
Fact-Oriented Modeling from a Programming
Language Designer’s Perspective

Betsy Pepels1,3, Rinus Plasmeijer1, and H.A. (Erik) Proper2

1Software Technology, 2Information Retrieval and Information Systems
both of Radboud University Nijmegen, The Netherlands

3Informatics and Communication Academy,
HAN University of Applied Science, The Netherlands

{betsy, rinus, E.Proper}@cs.ru.nl

Abstract. We investigate how achievements of programming languages
research can be used for designing and extending fact oriented modeling
languages. Our core contribution is that we show how extending fact ori-
ented modeling languages with the single concept of algebraic data types
leads to a natural and straightforward modeling of complex information
structures like unnamed collection types and higher order types.

1 Introduction

In this paper we consider modeling languages based on the fact-oriented paradigm
[1]. The most well known are ORM [2] with its successor ORM2 [3], NIAM [4],
FCO-IM [5], and PSM [6]. This group of closely related dialects we will call fact-
oriented modeling (FOM) languages.

FOM has proven to be a powerful approach; yet for some information struc-
tures easier or more intuitive modeling facilities could be available. For instance
types being types themselves (categorization types), unnamed collection types,
and the crossing of levels/metalevels are difficult to model [7]. In [8] various mod-
eling problems are addressed, like the identification of Dutch Cabinets, which
we present in Section 4.

Throughout the above and related publications there is an on-going, but less
structured and less explicit discussion about the necessity to introduce new mod-
eling concepts. For instance, PSM extends the basic FOM expressive facilities
with concepts like Set and Sequence to model unnamed sets.

In this paper, we take part in both discussions yet from a different angle: we
treat FOM languages from the perspective of programming languages theory,
and especially one of its sub-disciplines, type theory. Programming language
theory makes a distinction between expressiveness being conceptually essential
and expressiveness being convenient. Type theory provides the formal basis for
the design, analysis and study of type systems. Type systems offer many powerful
possibilities for modeling data structures.

Our aim is to demonstrate that achievements of programming languages the-
ory can fruitfully be used for designing and extending FOM languages. As our

R. Meersman, Z. Tari, P. Herrero et al. (Eds.): OTM Workshops 2006, LNCS 4278, pp. 1170–1180, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Fact-Oriented Modeling 1171

core contribution we show in the Sections 3 and 4 that extending the essential
expressiveness of FOM languages with the single concept of algebraic data types
allows a natural and straightforward modeling of the aforementioned information
structures and many others too.

We conclude with a brief sketch of some of the expected benefits and the
research questions arising when FOM languages are extended following the pro-
gramming languages approach.

2 Achievements of Programming Language Theory

In this subsection we give a short summary of the approach commonly accepted
for the (formal) design of programming languages [9] and we introduce algebraic
data types as well.

2.1 Formal Design of a Language

The expressive possibilities of languages are layered, as illustrated in Figure 1.
The basis of formal languages is a computational model. Examples of computa-
tional models are the Turing machine, the lambda calculus, the relational algebra
and Petri nets. The aim of a computational model is to establish a mathematical
foundation for computations possible in a language. A computational model is
a mathematical model and commonly has a simple and clear semantics.

Fig. 1. Layering

With the computational model the essen-
tial computational power of the language is
defined: every computation possible in the
language has to be expressible in the com-
putational model too.

On this mathematical foundation a core
language is defined. The big difference be-
tween a computational model and a language
is that the latter is meant to define programs
in and that it can be executed on a suit-
able platform. Compared to the computa-
tional model, a core language does not have
more computational power, only more con-
venience. It offers additional constructs to support programming, for instance
module structures. Every construct in the core language has either a direct coun-
terpart in the computational model, or can be translated to it.

The core language is often extended with all kinds of syntactic constructs for
convenient programming. An example is the (Java and C construct) i++ which
is used for expressing a loop counter. This syntactically extended language is the
standard language programmers work with. It is geared towards practicability
and usability.

Most often a plethora of facilities enabling further ease of programming is
available, like libraries, design patterns etc. All these facilities have in common
that they are basically programs using the language defined by the lower layers.

1172 B. Pepels, R. Plasmeijer, and H.A. Proper

Examples of languages defined this way are SQL (based on the relational
algebra), workflow languages like YAWL [10] (based on Extended Workflow Nets
which are again based on Petri nets), functional programming languages like
Haskell [11] and Clean [12] (based on term rewriting systems which are again
based on the lambda calculus) and the .NET framework [13].

It might be clear that no sharp distinction between the several layers can be
made. Computational models are often layered themselves. Furthermore, some
expressive feature of a language might be found either in the core language, in
the standard language, or in libraries.

2.2 Algebraic Data Types

We briefly introduce algebraic data types. In the next section we will show how
algebraic data types can be part of FOM models. An algebraic data type is a
language construct known from the functional programming languages field. It
can be regarded as a grammar with which new types can be defined. We explain
this by a well-known example, the List data type:

:: List a = Cons a (List a) | Nil

For the notation we adopt the notation used in the functional programming
language Clean. The :: is a keyword indicating the beginning of a type definition.
The definition should be read as the type List (holding elements of any type
a) is either (indicated by the symbol |) the Cons of an element of type a and a
List or Nil (the empty list). Square brackets [] are often used as a shorthand
notation for lists. Examples of lists can be found in Table 1.

Table 1. Example lists

Example list Shorthand Which list?
notation

Nil [] the empty list
Cons 1 (Cons 2 Nil) [1,2] the list consisting of the integers 1 and 2
Cons 3.14 Nil [3.14] the list consisting of the real 3.14

This List data type is recursive: the constructor Cons holds sub-values of the
type List. It is also polymorphic: a List can hold values of any type.

In algebraic data types there is a difference between types and terms. List
Int is a type and the list Cons 1 (Cons 2 Nil) is a term.

Type systems and hence algebraic data types are commonly specified by gram-
mars. In Figure 2 we give a grammar for the definition of an algebraic type using
EBNF notation. This grammar is taken from [12]; we will use it also in the next
sections. {q}+ means one or more appearances of q. Terminals are denoted in
capitals, non-terminals in lower case. The underlined symbols are terminals as
well, to make a distinction between similar symbols of the grammar itself. Note
that the grammar also describes algebraic data types that are not well-formed.

Fact-Oriented Modeling 1173

One of the (many) well-formedness requirements is that a type variable used in
the right hand side should be defined in the left hand side of the definition too.

3 Extending Fact-Oriented Modeling Languages

In this section we will demonstrate how, using the approach described in Sec-
tion 2, FOM languages can be extended. Distinguishing between fundamental
expressiveness and convenient expressiveness is applicable to FOM languages as
well. There is however a difference with programming languages: FOM is not
primarily meant to write programs in and is not expected to be executed (yet).

algebraicTypeDef = :: typeLhs = constructorDef {| constructorDef}
typeLhs = typeConstructorName {typeVariable}
constructorDef = constructorName {type}
type = typeVariable | TypeConstructorName | (type) | basicType
basicType = Int | Real | Char | Bool | String
typeConstructorName :== String
typeVariable :== String

Fig. 2. Grammar describing algebraic data types

3.1 A Grammar for Basic FOM Structures

As for the algebraic data types, we give in Figure 3 a grammar describing ba-
sic structures of fact oriented models. Our grammar describes what we consider
to be a core FOM language. We limit ourselves considerably: we only describe
a language for the structure of fact oriented models, not (yet) taking into ac-
count specialization and generalization, and leave out aspects like constraints as
well. These restrictions however do not influence the generality of our discussion.

model = {namedtype}+
namedtype = facttype | objecttype
facttype = (NAME identifier, FT {role}+)
objecttype = (NAME identifier, OBJ identifier)
role = (PB roleplayer)
roleplayer = labeltype | identifier // identifier must be existing name
labeltype = LB identifier
identifier :== String

Fig. 3. Grammar describing FOM structures

We describe the basic characteristic of FOM structures: their basis in facts.
Our grammar only provides for expressing fact types (in the grammar: FT), label
types (in the grammar: LB) and objectification (in the grammar: OBJ). Roles
are either played by (in the scheme: PB) label types or by items in the scheme

1174 B. Pepels, R. Plasmeijer, and H.A. Proper

that have a name (which is used to refer to them), the latter being either fact
types or object types. In the next subsection we will explain how other constructs
can be translated to the language defined by this grammar.

One of the well-formedness requirements for this grammar is that if a role
is played by an identifier, this identifier must be the elsewhere defined name of
a fact type or object type. Note furthermore that the grammar just produces
fact oriented models in a mechanical manner: the syntax of the language. Its
semantics have to be assigned separately. For FOM this is commonly done using
set theory, for instance in [14]. Following the layered scheme of Section 2.1, we
could designate set theory the computational model.

Example model. The same (well-formed) model defined by the grammar is
expressed textually in Figure 4 and diagrammatically in Figure 5.

(NAME ft1, FT (PB (LB lb1)))
(NAME o1, OBJ ft1)
(NAME ft2, (PB o1) (PB o1))
(NAME o2, OBJ ft2)
(NAME ft3, FT (PB o2) (PB lb2))

Fig. 4. Example scheme as text Fig. 5. Example scheme as diagram

3.2 Mapping Non-basic Structures to Basic Structures

Our grammar defines a core language. FOM languages like FCO-IM, ORM and
PSM allow more constructs than our grammar defines; for instance ORM and
PSM have Objects which are not defined by our grammar. Following the layered
scheme we introduced in Section 2.1, we will now point out how some particular
constructs of these FOM languages can be mapped to the language defined by
our grammar.

Fig. 6. Mapping of sentence

Mapping example 1. The structure of FCO-IM
schemes is very much like those defined by our
grammar. Each label and fact type in an FCO-IM
scheme directly correspond to a similar label and
fact type in our computational model. FCO-IM is
fully communication oriented and hence every fact
type (unary and higher) must be accompanied by
a sentence. Such a sentence can be mapped to
our language by objectifying the original fact type
and adding a fact type expressing the sentence, as
demonstrated in Figure 6. The fact type in the figure is to be read as ”The fact
type 〈Fact type〉 has as 〈number〉 th sentence part 〈sentence part〉.”.

Mapping example 2. The ORM and ORM2 languages (and NIAM as well)
have Entity types. These are not directly defined by our grammar, but can be

Fact-Oriented Modeling 1175

translated to objectified unary fact types. ORM objects are required to have an
identification, which is naturally accomplished this way.

Some constructs cannot be mapped to our core language:

Non-mapping example. PSM has the Set and Sequence type enabling the
modeling of unnamed collections. With the Set type a fact type like ”Trainer
〈Name〉 trains team 〈Set of Player〉.” can be phrased. Such a structure funda-
mentally cannot be expressed in our core language.
The Set type is just one of the many examples of a collection type: a type en-
compassing a collection of members and having certain characteristics (like no
duplicates for Set and an order for Sequence). Collection types are analyzed in
[15].

FOM languages struggle with collection types, especially when they are un-
named. Many strategies to tackle this problem have been proposed, like introduc-
ing types for kinds of collections (in PSM), the extensional uniqueness constraint
[16] thus avoiding complex semantics, higher order logic [17], and avoiding the
problems at all by remodeling to a first-order scheme.

Our way to address this problem is by adding algebraic data types to the
fundamental expressiveness of FOM languages.

3.3 Adding Algebraic Types to Fact Oriented Models

Our core idea is to allow that in FOM schemes roles can be played by algebraic
data types as well. This we express by updating our grammar (see Figure 7).

roleplayer = labeltype | identifier | algebraictype
algebraictype = typeConstructorName roleplayer

Fig. 7. Updates to grammar for FOM structures

The definition of the algebraic data type itself is not part of the scheme, but
is to be given separately as a kind of program text.

A graphical notation for an algebraic data type has to be chosen. As yet, we
pick just one of the many diagrammatic possibilities: a rectangle with the name
of the type in it. Independent of which representation is chosen, somehow in the
scheme it should be referred to the algebraic data type.

Illustrating example. A ToDo list, identified by its name, holds a list of tasks,
identified by their names. Using the List type defined earlier we can phrase the
fact type ”The ToDo list 〈Name〉 holds tasks 〈List Task〉”. This is illustrated in
Figure 8. A example fact is ”The ToDo list Urgent holds tasks [Finish research
proposal, Mark recent exams].”

The observant reader will notice that in fact types (algebraic) types are used,
whereas facts use terms.

1176 B. Pepels, R. Plasmeijer, and H.A. Proper

(a) Just the alge-
braic data type

(b) Use in the scheme

Fig. 8. Picturing algebraic data types

4 Modeling Examples

We now demonstrate with some examples how algebraic data types can be used
for easy and straightforward modeling of complex information structures.

Unnamed list. For a medical survey, (only) the sex and birth dates of chil-
dren of the involved families are recorded. Families are identified by a FamilyId
(a number). Conceptually, per family an unnamed list of combinations of sex
and birthdate is recorded. We define the following types:

:: ChildInfo = Info Sex Date
:: Sex = Male | Female
:: Date = D Year Month Day

Now the information recorded for a family is a List of ChildInfo, and for the
information structure we phrase the fact type: ”Family 〈FamilyId〉 has children’s
info 〈List ChildInfo〉.” Some example facts are: ”Family 23987 has children’s
info [].” and ”Family 56342 has children’s info [Info Female (D 2001 12 5)].”
and ”Family 34231 has children’s info [Info Male (D 2002 3 25), Info Male (D
2002 3 25), Info Female (D 2003 11 16)].”, the last family having a male twin.

Identification of Dutch cabinets. The following example we borrow from
[8]. The authors artfully solve this problem and others too by using generaliza-
tion and by allowing null values in populations having a uniqueness constraint
as well.

In the Netherlands a cabinet is named after its Prime Minister. For instance
the Cabinet Den Uyl governed from 1973 to 1977. When a Prime Minister serves
more than one term, the corresponding cabinets are named I, II, III, etc. For
instance, the Cabinets Lubbers I, Lubbers II and Lubbers III were three succes-
sive cabinets governing from 1982 to 1994. To model this information structure,
we define the following type:

:: CabinetName = OneTerm String | MoreTerms String RomanInt
:: RomanInt = ...

We now can phrase the fact type ”The term of cabinet 〈CabinetName〉 started
in the year 〈Year〉.” Some example facts are: ”The term of cabinet (OneTerm
Den Uyl) started in 1973.” and ”The term of cabinet (MoreTerms Lubbers I)
started in 1982.”.

Fact-Oriented Modeling 1177

Set type. The well-known game of Quamsplash [5] is played by unnamed teams
consisting of players identified by their name. Teams play matches against each
other. To model this information structure, we define the algebraic data type:

:: Set a = E | S a (Set a) // E for Empty Set

Sets do not have duplicate members. Notice that such a property can not
expressed with an algebraic data type, but should be implemented by access
functions of the data type.

With the above Set type, and assuming that the type PlayerName is a string,
a match is described by the fact type ”〈Set PlayerName〉 plays against 〈Set
PlayerName〉”. An example fact is ”Team Set Guido E plays against team
Set (Jan Pieter (Set Marko (Set Fazat E))).”, or using the shorthand notation
with curly brackets {} ”Team {Guido} plays against team {Jan Pieter, Marko,
Fazat}.”

Higher order types. We present an information structure that is very much
like the example in [7], which was again borrowed from [17].

ACME (A Company that Makes Everything) produces everything. Table 2
is a tiny part of the data available about ACME, presenting a list of its best
selling products and some of their attributes. The third column specifies the
colors in which a product is made by ACME. Some products can be enhanced
with options, given in the fourth column. For example, for the Portable hole is
made in two colors and optionally can be provided with an Explosive and/or a
Fence. The last column indicates what attributes of the product are up to the
costumer to be chosen. For instance, although the Mojo is manufactured in two
colors, the customer cannot choose: the color is a surprise upon receipt.

Notice that Table 2 only gives information about ACME products, not about
actual choices of customers.

Table 2. Best selling products of ACME

Prod. Product name Possible colors Options Customer chosen
101 Personal jetpack {Green, Brown} – {Colors}
102 Inflatable submarine {Yellow} {Restroom} {Options}
701 Portable hole {Black, Grey} {Explosive, Fence} {Colors, Options}
1001 Mojo {Pink, Purple} – {}

To elucidate the modeling problem, we quote from [7]: ”First, it is in non-first
normal form, allowing unnamed sets as entries (for instance Colors). 〈snip〉 Sec-
ondly, its final attribute (column) allows as entries unnamed sets whose instances
appear to be attributes themselves, thus crossing levels/metalevels.”

Using the standard FOM approach, this information structure either can be
treated directly but then higher order logic is needed, or it is to be transformed
to a first order scheme. Using algebraic data types, modeling can be done almost
straightforwardly, because both metalevels and levels are just types. We define
the following types (assuming that ColorName and OptionName are both strings):

1178 B. Pepels, R. Plasmeijer, and H.A. Proper

:: Colors = Set ColorName
:: Options = Set OptionName
:: CustomerChoice = C Colors | O Options
:: CustomerChosen = Set CustumerChoice

Table 3 gives the fact types and example facts using the types defined above,
where furthermore no is a number and name is a string.

Table 3. Fact types and example facts

Fact type (using types) Example fact (using terms)
Product 〈no〉 has name 〈name〉. Product 1001 has name Mojo.
Product 〈no〉 has possible colors 〈Colors〉. Product 701 has possible colors {Black,

Grey}.
Product 〈no〉 has options 〈Options〉. Product 102 has options {Restroom}.
For product 〈no〉 may be chosen by cus-
tomer 〈CustomerChosen〉.

For product 101 may be chosen by cus-
tomer {C Colors}.

5 Reflection, Conclusion and Future Work

We showed how fact oriented models can be extended with algebraic data types,
using the approach from the programming languages field. Thus we obtain nat-
ural and straightforward modeling of complex information structures like un-
named collection types and higher order types.

By introducing algebraic data types, we move from set theory and first order
logic as formal foundation of FOM to type theory, the latter having its origins in
the Principia Mathematica by Russell and Whitehead [18]. Set theory and type
theory were both answers to paradoxes arising from naive set theory. Set theory
together with classical logic is the standard foundation of modern mathematics,
whereas type theory is one of the major pillars of computer science.

By regarding fact oriented models from the programming language perspective
(by regarding them as types), a wealth of results from decades of programming
language research might become applicable. We briefly mention the most inter-
esting research issues :

Abstraction. Type theory provides for mechanisms for the definition of many
more advanced types, like abstract data types and quantified types. Furthermore,
type systems offer tremendously powerful abstraction mechanisms, which are
one of the core features of functional programming languages. Abstraction is
a heavily desired feature for fact oriented models, as many authors previously
pointed out [19], [20], [21], [22].
Integration of functionality. With programming languages data structures
are defined (using types) as well as algorithms manipulating these data struc-
tures. By having types as basis for fact oriented modeling languages we can inte-
grate functionality very naturally into information models. An apparent example

Fact-Oriented Modeling 1179

are abstract data types, which define a specification of a set of data and the set
of operations that are allowed on the data.
Implementation. With the definition of complex data types in fact oriented
models, problems with mapping them to a target platform (for example rela-
tional tables) arise. This is a major research subject. A promising starting point
is polytypic programming [23], using transformations working on types (models).
Research for mapping types to relational tables can be based on this technology,
together with the already existing orthogonal persistence of any type in files [24].

In our opinion it would be valuable to start a discussion in the fact oriented
modeling community whether and how FOM languages could be designed and
extended following the approach we sketched.

References

1. T.A. Halpin and M.E. Orlowska. Fact–oriented modelling for data analysis. Journal
of Information Systems, 2(2):97–119, April 1992.

2. T. Halpin. Object-role modeling (ORM/NIAM). In P. Bernus, K. Mertins and
G. Schmidt, editors, Handbook on Architectures of Information Systems. Springer
Verlag, 1998.

3. Terry Halpin. ORM 2. In Robert Meersman, Zahir Tari, and Pilar Herrero, editors,
On the Move to Meaningful Internet Systems 2005: OTM 2005 Workshops, volume
3762 of LNCS, pages 676–687, 2005.

4. G. M. Nijssen and Terry Halpin. Conceptual Schema and Relational Database
Design. Prentice Hall, 1989.

5. G.P. Bakema, J.P.C. Zwart, and H. van der Lek. Fully communication oriented
NIAM. In NIAM-ISDM 1994 Conference, Working Papers, pages L1–L35, 1994.

6. A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data
modelling. Data & Knowledge Engineering, 10(1):65–100, February 1993.

7. Terry A. Halpin. Information modeling and higher-order types. In CAiSE Work-
shops (1), pages 233–248, 2004.

8. Guido Bakema, Jan Pieter Zwart, and Harm van der Lek. Volledig Communi-
catiegeorinteerde Informatiemodellering FCO-IM. Academic Service, The Nether-
lands, 2005. Textbook in Dutch. The English version can be downloaded via
http://www.casetalk.com/php/index.php?FCO-IM%20English%20Book.

9. Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge,
MA, USA, 2002.

10. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: yet another workflow
language. Information Systems, 30(4):245–275, 2005.

11. Simon Peyton Jones et al. Haskell 98 Language and Libraries: the Revised Report.
Cambridge University Press, 2003.

12. Rinus Plasmeijer and Marko van Eekelen. Concurrent CLEAN Language Report
(version 2.0), December 2001. http://www.cs.ru.nl/∼clean/.

13. http://www.microsoft.com/net/default.mspx. The .NET website.
14. Arthur H.M. ter Hofstede. Information Modelling in Data Intensive Domains. PhD

thesis, University of Nijmegen, The Netherlands, 1993.
15. Terry Halpin. Modeling collections in UML and ORM.

1180 B. Pepels, R. Plasmeijer, and H.A. Proper

16. A.H.M. ter Hofstede and Th.P. van der Weide. Deriving Identity from Extension-
ality. International Journal of Software Engineering and Knowledge Engineering,
8(2):189–221, June 1997.

17. Melvin Fitting. Databases and higher types. In CL ’00: Proceedings of the First
International Conference on Computational Logic, pages 41–52, London, UK, 2000.
Springer-Verlag.

18. Bertrand Russell and Alfred North Whitehead. Principia Mathematica. Cambridge
University Press, 1910–13.

19. L.J. Campbell, T.A. Halpin, and H.A. (Erik) Proper. Conceptual Schemas with
Abstractions – Making flat conceptual schemas more comprehensible. Data &
Knowledge Engineering, 20(1):39–85, 1996.

20. P.N. Creasy and H.A. (Erik) Proper. A Generic Model for 3–Dimensional Concep-
tual Modelling. Data & Knowledge Engineering, 20(2):119–162, 1996.

21. Mustafa Jarrar. Modularization and automatic composition of object-role modeling
(ORM) schemes. In OTM Workshops, pages 613–625, 2005.

22. C. Maria Keet. Using abstractions to facilitate management of large ORM models
and ontologies. In OTM Workshops, pages 603–612, 2005.

23. Ralf Hinze. Generics for the masses. In ICFP ’04: Proceedings of the ninth ACM
SIGPLAN international conference on Functional programming, pages 236–243,
New York, NY, USA, 2004. ACM Press.

24. M.R.C. Pil. Dynamic types and type dependent functions. In Kevin Hammond,
Tony Davie, and Chris Clack, editors, Implementation of Functional Languages
(IFL ’98), volume 1595 of LNCS, pages 169–185. Springer Verlag, 1999.

	Introduction
	Achievements of Programming Language Theory
	Formal Design of a Language
	Algebraic Data Types

	Extending Fact-Oriented Modeling Languages
	A Grammar for Basic FOM Structures
	Mapping Non-basic Structures to Basic Structures
	Adding Algebraic Types to Fact Oriented Models

	Modeling Examples
	Reflection, Conclusion and Future Work

