
Information Disclosure in Evolving Information Systems:
Taking a Shot at a Moving Target

Version of June 23, 2004 at 10:30

H.A. Proper1 and Th.P. van der Weide

Department of Information Systems, University of Nijmegen
Toernooiveld, NL-6525 ED Nijmegen, The Netherlands

E.Proper@acm.org

PUBLISHED AS:

H.A. Proper and Th.P. van der Weide. Information Disclosure in Evolving Information Sys-
tems: Taking a shot at a moving target. Data & Knowledge Engineering, 15:135–168, 1995.

Abstract

In this paper, we introduce a query language for evolving information systems. Evolving information
systems go beyond the capacity of conventional database systems, not only as they incorporate a time
dimension, but also since they allow all aspects of the system to evolve.

The introduced language is related to the philosophy underlying NIAM (Natural language Informa-
tion Analysis Method). This method investigates the grammar of the communication in the Universe of
Discourse. Usually this grammar is depicted as an information structure diagram (NIAM or ER schema).

This paper describes the language Elisa-D, which is based on this grammar. As a result, expressions
in this language have a direct meaning in the universe of discourse, while natural language expressions
are easily formalised in this language.

keywords: Evolving Information System, Conceptual Query Language EVORM ER, PSM, Elisa-D

1 Introduction
Flexible behaviour of an organisation may entail a rapidly changing information need, and therefore calls
for more flexible information systems. This has led to the development of evolving information systems
(see for instance: [MS90], [Rod91], [Ari91], [FOP92a], [JMSV92], [FOP92b], [PW93]). In an evolving
information system not only the population can evolve, but structural aspects (see figure 1), such as the
underlying information structure, constraints and action model, are allowed to evolve as well. Furthermore,
the history of such evolutions should be maintained.

One of the most important aspects of information systems is their ability to support information dis-
closure, for example via a query language. For any kind of information system, the following requirement
may therefore be postulated:

The system provides an adequate disclosure mechanism for the retrieval of all stored informa-
tion.

This mechanism may be based on a query language, but could also be based on a hypertext-like approach
(see for example [BPW93] and [Pro94]). Stored information (see figure 1) refers to the application model
as a whole. For evolving information systems, the history of all stored information (the application model)
is also subject of discourse. The latter poses extra requirements on the disclosure mechanism. As the

1Currently at: Department of Computer Science, University of Queensland, Queensland 4072, Australia

1

Information
Structure Constraints Population

World
Model

Action
Model

Application
Model

"""""""+ ?

Q
Q

Q
Q

Q
Q

Qs

%
%

%
%

%	

e
e
e
e
eR

Legend:
- = contains

Figure 1: A hierarchy of models

underlying information structure of the stored information changes in the course of time (moving target),
traditional query languages such as SQL are inadequate.

In some approaches to evolving information systems, a manipulation language for relational models
is extended with historical operations, both on population and schema level (note that a schema is a de-
scription of an information structure) An example of this approach can be found in [MS90], in which an
algebra is presented allowing relational tables to evolve by changing their arity. This direction is similar to
the ORION project ([BKKK87], [KBC+89]), in that a manipulation language is extended with operations
supporting schema evolution. However, it is not clear that these languages provide an adequate disclosure
mechanism for the information stored in all versions of the underlying information structure, together with
the populations conforming to these information structures.

Maintaining the history of an information system does make high demands, both on storage capacity
and processing speed. With the increase of these both aspects, the feasability of evolving information
systems will at most be a matter of time.

The following criteria are relevant for disclosure (query) languages:

L1 Expressiveness.
The expressiveness of a language provides a classification for the semantical richness of that lan-
guage.

L2 Suitability.
Suitability addresses the match between the disclosure language and the concepts used in the universe
of discourse.

L3 Elegance.
The elegance of a language is concerned with the ease with which searchers can formulate their
information need.

L4 Supportiveness.
What (automated) support can be provided to the searcher in formulating an information need.

In this paper, we mainly address the suitability and elegance criteria. We discuss the Elisa-D manipulation
language for Evolving Information Systems. In this paper we restrict ourselves to the query abilities of
Elisa-D. The update aspects of the Elisa-D language are discussed in full detail in ([Pro94]). Expressiveness
will only be addressed briefly. The supportiveness issue has been studied in [BPW93], where a two-level
hypermedia approach, an interactive process of query formulation, called query by navigation, has been
described.

Object modelling techniques can be introduced as modelling techniques that model a universe of
discourse via objects and the roles that they play. Some examples are: ER ([Che76]), EER ([HE92],
[EGH+92]), NIAM ([NH89], [Win90]), and FORM ([Hal89], [Hal92], [HO92]). The data modelling tech-
nique EVORM (EVolving Object Role Model, see [PW94]) has been introduced as a variant of object role

2

modelling in general, which supports evolution. This modelling technique is an extension of the object role
modelling technique PSM ([HW93], [HPW92]).

The Elisa-D language is defined in terms of the EVORM modelling technique for evolving application
domains. Due to the generality of EVORM, the language construction which is proposed in the next
sections can be used for a wide range of modelling techniques. Since the focus of this article is not
the introduction of the EVORM modelling technique, but rather the introduction of Elisa-D, only a brief
discussion of EVORM is required to make the paper self-contained. Elisa-D is based on the language
LISA-D ([HPW93]). The language allows for the formulation of queries (and constraints), in the form of
sentences, which have a direct meaning in the universe of discourse. Other database languages applying
the NIAM style of verbalisation of concepts, in order to obtain fluent sentences are: FORML ([HH93]) and
RIDL ([Mee82]).

The structure of the paper is as follows. First, in section 2, we shortly summarize the concepts of
the data modelling technique EVORM. Section 3 addresses the main properties of EVORM, which are
relevant in the context of evolving information systems. In section 4, we continue with the introduction
of the notion of disclosure schema, which serves as a key concept in a good disclosure of the information
stored in an evolving information system. In section 5, we introduce the language Elisa-D. In section 6 we
give a number of examples. Finally, section 7 contains a number of conclusions.

2 The Modelling Concepts
In this section we summarize the concepts of EVORM (object types and predicators), and describe how
the set O of object types is constructed from basic data types. Appendix 7 contains an overview of the
graphical conventions.

The atomic data types of EVORM are label types and entity types. Label types correspond to concrete
objects, and are used to concretize (aspects of) abstract object types, such as entity types. Let L be the
set of label types. As label types are concrete, they are assumed to be directly denotable. The denotation
depends on the actual assignment of concrete domains D (such as integer, real and string) to label types:
Dom : L→D. Entity types (E) are basic abstract object types. The following type constructors can be used
to form composed abstract object types:�

�
�
�X1

fp1 p2

�
�
�
�X2

Figure 2: A sample fact type

1. Factification
Fact types describe relations between object types as mappings from an underlying domain of pred-
icators (roles) into these object types. Each fact type has its unique predicators. We identify a
fact type by its underlying set (domain) of predicators. For example, in figure 2, we see fact type
f =

{

p1, p2

}

.

Let P be the set of all predicators. The function Base : P→O assigns to each predicator its asso-
ciated object type. Furthermore, the function Fact : P→F provides the fact type, associated with
each predicator. In figure 2, we have Base(p1) = X1 and Fact(p1) = f

2. Power Typing
Power typing is a type constructor which leads to an object type that is instantiated with subsets over
an underlying object type. Let G be the set of all power types. The function Elt : G→O provides
the underlying element type of power types. In figure 6, Airforce is an example of a power type, over
element type Squadron.

3

3. Sequence Typing
Sequences of an underlying object type are formed by sequence typing. Let S be the set of all
sequence types. The function Elt : S →O provides the underlying element type of sequence types.

4. Schema Typing
Schema typing provides the opportunity to describe an information structure in a top-down fash-
ion. As a result, schema typing provides a mechanism for schema decomposition (for example
schema type Squadron in figure 6). On the other hand, in some cases, schema types sometimes force
themselves, as in the data model of figure 3. Schema types are instantiated by populations of the
underlying schema. Let C be the set of all schema types, then the relation ≺ ⊆ C × O describes the
decomposition relation.

�
�
�
�Activity

having
input

is input
of

� -

having
output

is output
of

� -

�
�
�
�State

��������

PPPPPPPP

PPPPPPPP

��������

Activity graph

•k •k
C
C
C
C
C
C
C
C
C

�
�
�
�
�
�
�
�
�

�
�

�
�

A
A
A
A

being decom-
posed into

being decom-
position of

�-�-

being decom-
position of

being decom-
posed into

�-�-

Figure 3: An information structure diagram for Activity Graphs

Besides these type constructors, new object types can be introduced by specialisation and generalisation of
other object types. The partial order Spec ⊆ O ×O contains the specialization hierarchy, generalization is
captured by the relation Gen ⊆ O×O. Both relations can be seen as type construction by abstraction. In the
case of a generalisation the generalised object type abstracts from the properties specific to the specifiers
of the generalisation, whereas in the case of specialisation the supertype allows for a similar abstraction.
It should be noted, however, that generalisation and specialisation are distinct concepts which result from
differing axioms in set theory ([HW93]) The resulting object types inherit their identification from the
abstracted object types.

In the example of figure 4, the object type Real estate is a specialization of object type Product. Object
type Product is a generalization of object types Boat and House. As a result, Real estate inherits its identity
from Product, which on its turn derives its identity from its specifiers Boat and House. The partial order
IdfBy ⊆ O × O on object types, captures the inheritance hierarchy, and results from specialisation and
generalisation. For example figure 4 this leads to:

• Real-estate IdfBy Product

• Product IdfBy Boat

• Product IdfBy House.

4

#
"

!

(Zip

code)
s

#
"

!

Boat
(Regnr)
s #

"

!House

s
s

#
"

!(Housenr)s

#
"

!Product s

#
"

!

Amount
(ECU)
s#

"

!

Real
estate
s#

"

!

Tax
percentage

(%)

#
"

!

Size
(Tons)

-

� I

has is of

�-aaaa
of has

�-

of has

�-

has is of

�-!!!!

has price
is price

of

�-

Ul

Figure 4: A data model with generalisation and specialisation

�
�
�
�A

'
&
$
%

B

∈B,A

�
�
�
�A

�
�
�
�B

C

∈C,A ∈C,B

�
�
�
�I

@B,A

'
&
$
%

∈B,A �
�
�
�A

B

Figure 5: Default names for anonymous concepts

The elementary operators for accessing composed abstract object types are introduced as special fact
types, and summarised in figure 5. Usually, these special fact types are omitted from the diagram. Hence-
forth, we will refer to them as implicit. The relation between a power type B and its element type
A = Elt(B) is recorded in the fact type ∈B,A. As a consequence, power typing corresponds to a polymor-
phic type constructor, and the fact type ∈B,A to an associated polymorphic access operator. The relation
between a sequence type B and its element type A = Elt(B) is recorded by the implicit fact type ∈B,A.
Contrary to power types, this relation ∈B,A is augmented with the position of the element in the sequence,
via @B,A. The object type I is the domain for indexes in sequence types. Usually the natural numbers are
used for this purpose. With each schema type C and each object type A in its decomposition, the implicit
fact type ∈B,A is associated, facilitating the transition from an object to an object from its decomposition.

As an example of an EVORM schema, we consider air-forces and their relation to political entities.
This schema depicts a snapshot of a possibly evolving domain. An air-force consists of a set of squadrons,
and is assigned to a political entity. For instance the RAF is the air-force of the United Kingdom, and the
RCAF is the Canadian air-force. Air-forces can, however, be assigned to other political entities than states.
The 1st ATAF (First Allied Tactical Air-force) is an air-force consisting of several squadrons from air-
forces of the Northern European states of NATO. As a result, one squadron may be assigned to more than
one air-force. Every squadron may be referred to by a squadron name (a code), and political entities may
have a name as well. The resulting schema is displayed in figure 6. Besides, this figure depicts the look and
feel of the Elisa-Doolittle tool (see also [HPW94]). For an explanation of the graphical symbols used,
see the appendix. The button 5 in this figure signifies object type Squadron as a schema type. Clicking this
button will zoom in on schema type Squadron (see figure 7).

A squadron consists of aircrafts, each of which is either a transport aircraft or a combat aircraft. Both
classes of aircrafts have their own identification, a T-nr and a C-nr respectively. For a transport aircraft,
its capacity is stored in the database. We distinguish between two classes of combat aircrafts, a bomber
and a fighter. A combat aircraft may simultaneously be a bomber and a fighter, for instance the Tornado

5

Elisa-Doolittle
Focus: Air-forces

Options

verify schema

@I
(re)draw schema

zoom in

zoom out

manipulate

Representation:i ER

•i PSMi Text

'

&

$

%
�
�
�
�Political-

entity
-

�
�
�
�State

(Name)

6
having is-of

�-
�
�
�
�

Group
-name

(Name)

t

assigned-to

having-as

?

6

5
Squadron

'

&

$

%t
Air-force

known-as name-of

�-
�
�
�
�(Squadron-

name)
t

Figure 6: Air Force squadrons

fighter/bomber as used by some of the European air forces. As a result we have introduced two subtypes
for combat aircrafts. For a bomber, its maximum bomb load is stored, whereas for a fighter its number of
guns is considered to be relevant. The resulting subschema is presented in figure 7

3 EVORM: Summary of Formalisation
In this section, we provide a short overview of the formal background of EVORM. A more elaborate formal
treatment can be found in [PW94]. The complete formalisation consists of several classes of axioms (see
figure 8). The typing mechanism is captured by the set of rules (ISU), and forms the basis for version man-
agement, leading to the set of rules (AMV) describing wellformedness of versions. Version management,
on its turn, serves together with a time axis Ts as the base for rules (EW) describing what constitutes a
wellformed evolution of an information system.

In [PW94] a general theory for evolving application domains has been applied to the data modelling
technique PSM, resulting in EVORM. In this paper, we summarise the relevant EU and TR axioms.

3.1 General properties
Label types, entity types, fact types, sequence types and schema types are all interpreted differently:

[EU1] L, E ,F ,G,S, C form a partition of O.

Bridge types establish the connection between abstract and concrete object types. The term Bridge(f)
qualifies fact type f as a bridge type, and is an abbreviation for the expression

∃p,q

[

f =
{

p, q
}

∧ Base(p) ∈ L ∧ Base(q) 6∈ L
]

6

Elisa-Doolittle
Focus: Squadron

Options

verify schema

(re)draw schema

@I
zoom in

zoom out

manipulate

Representation:i ER

•i PSMi Text

�
�
�
�

Bomb-
load

(Kg-nr)

�
�
�
�Bombertof-the has-as

�-

�
�
�
�Fighter t �
�
�
�

Weapon-

load
(Nr-guns)

is-armed-
with

arme-
ment-of

�-

6

QQQQQk

�
�
�
�

Combat-
aircraft
(C-nr)

t�
�
�
�(Type)

{’bomber’,

’fighter’}

of has-as

� -

�
�
�
�

Trans-
port-

aircraft
(T-nr)

t �
�
�
�Capacity

(Kg-nr)

has of

�-

7o

�
�
�
�Aircraft t �

�
�
�Age

(Nr-years)

has of

�-

Figure 7: Zoomed in on Squadron

EVORM makes a strict distinction between concrete values, and objects that are percieved as corresponding
to an object (without an inherent denotation) in the universe of discourse. The rationale of this distinction
is that it may help the system analyst during modelling. The strict separation between the concrete and
abstract level is expressed by the following rules. Firstly, label types may only participate in bridge types:

[EU2] Base(p) ∈ L ⇒ Bridge(Fact(p))

Secondly, label types are not allowed to occur as element type of either a power or sequence type:

[EU3] Elt(x) 6∈ L

3.2 Identification hierarchy
Object types, that result from construction by abstraction, inherit the structure of their parents in the iden-
tification hierarchy. As a result, they do not provide a structure of their own; they have to be basic types.
Consequently, such object types are entity types. Furthermore, the strict separation between concrete and
abstract object types is extended to the identification hierarchy.

[EU4] (strictness) IdfBy ⊆ E × (O \ L) ∪ L × L

Note that subtyping of objectified fact types is allowed in this setup, but that these subtypes are regarded as
entity types. In order to avoid identification conflicts, the identification hierarchy must form a partial order:

[EU5] (asymmetry) x IdfBy y ⇒ ¬y IdfBy x

[EU6] (transitivity) x IdfBy y IdfBy z ⇒ x IdfBy z

We define IdfBy1 as the one step version of IdfBy:

x IdfBy1 y ,x IdfBy y ∧ ¬∃z [x IdfBy z IdfBy y]

7

'

&

$

%
Kernel
(typing
system)

ISU

'

&

$

%
Version

management
AMV

'

&

$

%
Evolutionary
consistency

EW

6

6

EU, TR axioms

IsAM: AMV axioms, and:
IsPop: P axioms,

IsSch: EV axioms

IsAMH: always IsAM

�

-

-

'

&

$

%
Ts

-

Figure 8: Axiomatic framework

In EVORM, all object types in the identification hierarchy have direct ancestors:

[EU7] (direct ancestors)
x IdfBy y ⇒ x IdfBy1 y ∨ ∃p [x IdfBy1 p IdfBy y]

The finite depth of the identification hierarchy in EVORM is expressed by the following schema of induc-
tion:

[EU8] (identification induction)
If F is a property for object types, such that for any x

∀y:x IdfBy1 y [F (y)] ⇒ F (x)

then ∀x∈O [F (x)]

The identification hierarchy is a result of specialisation and generalisation:

[EU9] (complete span)
x IdfBy y ⇐⇒ x Gen y ∨ x Spec y

First we focus in some more detail on specialisation. Specialisation itself should also form a partial order
on object types. This is enforced by the following rule:

[EU10] (transitivity completeness)
If x IdfBy y IdfBy z then:

x Spec y Spec z ⇐⇒ x Spec z

Note that the asymmetry of Spec follows from the asymmetry of IdfBy. For specialisation hierarchies, we
define the pater familias relation u(x, y), characterizing y as pater familias of x. This relation represents
the root relation for inheritance when restricted to specialisation. The pater familias relation is identified
by:

u(x, y) ,(x Spec y ∨ x = y) ∧ ¬ spec(y)

where spec(x) is a shorthand for ∃y [x Spec y]. In a specialisation hierarchy, contrary to generalisation
hierarchies, there is always one unique top element. This is stipulated by the following axiom:

8

[EU11] (unique pater familias)
u(x, y) ∧ u(x, z) ⇒ y = z

As a result of this, we can write u(x) to denote the pater familias of object type x.
Next we focus in some more detail on generalisation. Generalisation should also form a partial order

on objects:

[EU12] (transitivity completeness)
If x IdfBy y IdfBy z then:

x Gen y Gen z ⇐⇒ x Gen z

In the sequel gen(x) will be used as an abbreviation for ∃y [x Gen y]. Generalisation and specialisation
can be conflicting due to their inheritance structure. To avoid such conflicts, generalised object types are
required to be pater familias:

[EU13] gen(x) ⇒ ¬ spec(x)

3.3 Type relatedness
Intuitively, object types can, for several reasons, have values in common in some instantiation of the infor-
mation structure. For example, each value of object type x will, in any instantiation, also be a value of his
pater familias u(x). As another example, suppose x Gen y, then each value of y will, in any population,
also be a value of x. A third possibility of sharing values arises for power types, when their underlying
element types may share values.

Formally, type relatedness is captured by a binary relation ∼ on O. Two object types are type related if
and only if this can be proven from the following derivation rules:

[TR1] x ∈ O ` x ∼ x

[TR2] x ∼ y ` y ∼ x

[TR3] y IdfByx ∧ x ∼ z ` y ∼ z

[TR4] x, y ∈ G ∧ Elt(x) ∼ Elt(y) ` x ∼ y

[TR5] x, y ∈ S ∧ Elt(x) ∼ Elt(y) ` x ∼ y

[TR6] x, y ∈ C ∧ Ix = Iy ` x ∼ y

where Ix denotes the information structure into which schema type x is decomposed.

3.4 Evolution of EVORM schemata
The evolution of an application domain is modelled in EVORM as a set of functions H ⊆ T �AME ,
where T is a time axis, and AME the set of all application model elements (see figure 11 for a meta
schema). The set AMH in this schema is the domain for all such evolutions. Examples of application
model elements are the object types O and their instantiations ℘(O)×Ω. An instantiation of an object type
assigns a population to object types. The underlying domain for populating object types is the set Ω. For
a more elaborate definition of Ω, please refer to [PW93], [PW95] or [PW94]. Such a set of functions H is
referred to as an application model history. In H , each function h ∈ H exclusively describes the evolution
of some application domain concept, and is referred to as an (application model) element evolution. The
state of affairs of history H at some point of time t (the version at time t) is derived as follows. The object
types which are available in the version at time t are found by

Ot =
{

h(t)
∣

∣ h ∈ H ∧ h(t) ∈ O
}

9

The populations of these object types are derived from instance evolutions. Instance evolutions describe
the relation between values and object types in the course of time. The population is then derived from the
instance evolutions as follows:

Popt(x) =
{

v
∣

∣ ∃h∈H [h(t) ∈ ℘(O) × Ω∧h(t) = 〈X, v〉 ∧ x ∈ X]
}

In the remainder of this subsection, we focus on well-formedness of schema versions defined by Ot. In the
next subsection, focus is on versions of populations.

Let Ot be a set of object types spanning an information structure version. From this version, we derive
the EVORM information structure:

It = 〈F t,Gt,St, Ct, Et,Lt,Pt〉

The set of fact types in the EVORM information structure version is defined as F t = F ∩Ot. The other
components are derived analogously. The set of predicators, on the other hand, is defined as: P t =

⋃

F t.
On the thus obtained information structure versions, and their populations, some well-formedness rule
should hold. Some of these are technique independent, and some of them are EVORM dependent. An
elaborate discussion on these well-formedness axioms for information structure versions and their popula-
tions can be found in [PW94].

4 Deriving the Disclosure Schema
The main purpose of an information system is supporting information retrieval. Retrieving information
from an evolving information system is inherently richer than retrieving information from a traditional
information system, due to the availability of a time axis both for the population and the schema. Therefore,
a language supporting evolving information systems, should provide the opportunity to query:

• the current state of the system (both population and structure)

• previous states of the system (both population and structure), and their relations

We provide a synergy of the several aspects at three levels of abstraction, leading to the disclosure schema.
The disclosure schema is the point of departure for the introduction of the way of communicating for an
evolving information system.

4.1 The extra-temporal schema
In this section we start by introducing the extra-temporal schema of an application model. The extra-
temporal information structure is defined as the union of all versions described by application model history
H : O∞ =

⋃

Ot.

����X
f
����Y

����X
g

����Y

����Z

Schema I Replace f by g Schema II-

Figure 9: Evolution of schemas

As an illustration of an extra-temporal information structure, consider the two schema versions in
figure 9. In this figure, the evolution from a binary fact type (f) to a ternary fact type (g) is modelled.
The associated extra-temporal information structure is depicted in figure 10.

Constraints associated to versions of the application model, will not necessarily hold for the extra-
temporal population. For evolutionary information systems, constraints must be enforced in their proper
temporal context. Because of this, the extra-temporal schema is the same as the extra-temporal information
structure.

10

����X

f

����Y

g

����Z

��� HHH

Figure 10: A simple extra-temporal schema

4.2 The disclosure schema
In an evolving information system, the user may want to query past and present of the application model as
a whole. Besides, querying is not limited to the population, but may involve such things as the information
structure and activity specifications as well. We approach this problem by introducing a disclosure schema,
comprising the extra-temporal schema, and the meta schema of the used modelling techniques. The dis-
closure schema will be defined gradually via a number of subschemas (stepwise refinement). In figure 11,
the overall meta schema of the evolution theory from [PW93], [PW95] is provided. Note that this schema
also contains constraints (R) and methods (M), which are not discussed in this text.

�
�
�
�Ω

�
�
�
�
�
�
�
�N

�
�
�
�L

�
�
�
�
�
�
�
�D

�
�
�
�O

�
�
�
�γ

�
�
�
�

�
�
�
�
�
�
�
�µ

�
�
�
�T

'
&
$
%

'

&

$

%

AMH

ISU

'
&
$
%AME

'
&
$
%

℘(O)

'
&
$
%
R '

&
$
%
M

: y
* Y

6

� I

HasTypes

,
,

,
,

,
,

Dom

aaaaaaa

!!!!!!!

AME-
Evol

; ∼

Figure 11: The meta schema for the general evolution theory

As a first refinement, this schema is augmented with a set of (derivable) relations, enabling a convenient
formulation of queries involving time (see figure 12 (page 12)). For example, the fact type Change keeps
track of all changes undergone by histories h ∈ H as triples 〈h(t), h(.t), t〉. Note that .t denotes the point
of time t increased with the minimal time unit (sometimes referred to as a chronon). A change occurs at

11

�
�
�
�TI

�
�
�
�AME

�
�
�
�T

AME-Evol

Change

Birth

Death

Holds

PPPPPP

S
S

S
S

S
S

Z
Z

Z
Z

������
!!!!!

cccc

�
�

�
�

�
�

�
�

�
�

Figure 12: Extension with temporal relations

time t in history h, if h is alive at points of time t and .t, but in different shapes:

Popt(Change) =
{

〈h(t), h(.t), t〉
∣

∣ h ∈ H ∧ h↓t, .t ∧ h(t) 6= h(.t)
}

where the notation h↓t is used to express that function h is defined in point t. The population of the fact
types Birth and Death can be derived analogously. Fact type Holds relates application model elements to
time intervals as follows. Each shape h(t) of application model evolution h is related to the (maximal)
time interval T during which this shape holds. Generally, we call a time interval T maximal with respect
to predicate P , denoted as MaxDur(T, P) if:

1. P holds during T , or: ∀t∈T [P (t)].

2. no larger interval T ′ has this property:

T ⊆ T ′ ∧ ∀t∈T ′ [P (t)] ⇒ T = T ′

The population of Holds at time t then is defined as:

Popt(Holds) =
{

〈h(t), T 〉
∣

∣ h ∈ H ∧ T ∈ TI ∧ h↓t∧MaxDur(T, Pt)
}

where Pt is defined as: Pt(s) = ∃g∈H [h(t) = g(s)], and h↓t signifies that function h is defined for t. Note
that T depends on t via MaxDur and the definition of Pt.

On T and TI more relations can be defined. Three classes of operations can be identified ([RP92]).
Relations over T , such as BEFORE, and AFTER, capture comparison relations for points of time, and form
the first class. Two comparison relations for points of time, which are based on ., are defined as:

t1 HAS INCREMENT t2 ⇐⇒ . t1 = t2

t1 IS INCREMENT OF t2 ⇐⇒ t1 = .t2

The second class of comparison relations deals with time intervals (TI), and includes: BEFORE, and
OVERLAPPED-BY. Comparing points of time with time intervals is the objective of the third class. For
example, interval I CONTAINS point of time t. The semantics of these relations, depends on the chosen
time axis T , and will therefore not be elaborated upon.

12

Next, the meta schema is refined for the EVORM data modelling technique in figure 13, by being more
specific about the O,N ,L triplet and filtering the ;-relation. Note that in the general evolution theory
as discussed in [PW94], ; is the general theoretic counterpart of IdfBy which is defined as: x ; y ⇐⇒
y IdfByx. In figure figure 13, a set of EVORM specific (meta) object types are associated to the O (meta)
object type, providing a technique dependent extension of the general meta model. When a concrete
modelling technique has been chosen for the modelling of constraints and methods, the meta model of
the general theory can be augmented with more details on constraints and activities as well.

�
�
�
�G

�
�
�
�S

�
�
�
�E

�
�
�
�G∪S

�
�
�
�C

�
�
�
�P

����
F

�
�
�
�N

�
�
�
�L

�
�
�
�O

� I

� 6IY

� Y

�
�

��
@

@
@I

�
�
�

@
@

@
@

@
@

@

Elt

≺ Base

; ∼

�
�
�
�

�
�
�
�Spec

�
�
�
�Gen

Figure 13: The EVORM meta model

The extra-temporal schema of an evolution forms a population of the O,N ,L (meta) triplet. The
disclosure schema, however, contains the extra-temporal schema also as a sub schema. In figure 14, the
connection between the extra-temporal schema of figure 10, and the meta schema is provided as a sub
schema. In general, the Gen relation of the disclosure schema is extended with x Gen Ω for all object types
x ∈ O∞.

4.3 Discussing the three levels
In the above discussion leading up to the disclosure schema, three levels can be distinghuished (see
figure 15). The instance level is concerned with the extra-temporal population. The extra-temporal schema
forms the second level, the so-called schema level. The top level, the meta schema level, completes the
disclosure schema, and adds the possibility to look beyond temporal boundaries, by taking the temporal
relation into account.

The instance level is related to the schema level through the HasTypes relation, while the relation be-
tween the schema level and the meta schema level is formed by the generalisation relation.

The three distincted abstraction levels, may be regarded as three layers in a multi-layered hypermedia
system ([BW92]). This observation enables the disclosure of the information contained in an evolving
information system by means of a hypertext approach. This approach has been studied before in [BPW93].

13

�
�
�
�X

f

�� �
�
�
�
�Y

g

�� �

�
�
�
�Z

��� HHH

�
�
�
�Ω

� K� K6

Figure 14: Extra-temporal schema linked to meta schema

Instance level, Ω

6

?

HasTypes

Schema level, I

6

?

Gen

Meta schema level

Figure 15: Three levels of abstraction

Such an approach seems to be essential for evolving information system, as the underlying information
structure (second level) changes regularly. We motivate this briefly.

For users of a traditional information system, it is already difficult to maintain an overview of the
information structure of the stored information. This has led to the idea of building a hypertext browser for
such traditional information systems, enabling an improved information disclosure. This browser allows
for query by navigation, i.e. building a query whilst navigating through the information structure. Similar
browsers have also proved their usefulness in CASE-Tools ([Big88], [GS90], [Hag92]). When an evolving
information system changes rapidly, it is hardly possible for most users (and information analysts) to keep
track of the kind (structure) of the stored information of the past and present.

5 Elisa-D
The NIAM analysis method is based on an analysis method for natural language. The method starts from
verbalisations of examples, which form a (partial) description of the underlying domain, and are provided
by domain experts. We refer to the language (idiom), in which the examples are verbalised, as the expert
language. The verbalisation leads in a straightforward way to an information structure. For more details,
see [NH89], [CW93].

It is only natural that the language for manipulating and querying also has the format of a semi natural
language, and is designed to approximate the expert language as close as possible (suitability, L2, see page

14

2). The rationale behind this has also been addressed in [HH93]. As a result, sentences in this (artificial)
language are meaningful expressions within the context of the U◦D, understandable and expressible by
domain experts (contributing to elegance, L3). The sentences, verbalising the original examples, form
extensional specifications, while queries (in general) correspond to intentional specifications.

In this section, an introduction to such a language, Elisa-D, based on the data modelling technique
EVORM, is presented. As EVORM generalises Object-Role Modelling techniques such as FORM, NIAM
and PSM, as well as ER based modelling techniques, Elisa-D is generally applicable.”

5.1 The structure of Elisa-D
In the previous sections, the elements constituting an application model were introduced as abstract con-
cepts (the way of modelling). The intention of this section is to describe a language (way of communicat-
ing) by which the U◦D’s walk of life can be communicated (by human beings) to the information system.
This language is set up as a (semi) natural language, resembling the expert language. Typical for a natural
language is the richness to form sentences, even sentences that have no intuitive meaning, or sentences that
are ambiguous.

The language should be such that it allows for an elegant description of a user’s information need (L3).
This does not imply the exclusion of inelegant descriptions independently of subjective ideas of elegance!

Elisa-D provides a set of grammar rules. Complemented with a concrete lexicon, as obtained from
a particular application model, a concrete information retrieval and update language is obtained. This is
analogous to, say, predicate calculus, in which a set of predicate symbols provides the lexicon, whereas
the construction rules for formulas correspond to the grammar. Besides, the concrete language can be
further tuned to the application domain by extending the grammar with new rules. (Note that conventional
programming languages use the procedure mechanism for this purpose.)

As a result, Elisa-D defines a class of languages, where each language is based on a particular under-
lying lexicon, and a set of grammar rules. In the remainder of this subsection, we describe the naming
conventions used, and provide the meaning (semantics) of these names.

The main concept in Elisa-D is information descriptor, by which information needs can be formulated.
An information descriptor is interpreted as a special history, describing the evolution of the result of this
descriptor in the course of time. At each moment, this result comprises a binary relation in the mathematical
sense (for a motivation for the choice of a binary relation, see [HPW93]). The semantics of information
descriptor I are described by the function

ρ : Information descriptor→(T �℘(Ω2))

The semantics of I at point of time t are denoted as ρt(I). Thus, ρ(I) = λt.ρt(I). The use of the single
underlying domain T �℘(Ω2) facilitates the concatenation of arbitrary information descriptors. This will
result in a liberal, orthogonal syntax for Elisa-D.

Note that LISA-D’s semantics has been expressed in terms of binary multisets (bags), whereas Elisa-
D’s semantics is expressed in terms of binary sets. The motivation for this deviation lies in the easier
presentation of the ideas behind Elisa-D. A concrete implementation will indeed be based on multisets.
Furthermore, in [Pro94] the full definition of Elisa-D is provided.

5.2 Atomic information descriptors
The basis for Elisa-D information descriptors is a lexicon, assigning a meaning to the words (names) that
constitute the language. The meaning of names is administered by the partial naming function

Lex : (T �O) × (T �O) × Names �(T �℘(Ω2))

where Names is a set of names. The notation Lex(g, h, n)↓ is used to indicate that Lex(g, h, n) is defined
for object type evolutions g, h and name n. The name n then can be used as a denotation for an instance
evolution, which connects, at each point t of time, instances of g(t) to instances of h(t). In this case, name
n is qualified as a defined name.

15

Abstract name Concrete name
T Time

AMH Amh

AME-Evol Ame evolution

AME Ame

O Object type

℘(O) Types

N Non label type

L Label type

; Parent

∼ Type related

Ω Value

HasTypes Instance typing

D Domain

Dom Domain assignment

TI Time interval

Holds Holds

Change Change

.
E Entity type

F Fact type

P Predicator

.

Table 1: Names for meta object types

If a name n is overloaded (multiply defined by the Lex-function), then the meaning of the name is the
sum of all possible interpretations:

ρ(n) =
⋃

Lex(g, h, n)↓

Lex(g, h, n)

where the union operator on sets is extended in the obvious way: p∪ q = λt.p(t)∪ q(t).
The function Lex is filled with a number of predefined names. A first class of names verbalises the

highest level of abstraction (see figure 15), and provides names for the meta concepts at this level. These
names are provided by the function ONm : OM

� Names, where OM is the set of all object types in the
meta schema. This function is summarised in table 1. The meta level consists of:

1. the meta schema for the general evolution theory, see figure 11,

2. the additional temporal aspects as depicted in figure 12,

3. the EVORM-specific details, as contained in figure 13.

The second class of names covers the extra temporal schema level, and provides names for application
specific concepts. This level consists of:

1. Names for element evolutions are recorded in the function HNm : AMH� Names.

2. Object types (O) are referenced by a unique name, provided by the function ONm. (Note that this
function is also used for the naming of meta object types).

3. Names of domains are found by means of the function: DNm : D� Names.

Note that γ and µ are left out of consideration in this paper. The naming of instances (Ω) consists of
a denotation mechanism for label values (constants), and a naming mechanism for abstract values. This

16

latter mechanism is modelling technique dependent. For EVORM, the identification mechanism, leading
to standard names, is used for this purpose.

Predicators may have assigned a predicator name via the (partial) function: PNm : P � Names, and
a predicator reverse name, via RNm : P � Names. We are now in a position to fill the lexicon with the
predefined names and their meaning.

5.2.1 Named concepts

The name function Lex contains a verbalisation of the following concepts:

1. Names of object type histories are defined names.
If h is an object type history with name HNm(h), then, at any moment t of its existence, this name stands
for the population of its version h(t), put in the proper format:

Lex(h, h, HNm(h)) = λt.
{

〈v, v〉
∣

∣ v ∈ Popt · h(t)
}

where · denotes functional composition.

2. Names of object types are defined names.
As stated in section 2, EVORM distinguishes between implicit and explicit object types. For implicit object
types (such as fact type ∈x) no names are assumed. Rather, special names will later on be introduced to
handle their manipulation. Let x be an explicit object type, then the name ONm(x) refers, at any moment,
to its population at that moment:

Lex(λx, λx, ONm(x)) = λt.
{

〈v, v〉
∣

∣ v ∈ Popt(x)
}

where λx is a shorthand for: λt.x.

3. Predicator names are defined names.
If p is a named predicator, then the name PNm(p) describes a path from the base of p to its corresponding
fact type, while RNm(p) describes the reverse path:

Lex(λBase(p), λFact(p), PNm(p)) = p

Lex(λFact(p), λBase(p), RNm(p)) = p←

where predicator p, in this context, is used as the following history:

p = λt.
{

〈v(p), v〉
∣

∣ v ∈ Popt · Fact(p)
}

and p← denotes relation inversion extended to histories: p← = λt.(p(t)
←

).

4. Denotations for label values are defined names.
Defined names for label values, make it possible to use such denotations as regular information descriptors.
If c is a constant and x an object type such that c ∈ Domt(x), then the denotation CNm(c) may be interpreted
according to:

Lex(λx, λx, CNm(c)) = λt.
{

〈c, c〉
}

5.2.2 Anonymous concepts

A schema may contain a number of implicit fact types. Being implicit, such fact types, and their constituent
predicators, are not named. However, it may be necessary to address these concepts in verbalisations of
information needs. Therefore, a set of default names for these concepts is introduced (see figure 16).

1. Names for bridge types
The names WITH and IS NAME OF can be used for quickly relating object types to label types. The name

17

�
�
�
�E

�
�
�
�(L)

-WITH

�
IS NAME OF

�
�
�
�A

�
�
�
�B

-OF

�
INVOLVED IN

�
�
�
�A

'
&
$
%

B

-

IN

�
CONTAINING

∈B,A

�
�
�
�A

�
�
�
�B

C

�
COMPRISING

�
PART OF

∈C,A ∈C,B

�
�
�
�I

@B,A

'
&
$
%

-INDICES

�
AT POSITION

∈B,A

�
�
�
�A

B

�ELEMENTS

-
HAVING

�SEQUENCES

-
OCCURRING IN

Figure 16: Names of implicit fact types

WITH relates object types via bridge types to label types, the name IS NAME OF being its reverse. Let
b =

{

p, q
}

be a bridge type, relating non-label type Base(p) to label type Base(q), then:

Lex(λBase(p), λBase(q), WITH) = p ◦ q←

Lex(λBase(q), λBase(p), IS NAME OF) = q ◦ p←

Note that ◦ is the temporal extension of the concatenation operator for relations A ◦B = λt.A(t) ◦B(t).

2. Names for power types
The names CONTAINING and IN verbalise the implicit relation between a power type and its underlying
element type. CONTAINING relates a power type to its corresponding element type, IN being its inverse.
For all x ∈ G:

Lex(λx, λElt(x), CONTAINING) =∈c
x,Elt(x) ◦∈

e
x,Elt(x)

←

Lex(λElt(x), λx, IN) =∈e
x,Elt(x) ◦∈

c
x,Elt(x)

←

3. Names for sequence types
The implicit fact types for sequence types describe the indexing mechanism. For all x ∈ S:

Lex(λx, λ∈x,Elt(x)
, SEQUENCES) =∈c

x,Elt(x)

Lex(λ∈x,Elt(x)
, λx, OCCURRING IN) = ∈c

x,Elt(x)
←

18

Lex(λElt(x), λ∈x,Elt(x)
, ELEMENTS) =∈e

x,Elt(x)

Lex(λ∈x,Elt(x)
, λElt(x), HAVING) = ∈e

x,Elt(x)
←

Lex(λI , λ∈x,Elt(x)
, INDICES) = @i

x,Elt(x) ◦@s
x,Elt(x)

←

Lex(λ∈x,Elt(x)
, λI , AT POSITION) = @s

x,Elt(x) ◦@i
x,Elt(x)

←

4. Names for schema types
The relations between a schema type, and the object types from its decomposition are handled by the
keywords COMPRISING and PART OF. COMPRISING relates each instance of a schema type to the instances
of the object types of its decomposition; PART OF is the reverse of COMPRISING. For all x ∈ C, x≺ y:

Lex(λy , λx, COMPRISING) =∈e
x,y ◦∈c

x,y
←

Lex(λx, λy , PART OF) =∈c
x,y ◦∈e

x,y
←

5.2.3 Generic names

The names OF and INVOLVED IN are intended to facilitate the handling of objectification. They are also
useful as shorthands for predicator names. OF represents all relations between fact type instances and their
constituent object type instances, INVOLVED IN being its inverse. For all x ∈ O and f ∈ F :

Lex(λx, λf , INVOLVED IN) =
⋃

q∈f,Base(q)=x

q

Lex(λf , λx, OF) =
⋃

q∈f,Base(q)=x

q←

The union operator in this definition is required to handle fact types that contain predicators with the same
base.

5.3 Information descriptors
A number of operators are available to construct (composed) information descriptors. The most important
construction mechanism is juxtaposition. The general rule for concatenating information descriptors P and
Q is:

ρt(P Q) = ρt(P) ◦ ρt(Q)

where ◦ denotes concatenation of binary relations (in the mathematical sense).
Information descriptors can be combined into new information descriptors by a number of operators.

The first group contains operators such as union, intersection and set difference:

expression ρt(expression)

P INTERSECTION Q ρt(P)∩ ρt(Q)
P UNION Q ρt(P)∪ ρt(Q)
P MINUS Q ρt(P) \ ρt(Q)

Note that as Elisa-D is designed as an open language (see the language enrichments in subsection 5.5), it
is quite possible to define − as an alternative for MINUS”

Information descriptors relate beginning and ending points of paths through the information structure.
The operator THE restricts an information descriptor to its beginning point:

expression ρt(expression)

THE P
{

〈x, x〉
∣

∣ 〈x, y〉 ∈ ρt(P)
}

19

The second group of binary operators consists of arithmetic operators:

expression ρt(expression)

P op X

{

〈x op y, z〉

∣

∣

∣

∣

∃v [〈x, v〉 ∈ ρt(P)]∧
〈y, z〉 ∈ ρt(Q)

}

where op ∈
{

+,−, ∗, /
}

. The third group of binary operators is derived from comparison relations on the
underlying domains (D), such as <, ≥, BEFORE, OVERLAPPED BY. If R is such a relation, then:

ρt(P R Q) = ρt(P) ◦ R ◦ ρt(Q)

Finally, we introduce set comprehension. This operator restricts the result of a information descriptor
P to values adhering to a condition C:

expression ρt(expression)
{

v IN P
∣

∣ C
} {

〈x, x〉 ∈ ρt(THE P)
∣

∣ ρt(C|vx) 6= ∅

}

The expression C|vx represents the Elisa-D information descriptor C, in which all free occurrences of name
v are interpreted as x, regardless of any previous meaning assignment (from the lexicon, or another variable
binding).

5.4 Predicates
In Elisa-D, predicates are treated as information descriptors as well. The basis for predicates is formed by
the boolean values, which are introduced as special zero-adic operators:

expression ρt(expression)

TRUE
{

〈v, v〉
∣

∣ v ∈ Ω
}

FALSE ∅

The conditional clause construction is introduced as follows:

expression ρt(expression)
IF C

THEN P
ELSE Q

{

ρt(P) if ρt(C) 6= ∅

ρt(Q) otherwise

The test whether an information descriptor has an empty result provides an illustration of the usage of the
conditional clause:

SOME P , IF P THEN TRUE ELSE FALSE

For the moment, , is employed as an abbreviation mechanism. In the next section we will introduce the
macro mechanism, which allows us to properly introduce such abbreviations.

Using the above operators, some further notational shorthands are defined. The traditional operations
on predicates can be formed in the usual fashion, using logical connectives and quantification:

C1 AND C2 ,

(SOME C1) INTERSECTION (SOME C2)

C1 OR C2 ,

(SOME C1) UNION (SOME C2)

NOT C ,

TRUE MINUS SOME C

FOR SOME x IN P HOLDS C ,

SOME
{

x IN P
∣

∣ C
}

FOR EACH x IN P HOLDS C ,

NOT FOR SOME x IN P HOLDS NOT C

where C1, C2, C and P are information descriptors.

20

5.5 Language enrichment
In the previous subsection, we saw some examples of the introduction of macros. In this subsection, this
mechanism is introduced formally. The purpose of macros is the enrichment of the retrieval language by
assigning meaning to more constructs. Each macro can be seen as a new grammar rule, extending the
retrieval language.

The general format of a macro definition is as follows:

LET ω0 X1 ω1 . . . Xn ωn BE E

where X1, . . . , Xn are names of variables (6∈ Names), and ω0, . . . , ωn form the name of the macro. Due
to this definition, the expression ω0 P1 ω1 . . . Pn ωn is meaningful. It is evaluated according to the actual
grammar, at each point of time, with the following meaning:

ρt(ω0 P1 ω1 . . . Pn ωn) , ρt(E|X1,...,Xn

P1,...,Pn
)

This approach is in line with the style of evaluation in functional programming languages ([EP93]).
Adding new grammar rules may easily render a grammar ambiguous. A possible strategy is to accept

ambiguity on the basis of the observation that natural language is ambiguous as well. Note that overloading
of names in the lexicon already introduced ambiguity to some extent. Another approach is the introduction
of a validity check upon entering new grammar rules. A possible means to overcome ambiguity is the
introduction of priorities for macros.

Note that the macro mechanism offers the possibility to introduce recursion. As an example, consider
the following macro definition:

LET Fac n BE

IF n = 0 THEN 1 ELSE n * Fac n − 1

where the equality operator is defined by the macro definition LET = BE. The working of this mechanism
is illustrated by the following proof of SOME (Fac 2 = 2):

Fac 2 ≡ {NOT SOME 2 = 0}

2 * Fac 1 ≡ {NOT SOME 1 = 0}

2 * 1 * Fac 0 ≡ {SOME 0 = 0}

2 * 1 * 1 ≡ {elaborate}
2

5.6 Special evolution related names
The language introduced so far, bascially does not exceed the functionality of LISA-D. In order to, in-
deed handle queries concerned with evolution, only a limited number of extensions is sufficient. These
extensions range from extensions to the lexicon up to macro definitions.

5.6.1 Now

The name NOW is introduced to get grip on the point of time at which the query is evaluated:

Lex(λT , λT , NOW) = λt. 〈t, t〉

5.6.2 Validity

The time intervals, during which an expression exists (i.e., has a non-empty result), can be obtained by the
following operator:

expression ρt(expression)

VALIDITY OF C
{

〈T, T 〉
∣

∣ MaxDur(T, ρt(C) 6= ∅)
}

21

5.6.3 Gathering over time

The following operator unites the result of an information descriptor over its existence.

expression ρt(expression)

ALL P EVER
⋃

s∈T

ρs(P)

Another verbalisation of this operator is introduced by: LET WHICHEVER P BE ALL P EVER.

5.6.4 Relating to points of time

The name AT is introduced in the lexicon of Elisa-D to relate, in a generic sense, histories to points of
time. When using the AT keyword, we do not want to distinguish between elements from AME and Ω.
Therefore, we first define Element as a generic term for application model elements, and their (possible)
relation with values (from Ω):

LET Element BE

Ame UNION Value INVOLVED IN Instance typing

Intuitively, AT should have the following semantics:

1. It relates values from Ω to points of time from T , via fact type HasTypes and object type AME (see
figure 11 (page 11)). This connection allows for the handling of time stamping.

2. It relates application model elements to T . This offers the possibility to query about different ver-
sions of the application model.

This semantics is summarised in the following macro definition:

LET AT BE

Element INVOLVED IN Ame evolution OF Time

The special name WHEN is the reverse of AT:

LET WHEN BE

Time INVOLVED IN Ame evolution OF Element

Some examples of the usage of these constructions are:

1. THE Time WHEN X
This yields all points of time at which information descriptor X has a non-empty result.

2. THE Squadron AT Now

This results in all squadrons existing at the point of time at which the information descriptor is
evaluated.

The names AT and WHEN relate points of time to the generalised notion Element. The fact type Holds

relates time intervals and application model elements. In order to obtain better readable sentences, we also
enrich Element also with this relation:

LET HAVING LIFESPAN BE

Element INVOLVED IN Holds OF Time interval

LET LIFESPAN OF BE

Time interval INVOLVED IN Holds OF Element

22

The operations on T and TI , as introduced in section 4, are made available for Elements, by defining
for instance:

LET DURING BE

HAVING LIFESPAN DURING

LET BEFORE BE

(HAVING LIFESPAN UNION AT) BEFORE

LET AFTER BE

(HAVING LIFESPAN UNION AT) AFTER

LET CONTAINING BE

(HAVING LIFESPAN UNION AT) CONTAINS

LET INCREMENT OF BE

AT IS INCREMENT OF

Note that BEFORE, AFTER and CONTAINS refer to the relations from section 4.

5.6.5 Time modalities

A special class of time related operations is formed by the so called time modalities. We will demonstrate
the expressiveness of Elisa-D by showing how such operators are introduced via the macro mechanism.

The first operator corresponds to the next operator (2) in temporal logic. This operator is (verbosely)
introduced in Elisa-D by:

LET AT THE NEXT POINT OF TIME C WILL HOLD BE

SOME

VALIDITY OF C
CONTAINING

INCREMENT OF NOW

Statements about system behaviour in the future can be formulated via the following constructs, from which
the first corresponds to the ever (3) operator from temporal logic:

LET AT SOME TIME C WILL HOLD BE

SOME

VALIDITY OF C
AFTER NOW

LET NEVER C WILL HOLD BE

NOT AT SOME TIME C WILL HOLD

LET FROM NOW ON C BE

NOT SOMETIME

NOW BEFORE

VALIDITY OF NOT C

Properties from the past can be established by:

LET AT SOME TIME C HAS HELD BE

SOME

VALIDITY OF C
BEFORE NOW

LET NEVER C HAS HELD BE

NOT AT SOME TIME C HAS HELD

23

Properties over the entire history, including past, present and future, of the system can be addressed by:

LET ALWAYS C BE

NOT SOME VALIDITY OF NOT C

6 An example of evolution
As an illustration of an evolving universe of discourse, we consider an insurance company for cars. For
each policy sold, the insured car and client are recorded. Every insured car has associated its registration
number and type (Opel Corsa 1.2S, Ford Sierra 1.8, etc). A client is identified by name and address. The
information structure of this universe of discourse is modelled in figure 17. As an illustration of the Elisa-
D’s ability to be employed for the disclosure of ER schemas as well, we use the ER modelling technique
for this example. Note that we have prefixed the attributes of an entity type with a #, and have associated
predicator and predicator reverse names to predicators, in the format p/r. Note furthermore, that although
EVORM supports the definition of primary identifiers, they are not shown in the ER examples as the used
graphical language does not feature the symbols apt for this purpose.

Car

Reg nr
Type

Client

Name
Address

����
QQQQ����

QQQQ

Policy
Amount
Pol nr

insured
by/for

has
a/of

Figure 17: The information structure of a car insurance company

After some time, the insurance company noticed a substantial difference between damage claims made
for private cars, and for company cars. Rather than raising overall policy prices, a price differentiation was
effectuated. For company owned cars, prices for new policies were increased by some percentage. Prices
for new policies for private cars, however, were made dependent on the car usage, measured in kilometers
per year.

As these changes in price only involve new policies, the current population of the schema did not have
to be altered. The evolved information structure is depicted in figure 18. The differentiation between
private and company cars, has led to a subtyping of cars, and the dependency of the policy price on the
amount of driven kilometers has led to the introduction of an extra entity type (Kilometrage) and relation
type (Usage).

Car

Reg nr
Type

Client

Name
Address

Company
car

Private
car

Kilometrage

Km

�
�

�
�

�A
A

A
A

A

����
QQQQ����

QQQQ

Policy
Amount
Pol nr

����
QQQQ����

QQQQ

Usage

@
@

@
@

�
�

�
�

insured
by/for

has
a/of

has/of of/is

Figure 18: Car insurance with differentiated pricing

24

A large number of small companies, not intensively using their cars, started to protest against new
policy pricing, threatening to accommodate their policies elsewhere. Thereupon, the insurance company
decided to differentiate pricing for business cars as well. As a result, subtyping cars into business cars and
private cars was abolished. A further means to be more competitive, was found in the introduction of a
reduction for clients not claiming much damage. This reduction depends on the number of damage free
years.

Car

Reg nr
Type

Client

Name
Address

Kilometrage

Km

����
QQQQ����

QQQQ

Policy
Amount

Reduction
Pol nr

����
QQQQ����

QQQQ

Usage

insured
by/for

has
a/of

@
@

@
@

@

has/of

of/is

Figure 19: The final information structure

For the information structure, this leads to the introduction of the attribute # Reduction for relationship
Policy. This results in figure 19. The introduction of the reduction, also requires a change in the current
population of the information structure, as an initial reduction must be issued. Some illustrative examples
of queries on instances, and the schema level, in the context of this example are:

1. Provide a list of all policies ever sold

Policy

2. Provide a list of all policies during the year 1992

Policy DURING Interval: 1992-01-01 1992-12-31

3. Provide all fact types ever known about cars

Fact type IN Types INVOLVED IN

Instance typing OF Car

4. Provide all fact instances known about the cars registered during the 22th of may in 1967

Value OF Car DURING 1967-05-22

5. When was the concept of company car introduced

BEGIN OF VALIDITY OF Object-type ’Company-cars’

Where BEGIN OF ⊆ T × TI is the relation providing the starting point of a time interval.

6. Which customers, having left the company after the differentiation in between private and company
car (which happened at t1), have returned after the newest change (at t2).

Client

WHICH EVER has-a Policy AT t
AND-ALSO

WHICH EVER NOT has-a Policy HAVING

LIFESPAN CONTAINING Interval: t1 t2
AND-ALSO

AT NOW

25

7 Conclusions
In this paper we introduced a language for the handling of evolving information systems, with focus on
queries. If also constructs are added to evolve all application model elements, then Elisa-D seems to meet
the requiremenets of what may be called a 6-th generation language. Currently, prototype implementations
are being prepared, based on prototypes of LISA-D([Hub93]).

Further research may involve an improved disclosure mechanism, and extensions with uncertainty
and relevance feedback, bridging the gap with expert systems and information retrieval systems (see also
[Pro94]).

Acknowledgements
The investigations were partly supported by the Foundation for Computer Science in the Netherlands
(SION) with financial support from the Dutch Organization for Scientific Research (NWO).

We would like to thank the anonymous referees for their many valuable comments on earlier versions
of this paper.

Appendix: EVORM Graphical Conventions
This appendix contains an overview of the EVORM symbols for object types, generalisations and special-
isations, and graphical constraints used in this article.

Representation of object types

entity type:

����
label type x:

����(x)

role:

predicator:

����
y power type of x:

����x
�
�
�
�
y

y sequence type of x:

����x
y

schema type:

z�
�	x �
�	y

26

Inheritance

y is generalisation of x:

����x
6

����y

y is specialisation of x:

����y
6

����x

Constraints

single-fact uniqueness constraint:
�-

uniqueness constraint:
�
�	U

total role or cover constraint:
�
�	•

occurrence frequency constraint:
�
 �	n..m

exclusion constraint:
�
�	×

membership constraint:
�
�	∈

subset constraint:
�
�	⊆

equality constraint:
�
�	=

enumeration constraint:
�
�	{x1..xk}

References
[Ari91] G. Ariav. Temporally oriented data definitions: Managing schema evolution in temporally

oriented databases. Data & Knowledge Engineering, 6(6):451–467, 1991.

[Big88] J. Bigelow. Hypertext and CASE. IEEE Software, 5(2):23–27, 1988.

[BKKK87] J. Banerjee, W. Kim, H.J. Kim, and H.F. Korth. Semantics and Implementation of Schema
Evolution in Object-Oriented Databases. SIGMOD Record, 16(3):311–322, December 1987.

[BPW93] C.A.J. Burgers, H.A. Proper, and Th.P. van der Weide. Organising an Information System as
Stratified Hypermedia. In H.A. Wijshoff, editor, Proceedings of the Computing Science in the
Netherlands Conference, pages 109–120, Utrecht, The Netherlands, EU, November 1993.

[BW92] P.D. Bruza and Th.P. van der Weide. Stratified Hypermedia Structures for Information Disclo-
sure. The Computer Journal, 35(3):208–220, 1992.

[Che76] P.P. Chen. The entity-relationship model: Towards a unified view of data. ACM Transactions
on Database Systems, 1(1):9–36, March 1976.

27

[CW93] M.A. Collignon and Th.P. van der Weide. An Information Analysis Method Based on PSM.
In G.M. Nijssen, editor, Proceedings of NIAM-ISDM. NIAM-GUIDE, September 1993.

[EGH+92] G. Engels, M. Gogolla, U. Hohenstein, K. Hülsmann, P. Löhr-Richter, G. Saake, and H-D.
Ehrich. Conceptual modelling of database applications using an extended ER model. Data &
Knowledge Engineering, 9(4):157–204, 1992.

[EP93] M.C.J.D. van Eekelen and M.J. Plasmeijer. Functional Programming and Parallel Graph
Rewriting. Addison-Wesley, Reading, Massachusetts, 1993.

[FOP92a] E.D. Falkenberg, J.L.H. Oei, and H.A. Proper. A Conceptual Framework for Evolving Infor-
mation Systems. In H.G. Sol and R.L. Crosslin, editors, Dynamic Modelling of Information
Systems II, pages 353–375. North-Holland, Amsterdam, The Netherlands, EU, 1992. ISBN
0444894055

[FOP92b] E.D. Falkenberg, J.L.H. Oei, and H.A. Proper. Evolving Information Systems: Beyond Tem-
poral Information Systems. In A.M. Tjoa and I. Ramos, editors, Proceedings of the Data Base
and Expert System Applications Conference (DEXA’92), pages 282–287, Valencia, Spain, EU,
September 1992. Springer Verlag, Berlin, Germany, EU. ISBN 3211824006

[GS90] P.K. Garg and W. Scacchi. A Hypertext System to Manage Software Life-Cycle Documents.
IEEE Software, 7(3):90–98, 1990.

[Hag92] T.M. Hagensen. Hyperstructure CASE Tools. In B. Theodoulidis and A. Sutcliffe, editors,
Proceedings of the Third Workshop on the Next Generation of CASE Tools, pages 291–297,
Manchester, United Kingdom, May 1992.

[Hal89] T.A. Halpin. A logical analysis of information systems: static aspects of the data-oriented
perspective. PhD thesis, University of Queensland, Brisbane, Australia, 1989.

[Hal92] T.A. Halpin. WISE: a Workbench for Information System Engineering. In V.-P. Tahvanainen
and K. Lyytinen, editors, Next Generation CASE Tools, volume 3 of Studies in Computer and
Communication Systems, pages 38–49. IOS Press, 1992.

[HE92] U. Hohenstein and G. Engels. SQL/EER-syntax and semantics of an entity-relationship-based
query Language. Information Systems, 17(3):209–242, 1992.

[HH93] T.A. Halpin and J. Harding. Automated Support for Verbalization of Conceptual Schemas.
In S. Brinkkemper and F. Harmsen, editors, Proceedings of the Fourth Workshop on the Next
Generation of CASE Tools, pages 151–161, Paris, France, June 1993.

[HO92] T.A. Halpin and M.E. Orlowska. Fact-oriented modelling for data analysis. Journal of Infor-
mation Systems, 2(2):97–119, April 1992.

[HPW92] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Data Modelling in Complex
Application Domains. In P. Loucopoulos, editor, Proceedings of the Fourth International
Conference CAiSE’92 on Advanced Information Systems Engineering, volume 593 of Lecture
Notes in Computer Science, pages 364–377, Manchester, United Kingdom, EU, May 1992.
Springer Verlag, Berlin, Germany, EU. ISBN 3540554815

[HPW93] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Formal definition of a conceptual
language for the description and manipulation of information models. Information Systems,
18(7):489–523, October 1993.

[HPW94] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. A Conceptual Language for
the Description and Manipulation of Complex Information Models. In G. Gupta, editor, Sev-
enteenth Annual Computer Science Conference, volume 16 of Australian Computer Science
Communications, pages 157–167, Christchurch, New Zealand, January 1994. University of
Canterbury. ISBN 047302313

28

[Hub93] J.W.G.M. Hubbers. Automated Support for Verification & Validation of Graphical Constraints
in PSM. Technical Report 93/01, Software Engineering Research Centre (SERC), Utrecht,
The Netherlands, 1993.

[HW93] A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data modelling.
Data & Knowledge Engineering, 10(1):65–100, February 1993.

[JMSV92] M. Jarke, J. Mylopoulos, J.W. Schmidt, and Y. Vassiliou. DAIDA: An Environment for Evolv-
ing Information Systems. ACM Transactions on Information Systems, 20(1):1–50, January
1992.

[KBC+89] W. Kim, N. Ballou, H.-T. Chou, J.F. Garza, and D. Woelk. Features of the ORION Object-
Oriented Database. In W. Kim and F.H. Lochovsky, editors, Object-Oriented Concepts,
Databases, and Applications, ACM Press, Frontier Series, pages 251–282. Addison-Wesley,
Reading, Massachusetts, 1989.

[Mee82] R. Meersman. The RIDL Conceptual Language. Research report, International Centre for
Information Analysis Services, Control Data Belgium, Inc., Brussels, Belgium, 1982.

[MS90] E. McKenzie and R. Snodgrass. Schema evolution and the relational algebra. Information
Systems, 15(2):207–232, 1990.

[NH89] G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational Database Design: a fact
oriented approach. Prentice-Hall, Sydney, Australia, 1989. ASIN 0131672630

[Pro94] H.A. Proper. A Theory for Conceptual Modelling of Evolving Application Domains. PhD
thesis, University of Nijmegen, Nijmegen, The Netherlands, EU, 1994. ISBN 909006849X

[PW93] H.A. Proper and Th.P. van der Weide. Towards a General Theory for the Evolution of Appli-
cation Models. In M.E. Orlowska and M.P. Papazoglou, editors, Proceedings of the Fourth
Australian Database Conference, Advances in Database Research, pages 346–362, Brisbane,
Australia, February 1993. World Scientific, Singapore. ISBN 981021331X

[PW94] H.A. Proper and Th.P. van der Weide. EVORM - A Conceptual Modelling Technique for
Evolving Application Domains. Data & Knowledge Engineering, 12:313–359, 1994.

[PW95] H.A. Proper and Th.P. van der Weide. A General Theory for the Evolution of Application
Models. IEEE Transactions on Knowledge and Data Engineering, 7(6):984–996, December
1995.

[Rod91] J.F. Roddick. Dynamically changing schemas within database models. The Australian Com-
puter Journal, 23(3):105–109, August 1991.

[RP92] J.F. Roddick and J.D. Patrick. Temporal semantics in information systems - A survey. Infor-
mation Systems, 17(3):249–267, 1992.

[Win90] J.J.V.R. Wintraecken. The NIAM Information Analysis Method: Theory and Practice. Kluwer,
Deventer, The Netherlands, EU, 1990.

29

