
Improving architectures by

Simulation and Animation

A. Stam∗

Ordina Institute
Groningenweg 6
2803 PV Gouda
The Netherlands

A.Stam@institute.nl

H.A. Proper
University of Nijmegen

Sub-faculty of Informatics
IRIS Group

Toernooiveld 1
6525 ED Nijmegen

The Netherlands
E.Proper@acm.org

23rd June 2004

PUBLISHED AS:

A. Stam and H.A. Proper. Improving Architectures by Simulation and Animation. In D.B.B.
Rijsenbrij, editor, Proceedings of the Second National Architecture Congres, Amsterdam, The
Netherlands, EU, November 2000.

Abstract

In this paper we present our ideas about using simulation and animation techniques to improve the
understanding and the quality of architectures. We discuss the meaning of validation and verification for
architectures and the value of simulation and animation in this context. We give an outline of what is
needed in order to simulate systems based on their architecture and what can be accomplished by doing
so. A small example is given to illustrate our ideas.

1 Introduction
Many organisations are confronted with the problem of shaping their organisational structures and ICT
systems in such a way that they can be adapted quickly enough to cope with rapid contextual and socio-
economical changes which influence their (way of doing) business. Flexibility and changeability become
core issues and are relevant for both business and ICT [HV93]. Mechanisms are needed to swiftly assess
the impact of adaptations and steer and manage changes in the organisational system.

Therefore, organisations try to capture (part of) their structures in a high-level description, which we
call an architecture, which serves as a means to gain insight in the organisation of their activities and
structures, as a prospect to steer the direction of ICT developments and as a basis for important decisions
in several areas.

As such, a good architecture serves multiple goals at the same time and therefore must have at least
the following qualities:

• Clarity: it should clarify the various structures of the organisation.

• Manageability: it should be able to be used as a steering mechanism for changes in these structures.

• Flexibility: it should enable change in these structures as quickly and simply as possible.

• Realizability: it should contain realistic models of structures that are to be realized in future, rather
than idealistic models.

These qualities are key properties for an architecture, but they are difficult to obtain for various
reasons. First, we have to deal with the unpredictable future for which, unfortunately enough, validation
is impossible; an archictecture must enable the exploitation of unforeseen opportunities [Tap96]. Second,
no proven methods exist for quantifying and measuring these properties; validation is often based on

∗Also: University of Leiden, Leiden Institute for Advanced Computer Science

1



statistics and even more often on experience or intuition. Formal methods are, at least up to now, deficient
in these situations.

In many fields of engineering, the same problem is recognized. When designing an airplane, for
example, how do we know if it actually will be satisfactory and can be realized and maintained? When
designing a new building, how can we be sure that it will not collapse when we actually construct it?
When designing a new rollercoaster, how can we be sure that visitors will like this new attraction? A
tool often used in these fields is simulation, i.e. experimentation with executable models and designs
of real systems. Simulation of these systems based on their designs is often combined with animation
techniques. The combination of simulation and animation often yield valuable insight into the qualities
of a model.

We think that techniques of simulation and animation are applicable in the field of architectures as
well, as an addition to existing validation and verification techniques. They can be used to get a better
feeling for many qualities of an architecture or the system it describes1, by working with scenarios and
use cases or making changes in configurations and viewing their impact. In this paper we give a short
overview of our ideas.

1.1 Organisation of this paper
This paper is organized as follows. In Sections 2 and 3 we give definitions for the terms validation,
verification, simulation and animation. In Sections 4 and 5 we discuss what is needed in order to simulate
a system based on its architecture, and what can be learnt from doing this. A small example to illustrate
our ideas is given in Section 6. Finally, we draw conclusions in Section 7.

1.2 Terminology
We take the view that an architecture is in essence an abstract representation of a system. This system
need not exist in reality (yet). An architecture consists of information about the system in the form of
various models, each covering a specific aspect of the system. Architectures can contain models that
describe the current state of a system, as well as models that describe a planned future state of this
system. The models of an architecture should be fully integrated and connected to each other.

We make a distinction between the following uses of the word architecture:

• With architecture we mean the process of designing an architecture.

• With the architecture of a system we mean the entire “integrated whole” of abstract models and
views on this system.

• All specific models contained in the architecture of a system have names like organisational archi-
tecture, software architecture, operational architecture, etc.

2 Validation and verification
In some literature a distinction is made between validation, which ensures that we build the right sys-
tem, and verification, which ensures that we build the system right. “Some authors distinguish between

validation – an assessment of how the product we are building responds to the needs of the customer –
and verification – an assessment of the internal correctness of the process (e.g., how a software archi-
tecture is correct with respect to the stated requirements). This distinction is motivated by the fact that
requirements might not capture exactly what the customer wishes, so that a verified system might still be
unacceptable.” [GJM91]

In the light of architecture, both validation and verification are important. An architecture that does
not respond to the needs of the customer is worthless; the very essence of designing architectures is
to have a mechanism to increase this response! Therefore, validation is essential. Verification, on the
other hand, is also of considerable importance, especially for keeping an architecture internally consis-
tent. Architectures cover a wide spectrum of aspects; integration of these aspects is certainly not trivial.

1Note that there is a difference between desirable properties for an architecture (mentioned in Section 1) and those desirable for
the system that is described by the architecture. For the system itself, properties like efficiency, reliability, portability, etc. are also
important. For an overview of important quality criteria for (software) systems, see for example [FV99, ISO96].

2



The diversity of models within an architecture have to be verified against each other, because internal
inconsistencies can lead to wrong decisions.

Guaranteeing qualities like clarity, realizability, manageability and flexibility is an assessment for
which both validation and verification are important. An architectural model which describes a future
system must be valid with regard to the needs of the customer, while an architectural model which
describes an abstraction of an existing system must be verified against this system.2

3 Simulation and animation
Simulation and animation techniques can be very helpful for finding a valid solution for a problem.
Instead of trying to compute a valid solution (which is impossible or infeasible for many problems),
with simulation and animation we can try several candidate solutions and analyse their benefits and
shortcomings.

3.1 Simulation
Simulation can be described as the process of developing a simulation model of a real system and ex-
perimenting with this model in order to gain insight in its behaviour under various circumstances. A
simulation model consists of a description of the entities of a system and their relations such that it is
possible to simulate the behaviour of this system over time.

A simulation process comprises three main phases:

• In the induction phase, information is collected about the system we want to simulate, and a simu-
lation model is built.

• During the deduction phase, several experiments are done with the simulation model in order to
achieve an optimal solution according to certain criteria.

• The validation phase runs in parallel with the two other phases. In this phase the validity of the
simulation model (its correspondence to reality) is guaranteed.

In order to simulate a system, three things must hold. First, the system to be simulated must be
demarcated clearly. It must be clear which part of reality belongs to the system, and which part forms its
context. Second, it is necessary to have a predefined goal, which in many cases has to do with finding
an optimal solution to a problem. Without a goal, it will be very complicated to choose the right entities,
relations and parameters for the simulation model. Third, parameters must be quantifiable in order to be
able to simulate something.

3.2 Animation
Animation comes from the latin word animare, which means “to give life to”. As one picture says
more than a thousand words, one animation says more than a thousand pictures. We have to see what
is happening with a system and how it behaves under various circumstances in order to get a feeling for
its complexity and to gain insight into its functioning. Visual simplicity and clarity, especially at a high
level of abstraction, are important properties for relatively complex and abstract artefacts; these kind of
properties can be validated with techniques like animation.

4 What is needed for simulation
With simulation, we try to abstract from reality in order to get a relatively simple model with which
we can experiment. During the so-called induction phase in a simulation process, a simulation model
is built, which is used to simulate a system. We try to ensure that the simulated behaviour mimics real
behaviour as closely as possible within the limits of the abstract simulation model.

An architecture is also an abstraction from reality. It therefore does not differ much from a simulation
model. The only thing needed is a framework in which we can represent all architectural information.
Many frameworks for architectural description can be found in literature, for example in [SZ92, IEE00]

2The examples above are perhaps an indication for the fact that the original distinction between validation and verification is not
really useful in the context of architectures. Maybe it would be better to use the term validation for all activities which deal with
guaranteeing the semantic correspondence between models.

3



and they usually support a set of models in which all architectural information can be specified. Most
frameworks support at least the following dimensions:

• Different kinds of entities that can be used, together with their entity-specific properties. Examples
of these are “activity”, “function”, “actor”, “trigger”, etc.

• Different contexts in which these concepts can play a role and which can be used as different views
on the same system. Examples are: “business context”, “ICT context”, “customer context”, etc.

• Different levels of abstraction for modeling these entities in a specific context. Examples are: “en-
terprise level” and “department level” in an organisational context, “enterprise application level”
and “executable component level” in an ICT context.

An architectural framework allows for the representation of an architecture within a set of models.
However, an architecture specified within a framework is certainly not the same as a simulation model.
A simulation model contains information which would not be specified in an architecture normally.
Simulation requires additional information about the initial state of a system and about external triggers
which cause activity within the system. It also requires detailed quantifiable information about the entities
of the architecture, for example exact timing information for activities, or the maximum number of
projects an employee can handle within a given time slot. This kind of information, which is not regarded
as part of an architecture, can be classified as follows:

• additional quantifiable properties of entities within the architecture;

• a high-level description of the behaviour of the context that interacts with the system specified in
the architecture;

• information about the initial state of the system and its context, in terms of entities of their high-
level descriptions.

What we regard as “the system” and “its context” is dependent on what we want to simulate. Consider
an architecture for an entire enterprise: a description of its business processes, its organisation, its ICT
systems, etc. A simulation of the entire company could become very demanding, while a simulation of
only one system or one department or one business process could be already quite informative. In the last
case, we regard only the specific part we have chosen as “the system to be simulated”, while its “context”
is defined by only those parts which directly interact with the chosen part.

When we have chosen an architecture, represented it within a framework, enriched it with quantitative
properties, described its context and specified the initial state of both the system and its context, we can
start with a simulation.

5 What can be learned from simulation
The goal for simulating (part of) an architecture will always have to do something with optimization.
Some examples of a simulation goal (in terms of a question) are:

• Which software system part forms the bottleneck for my production process?

• Which parts of my analysis software should I run on the mainframe?

• What would be the impact of replicating a software component on all my clients instead of running
it on two servers? Should I buy a third server instead?

• Should I automatize this manual task or not?

• When changing this interface, which impact does it have?

• Which part of my software or hardware has to be expanded or replaced in order to double the size
of my call centre?

All these goals are in fact optimization goals. Simulation will in no case yield the answer to these
questions, partly because not all aspects of a problem can be modeled in general (for example political
or emotional aspects), partly because we work with an abstraction of reality, a high-level architecture,
instead of reality itself. Nevertheless, in many cases it will yield new information and insights.

Simulation can also be used for “measuring” the quality of an architecture regarding the properties we
mentioned in Section 1: clarity, manageability, flexibility and realizability. “given the following change
in the system, which architecture will perform best after the change? Which architecture needs minimal
effort to implement this change?” This way, simulation adds value to the design of architectures.

4



As a third application, simulation can be used as a verification mechanism. An internal inconsistency
in the models could lead to strange simulation results or could be detected before simulation is even
possible.

Some parts of a simulation can be visualized and animated, like:

• The execution of a single business process

• Amount of database transactions; bottlenecks in batch systems

• Several flows, like information flows or control flows

• Activities performed by an employee in a simulated environment

• Inbound and outbound traffic for a specific department

Animation does not yield new results; instead, it yields an insight into the way a system works, which
could be harder to gain from only a bunch of numbers (the result of a simulation). It could also be used
as a validation tool: “Is it the architecture we had in mind? Does it behave like we want it to?”

6 Example
Consider a small company, named MatchIt, with 21 employees, providing a “matching” service to cus-
tomers: Customers can sell or buy things to or from other customers, while MatchIt takes care of bringing
the right people in contact with each other, in order to match supply and demand. Currently, there is one
manager and there are 20 employees. The employees enter information about customers who sell prod-
ucts and customers who demand products, and try to find matches between them. Once a good match
is found, employees inform the customers involved and supply contact information to them. Customers
request mostly via telephone, but also via email. MatchIt has developed an ICT system to support its
activities, which consists of a large database, environments for entering information about supplies and
demands, and a specific analysis tool that supports the search for good matches. Currently, there are two
establishments: one in Utrecht and one in Hilversum.

6.1 An architectural framework
In order to describe the architecture of MatchIt, we need a framework to represent the architectural
information. We choose to make an architecture for the entire company and use the following framework
for this:

• An Organisational architecture describes the different functions that are distinguished within
MatchIt and gives an overview of the human resources.

• A Service architecture describes the services that the company offers and their underlying business
processes.

• An Application architecture describes application components that are recognized in the ICT sys-
tem of MatchIt.

• A Hardware architecture describes the available hardware and their relations, including physical
information about their location.

• An Operational architecture combines the architectures above.

The operational architecture combines several parts of the other architectural models. Employees
specified in the organisational architecture carry out services specified in the service architecture. In
order to do so, they need certain applications specified in the application architecture. These applications
run on hardware, specified in the hardware architecture. Thus, all models are related and their relations
are specified in the operational architecture.

6.2 Creating a simulation model
As an example, Figure 1 contains the current hardware architecture of MatchIt, combined with the ap-
plication architecture and employees from the organisational architecture. Currently, each employee
performs a single task: either management, or matching, or entering supplies, or entering demands.
Eight employees work in Hilversum, thirteen work in Utrecht. The hardware consists of two servers and
several clients. Clients run software specific to the activities of one employee, while the servers contain

5



the common database and analysis software (which is too demanding for simple client systems). The
main database is situated in Utrecht, where all matching is done, while in Hilversum there is a local
database; its contents are sent to the main database in one batch once per day.

A complete simulation model for MatchIt would include much quantitative information about the
entities within the system and a description of the behaviour of the context of the system (in this case,
the behaviour of customers). Consider the following examples:

• MatchIt gets 200 telephone calls for supplies and 250 for demands in Hilversum each day (probably
with a certain distribution), and 150 respectively 200 in Utrecht.

• Matches between supply and demand are found 50 times a day on average.

• A supply that matches a given demand is often found within two days.

• Entering information about a new supply takes between 2 and 10 minutes.

• It takes approximately one hour to copy the contents of the local database in Hilversum to the main
database in Utrecht.

• Etcetera.

The simulation model can be made as rich as one wants. Information about the size of the database,
information about telephone costs, etc. could also be included in the model.

Main Server Secondary Server

Main DB

Client Client

Client

Local DB

Analysis Software

Client Client

supply entry

supply entry

demand entry

demand entrymatching
toolkit

Client

management
toolkit

HilversumUtrecht

6x

3x 3x

1x

4x 4x

MatchIt

Figure 1: An overview of the example: hardware, application software and employees

6.3 Simulating the system
Suppose MatchIt wants to improve its organisation as follows.

1. The manager decides on the basis of recent inquiries that MatchIt should improve its customer inti-
macy. Instead of doing the same activity again and again, employees must help the same customer
again and again. This means that when an employee gets a telephone from a customer supplying
or demanding something, this same employee has to find a match for this customer.

6



2. In addition, the time between request and match must decrease from two days on average to four
hours on average. The manager does not know how this can be achieved, but thinks that optimiza-
tion of the internal workflow could help.

What is the impact of these changes? In our example, it is obvious that this means considerable
reconfiguration of the entire architecture: the application component for matching must run on all clients
now, analysis software must be deployed on the server in Hilversum, the main database has to be repli-
cated in Hilversum once per four hours at least, etcetera. However, no one can foretell if the change
for increasing customer intimacy will actually be beneficial to the requirement of decreasing the time
between request and match. While it is relatively obvious to see which influence the first change has on
the structure of the system, it is hard to tell how it will influence the behaviour of the system.

This is typically a situation in which it could be useful to simulate the system before and after the
first change and look if it will actually perform better, worse, or equal. By using animation techniques
as well, we can visualize the influence that changes in the configurations have on individual employees,
on system performance, on information flows, etc. This visualization is especially important for direct
feedback (instead of number crunching) as to better and more easily understand the dynamics of the
entire system, as well as the quality of its architecture.

7 Conclusions and future work
In our opinion, clarity, manageability, flexibility and realizability are important properties of architectures
for which formal methods are deficient up to now. We propose to use simulation and animation tech-
niques in order to improve the understanding of an architecture and to validate these kind of qualities.
Currently, there are systems for simulation of some architecture parts, like Testbed from the Telematics
Institute [FJ98] for business processes. However, up to now there is no system which supports simulation
and animation for entire architectures, including software and hardware. We think that simulation and
animation can be used for the improvement of architectures in different ways:

• conception: gaining insight into an architecture;

• anticipation: estimating the impact of changes in the system;

• validation: comparing the system with the picture one has in mind;

• verification: verifying internal consistency or consistency with existing systems;

• comparison: comparing different architectures on the basis of specific qualities.

We would like to invite the reader to comment on the ideas presented in this paper. Together with
CWI in Amsterdam, Leiden Institute for Advanced Computer Science (LIACS) and Nijmegen University,
Ordina Institute is currently involved in the creation of a consortium with industrial partners in order to
develop frameworks, integrate theories and develop a demonstrator for architecture based simulation and
animation. Participation in this consortium is still possible for both universities and industry. If the reader
is interested in participation, please contact the authors of this paper.

References
[FJ98] H.M. Franken and W. Janssen. Get a grip on changing business processes: Results from the

Testbed-project. Knowledge and process management, 5(4):208–215, December 1998.

[FV99] M. Franckson and T.F. Verhoef, editors. Specifying Deliverables. Information Services Pro-
curement Library. ten Hagen & Stam, Den Haag, The Netherlands, 1999. ISBN 9076304823

[GJM91] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering. Prentice
Hall International, Englewood Cliffs, New Jersey, 1991. ISBN 0138204322

[HV93] J.C. Henderson and N. Venkatraman. Strategic alignment: Leveraging information technology
for transforming organizations. IBM Systems Journal, 32(1):4–16, 1993.

[IEE00] Recommended Practice for Architectural Description of Software Intensive Systems. Technical
Report IEEE P1471-2000, IEEE Standards Department, The Architecture Working Group of
the Software Engineering Committee, September 2000. ISBN 0-738-12518-0
http://www.ieee.org

7



[ISO96] ISO. Kwaliteit van softwareprodukten. ten Hagen & Stam, Den Haag, The Netherlands, 1996.
In Dutch. ISBN 9026724306

[SZ92] J.F. Sowa and J.A. Zachman. Extending and formalizing the framework for information systems
architecture. IBM Systems Journal, 31(3):590–616, 1992.

[Tap96] D. Tapscott. Digital Economy - Promise and peril in the age of networked intelligence.
McGraw-Hill, New York, New York, USA, 1996. ISBN 0070633428

8


