulfillment(a)[Motivationt(a, i) = strong] (4)

Sentience An actor has the sentience characteristic, if that actor has com-
plete awareness of required knowledge to fulfill some task instance. The level of
knowing which knowledge is required for task fulfillment is high, because of the
complete awareness once an actor possesses the sentience characteristic. In [7] a
function has been introduced to understand to what extent a knowledge asset (as
part of the set KA) is applicable for a task, i.e. has a useful effect for completing
the task:

Applicable : TI × KA 7→ [0, 1] (5)

These assets are tradeable forms of knowledge, i.e. knowledge that is exchange-
able between actors. This may include knowledge obtained by viewing a Web site

or a document or by conversing with a colleague. When an instructor explains
a learner how to drive a car for instance, the explanation may contain valuable
knowledge assets for the learner.

So, Applicable(i, k) > 0 expresses that knowledge asset k is somehow applicable
for a task instance i. Another function denotes the need for knowledge of an actor
during fulfillment of a task instance [7]:

Need : AS → (℘(KA)×KA 7→ [0, 1]) (6)

The expression Needt(S, k) is interpreted as the residual need for knowledge k of
an actor in state t after the set S has been presented to an actor, where t ∈ AS,
k ∈ KA and S ⊆ KA. The set S can be interpreted as the personal knowledge of an
actor (also called a knowledge profile). At this point the sentience characteristic
can be modeled:

∃i∈Fulfillment(a)∃k∈KA∃S⊆KA[Applicable(i, k) > 0 ∧ Need(S, k) > 0] (7)

In other words, an actor a ∈ AC has the sentience characteristic, denoted as
Sentience(a), if that actor fulfills some task instance and if there exists a knowl-
edge asset k ∈ KA that is applicable in a task instance and already possessed by
actor a (i.e. part of that actor’s knowledge profile S ⊆ KA) or otherwise required
by actor a. The actor’s state has been omitted because it is not of particular
relevance in the sentience characteristic.

Causability An actor has the causability characteristic, if an actor has the
ability to exert an influence on changes of the knowledge type involved dur-
ing fulfillment of a task instance. The level of this influence is dependent of
to what extent an actor masters this characteristic. Four knowledge types are
distinguished [10, 11]:

– Implicit & concealed knowledge: e.g. competencies or expertise of a worker un-
known to the organization;

– Explicit & concealed knowledge: e.g. valuable insights concealed in available data
collections (to be discovered by data mining);

– Implicit & revealed knowledge: e.g. known expertise of a worker which can be
appealed to;

– Explicit & revealed knowledge: e.g. best-practice documentation, knowledge bases,
scientific papers, etcetera.

Implicit knowledge comprises knowledge which is implicitly present in peo-
ple’s heads, such as skills which are difficult to make explicit. Implicit knowledge
is closely related to what is generally experienced as intuition. Explicit knowledge
comprises knowledge which can be expressed in terms of facts, rules, specifica-
tions or textual descriptions.

Besides discerning implicit and explicit knowledge, another relevant distinc-
tion can be made. Sometimes knowledge is present while one is not aware of that
knowledge. This varies from hidden skills of workers (for an individual or for the
organization) to knowledge which is hidden in undiscovered patterns in data
collections (the basis for data mining). This results in revealed and concealed
knowledge. To be specific, it can be said that an actor having the causability

characteristic can change knowledge from one type to another type. This can be
modeled as a function:

n : AC → (KA×KT → KT) (8)

The set KT comprises the possible knowledge types. The four discussed knowl-
edge types can formally be depicted as:

{implicit−concealed, implicit−revealed, explicit−concealed, explicit−revealed} ⊆ KT (9)

The knowledge type of a specific knowledge item k can easily be found by using
the function KType : KA → KT . For example, KType(k) = s expresses that knowl-
edge k ∈ KA is of the type s ∈ KT . When knowledge asset k of type s is changed
to another type by actor a ∈ AC, this type change is denoted as: na(k, s). When
applying the infix notation this would result in: na(k, s) ≡ k na s. At this point
the causability characteristic can be modeled:

∃i∈Fulfillment(a)∃k∈KA∃s∈KT [Applicable(i, k) > 0 ∧ k na s] (10)

In other words, an actor a ∈ AC has the causability characteristic, denoted as
Causability(a), if that actor fulfills some task instance and if there exists a knowl-
edge asset k ∈ KA of some type s ∈ KT that is changed to some other type
k na s ∈ KT by actor a.

Improvability An actor has the improvability characteristic, if that actor is
able to improve its own cognitive capabilities while fulfilling some task instance.
An actor may have a certain level to improve its own capabilities, ranging from
e.g. a low level to a high level. First, it is necessary to introduce a ³∗ operator
that expresses an actor’s state change after fulfilling some task instance:

³∗: AS × TI → AS (11)

Thus, an actor state t changes to state t ³∗ i after fulfilling task instance i.
However, to construct the improvability characteristic the actual improvement
of cognitive characteristics should also be tackled. The following actor charac-
teristics function can be utilized to solve this issue:

AChar : AS → (AC → ℘(CC)) (12)

This function specifies which cognitive characteristics as part of the set CC be-
long to a certain actor instance (that is classified by an actor type). The set AS
contains actor states. An actor state is necessary because the characterization of
an actor might change over time. An actor a ∈ AC possessing cognitive charac-
teristics included in a set of cognitive characteristics C while in state t ∈ AS can
be denoted as: AChart(a) = C. The improvability characteristic can be modeled
subsequently:

∃i∈Fulfillment(a)∃t∈AS [AChart(a) ⊆ AChart³∗i(a)] (13)

An actor a ∈ AC has the improvability characteristic, denoted as Improvability(a),
if the set of cognitive characteristics AChart(a) = C can be complemented with
additional characteristics after fulfilling some task instance while being in some
state t ∈ AS.

Independency An actor has the independency characteristic, if that actor is
able to fulfill some task instance on its own. If an actor is fully able to fulfill a
task instance on its own, then it can be said that an actor has the characteristic
at a (very) high level and vice versa. A fulfiller function is necessary to reason
specifically about actors that are fulfilling some task instance:

Fulfiller : TI → ℘(AC) (14)

If it is necessary to determine fulfillers of a task instance i, the fulfiller function
returns actors responsible for the fulfillment of some task. The independency
characteristic can be modeled as follows:

∃i∈TI [Fulfiller(i) = {a}] (15)

An actor a has the independency characteristic, denoted as Independency(a), if for
task instance i the only fulfiller is actor a.

In order to have a graphical representation of the discussed definitions through-
out section 2, an Object-Role Modeling (ORM) model is presented in figure 2.
For details on Object-Role Modeling, see e.g. [12]. Now that several cognitive

{‘experiencer’,‘collaborator’,
 ‘expert’,‘integrator’,‘transactor’}

ActorType
(name)

AType

Fulfillment

Fulfiller

TaskInstances

TaskType
(name)

{‘acquisition’,‘synthesis’,‘testing’}

ActorState

Cognitive
Characteristic

(name)

CognitiveCharacteristics

AChar

 {‘volition’,‘sentience’,
 ‘causability’,‘improvability’,

‘independency’}
MotivationType

(name)

Motivation

{‘weak’,‘moderate’,‘neutral’,‘strong’}

ActorInstance
(id)

Knowledge

KnowledgeType
(name)

{‘implicit-concealed’,‘implicit-revealed’,
 ‘explicit-concealed’,‘explicit-revealed’}

TaskInstance
(id)

Value
(number)

[0,1]

Applicable

KnowledgeAsset

Need

TType

Actor
Instances

Fig. 2. Object-Role Modeling (ORM) model of cognitive actor settings

actor settings have been explored in detail, a cognitive matchmaker system can
be used to match the actors with the tasks they can fulfill.

3 Cognitive Matchmaker System

In this section a framework for a cognitive matchmaker system is introduced
that is able to compute a match between cognitive characteristics required for
a specific task type and cognitive characteristics that are provided by a specific
actor type. As a running example, we use the matchmaker system to match the
cognitive characteristics offered by the transactor actor type with the required
cognitive characteristics of a synthesis task. Figure 3 shows the architecture of
the system on a conceptual level, which is translated into the formalisms through-
out this section. In section 2, a function ACharj(a) = C indicated the cognitive

Fig. 3. Cognitive matchmaker system

characteristics that characterized an actor instance of a certain type, where j is a
task type belonging to the set of task types TT , a is an actor instance belonging
to the set of actor instances AC and C is a set of cognitive characteristics that
is a subset of or equal to CC. Recall from section 2 that the corresponding actor
type can be found by using the actor type function: AType(a) = j. With this in
mind, a supply function can be modeled that returns a value expressing to what
extent an actor type offers a certain cognitive characteristic:

Supply : AT → (CC → CRN) (16)

The expression Supplytransactor(s) = 10 shows that an actor characterized by the
transactor type offers the sentience characteristic and is at least capable to per-
form this characteristic at level 10. Note that the word ‘sentience’ has been
abbreviated to the letter ‘s’. For readability reasons we will continue to use this
abbreviation for the remaining example expressions. The resulting value ‘10’ is
part of a characteristic rank domain CRN which contains integer values within
the range [0, 10]. The hard values as part of a domain of values can be found
using the following function:

Numerical : ℘(RN) → R (17)

Here, the set RN contains rank values and CRN ⊆ RN . Formally, the character-
istic rank domain includes the following hard values: Numerical(CRN) = [0, 10]. A
value of 0 means that an actor is not able to offer a certain characteristic, a value
of 5 means that an actor is able to offer a characteristic at an average level and
a value of 10 means that an actor is able to offer a characteristic at the highest
level. So, in the case of the example, the transactor is able to offer the sentience
characteristic at the highest level.

It is possible here to introduce a characteristic rank set containing linguistic
(soft) values instead of a characteristic rank set that contains numerical (hard)
values. A linguistic value differs from a numerical value in that its values are not
numbers but words or sentences in some language. The resulting values of the
examples reported, however, are mapped on a domain containing hard values
only. As discussed in section 5, the next step in this research will be concerned
with fuzzy assessments to indicate a certain capability level. In the case of the
example above, this would mean that we are able to reason that the transactor
is able to offer the sentience characteristic at e.g. a very high level. Besides
modeling a supply function, a demand function is needed that returns a value
expressing to what extent a cognitive characteristic is required for a certain task
type:

Demand : TT → (CC → CRN) (18)

The expression Demandsynthesis(s) = 10 indicates that a sentience characteristic
is required at the highest level in order to fulfill a task of the synthesis type.
The supply and demand functions can now be used together to compute the
characteristic match.

3.1 Characteristic Match

In this section, a characteristic match function is defined to compare the resulting
values from the supply and demand functions. This comparison should provide
insight in the way supply and demand of cognitive characteristics are matched
with each other. In order to model a characteristic match function, an actor
type as well as a task type are required as input, together with a cognitive
characteristic from the set CC of cognitive characteristics:

CharMatch : AT × TT → (CC →MRN) (19)

As can be seen in figure 3, the characteristic match function returns a value from
the match rank domain, where MRN ⊆ RN . The match rank domain includes
the following values: Numerical(MRN) = [0, 10].

To compute the actual characteristic match value, a proximity function is
necessary to be able to define the characteristic match function. This proximity
function should compute the proximity of the level an actor offers a certain
cognitive characteristic related to the level that is required in order to fulfill a
task of a certain type. The values that should be used as input for the proximity
function are part of the characteristic rank domain. The resulting proximity
value is then a value that is part of the match rank domain:

Proximity : CRN × CRN →MRN (20)

A normalization function can be introduced that calculates the numerical
proximity of demand and supply when a cognitive characteristic is concerned:

Normalize : R 7→ [0, 1] (21)

The normalization function can be defined by using the supply and demand
functions and two additional constants min and max:

Normalize(Supplyi(c)− Demandj(c)) , Supplyi(c)− Demandj(c) + max− min

2 · (max− min)
(22)

Here, i is an actor type of the set AT , j is a task type of the set TT and c
is a cognitive characteristic of the set CC. The values of the constants min and
max can be determined by interpreting the minimum and the maximum value of
the characteristic rank domain. So, in the case of the running example min = 0
and max = 10. The minimum value that can be returned by the normalization
function is 0. This occurs if there is absolutely no supply (i.e. an incapable actor is
concerned) but there is a maximum demand of a certain cognitive characteristic
in order to fulfill a task of a certain type. This situation is depicted below:

Normalize(0− 10) =
0− 10 + max− min

2 · (max− min)
= 0

In the case of an overqualified actor that is more capable to perform a cognitive
characteristic than is required, the normalization function returns 1:

Normalize(10− 0) =
10− 0 + max− min

2 · (max− min)
= 1

This means that the normalization function normalizes the proximity of supply
and demand between 0 and 1. Using the normalization function, the proximity
function can now be defined as follows:

Proximity(Supplyi(c), Demandj(c)) , Normalize(Supplyi(c)− Demandj(c)) (23)

Regarding the running example the proximity function as defined above results
in:

Proximity(10, 10) = Normalize(10− 10) = 0.5

Now with the introduction of a proximity function the characteristic match
can be defined by computing the proximity of demand and supply in the context
of a given characteristic:

CharMatch(i, j) , λc∈CC · Proximity(Supplyi(c), Demandj(c)) (24)

Recall from section 3 that an actor of the transactor type is able to perform
the sentience characteristic at level 10, which equals the level to what extent a
sentience characteristic should be mastered for a synthesis task type. In the case
of our example the characteristic match results in:

CharMatch(transactor, synthesis) =

λs∈CC · Proximity(Supplytransactor(s), Demandsynthesis(s)) =

Proximity(10, 10) = 0.5

This example shows that if an actor characterized as a transactor masters a
sentience characteristic at level 10 and if it is also needed to master the sentience
characteristic at level 10 to fulfill a task instance of the synthesis type, the
eventual proximity value is 0.5. However, this proximity value is only related
to the demand and supply of one specific cognitive characteristic. To compute
a total match of the required cognitive characteristics in a task type and the
characteristics offered, a weighed suitability match is introduced in the following
section.

3.2 Weighed Suitability Match

The cognitive matchmaker system is completed by introducing a weighed suit-
ability match, as is shown in the rightmost part of figure 3:

Match : AT × TT → SRN (25)

This function returns a value from the suitability rank domain, where SRN ⊆
RN . The suitability rank domain includes the following values: Numerical(SRN) =
[0, 10]. This means that an actor of a certain type can have suitability levels
ranging from 0 to 10. To determine the suitability of the transactor fulfilling the
synthesis task, the calculated proximity of demand and supply of a cognitive
characteristic c ∈ CC can be weighed:

Weigh : (CC →MRN) → (CC → SRN) (26)

To define the weigh function several other functions are necessary, though. As
can be seen in figure 3 the weigh function uses the input from the characteristic
match function and returns a value from the suitability rank domain as output.
To construct the weigh function, a function is needed that has a match rank
metric (i.e. the proximity value) as its input and a suitability rank metric as its
output:

Metric : MRN → SRN (27)

For instance, Metric(0.5) = 0.5 shows that the value 0.5, which is the proximity
value, equals the value 0.5 which is a suitability rank metric. A characteristic
weigh function is needed to actually weigh the importance of a certain cognitive
characteristic to fulfill a task of a certain type:

CharWeigh : CC → SRN (28)

So, CharWeigh(s) = 1.5 means that a weigh factor of 1.5 is given to indicate
the importance of mastering the sentience cognitive characteristic (for a certain
task). Finally, the ⊗ operator is also needed to define a definite weigh function:

⊗ : SRN × SRN → SRN (29)

The ⊗ operator is necessary to multiply the metric value with the characteristic
weigh value. If the values mentioned above are multiplied this results in 0.5⊗1.5 =
0.75. The weigh function can now be defined as:

Weigh(c, CharMatch(i, j)) , λc∈CC ·Metric(CharMatch(i, j))⊗ CharWeigh(c) (30)

Here, c ∈ CC, i ∈ AT and j ∈ TT . Continuing the running example, we would
like to calculate the suitability of the transactor that is fulfilling a task instance
of the synthesis type. Considering the sentience characteristic only, this can be
computed as follows:

Weigh(s, CharMatch(transactor, synthesis)) =

λs∈CC ·Metric(0.5)⊗ CharWeigh(s) =

0.5⊗ 1.5 = 0.75

In order to calculate the suitability match of the transactor actor type related
to the synthesis task type of our example, it is mandatory to determine the

cognitive characteristics supplied by the actor and demanded by the task. The
transactor actor type supplies the volition, sentience and independency charac-
teristics as is shown in table 1. The synthesis task type can be characterized
by the applicability and correctness characteristics [7]. These characteristics are
explained as follows. An actor should provide the applicability characteristic to
be able to apply knowledge during task fulfillment and to make sure that the ap-
plied knowledge has a useful effect on successfully completing the task. An actor
should provide the correctness characteristic to be able to judge the usefulness
of applied knowledge in a task and to be sure that applied knowledge meets its
requirements.

In the case of the running example (i.e. only when the transactor actor type
and the synthesis task type are concerned) the set CC contains the following char-
acteristics: {volition, sentience, independency, applicability, correctness} ⊆ CC.
For all these properties a weigh value needs to be determined using the functions
mentioned throughout section 3. This is necessary to compute a final suitabil-
ity match resulting in one suitability rank value. The calculations leading to
weighed characteristic matches are elaborated in tables 2 and 3. The actual

Table 2. Example calculations for characteristic matches

Item Characteristic Characteristic Match

a. volition CharMatch(transactor, synthesis) = Proximity(10, 10) = 0.5
b. sentience CharMatch(transactor, synthesis) = Proximity(10, 10) = 0.5
c. independency CharMatch(transactor, synthesis) = Proximity(10, 0) = 1
d. applicability CharMatch(transactor, synthesis) = Proximity(5, 10) = 0.25
e. correctness CharMatch(transactor, synthesis) = Proximity(5, 10) = 0.25

Table 3. Example calculations for weighed characteristic matches

Item Weighed Characteristic Match

a. Weigh(volition, 0.5) = Metric(0.5) ⊗ CharWeigh(volition) = 0.5 ⊗ 2 = 1
b. Weigh(sentience, 0.5) = Metric(0.5) ⊗ CharWeigh(sentience) = 0.5 ⊗ 1.5 = 0.75
c. Weigh(indepedency, 1) = Metric(1) ⊗ CharWeigh(independency) = 1 ⊗ 0.5 = 0.5
d. Weigh(applicability, 0.25) = Metric(0.25) ⊗ CharWeigh(applicability) = 0.25 ⊗ 3 = 0.75
e. Weigh(correctness, 0.25) = Metric(0.25) ⊗ CharWeigh(correctness) = 0.25 ⊗ 3 = 0.75

characteristic weigh values (for every cognitive characteristic as part of the set
CC) denoted in table 3 are: 2, 1.5, 0.5, 3 and 3. Note that these characteristic
weigh values always summate to one and the same total value. In the case of our
example the characteristic weigh values summate to 10. Thus, no matter how the
weigh values are divided across the cognitive characteristics, they should always
summate to a total of 10.

The results of the weighed characteristic matches, which are denoted in the
rightmost column of table 3, have to be summated to generate a single suitability

match value. To summate these values a ⊕ operator is required:

⊕ : SRN × SRN → SRN (31)

Now the final match function can be defined using the aforementioned functions:

Match(i, j) ,
M
c∈CC

Weigh(c, CharMatch(i, j)) (32)

In the match function i ∈ AT , c ∈ CC and j ∈ TT . For the running example this
means that the suitability match value of the transactor fulfilling a task instance
of the synthesis type is computed as follows:

Match(transactor, synthesis) = 1⊕ 0.75⊕ 0.5⊕ 0.75⊕ 0.75 = 3.75

As a result of the suitability match it can be concluded that the suitability of
an actor characterized by the transactor type fulfilling a task instance of the
synthesis type is 3.75. Remember that the lowest suitability value is 0 and the
highest suitability value that can be reached is 10. The lowest value is reached
if the supply of every characteristic is 0 and the demand of every characteristic
is 10. The highest value is reached in the case of complete overqualification, i.e.
if the supply of every characteristic is 10 and the demand of every characteristic
is 0. At this point a decision can be made whether or not the specific actor
is suitable enough to fulfill this task or if another actor is present who should
be more suitable, i.e. has a better suitability match value. The suitability of an
actor to fulfill a certain task is probably best if the resulting suitability value is 5.
Underqualification as well as overqualification are both considered undesirable.

A certainty function can now be introduced to make sure how certain it is
that an actor is suitable to fulfill a task:

µ : R 7→ [0, 1] (33)

A linear certainty function can be defined as follows:

µ(u) ,
(

2
min+max

· u min ≤ u ≤ max+max
2

−2
min+max

· u + 2 min+max
2

< u ≤ max
(34)

For the running example, where min = 0 and max = 10, the following expression
shows that the certainty that the transactor is suitable to fulfill the synthesis
task is 0.75:

µ(3.75) =
2

0 + 10
· 3.75 = 0.75

This can be interpreted as being 75% sure that the transactor is suitable enough
to fulfill the synthesis task. It might be a good choice to let the transactor
fulfill the synthesis task, unless an available actor characterized by another type
provides a better match.

Throughout section 3 definitions have been discussed along with their cor-
responding examples. Table 4 provides an overview of the definitions and the
examples. In order to also have a graphical representation of the discussed def-
initions throughout section 3, another ORM model is presented in figure 4. All
formalisms mentioned up till now are visualized by means of the ORM models
of figures 2 and 4.

Table 4. Definitions of the cognitive matchmaker system with examples

Function Example

Supply : AT → (CC → CRN) Supplytransactor(s) = 10

Numerical : ℘(RN) → R Numerical(CRN) = [0, 10]

Demand : TT → (CC → CRN) Demandsynthesis(s) = 10

CharMatch : AT × TT → (CC →MRN) CharMatch(transactor, synthesis) =
λs∈CC · Proximity(Supplytransactor(s), Demandsynthesis(s)) =
Proximity(10, 10) = 0.5

Proximity : CRN × CRN →MRN Proximity(10, 10) = Normalize(10− 10) = 0.5

Normalize : R 7→ [0, 1] Normalize(10− 10) = 10−10+max−min
2·(max−min) = 0.5

Match : AT × TT → SRN Match(transactor, synthesis) =
1⊕ 0.75⊕ 0.5⊕ 0.75⊕ 0.75 = 3.75

Weigh : (CC →MRN) → (CC → SRN) Weigh(s, CharMatch(transactor, synthesis)) =
λs∈CC ·Metric(0.5)⊗ CharWeigh(s) = 0.5⊗ 1.5 = 0.75

Metric : MRN → SRN Metric(0.5) = 0.5

CharWeigh : CC → SRN CharWeigh(s) = 1.5

⊗ : SRN × SRN → SRN 0.5⊗ 1.5 = 0.75

⊕ : SRN × SRN → SRN 1⊕ 0.75⊕ 0.5⊕ 0.75⊕ 0.75 = 3.75

µ : R 7→ [0, 1] µ(3.75) = 0.75

4 Discussion

Literature indicates that matchmaking solutions are possible in different ways.
The matchmaker system of Shu et al. [13] matches the supply of a (Web) service
provider with the demand of a service requester. A division of the concept of
matchmaking is made in two categories: syntactic and semantic matchmaking.
Relating this division with the matchmaking problem discussed in our study, it
can be said that syntactic matchmaking determines a match dependent of the
enacted task, which can be an acquisition task, a synthesis task or a testing task
in the case of our model. In the case of semantic matchmaking the meaning and
informational content of the cognitive characteristics provided by an actor are
related with the meaning and informational content of the task requirements.
However, it is not self-evident to categorize our matchmaking system in one
of these two categories. Our system should be capable of more matchmaking
functionality than syntactic matchmaking because of the introduced formalisms
that not only take task specifications into account, but also actor specifications
and cognitive characteristics. Semantic matchmaking is a matchmaking category
that requires an ontology to determine the informational semantics of that what
is required and that what is supplied. The disadvantages of this type of match-
making are related with the necessity of an ontology and the quite complex
algorithms needed to compute an actual match result.

A lot of studies in the matchmaking field are especially related to recom-
mender systems. The research of Vivacqua et al. [14] for instance presents how
opportunities for collaboration between actors can be determined by match-
ing an actor’s current context (as determined by the actor’s work environment)

Metric

CharWeigh

Weigh

ActorType
(name)

Match

Supply

Proximity

Cognitive
Characteristic

(name)

Demand

TaskType
(name)

MatchRank

CharMatch

SuitabilityRank

Characteristic
Rank

Rank

(RealNumber)

{‘acquisition’,‘synthesis’,‘testing’}

 {‘experiencer’,
 ‘collaborator’,

 ‘expert’,
 ‘integrator’,
 ‘transactor’}

Suitability
Rank

Domain

Numerical

=

Ranking
Domain

Value
(number)

[0,1]
Normalize

Fig. 4. Object-Role Modeling (ORM) model of the cognitive matchmaker system

with other actors that might have related interests or work. Matches are made
through keyword similarity calculation. A drawback of this approach is that a
specific algorithm is required to create a list of keywords for every document as
part of an actor’s work environment. Regarding our approach though, no addi-
tional algorithms are necessary to compute a match value because of the ranking
mechanisms that are present in the theory itself. Also, one may ponder to what
extent collaboration opportunities between actors can be determined when only
their overlapping documents are taken into consideration. The primary goal of
using our system is more straightforward, namely to find actor / task matches
based on cognitive characteristics to diminish the cognitive load of an actor as
is explained in section 1.

With regard to cognitive psychology, the ideas presented in this paper some-
how relate with the notion of cognitive fit [15]. Following this theory, if the types
of knowledge emphasized in the actor and task elements match, the actor can
employ processes (and formulate a mental representation) that also emphasizes
the same type of knowledge. Cognitive fit then exists because the cognitive pro-
cesses used to complete the task match. A difference with our approach is that
an actor can be classified based on that actor’s current cognitive profile (i.e. the
way an actor is able to perform the defined cognitive characteristics), instead

of determining an actor’s perception of how to complete a task. Elaborating an
actor’s perception related to the fulfillment of every task may be a time con-
suming process in practice and therefore an advantage of our approach may be
that a match value can easily be determined once actors and tasks are classified
by their types. However, an actor’s cognitive capabilities may change over time
(they may improve or deteriorate) and that may cause an actor to be classi-
fied as a different type in our model at different points in time which can be
disadvantageous.

5 Conclusions & Future Work

This paper describes a categorization and characterization of actors that are
able to fulfill knowledge intensive tasks, illustrated by definitions of cognitive
characteristics indicating actor abilities for task fulfillment. Proceeding from
these definitions a running example, in which a match is determined of an actor
characterized by the transactor type wishing to fulfill a synthesis task, shows
how the theory can be materialized.

A first aspect of future research is that of expanding the cognitive match-
maker system framework with the capability to compute a suitability match
based on fuzzy assessments. Instead of working with numerical (hard) values,
it is then possible to work with linguistic (soft) values. The different levels of
supply and demand of cognitive characteristics may then be expressed in terms
of low, medium and high for instance.

In this stage of the research, the proposed cognitive matchmaker system com-
putes a suitability match on the type level. In other words, the possible different
actor types and task types are taken into consideration. This is expressed by the
supply and demand functions of section 3 in which the set of actor types AT and
the set of task types TT are used respectively. A total of 5 actor types and 3
task types that are distinguished up till now would create 5 × 3 = 15 matching
combinations. A future research goal is to compute suitability matches based on
actor and task instances by practically exploiting the formal models mentioned
in this paper. Suppose that actor ‘John Doe’ working at an organization can
be classified as an experiencer actor type because he only possesses the sen-
tience cognitive characteristic. John Doe then instantiates the experiencer actor
type. In the case of John Doe a match can then be determined for the tasks he
instantiates during his work.

At this moment, it is only possible to calculate a match based on one actor
type and one task type. However, there are situations imaginable that multiple
actors are working together to fulfill a set of tasks. If this is the case, it might be
interesting to determine a match based on the total amount of actors and the
total amount of tasks the actors are fulfilling as a group.

Finally, possible personal preferences of actors regarding task execution can
be taken into account. Such preferences might influence the suitability of an ac-
tor fulfilling a task. Suppose that an actor has a high match value when fulfilling
a certain task but does not like to fulfill that task at all, then this may nega-

tively influence the actor’s task performance. Besides the personal preferences,
it might be interesting to understand an actor’s personal goals to determine a
match between an actor and a task. This means that for the near future our
matchmaker system can be expanded with the possibility to reckon an actor’s
personal preferences and goals together with an actor’s supply of cognitive char-
acteristics.

References

1. Staab, S., Studer, R., Schnurr, H., Sure, Y.: Knowledge processes and ontologies.
IEEE Intelligent Systems 16(1) (2001) 26–34

2. Kako, E.: Thematic role properties of subjects and objects. Cognition 101(1)
(2006) 1–42

3. Weir, C., Nebeker, J., Bret, L., Campo, R., Drews, F., LeBar, B.: A cognitive task
analysis of information management strategies in a computerized provider order
entry environment. Journal of the American Medical Informatics Association 14(1)
(2007) 65–75

4. Meiran, N.: Modeling cognitive control in task-switching. Psychological Research
63(3–4) (2000) 234–249

5. Hertwig, R., Barron, G., Weber, E., Erev, I.: The role of information sampling in
risky choice. In Fiedler, K., Juslin, P., eds.: Information Sampling and Adaptive
Cognition. Cambridge University Press, New York, NY, USA (2006) 72–91

6. Koehler, D.: Explanation, imagination, and confidence in judgment. Psychological
Bulletin 110(3) (1991) 499–519

7. Overbeek, S., van Bommel, P., Proper, H., Rijsenbrij, D.: Characterizing knowledge
intensive tasks indicating cognitive requirements – scenarios in methods for specific
tasks. In Ralyté, J., Brinkkempers, S., Henderson-Sellers, B., eds.: Proceedings of
the IFIP TC8 / WG8.1 Working Conference on Situational Method Engineering:
Fundamentals and Experiences, University of Geneva, Switzerland, EU, Springer,
Boston, USA (2007)

8. Dowty, D.: Thematic proto-roles and argument selection. Language 67(3) (1991)
547–619

9. Davenport, T.: Thinking for a Living – How to get Better Performances and
Results from Knowledge Workers. Harvard Business School Press, Boston, MA,
USA (2005)

10. Hoppenbrouwers, S., Proper, H.: Knowledge discovery: De zoektocht naar verhulde
en onthulde kennis. DB/Magazine 10(7) (1999) 21–25 In Dutch.

11. Nonaka, I., Takeuchi, H.: The Knowledge Creating Company. Oxford University
Press, New York, NY, USA (1995)

12. Halpin, T.: Information Modeling and Relational Databases, from Conceptual
Analysis to Logical Design. Morgan Kaufmann, San Mateo, CA, USA (2001)

13. Shu, G., Rana, O., Avis, N., Dingfang, C.: Ontology-based semantic matchmaking
approach. Advances in Engineering Software 38(1) (2007) 59–67

14. Vivacqua, A., Moreno, M., de Souza, J.: Profiling and matchmaking strategies
in support of opportunistic collaboration. In Meersman, R., Zahir, T., Schmidt,
D., eds.: On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and
ODBASE, Berlin, Germany, EU, Springer (November 2003) 162–177

15. Vessey, I.: Cognitive fit: A theory-based analysis of the graphs versus tables liter-
ature. Decision Sciences 22(2) (1991) 219–240

