
Towards an Integration of
Evolving Information Systems

and CASE-Tools

H.A. Proper

Department of Information Systems, University of Nijmegen
Toernooiveld, NL-6525 ED Nijmegen, The Netherlands

E.Proper@acm.org

PUBLISHED AS:

H.A. Proper. Towards an Integration of Evolv-
ing Information Systems and CASE-Tools. In
S. Brinkkemper and F. Harmsen, editors, Pro-
ceedings of the Fourth Workshop on the Next
Generation of CASE Tools, pages 23–33, Paris,
France, EU, June 1993. ISSN 09243755

Abstract
In this article, CASE-Tool technology is linked to the re-
search concerning evolving information systems. First, an
introduction to the notion of evolving information system
is provided. Then, CASE-Tools and evolving information
systems are related to each other from two different points
of view, by looking how each one can server the other.

1 Introduction
Nowadays, the financial prosperety of an organisation de-
pends more and more on its ability to change. By being
flexible, an organisation can be more competitive on the
global market place, thus improving its chances of sur-
vival. This means that organisations must be able to adapt
themselves quickly to the production of new or different
products - changes in the primary process of an organisa-
tion - resulting from the ever changing and more and more
demanding consumer needs.

Flexible behaviour of an organisation implies rapidly
changing information needs, and therefore call for more
flexible information systems. Given the fact that infor-
mation is gradually becoming a production factor of more
and more importance, the need for flexible information
systems increases significantly. Furthermore, the rise of
(software!) automation costs is of increasing concern to
many organisations ([VW91]).

The need for information systems, not only allowing
for changes of their information base, but also for modi-
fications in their underlying structure (conceptual schema

and specification of dynamic aspects) has also been identi-
fied in [MS90], [Ari91], [Rod91], [JMSV92] and [FOP92b].
The intention of an evolving information system ([FOP92a])
is to be able to handle updates of all components of the
so-called application model, containing the information
structure, the constraints on this structure, the population
conforming to this structure and the possible operations.

As an illustration of an evolving universe of discourse,
consider a library, or rental store, for audio records (lp’s).
In this library, a record is kept of, among other things, the
songs that are recorded on the lp’s present in the library.
In order to keep track of the wear and tear of the lp’s, the
number of times the lp has been lent is recorded as well.
This part of the universe of discourse of the library has
been modelled in figure 1 in the style of ER. Note that we
abbreviated the graphical notation of attributes (Title) to
a mark symbol (#) followed by the attribute (# Title), for
reasons of readability.

LP

Title
Artist

Song

Title
Author

Frequency

Times

����
QQQQ����

QQQQ

Recording

����
QQQQ����

QQQQ

Lending-
frequency

@
@

@
@

@

Figure 1: The Data Model of an lp library

A possible action specification for the action model of
this example universe of discourse would be the following
rule, stating that every time a new lp is added, it’s lending
frequency is set to 0:

WHEN ADD Lp: x

THEN ADD Lp: x has-a Lending-Frequency of Frequency: 0

After the introduction of the compact disc, and its con-
quest of a sizeable piece of the market, the library has
become an lp and cd library. This resulted in the, evolved,

Page 1

universe of discourse modelled in figure 2. In the new sit-
uation, the record dealing with recordings of songs on lp’s
is still kept, but is extended to cd’s as well. The frequency
of lending, however, is not kept for cd’s, as the cd’s are
hardly subject to any wear and tear.

Medium

Title
Artist

Song

Title
Author

CD

LP
Frequency

Times

�
�
�
@

@
@�

�
�
@
@
@

Medium-
type

����
QQQQ����

QQQQ

Recording

����
QQQQ����

QQQQ

Lending-
frequency

Figure 2: The Data Model of a lp and cd library

The action specification of the initial universe of dis-
course, evolves accordingly resulting in the following rule,
stating that for each added medium, if it is an lp, it’s lend-
ing frequency is set to 0:

WHEN ADD Medium: x

IF Lp: x THEN

ADD Lp: x has-a Lending-Frequency of Frequency: 0

The two ER schemata, and the two action specifications,
as discussed above, correspond to two distinct snapshots
of an ever evolving universe of discourse.

Related research regarding evolving information sys-
tems can be found in [MS90], [Ari91] and in the area of
version modelling in engineering databases: [BCG+87],
[Kat90], [JMSV92]. A first database system supporting
some aspects of evolution is the ORION system ([BKKK87],
[BCG+87], [KBC+89]). In [MS90] a relational algebra is
presented in which relational tables are allowed to evolve,
e.g. change their arity.

Version modelling in engineering databases offers a
fast body of knowledge concerning evolution of several
types of engineering applications. The requirements for
evolving information systems ([FOP92b]) are indeed re-
lated to the general requirements for version modelling as
presented in [Kat90]. An important requirement for evolv-
ing information systems, however, is that changes to the
structure can be made on-line. In traditional approaches
to the evolution of information systems, and software evo-
lution in general, a structural change still requires the re-

placement of the old system by a new system. This latter
notion of evolution is the approach to evolving informa-
tion systems as taken in [JMSV92], there the focus is on
the support of evolution of the specification of the infor-
mation system alone. A further distinction between the
version modelling approach, and our approach to the evo-
lution of information systems is, that we are able to pro-
vide well formedness rules regarding evolution of appli-
cation models ([PW93]).

In this paper, we discuss a possible integration be-
tween evolving information systems and CASE-Tools ([McC89]).
In section 2 we provide a short overview of the architec-
ture of an evolving information system, further clarifying
the notion of evolving information system. Note however,
that it is not our intention to provide a detailed discus-
sion on evolivng information systems. In section 3 we
augment this architecture, with the architecture of an en-
visioned evolving information system shell (EIS-Shell).
Before relating evolving information systems to CASE-
Tools, the methodological aspects of such systems are re-
lated, in section 4, to the traditional notion of method.
Two possible integrations between EIS-Shells and CASE-
Tools are discussed in section 5 and 6. The support which
can be provided by CASE-Tools to EIS-Shells is discussed
in section 5. Conversely, the effect of considering an EIS-
Shell as a CASE-Shell ([HVWB90], [VHW91]) is dis-
cussed in section 6.

2 An Architecture for Evolving In-
formation Systems

In this section, we provide an overview of the architecture
for evolving information systems, and discuss the way in
which the evolution of application domains is modelled
(for more details, refer to [PW93]). We start out with the
identification of that part of an information system that
can be subject to evolution, due to evolution of the uni-
verse of discourse. From this definition, the difference
between a traditional information system, and its evolving
counterpart, will become clear. This is followed by a dis-
cussion on how the evolution of a universe of discourse
can be dealt with.

2.1 The Extent of Evolution
A complete specification of a universe of discourse typi-
cally ([ISO87]) contains the following components:

1. an intentional description of the set of states, also
called the underlying information structure.

2. a further refinement of the set of states by means of
static constraints.

Page 2

3. an intentional description of the set of transitions
that can be performed automatically (by the sys-
tem), usually as a set of action specifications that
bring about those transitions as a reaction to other
transitions, caused automatically or manually.

4. a refinement of the set of possible transitions (be-
tween valid states), both automatically and manu-
ally, by means of dynamic constraints.

5. an extentional specification of the current state of
the universe of discourse, i.e. the population, or in-
formation base, of the underlying information struc-
ture.

The notion of application model is defined ([FOP92a],
[FOP92b], [PW93]) as the formal description of the uni-
verse of discourse.

In most traditional information systems, the part of the
system that is allowed to change in the course of time is
very restricted. First of all, most traditional information
systems only allow for update of the information base, i.e.
the set of facts which obeys a fixed (conceptual) schema
with a fixed set of constraints. In other words, update of
the conceptual schema, and consequently the internal data
base schema, constraints, and specifications of dynamic
aspects - i.e. the action model - have not yet been sup-
ported by these traditional information systems. Some
systems do allow modifications on other components of
the application model, besides the information base, to a
limited extend. For example, adding a new table in an
SQL system is easily done. However, changing the arity
of a table, or some of its attributes, will result in a time
consuming table conversion. This conversion also leads
to loss of the old table!

Evolving information systems should, however, sup-
port update of all these specifications. In an evolving in-
formation system, all components of the application model
are allowed to change in the course of time. Besides,
evolving information systems are supposed to react on-
line on update requests reflecting the evolution of all these
components.

2.2 The Architecture
The application model can be subdivided further into two
major sub-models. The world model, encompassing the
combination of information structure, both static and dy-
namic constraints, and a population conforming to these
requirements. Traditionally, a world model is provided as
a fixed data model conforming to a modelling technique
like NIAM ([NH89]), ER ([Che76]), or for more complex
applications a schema conform IFO ([AH87]), or PSM
([HW93], [HPW92]) together with an information base
conforming to this data model.

The other part of the application model is the action
model. The action model is a set of action specifications,
describing the transitions that can be performed by the
system. An action model is usually modelled by means of
petri-net like specifications, for instance ExSpect ([HSV89])
or Task Structures ([WHO92]), describing transitions on
populations. Note that there exist (unified) modelling tech-
niques, such as Telos ([JMSV92]), and TMT ([Hof93]),
which intend to specify both world and action model in
one single consistent model.

Information
Structure Constraints Population

World
Model

Action
Model

Application
Model

"""""""+ ?

Q
Q

Q
Q

Q
Q

Qs

	 R

Legend:
- = contains

Figure 3: A Hierarchy of Models

The above definitions, result in the hierarchy of mod-
els, as denoted in figure 3. There the distinct models,
their interrelationships, and their respective components
are depicted. In practice, the application model describ-
ing a universe of discourse is denoted in terms of object
types, constraints, a population, action specifications, etc.
As a collective noun for these modelling concepts the term
application model element is used ([FOP92a]).

The main difference between a traditional information
system and an evolving information system, is now best
explained by means of the general architecture for evolv-
ing information systems as depicted in figure 4 ([FOP92b]).
In an evolving information system, the only fixed part is
the meta model. A meta model is time- and application in-
dependent, it contains (and is restricted to) all rules about
the languages used to model the application model and to
formulate user requests. The complete application model
can be updated in an evolving information system. These
changes are performed by the information processing ac-
tivities (done by the information processor) as a result of
update requests from the users of the system. Since the
history of the application model is maintained, the infor-
mation processing activities operate upon the history of
the application model, and not just on one version.

Page 3

'
&

$
%

Application
Model
History

'
&

$
%Meta Model

'
&

$
%Responses

'
&

$
%Requests

Information
ProcessingAA

A���
Information
Processor

Evolving
Universe

of
Discourse6

?

?

�

J
J
J
Ĵ

J
J

J
J]

�
�
�
�
��

Evolving Information System Environment of the Inf. Syst.

Figure 4: Evolving Information System Architecture

2.3 The Approach to the Modelling of Evo-
lution

The three ER schemata, together with the associated ac-
tion specifications, as discussed in section 1, correspond
to three distinct snapshots of an evolving universe of dis-
course. Several approaches can be taken to the modelling
of this evolution. In [PW93], these alternative approaches
are discussed in more detail.

In our approach, we treat the evolution of an applica-
tion model as a distinct concept. Furthermore, we model
the evolution of an application model as the evolution of
its elements, thus keeping track of the evolution of indi-
vidual object types, instances, action specifications (also
referred to as methods), etc. This has been illustrated in
figure 5. Each dotted line corresponds to the evolution of
one distinct element.

•

•

•

•

•

•

•

• •

•

•

•

• •

•

-time

Figure 5: Evolution modelled by functions over time

The major advantage of this approach to the modelling
of evolution is that it enables one to state rules about,
and query, the evolution of distinct application model el-
ements. Furthermore, we are able to derive a snapshot
view from the set of element evolutions, by constituting
the application model version of any point of time from
the current versions of its components. This derivation is

examplified in figure 6.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

•

•

•

•

•

•

•

• •

•

•

•

• •

•

-time

Figure 6: Deriving snapshots from element evolutions

The above described approach to the evolution of ele-
ments, has a parallel in the description of the history (evo-
lution) of the world. Many approaches are possible. One
may choose to describe the evolution of the world as a
sequence of snapshots, where each snapshot contains all
facts valid at a given point in time. This (higly inefficient)
way of describing the history of the world is not used in
practice, as one always wants to know the distinct evolu-
tion of persons, municipalities, families, laws, countries,
etc. Consequently, if one wants to make a complete de-
scription of the evolution of the world, the evolutions of
all relevant components of the world (persons, mountains,
tectonic plates, . . .) have to be described seperately.

3 Evolving Information System Shells
Given a meta model for evolving information systems a
software environment for these evolving information sys-
tems can be developed which is time-invariant and inde-
pendent of any universe of discourse. Such an environ-
ment is called an evolving information system shell. When
an evolving information system has to be developed for a

Page 4

particular universe of discourse, an application model de-
scribing this domain is built-up and maintained conform
the language (ER, NIAM, Task Structures, etc.) defined in
the meta model of the evolving information system shell
(EIS-Shell). In this section we focus on the information
processing in an EIS-Shell.

The architecture for evolving information systems as
depicted in figure 4 is on a conceptual level. The architec-
ture does not take the notion of recording time ([SA85])
into consideration. When indeed taking recording time
into consideration, the information processing has to be
refined conform figure 7 (page 6). Due to the possible cor-
rections, and the maintenance of recording time, several
versions of application model histories can be distincted.
When performing requests from the users, the proper ap-
plication model history must be selected by the version
manager.

��
�

��
�

��
���
�

%%
%%%
%

���

EIS Shell

���

��
�

��
�

Application Model

? ?

Figure 8: The EIS shell: independent of any application
model

An EIS-Shell is independent of any universe of dis-
course. As a consequence, application models describ-
ing different domains can be ‘plugged’ into the EIS-Shell.
This principle is illustrated in figure 8. Furthermore, an
EIS-Shell has to be designed in such a way that it is in-
dependent of any software environment, i.e. independent
of any database mananagement system and/or operatating
system. This is illustrated in figure 9.

4 Methodological aspects of Evolv-
ing Information Systems

In the process of the development of an EIS-Shell, three
subobjectives ([FOP92b]) are distinguished:

1. The design of a meta model and a language (based
on that meta model) for the specification of the ap-
plication model. Furthermore, this language must
be able to support all aspects of evolution.

2. The implementation of an evolving information sys-
tem shell based on that meta model and language.

3. The development of a suitable procedure for the pro-
cess of designing, building up and maintaining the
application model.

The use of an EIS-Shell, together with the design/maintanance
procedure, in an organisation can be seen as the use of
a method for the modelling of the evolution of organisa-
tions. The three objectives as stated above, can together
be regarded as an evolving information systems method.
This can be motivated by relating these objectives to the
components of a method.

Several definitions of the concept of method exist. An
elaborated discussion can be found in [Wij91]. According
to [Wij91] a method can be dissected in the following five
aspects:

1. The way of thinking should provide a paradigm. It
should define the assumptions made by the method
with respect to the elements that consitute an infor-
mation system, the function of an information sys-
tem in relation to its environment, the environment
of the information system, and the major character-
istics of the components of the information system
and its environment.

2. The way of working should structure the way in
which an information system is developed. It de-
fines the possible tasks, including sub-tasks, and or-
dering of tasks, to be performed as part of the devel-
opment process. Furthermore, guidelines and sug-
gestions (heuristics) on how these tasks should be
performed.

3. The way of modelling provides the modelling con-
cepts and their interrelationships. It structures the
models which can be used in the information system
development, i.e. it provides a (formal!) language
in which to express the models.

4. The way of controlling deals with the managerial
aspects of the information system development. It
includes such aspects as planning and evaluation of
plans, i.e. the overall project management.

5. The way of support of a method, refers to the sup-
port of the method by (automated) tools.

These five components of a method have been illustrated
in figure 10, which is taken from [HW92], and based on
[Wij91].

The way of thinking of an evolving information sys-
tem has been discussed briefly in the previous sections.
Objective 3 provides the way of controlling, and some in-
dications for the way of working. The exact definition of
the way of working depends on the way of working of the
chosen modelling techniques for the components of the
application model (the data/information model, the spec-
ification of activities to be performed by the information

Page 5

Application Model
Evolutions

'

&

$

%
Selected

Appliction
Model
History
Version

'

&

$

%
Application

Model
History
Version

Base

:
9

z
y

�

	

Information Processing

Appliction
Model Version
Management

Conceptual
Information
Processing

�
�

�
�

Concep-
tual

Request

�
�

�
�

Concep-
tual

Response

?

? 6

6

Information
Processor

AA
A���

Conceptual

Information Processor

AA
A���

Version
Manager

Figure 7: Information processing in an EIS shell

EIS Shell

Oracle DBMS

EIS Shell

Ingres DBMS

����

��
�

��
�

""
�

�
�

Application Model

??

Figure 9: The EIS shell: independent of any software environment

system, etc.) The result of objective 3 can only provide an
umbrella (framework) for the way of working.

Objective 1 provides the way of modelling of an EIS-
Shell. The exact way of modelling in an EIS-Shell par-
tially depends on the chosen modelling techniques for the
application model. Finally, the EIS-Shell itself (objective
2) provides the way of support of the evolving information
system method.

In [PW93], the focus is on objective 1, i.e. the way
of modelling of an evolving information system. In this
article we focus on the way of support as provided by an
EIS-Shell, and how it can be enhanced by the support of
a CASE-Tool. Furthermore, we look at the reverse, and
relate the notion of CASE-Shell ([HVWB90]) to an EIS-
Shell.

The way of controlling/working of an EIS-Shell will
be closely related to the prototyping approach (see for in-
stance [Som89]) to system development, as an EIS-Shell
allows for quick changes of the application model. The
prototyping approach has been illustrated in figure 11 (page 7).

5 CASE Support for Evolving Infor-
mation Systems

When an application model evolves, the changes have to
be communicated to the EIS-Shell by means of update
requests. For changes to the population, this is rather
straight forward as this can be done in a traditional way
by means of an ADD, DELETE or CHANGE. For the other

Page 6

Define system
deliverables

?
Specify system

increment
- Build system

increment
- Validate

increment

?

����ZZZZ
����ZZZZQQQQ����Z

Z
Z �

�
�Q

Q
Q

Q�
�

�
�Q

Q
Q�

�
�Z

Z
Z�

�
�c

c
c#

#
#Z

Z
Z�

�
�c

c
c#

#
#l

l
l,

,
,Z

Z
Z

Z�
�

�
�

System
Complete?

?
Yes

�NoDeliver system
increment

6

Complete system
delivery

Figure 11: The Prototyping Approach

way
of

support

way
of

modelling

way
of

working

way
of

thinking

way of control

product oriented process oriented

operational

managerial

Z
Z

ZZ}

J
JJ]

�
�

�
��>

�
�

��=

�
J

JĴ

Z
Z

ZZ~

-�

?

6

Figure 10: The components of a method

components, however, this is more difficult. Consider for
example the addition of a serie of new object types, or
the adding of an action specification. Such an operation
would require a series of ADD statements, adding every
single component.

5.1 Integration
When the information structure has to be modified, or an
action specicifcation in the action model has to be changed,
it is not advisable to do this by means of a (large number
of) traditional ADD or CHANGE update request. Rather,
one would like to specify such a modification by means of
a CASE-Tool interface, and even test the envisioned mod-
ification in some way before comitting it to the EIS-Shell.
This test may even consist of a prototyping phase, in or-
der to asses the actually desired change to the application
model present in the EIS-Shell.

EIS
User Interface

CASE
User Interface

EIS
Shell

CASE Tool
(IPSE)

6

?

6

?

-Current AMH

�
AM Update

End User Information Analyst

Figure 12: CASE and EIS integration

The integration between a CASE-Tool and an EIS-
Shell is illustrated in figure 12. When a change to the
application model is needed, the current (or older) version
of the application model history (minus the population)
is transferred to the repository of the CASE-Tool. This
transfer does not have to be a physical transfer. Parts of
the CASE-Tool’s repository may indeed be shared with
the EIS-Shell. Note that the ‘CASE-Tool’ in this context

Page 7

should not just be an Analyst’s Workbench, but a com-
plete IPSE ([Bri90]), at least covering all the modelling
techniques used for the application model.

The modifications to the (most recent) application model
are made through the CASE-Tool, and on completion com-
municated to the EIS-Shell. It should be noted that no
changes can be made to past versions of the application
model, as this would lead to the falsification of the his-
tory. If such changes need to be made, this has to be done
by means of a correction ([FOP92a]).

The consistency of the changed application model will
be checked by the CASE-Tool, before communicating the
changes to the EIS-Shell. Furthermore, the well-formedness
of the evolution of the application model will be main-
tained. In order to do this, the updated application model
must be related to the application model history as whole
(see [PW93]). This is also the reason why the entire ap-
plication model history has to be communicated to the
CASE-Tool.

One of the requirements for a set of (integrated) CASE-
Tools, is that it should have a consistent user interface, i.e.
the user interfaces have a similar look-and-feel. There-
fore, it is only obvious that the interfaces of the EIS-Shell,
and the CASE-Tool should have a similar look-and-feel.

5.2 Hypertext Browsing of Information Struc-
tures

For users of traditional information system, it is already
difficult to maintain an overview of the information struc-
ture of the stored information. This has lead to the idea
of building a hypertext browser for such traditional infor-
mation systems ([BPW93]), enabling an improved infor-
mation disclosure. This browser allows for query by navi-
gation, i.e. building a query whilst navigating through the
information structure. Similar browsers have also proved
their usefullness in CASE-Tools ([Big88], [GS90], [Hag92]).

For an EIS-Shell, the need for a hypertext-like brows-
ing mechanism for the current, as well as past information
structures, of the application model history is even more
pressing. When an evolving information system changes
fast, it is hardly possible for most users (and information
analysts) to maintain an overview of the kind (structure)
of the stored information of the past and present.

This observation leads to the refined architecture of an
integrated EIS-Shell and CASE-Tool as depicted in figure 13.

6 Second Order Evolution and Evolv-
ing CASE Shells

In [OHFB92] the notion of evolution of the second order
is defined as the ability to change the used modelling tech-

EIS
User Interf.

Hypertext
Browser

CASE
User Interf.

EIS
Shell

CASE Tool
(IPSE)

6

?

6

?c
c

c
cI #

#
#

#	

-Current AMH

�
AM Update

End User Information Analyst

Figure 13: Hypertext Browser for an EIS-Shell and
CASE-Tool

niques for the application model of an evolving informa-
tion system in the course of time. This need arises when
new kinds of applications are needed, requiring different
modelling techniques then the applications which where
used in the organisation thus far. For the support of sec-
ond order evolution, a CASE-Shell ([VHW91]) is needed
which supports the evolution of the modelling technique
modelled in the CASE-Shell.

In the EIS research thus far we aim to use modelling
techniques with a high level of expressiveness. The mod-
elling techniques used for meta modelling as used in the
SOCRATES project, indeed have a high level of expres-
siveness ([HW93]). As a result, these modelling tech-
niques are also very usefull for the modelling of non-meta
application models ([Hof93]). Therefore, we will use these
modelling techniques for the application model of the EIS
Shell. Currently, we are developping adopted versions
of these modelling techniques supporting the evolution of
models conforming to these techniques.

As a direct consequence, we will not only be able
to model traditional (non-meta) applications, but meta-
applications as well. Consequently, an EIS shell support-
ing these techniques will be an evolving CASE Shell as
well! Such an Evolving CASE shell is indeed a proper
vehicle to be able to support method engineering, in par-
ticular evolution of the second order. The relation be-
tween the three levels of abstraction recognised in a CASE
Shell ([VHW91]), and the evolution theory is depicted in
figure 14.

7 Conclusions
In this article we have provided a short definition of an
evolving information system, and the accompanying EIS-
Shell. We related evolving information systems and EIS-
Shells to CASE-Tools. There obviously exists a close re-
lationship between an EIS-Shell and CASE-Tools. We
delfed into this relationship from two angles. From one
angle we looked at the functionality of a CASE-Tool with
respect to an EIS-Shell, and from the other angle we looked

Page 8

Application
level

Method level

Axiomatic level

process of

modelling
models

process of

meta-modelling

meta-model

1-th order
evolution

2-nd order
evolution

IS evolution
theory

process product

Figure 14: Three levels of abstraction

at the possibility of using an EIS-Shell as an (Evolving)
CASE-Shell.

In the future, CASE-Tools may indeed support some
aspects from the theory of evolving information systems,
such as the well-formedness of the evolution of an appli-
cation model.

References
[AH87] S. Abiteboul and R. Hull. IFO: A Formal

Semantic Database Model. ACM Transac-
tions on Database Systems, 12(4):525–565,
December 1987.

[Ari91] G. Ariav. Temporally oriented data defini-
tions: Managing schema evolution in tempo-
rally oriented databases. Data & Knowledge
Engineering, 6(6):451–467, 1991.

[BCG+87] J. Banerjee, H.-T. Chou, J.F. Garza, W. Kim,
D. Woels, and N. Ballou. Data Model Is-
sues for Object-Oriented Applications. ACM
Transactions on Office Information Systems,
5(1):3–26, 1987.

[Big88] J. Bigelow. Hypertext and CASE. IEEE Soft-
ware, 5(2):23–27, 1988.

[BKKK87] J. Banerjee, W. Kim, H.J. Kim, and H.F.
Korth. Semantics and Implementation
of Schema Evolution in Object-Oriented
Databases. SIGMOD Record, 16(3):311–
322, December 1987.

[BPW93] C.A.J. Burgers, H.A. Proper, and Th.P.
van der Weide. Organising an Information
System as Stratified Hypermedia. In H.A.
Wijshoff, editor, Proceedings of the Comput-
ing Science in the Netherlands Conference,

pages 109–120, Utrecht, The Netherlands,
EU, November 1993.

[Bri90] S. Brinkkemper. Formalisation of Informa-
tion Systems Modelling. PhD thesis, Uni-
versity of Nijmegen, Nijmegen, The Nether-
lands, 1990.

[Che76] P.P. Chen. The entity-relationship model:
Towards a unified view of data. ACM
Transactions on Database Systems, 1(1):9–
36, March 1976.

[FOP92a] E.D. Falkenberg, J.L.H. Oei, and H.A.
Proper. A Conceptual Framework for Evolv-
ing Information Systems. In H.G. Sol and
R.L. Crosslin, editors, Dynamic Modelling
of Information Systems II, pages 353–375.
North-Holland, Amsterdam, The Nether-
lands, EU, 1992. ISBN 0444894055

[FOP92b] E.D. Falkenberg, J.L.H. Oei, and H.A.
Proper. Evolving Information Systems: Be-
yond Temporal Information Systems. In
A.M. Tjoa and I. Ramos, editors, Proceed-
ings of the Data Base and Expert System
Applications Conference (DEXA’92), pages
282–287, Valencia, Spain, EU, September
1992. Springer Verlag, Berlin, Germany, EU.
ISBN 3211824006

[GS90] P.K. Garg and W. Scacchi. A Hypertext Sys-
tem to Manage Software Life-Cycle Docu-
ments. IEEE Software, 7(3):90–98, 1990.

[Hag92] T.M. Hagensen. Hyperstructure CASE
Tools. In B. Theodoulidis and A. Sutcliffe,
editors, Proceedings of the Third Workshop
on the Next Generation of CASE Tools,
pages 291–297, Manchester, United King-
dom, May 1992.

[Hof93] A.H.M. ter Hofstede. Information Modelling
in Data Intensive Domains. PhD thesis, Uni-
versity of Nijmegen, Nijmegen, The Nether-
lands, 1993.

[HPW92] A.H.M. ter Hofstede, H.A. Proper, and Th.P.
van der Weide. Data Modelling in Com-
plex Application Domains. In P. Loucopou-
los, editor, Proceedings of the Fourth In-
ternational Conference CAiSE’92 on Ad-
vanced Information Systems Engineering,
volume 593 of Lecture Notes in Computer
Science, pages 364–377, Manchester, United
Kingdom, EU, May 1992. Springer Verlag,
Berlin, Germany, EU. ISBN 3540554815

Page 9

[HSV89] K.M. van Hee, L.J. Somers, and M. Voorho-
eve. Executable Specifications for Dis-
tributed Information Systems. In E.D.
Falkenberg and P. Lindgreen, editors, Infor-
mation System Concepts: An In-depth Anal-
ysis, pages 139–156. North-Holland/IFIP,
Amsterdam, The Netherlands, 1989.

[HVWB90] A.H.M. ter Hofstede, T.F. Verhoef, G.M. Wi-
jers, and S. Brinkkemper. The SOCRATES
project. In S. Brinkkemper and G.M. Wijers,
editors, Proceedings of the First Workshop
on the Next Generation of CASE Tools, No-
ordwijkerhout, The Netherlands, April 1990.

[HW92] A.H.M. ter Hofstede and Th.P. van der
Weide. Formalisation of techniques: chop-
ping down the methodology jungle. Informa-
tion and Software Technology, 34(1):57–65,
January 1992.

[HW93] A.H.M. ter Hofstede and Th.P. van der
Weide. Expressiveness in conceptual data
modelling. Data & Knowledge Engineering,
10(1):65–100, February 1993.

[ISO87] Information processing systems – Concepts
and Terminology for the Conceptual Schema
and the Information Base, 1987. ISO/TR
9007:1987.
http://www.iso.org

[JMSV92] M. Jarke, J. Mylopoulos, J.W. Schmidt, and
Y. Vassiliou. DAIDA: An Environment for
Evolving Information Systems. ACM Trans-
actions on Information Systems, 20(1):1–50,
January 1992.

[Kat90] R.H. Katz. Toward a Unified Frame-
work for Version Modelling in Engineer-
ing Databases. ACM Computing Surveys,
22(4):375–408, 1990.

[KBC+89] W. Kim, N. Ballou, H.-T. Chou, J.F. Garza,
and D. Woelk. Features of the ORION
Object-Oriented Database. In W. Kim and
F.H. Lochovsky, editors, Object-Oriented
Concepts, Databases, and Applications,
ACM Press, Frontier Series, pages 251–282.
Addison-Wesley, Reading, Massachusetts,
1989.

[McC89] C.L. McClure. CASE is Software Automa-
tion. Prentice-Hall, Englewood Cliffs, New
Jersey, 1989. ISBN 0131193309

[MS90] E. McKenzie and R. Snodgrass. Schema evo-
lution and the relational algebra. Information
Systems, 15(2):207–232, 1990.

[NH89] G.M. Nijssen and T.A. Halpin. Conceptual
Schema and Relational Database Design: a
fact oriented approach. Prentice-Hall, Syd-
ney, Australia, 1989. ASIN 0131672630

[OHFB92] J.L.H. Oei, L.J.G.T. van Hemmen, E.D.
Falkenberg, and S. Brinkkemper. The Meta
Model Hierarchy: A Framework for Infor-
mation System Concepts and Techniques.
Technical Report 92-17, Department of In-
formation Systems, University of Nijmegen,
Nijmegen, The Netherlands, 1992.

[PW93] H.A. Proper and Th.P. van der Weide. To-
wards a General Theory for the Evolution
of Application Models. In M.E. Orlowska
and M.P. Papazoglou, editors, Proceedings
of the Fourth Australian Database Con-
ference, Advances in Database Research,
pages 346–362, Brisbane, Australia, Febru-
ary 1993. World Scientific, Singapore. ISBN
981021331X

[Rod91] J.F. Roddick. Dynamically changing
schemas within database models. The Aus-
tralian Computer Journal, 23(3):105–109,
August 1991.

[SA85] R. Snodgrass and I. Ahn. A Taxonomy of
Time in Databases. In Proceedings of the
ACM SIGMOD International Conference on
the Management of Data, pages 236–246,
Austin, Texas, 1985.

[Som89] I. Sommerville. Software Engineering.
Addison-Wesley, Reading, Massachusetts,
USA, 1989.

[VHW91] T.F. Verhoef, A.H.M. ter Hofstede, and G.M.
Wijers. Structuring modelling knowledge for
CASE shells. In R. Andersen, J.A. Bubenko,
and A. Sølvberg, editors, Proceedings of the
Third International Conference CAiSE’91 on
Advanced Information Systems Engineering,
volume 498 of Lecture Notes in Computer
Science, pages 502–524, Trondheim, Nor-
way, May 1991. Springer-Verlag.

[VW91] Th.H. Visschedijk and R.N. van der Werff.
(R)evolutionary
system development in practice. Journal of
Software Research, pages 46–57, December
1991. Special Issue.

[WHO92] G.M. Wijers, A.H.M. ter Hofstede, and
N.E. van Oosterom. Representation of In-
formation Modelling Knowledge. In V.-P.
Tahvanainen and K. Lyytinen, editors, Next

Page 10

Generation CASE Tools, volume 3 of Studies
in Computer and Communication Systems,
pages 167–223. IOS Press, 1992.

[Wij91] G.M. Wijers. Modelling Support in Informa-
tion Systems Development. PhD thesis, Delft
University of Technology, Delft, The Nether-
lands, 1991. ISBN 9051701101

Page 11

