
Formal Definition of a Conceptual Language for the
Description and Manipulation of Information Models

A.H.M. ter Hofstede, H.A. Proper, Th.P. van der Weide

Department of Information Systems
University of Nijmegen

Toernooiveld
6525 ED Nijmegen

The Netherlands
E.Proper@acm.org

PUBLISHED AS:

A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Formal definition of a conceptual
language for the description and manipulation of information models. Information Systems,
18(7):489–523, October 1993.

Abstract

Conceptual data modelling techniques aim at the representation of data at a high level of abstraction.
This implies that conceptual data modelling techniques should not only be capable of naturally represent-
ing complex structures, but also the rules (constraints) that must hold for these structures. Contemporary
data modelling techniques however, do not provide a language, which on the one hand has a formal se-
mantics and on the other hand leads to natural looking expressions, for formulating these constraints. In
this paper such a language is defined for an existing data modelling technique (PSM), which is a gen-
eralisation of object-role models (such as ER or NIAM). In this language not only constraints, but also
queries and updates can be expressed on a conceptual level.

1 Introduction
Currently, many conceptual data modelling techniques exist. Conceptual data modelling techniques aim
at the representation of data at a high level of abstraction. The Conceptualisation Principle ([ISO87])
states that a conceptual schema should deal only and exclusively with aspects of the underlying Universe
of Discourse (UoD). Any aspect irrelevant to that meaning, e.g. machine efficiency, should be avoided.
Contemporary data modelling techniques are not capable of adhering to the Conceptualisation Principle
for each UoD. Choices that are not relevant with respect to the UoD have to be made (leading to over-
specification) or, even worse, the UoD has to be adapted, e.g. extra object types have to be introduced, to
meet the requirements of the modelling technique. These problems are caused by the lack of sufficiently
powerful construction mechanisms.

Another important principle of conceptual data modelling is the 100% Principle ([ISO87]), which states
that a conceptual schema completely prescribes all the permitted states and transitions of the conceptual
data base. This implies that a conceptual data modelling technique should not only be capable of represent-
ing complex structures but also rules (constraints) that must hold for these structures. In most modelling
techniques such constraints can not be expressed formally, but need to be expressed in natural language,
obviously causing interpretation problems ([HW92]). Besides constraints, it would also be convenient to
be able to express queries and updates on a conceptual level. Many query and manipulation languages (e.g.

1

SQL) require a fairly high level of training or are based on a rather primitive data modelling technique (e.g.
ER).

In [HW93], the conceptual data modelling technique PSM (Predicator Set Model) has been defined,
which is capable of representing complex object structures without violating the Conceptualisation Prin-
ciple. PSM is an extension of PM (Predicator Model [BHW91a]) which on its turn is a formalisation of
NIAM ([NH89], [Win90a], [HO92]). This means that all NIAM schemas can be seen as PSM schemas.
It also means that the design procedure supporting the construction of NIAM schemas and the NIAM
philosophy are not lost, they only need to be extended to support also the additional constructs.

The NIAM analysis method originates from the early seventies, and is based on an analysis method
for natural language. The language starts from examples which are (partial) descriptions of the underlying
domain provided by domain experts. Such an analysis leads, in a natural way, to an information structure.
The use of examples helps to bridge the gap between domain expert and system analyst. It is only obvious
that the language for manipulating and querying has the format of a semi natural language. The language
RIDL (Reference and IDea Language [DMP84], [Mee82]) was developed for this purpose. However, due
to its informal definition, no rigid base for both syntax and semantics was provided, the language never got
much acceptance. Furthermore, RIDL was based on the restricted binary version of NIAM ([VB82]).

The intention of this paper is to make a (re)design of, a strongly extended version of, RIDL. The result-
ing language is called LISA-D (Language for Information Structure and Access Descriptions), and is based
on PSM. Its functionality far exceeds the intended functionality of RIDL. As PSM has been designed as a
general object-role modelling technique, LISA-D is (in principle) also applicable to well-known represen-
tatives of object-role modelling techniques such as ER ([Che76]), FDM ([Shi81]) or INFOMOD ([JG87]).

The organisation of this paper is as follows. In section 2 a summary of the formal definition of PSM
is given in order to make this paper self-contained. In section 3 path expressions are introduced. Path ex-
pressions form a primitive, yet powerful, language for information manipulation. In section 4 the language
LISA-D is introduced and formally defined by means of a translation to path expressions. Information de-
scriptors form the basic syntactical construct of LISA-D and they are used for the definition of constraints,
queries and updates in LISA-D. Upon first reading, sections 2 and 3 may be skipped, although they are
necessary for a complete understanding of this paper.

2 The Predicator Set Model
This section contains a formal description of PSM. This formal description serves as a platform for a
manipulation language, introduced in the next section. The formal description consists of three parts. In
the first part, information structures are defined. Information structures capture the syntax of PSM schemas
without graphical constraints. The second part deals with instantiations, referred to as populations, of
information structures. The third part contains the requirements imposed on a PSM schema that make
it possible to uniquely denote abstract instances in terms of concrete instances (labels). This is called
structural identification. (This section may be skipped during a first introductory reading).

2.1 The Information Structure
An information structure is a structure consisting of the following basic components:

1. A finite set P of predicators.

2. A nonempty set O of object types.

3. A set L of label types. Label types are also object types: L ⊆ O.

4. A set E of entity types (E ⊆ O).

5. A partition F of the set P . The elements of F are called fact types. Fact types are also object types
(F ⊆ O). The auxiliary function Fact : P → F yields the fact type in which a given predicator is
contained, and is defined by: Fact(p) = f ⇔ p ∈ f .

2

6. A set G of power types. Power types form a special class of object types (G ⊆ O).

7. A set S of sequence types. Sequence types form a special class of object types (S ⊆ O).

8. A set C of schema types: C ⊆ O.

9. A function Base : P → O. The base of a predicator is the object part of that predicator.

10. A function Elt : G ∪ S → O. This function yields the element type of power types and sequence
types.

11. A relation ≺ ⊆ C ×O. This relation describes the decomposition of schema types.

12. A partial order Spec on object types, capturing specialisation.

13. A function u : O → O yielding the Pater Familias of a given object type.

14. A partial order Gen on object types, expressing generalisation.

In this approach, the instances of object types are not part of the information structure. Instantiations
(populations) will be introduced in section 2.2.

�
�

�
�B

p

q

�
�

�
�A

g

�
�

�
�

f r t
�
�

�
�C

�
�

�
�D

s

i
w x

�
�

�
�(F)

'
&

$
%
E

h
u

l
l
l
l
l

v

Figure 1: Example information structure

Example 2.1
Figure 1 shows an information structure diagram visualising the information structure that consists of:

P = {p, q, r, s, t, u, v, w, x} O = {A, B, C, D, E, F, f, g, h, i}
F = {f, g, h, i} G = {E}
S = ∅ C = ∅

E = {A, B, C, D} L = {F}

where f = {p, q}, g = {r, s, t}, h = {u, v}, i = {w, x}. With respect to the predicators: Base(p) = B,
Base(q) = A, Base(r) = f , etc. Finally, Elt(E) = A, Spec and Gen are empty, and u(x) = x for all
object types x.

Due to the different interpretation that will be given to label types, fact types, power types, sequence
types, schema types and entity types, these object types are all considered to be different concepts:

(PSM1) (separation) L, F , G, S, C and E form a partition of O

3

2.1.1 Abstract and concrete objects

In data modelling there exists a distinction between objects that can be represented directly and objects that
cannot be represented directly. In ER, this distinction is reflected by the difference between entity types
and attribute types, while in NIAM and PSM this distinction corresponds to the difference between entity
types and label types. Labels can be represented directly on a communication medium, while other objects
depend for their representation on labels. As a result, label types are also called concrete object types, as
opposed to the other object types which are referred to as abstract object types. The gap between concrete
and abstract object types can only be crossed by special binary fact types, called bridge types in the NIAM
terminology. We will come back to this in the next subsection.

2.1.2 Fact typing

One of the key concepts in data modelling is the concept of relationship type. Generally, a relation type is
considered to represent an association between object types. In figure 2 the graphical representation of a
binary relation R between object types X1 and X2 is shown, both in the NIAM and ER style. A relation
type consists of a number of roles (r1 and r2 in figure 2), denoting the way object types participate in that
relation type. The connection between an object type and a role is called a predicator (p1 and p2 in figure 2,
see [BHW91a]).�

�
�
�X1

R
r1

p1

r2

p2

�
�

�
�X2 X1

��
@@��

@@
R

p1 p2

X2

Figure 2: A NIAM relation type, and its corresponding ER diagram

In PSM a relation type is considered to be a set of predicators. A relation type is therefore considered
to be an association between predicators, rather than between objects types. A relation type (also referred
to as fact type) may be treated as an object type (fact objectification), and can therefore play a role in other
relation types.

Bridge types establish the connection between abstract and concrete object types. The term Bridge(f)
qualifies fact type f as a bridge type, and is an abbreviation for the expression

∃p,q [f = {p, q} ∧ Base(p) ∈ L ∧ Base(q) 6∈ L]

B denotes the set of bridge types. The strict separation between the concrete and abstract level is expressed
by the rule that label types may only participate in bridge types:

(PSM2) Base(p) ∈ L ⇒ Bridge(Fact(p))

The predicators that constitute a bridge type b = {p, q} can be extracted by the operators concr and abstr.
These operators are defined by concr(b) ∈ b∧ Base(concr(b)) ∈ L and abstr(b) ∈ b∧ Base(abstr(b)) 6∈ L
respectively.

Example 2.2 In figure 1, i is a bridge type with concr(i) = x and abstr(i) = w.

2.1.3 Power typing

The concept of power type in PSM forms the data modelling pendant of power sets in conventional set
theory ([Lev79]). This notion is the same as the notion of grouping as introduced in the IFO data model
([AH87a]). An instance of a power type is a set of instances of its element type. Such an instance is
identified by its elements, just as a set is identified by its elements in set theory (axiom of extensionality).

An example of power typing is the Convoy Problem (based on [HM81]), depicted in figure 3. There,
the object type Convoy is a power type with as element type Ship. As a result, each instance of object type
Convoy is a set of instances of Ship. Convoys are identified by their constituent ships, whereas ships are
identified by a Ship-code, which is a label type. To distinguish label types from entity types in diagrams,

4

�
�

�
�Ship r

has-code code-of

�
�

�
�(Ship-

code)
r�-�-∈p

Convoy

∈e
Convoy ?

6

'
&

$
%

rConvoy

Figure 3: A simple example of a power type

label type names are parenthesized. Furthermore, the black dot on the object type Ship is an example of
a so-called total role constraint, it expresses that each instance of Ship has to play the role has-code. The
arrow above this role is an example of a uniqueness constraint and expresses that instances of Ship play
the role has-code at most once. The formal semantics of these graphical contraint types can be found
in [BHW91a]. An overview of the drawing conventions is included in the appendix.

This Convoy Problem is not expressible in terms of a NIAM or ER schema (see [HPW92]), without
violating the Conceptualisation Principle.

The element type of a power type is found by the function Elt. The relation between a power type
x and its element type Elt(x) is recorded in the fact type ∈x = {∈p

x,∈e
x}, where Base(∈p

x) = x and
Base(∈e

x) = Elt(x). This relation is assumed to be available for each power type. Usually ∈x is treated
as an implicit fact type, and not drawn in the information structure diagram. If this fact type is subject to
constraints it needs to be made explicit. Note that, in this way, power typing corresponds to a polymorphic
type constructor, and the fact type ∈x to an associated polymorphic access operator.

The strict separation between abstract and concrete object types prohibits label types to occur as element
type:

(PSM3) Elt(x) 6∈ L

2.1.4 Sequence typing

Sequence typing offers the opportunity to represent sequences, built from an underlying element type. This
notion is not elementary in PSM, as it is expressible in terms of generalisation (see [HW93]). Nonetheless,
the concept of sequence type is treated as an independent concept in this paper, because this facilitates its
use in the manipulation language to be introduced in the remainder of this paper.

�
�

�
�Train

(T-code)
rr �

�
�
�

Freight-
car

(C-code)

�
�

�
�

Loco-
motive

(L-code)

r
Freight-car-sequence �

�
�
�(I)

has of

�-

part-of contains

�-�- ∈s
FS

∈e
FS?

6r
 @

s
FS @

i
FS

�-

�
�

�
�
r

Figure 4: The train composition administration

Example 2.3 A train is identified by a T-code, and consists of a locomotive followed by a sequence of
freight cars. This Universe of Discourse is modelled in the information structure diagram of figure 4.

The element type of a sequence type is also found by the function Elt. The relation between a sequence
type x and its element type Elt(x) is recorded in the (implicit) fact type∈x = {∈s

x,∈e
x}, where Base(∈s

x) =
x and Base(∈e

x) = Elt(x). Contrary to power types, this relation ∈x is augmented with the position
of the element in the sequence, via the (implicit) fact type @x =

{

@s
x, @i

x

}

, where Base(@s
x) = ∈x and

Base(@i
x) = I . The object type I is the domain for indexes in sequence types. Usually the natural numbers

are used for this purpose. The index type is assumed to be a label type (I ∈ L), which is assumed to be
totally ordered and to have a least element.

Note that axiom PSM3 also applies for sequence types.

5

2.1.5 Schema typing

A schema type is an object type with an underlying decomposition. The concept of schema typing allows
for the decomposition of large schemata into, objectified, subschemata. The need for such a mechanism has
been generally recognised. Though in [HW93] it has been argued that schema typing is not an elementary
concept, it is considered an independent concept here for the same reason as mentioned for sequence types
in the previous section.

�
�

�
�Activity

having-
input

is-input-
of

� -

having-
output

is-output-
of

� -

�
�

�
�State

��
��

��
��

PPPPPPPP

PPPPPPPP

��
��

��
��

'

&

$

%

Activity graph

�� ��t ����t
C
C
C
C
C
C
C
C
C

�
�
�
�
�
�
�
�
�

�
�
�
�

A
A
A
A

being-decom-
posed-into

being-decom-
position-of

�-�-

being-decom-
position-of

being-decom-
posed-into

�-�-

Figure 5: An information structure diagram for Activity Graphs

Example 2.4 Activity Graphs are a well-known modelling technique for processes (see [Sch84]). Activity
graphs are bipartite directed graphs consisting of activities (processes) and states. States, which can be
compared to flows in data flow diagrams (see e.g. [You89]), can be input for or output of activities. In an
Activity Graph, both activities and states may be subject to decomposition. This results in the information
structure diagram of figure 5.

Schema types can be decomposed into an underlying information structure via the relation ≺, with the
convention that x≺ y is interpreted as x is decomposed into y or y is part of the decomposition of x. This
underling information structure Ix for a schema type x is derived from the object types into which x is
decomposed: Ox =

{

y ∈ O | x≺ y
}

. Analogously, the special object classes Fx, Gx, Sx, Cx and Ex

can be derived. The functions Basex, Eltx, ≺x, Specx, ux and Genx are obtained by restriction to object
types within Ox. In order to be a proper decomposition, the underlying information structure should form
an information structure on its own:

(PSM4) (structural nesting) x ∈ C ⇒ Ix is a PSM information structure

With each schema type x and each object type y in its decomposition, an (implicit) fact type ∈x,y =
{

∈c
x,y,∈d

x,y

}

is associated, where Base(∈c
x,y) = x and Base(∈d

x,y) = y. This fact type will enable the
transition from a schema object to an object from its decomposition.

2.1.6 Specialisation

Specialisation, referred to as subtyping in NIAM, is a mechanism for representing one or more (possibly
overlapping) subtypes of an object type. Specialisation is to be applied when only for specific instances of
an object type certain facts are to be recorded. Suppose for example that only for Adults, i.e. Persons with

6

an Age greater or equal than 18, one is interested in the Cars they own. This situation is captured by the
PSM schema in figure 6.

�
�

�
�Adult

�
�

�
�Car

owns owned-by

�
�

�
�Person r �

�
�
�Age

has is-of

�-

� -

6

Figure 6: Example of specialisation

A specialisation relation between a subtype and a supertype implies that the instances of the subtype
are also instances of the supertype (each Adult is also a Person). For proper specialisation, it is required
that subtypes be defined in terms of one or more of their supertypes. Such a decision criterion is referred
to as Subtype Defining Rule ([BHW91a]). In figure 6 the subtype defining rule for Adult is expressed (in
LISA-D) as:

Adult = Person has Age ≥ 18

As a consequence, identification of subtypes is derived from their supertypes. Therefore, if in the ongoing
example Persons would be identified by a name, then Adults are also identified by that name.

Specialisation relations are organised in so-called specialisation “hierarchies”. A specialisation hierar-
chy is in fact not a hierarchy in the strict sense, but an acyclic directed graph with a unique top. This top is
referred to as the pater familias (see [DMV88]). In the example of figure 6, the pater familias of Adult is
Person.

Objects inherit all properties from their ancestors in the specialisation hierarchy. This characteristic of
specialisation excludes non-entity types (e.g. fact types) occurring as subtypes. Consider for example the
case that a ternary fact type is a subtype of a binary fact type. Clearly this leads to a contradiction. No
problems occur when non-entity types themselves are specialised. Consequently, non-entity types always
act as pater familias. For an in depth discussion of specialisation, we refer to [HHO92].

The concept of specialisation is introduced as a partial order (asymmetric and transitive) Spec on object
types, with the convention that a Spec b is interpreted as: a is a subtype (specialisation) of b, or b is a
supertype of a. Subtypes inherit the structure of their supertypes. A consequence is that only entity types
can act as subtype. This, on its turn, prohibits specialisation of label types.

(PSM5) (strictness) Spec ⊆ E × (O−L)

(PSM6) (asymmetry) a Spec b⇒ ¬b Spec a

(PSM7) (transitivity) a Spec b ∧ b Spec c⇒ a Spec c

Each specialisation hierarchy has a unique top element, the pater familias of the object types in this hier-
archy. The pater familias is found by the function u : O → O (which is similar to the top operator from
lattice theory). This function has the following properties:

(PSM8) (cohesion) a Spec b⇒ u(a) = u(b)

(PSM9) (ancestor) a 6= u(a)⇒ a Specu(a)

In the remainder spec(a) will be used as an abbreviation for ∃
x∈O [x Spec a]. From these axioms the

following important property, stating that a pater familias cannot be a subtype, can be derived (the proof
can be found in [HW93]).

Lemma 2.1 ¬u(a) Spec b

Corollary 2.1 Idempotency of u: u(u(a)) = u(a)

7

2.1.7 Generalisation

Generalisation is a mechanism that allows for the creation of new object types by uniting existing object
types. Generalisation is to be applied when different object types play identical roles in fact types. Contrary
to what its name suggests, generalisation is not the inverse of specialisation. Specialisation and general-
isation originate from different axioms in set theory ([HW93]) and therefore have a different expressive
power.

For generalisation it typically is required that the generalised object type is covered by its constituent
object types (or specifiers). Therefore, a decision criterion as in the case of specialisation (the subtype
defining rule) is not necessary. Furthermore, properties are inherited “upward” in a generalisation hierarchy
instead of “downward”, which is the case for specialisation (see also [AH87b]). This also implies that the
identification of a generalised object type depends on the identification of its specifiers. From the nature of
generalisation, it is apparent that a non-entity type cannot be a generalised object type.

�
�

�
�Variable

�
�

�
�

�
�

�
�Formula

�I

f
e
e
e
e
e
e
e
e

having-
left-arg

having-
right-arg

Figure 7: Example of generalisation

Example 2.5 In figure 7 we see an example of generalisation. A formula may be either a single variable,
or constructed by some function (say f) from simpler formulas. It is clear that instances from the object
type Formula inherit the structure (identification) from the specifier from which they originate (Variable or
f).

This example also shows that generalisation can be used to define recursive object types. This is not
possible in the IFO data model ([AH87b]), where object types are hierarchical structures. In the Logical
Data Model (see [KV85]), however, object types are directed graphs, which may contain cycles.

The concept of generalisation is introduced as a partial order (asymmetric and transitive) Gen with the
convention that a Gen b is interpreted as: a is a generalisation of b, or b is a specifier of a. As generalised
objects inherit the structure from the specifier from which they originate, only entity types can act as
generalised object types. The strict separation between abstract and concrete object types prohibits the
generalisation of label types.

(PSM10) (strictness) Gen ⊆ E × (O−L)

(PSM11) (asymmetry) a Gen b⇒ ¬b Gen a

(PSM12) (transitivity) a Gen b ∧ b Gen c⇒ a Gen c

In the remainder gen(a) will be used as an abbreviation for ∃
x∈O [a Gen x]. Generalisation and specialisa-

tion can be conflicting due to their inheritance structure. To avoid such conflicts, generalised object types
are required to be pater familias:

(PSM13) gen(a)⇒ u(a) = a

8

2.1.8 Type Relatedness

Intuitively, object types can, for several reasons, have values in common in some instantiation. For example,
each value of object type x will, in any instantiation, also be a value of object type u(x). As another
example, suppose x Gen y, then any value of y in any population will also be a value of x. A third example,
where object types may share values is when two power types have element types that may share values.
In this section, this is formalised in the concept of type relatedness.

Formally type relatedness is captured by a binary relation∼ on O. Two object types are type related if
and only if this can be proven from the following derivation rules:

(T1) ` x ∼ x

(T2) x ∼ y ` y ∼ x

(T3) x Spec y ∧ y ∼ z ` x ∼ z

(T4) x Gen y ∧ y ∼ z ` x ∼ z

(T5) x, y ∈ G ∧ Elt(x) ∼ Elt(y) ` x ∼ y

(T6) x, y ∈ S ∧ Elt(x) ∼ Elt(y) ` x ∼ y

(T7) Ox = Oy ` x ∼ y

�
�

�
�A

�
�

�
�C

�
�

�
�B

�
�

�
�D

��
��* * Y �

�
�
�
F�

�
�
�E

�
�

�
�G

p q

r s

t u

f

g

h

Figure 8: Example information structure

Example 2.6 In figure 8 the only object types that are type related are A and B, C and D and F and D.

2.2 Populations
An information structure is used as a frame for some part of the (real) world, the so-called Universe of
Discourse (U◦D). A state of the U◦D then corresponds to a so-called instantiation or population of the
information structure, and vice versa. The idea of states was previously mentioned in [FN85], [WW88],
[De 88]. Furthermore, a state transition of the U◦D has a corresponding transition on populations of the
information structure. This can be formulated as:

The Universe of Discourse is isomorphic with the set of possible populations of the information
structure and a transition relation hereupon.

This is called the conceptuality property of information structures. In this paper, a population Pop of an
information structure I is a value assignment of sets of instances to the object types in O, satisfying the
rules that will follow in the rest of this section. This is denoted as IsPop(I , Pop). Pop then is a mapping
Pop : O → ℘(Ω), where Ω is the universe of instances that can occur in the population of an information
structure I . This universe of instances is defined in definition 2.1. The set of all populations is defined as
POP = O → ℘(Ω).

An information structure can only be populated if a link is established between label types and concrete
domains. The instances of label types then come from their associated concrete domain. Formally this link
is established by the function Dom : L → D. The range of this function, i.e. D, is the set of concrete
domains (e.g. string, natno). The sets in D form the carriers of a many sorted algebraD = 〈D, F 〉, where
F is the set of operations (e.g. +) on the sorts in D.

9

Definition 2.1 The universe of instances Ω is inductively defined as the smallest set satisfying:

1.
⋃

D ⊆ Ω. Instances from the sorts in the many sorted algebra are elements of the universe of
instances.

2. Θ ⊆ Ω, where Θ is an abstract (countable) domain of (unstructured) values that may occur in the
population of entity types.

3. x1, . . . , xn ∈ Ω ∧ p1, . . . , pn ∈ P ⇒ {p1 : x1, . . . pn : xn} ∈ Ω. The set {p1 : x1, . . . , pn : xn}
denotes a mapping, assigning xi to each predicator pi. These mappings are intended for the popula-
tion of fact types (see the Conformity Rule).

4. x1, . . . , xn ∈ Ω⇒ {x1, . . . , xn} ∈ Ω. Sets of instances may occur as instances of power types (see
the Power Base Rule).

5. x1, . . . , xn ∈ Ω ⇒ 〈x1, . . . , xn〉 ∈ Ω. Sequences of instances are used as instances of sequence
types (see the Sequence Type Rule). The i-th element of a sequence 〈x1, . . . , xn〉, i.e. xi, can be
derived using projection, denoted as: 〈x1, . . . , xn〉 [i].

6. X1, . . . , Xn ⊆ Ω ∧ O1, . . . , On ∈ O ⇒ {O1 : X1, . . . , On : Xn} ∈ Ω. Assignments of sets of in-
stances to object types are also valid instances. They are intended for the populations of composition
types (see the Decomposition Rule).

The first population rule is the Strong Typing rule, which expresses that instantiations of abstract object
types may only have instances in common, if they are type related.

(P1) x, y 6∈ L ∧ x 6∼ y ⇒ Pop(x) ∩ Pop(y) = ∅

The population of a label type is a set of values, taken from its corresponding concrete domain:

(P2) x ∈ L ⇒ Pop(x) ⊆ Dom(x)

Root object types are object types that are neither generalised, nor a subtype. This is formalised as:
IsRoot(x)≡¬ gen(x) ∧ ¬ spec(x). The population of root entity types is a set of values, taken from the
abstract domain Θ.

(P3) x ∈ E ∧ IsRoot(x)⇒ Pop(x) ⊆ Θ

The population of a fact type is a set of tuples. A tuple t in the population of a fact type f is a mapping of
all its predicators to values of the appropriate type. This is referred to as the Conformity Rule:

(P4) x ∈ F ∧ y ∈ Pop(x) ⇒ y : x → Ω ∧ ∀p∈x

[

y(p) ∈ Pop(Base(p))
]

The population of a power type consists of (nonempty) sets of instances of the corresponding element type.
This is called the Power Type Rule:

(P5) x ∈ G ∧ y ∈ Pop(x)⇒ y ∈ ℘(Pop(Elt(x))) − {∅}

The (implicit) fact type ∈x that is provided for each power type x, describes the relation between power
type x and its element type Elt(x). This is described in the Power Base Rule:

(P6) x ∈ G ⇒ Pop(∈x) =
{

{∈p
x : u,∈e

x : v} | u ∈ Pop(x) ∧ v ∈ u
}

The Power Base Rule is as a derivation rule for the population of fact type ∈x. Note that it is not necessary
in the Power Base Rule to state that v ∈ Pop(Elt(x)) since this follows from the Conformity Rule. The
population of a sequence type consists of (nonempty) sequences of instances of the corresponding element
type. This is called the Sequence Type Rule:

(P7) x ∈ S ∧ y ∈ Pop(s)⇒ y ∈ Pop(Elt(x))+

Indexing in sequence type x is provided by the (implicit) fact types ∈x and @x. This is conceived in the
Sequence Decomposition Rules.

10

(P8) x ∈ S ⇒ Pop(∈x) =
{

{∈s
x : u,∈e

x : v} | u ∈ Pop(x) ∧ ∃i∈I [u[i] = v]
}

(P9) x ∈ S ⇒ Pop(@x) =
{ {

@s
x : u, @i

x : v
}

| u ∈ Pop(∈x) ∧ u(∈s
x)[v] = u(∈e

x)
}

These rules can be used as derivation rules for ∈x and @x.
The population of a composition type consists of populations of the underlying information structure.

This is called the Decomposition Rule:

(P10) x ∈ C ∧ y ∈ Pop(x)⇒ IsPop(Ix, y)

The relation between a composition type and its constituing object types is recorded in the fact type ∈c,d.
Its population is decribed in the Decompositor Rule, which is a derivation rule:

(P11) x≺ y ⇒ Pop(∈x,y) =
{ {

∈c
x,y : u,∈d

x,y : v
}

| u ∈ Pop(x) ∧ v ∈ u(y)
}

Lemma 2.2 x≺ y ⇒ ∀u∈Pop(x) [u(y) ⊆ Pop(y)]

Proof: Assume u ∈ Pop(x) and v ∈ u(y). Applying the Decompositor Rule one can derive that
{

∈c
x,y : u,∈d

x,y : v
}

∈ Pop(∈x,y). From the Conformity Rule and the fact that Base(∈d
x,y) = y

it then follows that v ∈ Pop(y).

2

Respecting the specialisation hierarchy is reflected by the Specialisation Rule:

(P12) x Spec y ⇒ Pop(x) ⊆ Pop(y)

This rule does not require that instances of subtypes have to fulfil the subtype defining rule associated to
the involved subtype. A subtype defining rule is defined as an information descriptor (see section 4). Up
to this point no language for the formulation of such rules is available. The subtype defining rule should
however also be considered as a population derivation rule, the population of a subtype can be computed
using this rule.

Respecting the Generalisation hierarchy is reflected by the Generalisation Rule:

(P13) gen(x)⇒ Pop(x) =
⋃

x Gen y
Pop(y)

The Generalisation Rule, which clearly is a derivation rule, requires that the population of a generalised
object type (x) is completely covered by the populations of its specifiers.

ra1ra2

rr
rb1

rc1
r17

rd1

r
r r

r{a1} r {a1, a2}

r
�
�

�
�B

p

q

�
�

�
�A

g

�
�

�
�

f r t
�
�

�
�C

�
�

�
�D

s

i
w x

�
�

�
�(F)

'
&

$
%

E

h
u

l
l
l
l
l

v

Figure 9: Graphic representation of a population

11

Example 2.7 A sample population of the information structure of figure 1 is:

Pop(A) = {a1, a2} Pop(f) =
{

{p : b1, q : a1} , {p : b1, q : a2}
}

Pop(B) = {b1} Pop(g) =
{

{r : {p : b1, q : a1} , s : d1, t : c1}
}

Pop(C) = {c1} Pop(h) =
{

{u : {a1} , v : c1} , {u : {a1, a2} , v : c1}
}

Pop(D) = {d1} Pop(i) =
{

{w : c1, x : 17}
}

Pop(E) =
{

{a1} , {a1, a2}
}

Pop(F) = {17}

It is assumed that the concrete domain of label type F is the set of natural numbers. In the above population
17 comes from this domain and is the only label instance. The instances a1, a2, b1, c1 and d1 come
from the abstract domain Θ and are considered to be non-denotable by a user. Note that if the instance
{w : c2, x : 17} is added to the population of fact type i the conformity rule is violated, since c2 is not an
element of Pop(C). In figure 9 this population is graphically represented. The population of the implicit
fact type ∈E can be derived to be:

Pop(∈E) =
{

{∈p
E : {a1} ,∈

e
E : a1} , {∈

p
E : {a1, a2} ,∈

e
E : a1} , {∈

p
E : {a1, a2} ,∈

e
E : a2}

}

2.3 Structural identification
Structural identifiability is a schema property that ensures that each population is weakly identified, i.e., in
each population each object instance can be identified by some of its properties. This makes it possible to
denote abstract instances, e.g. entities, in terms of concrete instances, i.e. labels.

Let Σ = 〈I,R〉 be a PSM schema over information structure I bounded by a setR of constraints. The
important constraints for structural identification are the total role constraint and the uniqueness constraint.
Informally, a total role constraint total(τ) over a set of predicators τ states that object instances in the pop-
ulation of their bases occur at least once in the population of these predicators. A uniqueness constraint
unique(τ) over a set of predicators τ expresses the uniqueness of combinations of values in these predica-
tors. Examples of a total role constraint and a uniqueness constraints have been discussed in example 6.
The formal semantics of the total(τ) and unique(τ) is given in [BHW91b] and [WHB92].

The requirements for structural identification have been presented in [HW93], and are only briefly listed
here. A PSM schema Σ is structurally identifiable iff:

1. Σ is closed over labels, i.e., each label type occurs in some total role constraint:

∀
x∈L∃p∈P∃total(τ)∈R [Base(p) = x ∧ p ∈ τ]

The motivation behind this is to enforce the absence of unused label values.

2. All object types can be identified:
∀

x∈O [Identifiable(x)]

The identification of an object can be seen as a fixed set of properties that provide a unique description
in terms of label values.

The predicate Identifiable is defined in terms of the structure of objects. The respective object classes are
discussed consecutively.

Label Types
If x is a label type, then obviously Identifiable(x).

Fact Types
A fact type x (or, generally, a set of predicators) is identifiable if all components of x are identifiable:

∀p∈x [Identifiable(Base(p))]

12

Power Types and Sequence Types
A power type or sequence type x is identifiable if its element type is identifiable:

Identifiable(Elt(x))

Composition Types
A composition type x is identifiable if all its constituent object types are identifiable:

∀x≺ y [Identifiable(y)]

Entity Types
If x is an entity type, then the following cases can be distinguished.

If x is not pater familias (u(x) 6= x) then x takes (inherits) its identification from its pater familias,
provided that the subtype membership is decidable from the subtype defining rules (see section 2).

A second case of identification inheritance arises from object generalisation. In this case the object
type inherits its identification from some of its specifiers. More precisely, if x is a generalised object type
(gen(x)), then x is identifiable if:

∃
y∈O [x Gen y ∧ Identifiable(y)]

This leaves the identification of root object types, in which case we are looking for identification paths
(denominations). These denominations form a recipe for uniquely denoting each object of the object type,
in any population. The set of possible first names for denominations is defined by:

N(x) =
{

p | Base(p) = x ∧ total({p}) ∧ unique({p})
}

The identification of object type x now depends on the existence of a set of middle names (constituting a
so-called identifier), i.e., a set τ of predicators such that:

• (uniqueness of denotation) unique(τ)

• (first name-middle name relatedness) ∀p∈τ∃q∈Fact(p) [q ∈ N(x)]

• (recursion) ∀p∈τ [Identifiable(Base(p))]

�
�

�
�Commu-

nity
rr

�
�

�
�(C-name)

r

�
�

�
�Streetr rr

�
�

�
�(S-name)

r

�
�

�
�Addressr r

�
�

�
�(H-nr)

r?6
?6

�-

?6

�-

?6

p1

p2

p5

p6

p9

p10

p3 p4 p7 p8

f1 f3 f5

f2 f4

�� ��u
�� ��u

Figure 10: Example of complex identification

Example 2.8 In figure 10 an example of identification in the case of an entity type that is a pater familias
is shown. The bases of predicators p1, p5 and p9 are label types. Entity type Address can be identified by
identifier {p7, p9}, which requires the identification of Street. This can be achieved by identifier {p3, p5},
which on its turn requires the identification of Community. Communities are identified by a C-name. As a
result, an Address can be uniquely denoted in the following format:

(p9 : H-nr, p7 : (p5 : S-name, p3 : (p1 : C-name)))

13

Structural identification ensures the existence of denominations for entity types. For each entity type
one denomination has to be selected as its standard name. In order to get short denotations for entity types,
by omitting predicators, an order of the middle names is defined by Ident : E → P∗. The (partial)
function Copred : P � P is introduced to resolve any ambiguity in the relation between middle names
and first names. However, predicators from the same fact type should be assigned the same copredicator:

Fact(p) = Fact(q)⇒ Copred(p) = Copred(q)

Example 2.9 For example 2.8 the functions Ident and Copred could be:

Ident(Address) = 〈p7, p9〉 Copred(p7) = p8

Ident(Street) = 〈p3, p5〉 Copred(p9) = p10

Ident(Community) = 〈p1〉 Copred(p5) = p6

Copred(p3) = p4

Copred(p1) = p2

This allows a short denotation for addresses in the form:

〈H-nr, S-name, C-name〉

Besides for the identification of entity types, Ident is extended to provide a standard naming convention
for fact types as well. If f = {p1, . . . , pn} is a fact type, then Ident(f) = 〈p1, . . . , pn〉 determines an order
on the predicators in f . This order will be used in section 4.5 to define a standard naming for fact type f .

3 Path Expressions
Path expressions are constructs for expressing derived fact types closely following the underlying informa-
tion structure. Path expressions can be constructed from elements of the information structure (predicators,
object types) and a number of operators. They are evaluated with respect to the current population of the
information structure at hand. In its elementary form, a path expression corresponds to a path through the
information structure, starting and ending in an object type. Intermediate object instances, though needed
for the evaluation of path expressions, are discarded in their final result. The reason for this is uniformity,
since this approach always leads to evaluation results in the form of binary relations. To compensate for
the information that may be lost by discarding intermediate object instances, these binary relations take the
form of multisets of tuples. More complex forms of path expressions may be inhomogeneous, i.e. resulting
in tuples from different domains. Path expressions are thus interpreted as inhomogeneous binary multiset
relations. At a first reading of the article, this section may be skipped.

As the semantics of path expressions are defined using multisets, this section starts with a treatment of
multisets and operations on multisets. Section 3.2 then presents the formal definition of path expressions.
The set of path expressions for a given information structure I , is denoted as PE(I). In section 4 path
expressions will be used to define the semantics of information descriptors in LISA-D.

3.1 Basic Algebraic Operations on Multisets
Multisets ([Lew85]), also known as multiple membership sets ([Lev79]), or bags ([Par90]), differ from
ordinary sets in that a multiset may contain an element more than once. Multisets over an underlying
domain X are elegantly introduced as functions: X → INI , assigning to each x ∈ X its frequency. In the
definitions of the operations on multisets, the λ-calculus notation provided by [Bar84], will be employed.
For instance λx.x2 is the polynomal function assigning x2 to each x-value.

As in set theory, ∅ denotes the empty multiset, with definition: λx.0. If C is an expression which
defines a function M : X → INI , then: M ≡

{[

e↑n
∣

∣ C(e, n)
]}

is a more conventional denotation for
a multiset corresponding to bag comprehension, see e.g. [Boi92]. Bag comprehension can be used for
intentional denotations of multisets. Extentional denotations are defined by:

{[

a
]}

≡
{[

a↑q
∣

∣ q = 1
]}

and
{[

a1, . . . , an

]}

≡
{[

a1

]}

∪ . . . ∪
{[

an

]}

. We will write e ∈n M rather than M(e) = n, and e ∈ M for

14

M(e) > 0. Besides forming multisets by means of an intentional or extentional specification, they can be
formed by the following binary operators:

N ∪M ≡ λx.N(x) + M(x)
N ∩M ≡ λx. min(N(x), M(x))
N − M ≡ λx. max(N(x)−M(x), 0)

The comparison operator N ⊆ M for multisets is defined as: ∀x [N(x) ≤M(x)]. From this operator, the
⊂ comparison is derived in the usual way: N ⊆M∧N 6= M . This allows for the definition of the powerset
of a multiset: ℘(X) =

{[

Y ↑1
∣

∣ Y ⊆ X
]}

. Coercions from multiset to set and vice versa are defined by the
following functions:

Set(N) ≡
{

x | x ∈ N
}

Multi(S) ≡
{[

x↑1
∣

∣ x ∈ S
]}

The number of elements in a multiset is counted by |N |≡
∑

x∈X N(x). In this paper, a useful class of
multisets operations operates on multisets over binary tuples X × X . We start by defining the following
coercion operations between multisets over X and X ×X :

Sqr(N) ≡
{[

〈x, x〉↑n
∣

∣ x ∈n N
]}

and conversely:
π1(N) ≡ λx.

∑

y∈X N(x, y)

π2(N) ≡ λy.
∑

x∈X N(x, y)

We define three extra operations for multisets over X ×X :

N ◦M ≡ λ〈x, y〉.
⋃

a∈X N(x, a)×M(a, y)

N �M ≡ λ〈x, y〉.
⋃

a,b∈X N(x, a)×M(y, b)

N← ≡ λ〈x, y〉.N(y, x)

where N← corresponds to the reverse relation, N ◦M to the concatenation of N and M , and N �M to
the head-head combinations of N and M . On the ◦ and ← operations, we define the neutral element:
1X×X ≡λ〈x, x〉.1. We also define the following operation, being the multiset pendant of a union of a set
of sets:

⊎

N ≡ λx.
∑

A∈N,x∈A

N(A)

Note that N is a multiset of sets. By making assumptions on the underlying domains X we can introduce
some more interesting operations. If X is an arithmetic domain, then the following operations can be
defined:

max(N) ≡ max(Set(N))

min(N) ≡ min(Set(N))

sum(N) ≡
∑

x∈X x×N(x)

As in conventional set theory, the concept of ordered pair is introduced, and generalised to tuples of arbi-
trary length (also denoted as sequences). Sequences can be denoted by enumeration, e.g. 〈a, b, c, d〉. The
operator Lin converts a tuple (of any length) to the corresponding multiset:

Lin(〈x1, . . . , xn〉) =
⋃

1≤i≤n

{[

x[i]
]}

for example Lin(〈a, b, c, d, a〉) =
{[

a, a, b, c, d
]}

.

15

3.2 Path Expressions
The syntax of path expressions is presented as an abstract syntax. In [Mey90] the motivation for the use of
an abstract syntax is stated as follows:

The use of abstract syntax rather than concrete syntax as a basis for studies of programming
languages is representative of an important trend in software engineering: the move towards
a higher-level view of software objects, emphasising deep structure rather than surface prop-
erties. Concepts such as abstract data types are another example of this trend.

The semantics of path expressions will be defined using denotational semantics (see e.g. [Sto77]). The
semantics of each syntactical construct are defined in terms of other syntactical constructs, and ultimately
in terms of multisets as defined in the previous subsection. An important role in denotational semantics
is played by the environment, representing the state of a program. In the case of path expressions, the
environment is the population of the information structure. Information descriptors are evaluated in the
context of this environment.

As a path expression corresponds to a (directed) path through the information structure diagram, such
a path is interpreted as describing a relation between the object types at its beginning and ending point.
However, path expressions may be inhomogeneous, as a result of uniting path expressions with different
ending points. In this case, the path expression leads to an inhomogeneous binary relation. Consequently,
the semantics of path expressions are defined as binary relations over (multiple) object types. It will be
convenient to treat these binary relations tuple oriented ([Mai88]), as opposed to the mapping oriented
approach to tuples in the population of fact types. As a result, the domain for these inhomogeneous binary
multiset relations is derived from Ω in the following way:

ΩPE =
{

X |X is a multiset over Ω×Ω
}

Path expressions are built around the following syntactical categories: constant, multiset, object type (O),
predicator (P) and path expression (PE(I)). The naming conventions are: c for constants, X for multisets,
x for object types, p for predicators and P , Q, G, and P1, . . . , Pn for path expressions. The function

µ : PE × POP→ ΩPE

is used to define the semantics of path expressions. First the atomic path expressions are introduced. Note
the use of the function Sqr, necessary due to the interpretation of path expressions as binary relations. The
operator · represents functional composition.

name expr µ[[expr]] (Pop)

empty path ∅PE ∅

neutral path 1PE 1Ω×Ω

constant c Sqr(
{[

c
]}

)

multiset X Sqr(X)

object type x Sqr ·Multi ·Pop(x)

predicator p
{[

〈v(p), v〉↑1
∣

∣ v ∈ Pop · Fact(p)
]}

Example 3.1 Suppose Pop(g) =
{

{r : b1, s : c1} , {r : b2, s : {e1}} , {r : b3, s : {e2, e3}}
}

in figure 8,
then:

µ[[r]] (Pop) =
b1 {r : b1, s : c1}
b2 {r : b2, s : {e1}}
b3 {r : b3, s : {e2, e3}}

16

A number of operators and functions are available for the construction of composed path expressions. First
the unary operators are introduced. They provide the opportunity to reverse a path P as: P←, to isolate the
front elements of a path P by: f←P , to remove multiple occurrences using: ds P , to count the number of
elements in a path expression by: Cnt(P), to add the elements in a path expression by means of: Sum, and
to determine the minimum or maximum element in a path expression by: Min and Max. The powerset ℘(P)
of a path expression P yields a path expression with all sets of instances occurring in the first component
of P . The operators are summarised in the following table:

name expr µ[[expr]] (Pop)

reverse P← µ[[P]] (Pop)
←

front f←P Sqr ·π1 ·µ[[P]] (Pop)

distinct ds P Multi ·Set ·µ[[P]] (Pop)

count Cnt P Sqr
({[

|µ[[P]] (Pop)|
]})

sum Sum P Sqr
({[

sum ·π1 ·µ[[P]] (Pop)
]})

minimum Min P Sqr
({[

min ·π1 ·µ[[P]] (Pop)
]})

maximum Max P Sqr
({[

max ·π1 ·µ[[P]] (Pop)
]})

powerset ℘P Sqr ·℘ ·π1 ·µ[[P]] (Pop)

Example 3.2 In the situation of the previous example:

µ[[s←]] (Pop) =
{r : b1, s : c1} c1

{r : b2, s : {e1}} {e1}
{r : b3, s : {e2, e3}} {e2, e3}

A path can be extended in several ways. Most elementary, is path extension by concatenation (P ◦Q).
The extend operator � also applies to path expressions (P �Q), and is built from the head values of both
path expressions. Furthermore, the usual set operators (P ∩Q, P ∪Q and P −Q) are available. These
operators are formally described in the following table:

name expr µ[[expr]] (Pop)

concatenate P ◦Q µ[[P]] (Pop) ◦µ[[Q]] (Pop)

extend P �Q µ[[P]] (Pop) �µ[[Q]] (Pop)

intersection P ∩Q µ[[P]] (Pop) ∩ µ[[Q]] (Pop)

union P ∪Q µ[[P]] (Pop) ∪ µ[[Q]] (Pop)

minus P −Q µ[[P]] (Pop) −µ[[Q]] (Pop)

Example 3.3 In the situation of example 3.1:

µ[[r ◦ s←]] (Pop) =
b1 c1

b2 {e1}
b3 {e2, e3}

A more complex example making use of the implicit fact type between a power type and its element type is:

µ[[r ◦ s← ◦∈p
F ◦∈

e
F
←]] (Pop) =

b2 e1

b3 e2

b3 e3

17

Special constructs are available for data type conversions. Grouping and ungrouping form the conver-
sion between an object type and a corresponding power type. Ordering is used for the conversion of a path
expression into a sequence.

name expr µ[[expr]] (Pop)

grouping ϕ(P, G) see below

ungrouping Υ(P) Sqr ·
⊎

·π1 ·µ[[P]] (Pop)

ordering ψ(P, G) see below

Grouping path expression P , according to grouping criterion G, is performed by the functionϕ(P, G).
The elements to be grouped are obtained from the first component of path expression P . Path expression G
specifies a grouping criterion for these elements. Suppose g ∈ π2 ·µ[[G]] (Pop), then with g is associated
the following class of elements:

Kg =
{

x ∈ π1 ·µ[[P]] (Pop) | 〈x, g〉 ∈ µ[[G]] (Pop)
}

The result of grouping is now obtained as the set of all such classes, presented in the format that is used for
the interpretation of path expressions:

µ[[ϕ(P, G)]] (Pop) = Multi(
{

〈Kg, g〉 | g ∈ π2 ·µ[[G]] (Pop) ∧Kg 6= ∅
}

)

Sorting the result of path expression P into a single sequence, according to a sorting criterion S, can
be achieved by applying ψ on P and S respectively. The sorting criterion may be weak (for example
S = ∅PE), allowing more than one ordering of the elements, or too strong, for which any ordering fails. A
sequence s is called compatible with sorting criterion S over P in population Pop if:

1. s contains all elements of π1 ·µ[[P]] (Pop) in the same frequency: Lin(s) = π1 ·µ[[P]] (Pop),

2. the order of elements in s does not conflict with the ordering rules from S:

0 ≤ i < j < |s| ⇒ ∃y1,y2
[〈s[i], y1〉 ∈ µ[[P]] (Pop) ∧ 〈s[j], y2〉 ∈ µ[[P]] (Pop) ∧ 〈y2, y1〉 /∈ µ[[S]] (Pop)]

The result of sorting now is defined as:

µ[[ψ(P, S)]] (Pop) = Sqr(
{[

s↑1
∣

∣ s is compatible with S over P in Pop
]}

)

The following construction mechanism for path expressions corresponds to the transitive closure of a binary
relation.

name expr µ[[expr]] (Pop)

closure P+ ds
(

⋃

n∈INI µ[[closure(n, P)]] (Pop)
)

The expression closure(n, P) represents a closure of path expression P in n steps and is recursively
defined as follows:

closure(0, P) = P

closure(n + 1, P) = closure(n, P) ◦P

A powerful operation on path expressions is the confluence operation. This operator is typically used
when different sorts of information are to be integrated. For instance, name, day of birth, salary and address
of an employee with a given employee number.

name expr µ[[expr]] (Pop)

confluence [P1, . . . , Pn | Q] see below

18

If P1, . . . , Pn, Q are path expressions then [P1, . . . , Pn | Q] is a path expression corresponding to an
n-ary relation called the confluence of P1, . . . , Pn. The meaning of this expression is:

µ[[[P1, . . . , Pn | Q]]] (Pop)

=
⋃

x∈π1 ·µ[[Q]] (Pop)

{[

〈〈x1, . . . , xn〉 , x〉↑
k1×...×kn

∣

∣ ∀1≤i≤n

[

〈xi, x〉 ∈
ki µ[[Pi]] (Pop)

]]}

The condition in the confluence Q, is not mandatory. By using 1PE , the condition is neutralised. As a
shorthand, we define: [P1, . . . , Pn]≡

ˆ

P1, . . . , Pn | 1PE

˜.
In order to define the active complement ¬ (see [Mai88]) of a path expression, the set of active elements

are introduced:
ActVals =

⋃

x∈O

x

The active complemement of a path expression P then, is defined as: ¬P ≡ ActVals − f←P . Path expres-
sions are coerced to multi sets by the Rn function: Rn≡π1 ·µ.

For path expressions having instances of power, sequence or composition types as front elements,
a substitution operator exists. This operator substitutes the elements in these front elements, according
to a second path expression. Therefore, a set of instances {a, b, c} can be converted to a set {x, y, z}.
Furthermore, a set, or sequence, of path expressions can be converted to a path expression consisting of
sets, or sequences, of “ordinary” elements. This is achieved by means of the set or sequence constructor.

name expr µ[[expr]] (Pop)

element substitution δ(P, Q) see below

set constructor {P1, . . . , Pn} Sqr ·Multi(
{

{x1, . . . , xn} | ∀1≤i≤n[xi ∈ π1 ·µ[[Pi]] (Pop)]
}

)

sequence constructor 〈P1, . . . , Pn〉 Sqr ·Multi(
{

〈x1, . . . , xn〉 | ∀1≤i≤n[xi ∈ π1 ·µ[[Pi]] (Pop)]
}

)

Usually the path expressions P1, . . . , Pn in the set and sequence constructor will contain just one value.
The definition of the element substitution operator is based on the subst(p, f) operation, which substitutes
the components of p by means of the substitution relation f . For instance,

subst({a, b, c} , {〈x, a〉 , 〈y, b〉 , 〈z, c〉}) = {x, y, z}

This leads to the following definition for the element substitution operator:

µ[[δ(P, Q)]] (Pop) =
⋃

〈x,y〉∈nµ[[P]] (Pop)

{[

〈z, y〉↑n
∣

∣ z = subst(x,µ[[Q]] (Pop))
]}

4 Information Descriptors in LISA-D
In this section the abstract syntax and semantics of information descriptors in LISA-D (Language for
Information Structure and Access Descriptions) are defined. A concrete syntax for LISA-D falls outside the
scope of this paper. A concrete syntax will, however, allow several spellings of the elementary constructs,
and also offer the opportunity to use so-called stopwords, i.e., words such as ‘the’, ‘a’.

Information descriptors form the basis of LISA-D, they are used for the specification of constraints (see
section 4.6), updates (see section 4.7) and queries (see section 4.8). Most of the examples in this section are
taken from a fragment of the so-called Presidential Database), regarding the election process of presidents
from the USA. This example was a unified example in the special issue of Computing Surveys ([FS76]);
the example was first enunciated in [WBGW73]. An excerpt of this schema is presented in figure 11.

19

�
�

�
�

Age

(Nr)

�
�

�
�

Nr-of-
Year
(Nr)

�
�

�
�

Year
(Year-

Nr)

�
�

�
�Presi

dent

�
�

�
�

State
(State-
Name)

�
�

�
�

Party
(Part-
name)

�
�

�
�

Hobby

(Hobby-
name)

being-
member-

of

having-
as-

member

having-
as of

�
�
�
�
�
�
�
�
�

born-
in

being-
birthstate-

of

A
A
A
A
A
A
A
A
A

serving

being-
served-

by

dying-
at

being-
age-at-

death-of

�
�
�
�
�
�

�
�

�
�

�
��

being-
birthyear-

of

born-
in

�
�

�
�Poli

tician

�
�

�
�

Person
(Person-
name)

�
�

�
�

Admini
stration

(Adm-nr)

�
�

�
�Election

(Elec-Id)

6

6
Election-results

�
�

�
�

Nr-of-
votes
(Nr)

p1 p2

p3
headed-

by

being-
president-

of

��
��
�

HH
HH

H

having-as-

vice-president

being-
vice-president-

of

HHHHH

�����

won-by

winning

�
�
�
�
�
��

�
�

�
�

�
��

inaugurated-

in

being-
inauguration-

year-of

being-
spouse-

of

having-

as-
spouse A

A
A
A
A

p4

�
�
�
��

�
�

�
�

Marriage

�
�

�
�

Nr-of-

children
(Nr)

resulting-

from

resulting-
in

Family-
size

Figure 11: Part of an information structure regarding American presidents

20

4.1 The Underlying Naming Convention
In the previous sections the elements constituting an information structure were introduced as abstract con-
cepts. The intention of the rest of this paper is to describe a language by which populations of information
structures can be manipulated (by human beings), in terms of these abstract concepts (to be manipulated by
machines). This language should lead to natural expressions. Typical for such languages is the richness to
form sentences, even sentences that have no intuitive meaning. The language should be such that it allows
for an elegant description for the information need of a user. This does not imply the exclusion of unelegant
descriptions, independently of subjective ideas of elegance!

Object type naming

A first requirement is to verbalise the mathematical concepts of PSM via some set N of names. Object
types are referenced by a unique name: ONm : O � N , which is specified in the schema upon their
introduction. The (partial) function Obj : N � O is the left-inverse of ONm, and relates object type names
to their corresponding object type:

∀
x∈O [Obj(ONm(x)) = x]

In order to improve readability, x rather than Obj(x) will be written. From the context it will be clear
whether x is used as an information descriptor, or as a shorthand for Obj(x).

Predicator naming

Predicators may have assigned a so-called predicator name via the (partial) function: PNm : P � N .
Predicator names should be unique for predicators belonging to the same fact type. This, however, is not
required for predicators of different fact types. The operator . : N ×N � P retrieves the predicator that
is associated with a given name within a fact type (if any):

∀
p∈P [ONm(Fact(p)). PNm(p) = p]

For unique predicator names, the fact type name qualification may be omitted for readability. Finally,
object type names and predicator names should be different.

Role naming

In binary versions of NIAM ([Win90b]), special names are introduced for predicators, to form readable
sentences over the information structure. These names, referred to as role names, are those names that
occur in NIAM schemata close to roles. They are recorded by the (partial) function: RNm : P � N .
In figure 11 role names are added to all predicators of binary fact types that are not a bridge type. Role
names correspond to special connections (in the form of path expressions) through (binary) fact types. Such
special connections are termed connectors in this paper. As an example, the sentence Hobby of President
specifies all hobbies of presidents, while the sentence Hobby of President having-as-spouse Politician
specifies all hobbies of presidents with a spouse involved in politics. In NIAM terminology, such sentences
are called deep structure sentences. They form the basis of the NIAM modelling technique, and act as a
natural language intermediate between application domain expert and system analyst. Such sentences can
be interpreted uniquely as path expressions if each valid combination Object-Name Role-Name Object-
Name has a unique interpretation in the information structure, and has no ambiguity with respect to its
co-role (its co-predicator). This is called the Role Identification Rule (see [Win90b]). A combination nx
np ny is valid if there exists a predicator p such that:

ONm(Base(p)) ∼ nx
RNm(p) = np

and a predicator q ∈ Fact(p), with q 6= p, such that:

ONm(Base(q)) ∼ ny

21

The combination of nx np ny has a unique interpretation in the information structure, if predicator p is
unique. The combination of nx np ny is unambiguous with respect to its co-role if predicator q is also
unique. The latter condition is automatically fulfilled if only binary fact types are allowed, and if the pred-
icators of binary fact types have unique role names. In the non-binary case however, this latter condition is
not fulfilled generally. Furthermore, the requirement of uniqueness of interpretation of role names within
a fact type is sometimes felt to be too limiting (for example in the case of homogeneous symmetric bi-
nary relations it is natural that both role names are the same). This leads to a different interpretation of
combinations nx np ny. For this purpose, the Path function will be introduced.

As a simple example of this new interpretation, consider the (ternary) election relation in figure 11.
To find all persons contesting in an election, it would be preferable to formulate Person contesting-in
Election. The name contesting-in then is used to denote the path expression p1 ◦ p2

←. Another example
is Nr-of-votes of Person. In this statement, name of is to be interpreted, in the context of Nr-of-votes and
Person as path expression p3 ◦ p2

←.

The administration of names

This leads to a generalisation of role names to a partial naming function Path : O × O × N � PE that
assigns, in a given context, a path expression to a name. The notation Path(x, y, n)↓ is used to indicate that
Path(x, y, n) is defined for object types x, y and name n. The name n then can be used as a denotation for
a path connecting x to y. In this case, name n is qualified as a defined name.

The function Path will be filled with a number of predefined names, and may be extended by the user
of a LISA-D interpreter. In the sequel all predefined names, or keywords, are introduced. As a notational
convention, keywords are written in capitals. For a start, the name function Path contains the following:

1. Names of (explicit) object types are defined names. The name ONm(x) of object type x stands for
path expression x:

Path(x, x, ONm(x)) = x

For implicit object types (such as fact type ∈x) no names are assumed. Rather, special keywords are
introduced to handle the manipulation of such object types.

2. Predicator names are defined names. If p is a predicator having a predicator name, then the predicator
name PNm(p) describes a path from the base of p to its corresponding fact type:

Path(Base(p), Fact(p), PNm(p)) = p

3. Connector names are defined names. If predicator p of binary fact type f = {p, q} has associated a
connector name, then this name is interpreted as in RIDL:

Path(Base(p), Base(q), RNm(p)) = p ◦ q←

provided f is not a homogeneous fact type with ambiguous role names (i.e. f consists of predicators
p, q such that Base(p) = Base(q), and also RNm(p) = RNm(q)). In that case the name receives its
interpretation from both roles:

Path(Base(p), Base(q), RNm(p)) = p ◦ q← ∪ q ◦ p←

4. Denotations for label values are defined names. This makes it possible to use such denotations as
regular information descriptors. The denotation CNm(c) of constant c refers to the path expression
c, describing a path from SortOf(c) to SortOf(c):

Path(SortOf(c), SortOf(c), CNm(c)) = c

The functions CNm and SortOf are introduced in the next section.

22

4.2 Integrating the concrete domains
In section 2.2 the link between an information structure and concrete domains has been described. In this
section, this link is described in terms of schema integration. This results in a uniform approach both to the
actual information structure, and the underlying domains. The resulting information structure is, however,
not a proper information structure, as there may be population problems: some concrete domain may have
an infinite size, while populations can only be finite.

SupposeD = 〈D, F 〉 is the underlying concrete domain structure, coupled to the information structure
by the function Dom : L → D. To make it possible to use the functions and relations from F (such
as < and +), the structure D will be incorporated in the information structure. This section describes the
procedure.

The concrete structureD is predefined as a PSM-schema. The integration then is performed by consid-
ering the coupling function Dom specifying subtype relations as follows:

x Spec d⇔ Dom(x) = d

These subtype relations do not require subtype defining rules.

Example 4.1 In figure 12 these (new) specialisation relations are shown for the schema in figure 10.�
�

�
�Commu-

nity
rr

�
�

�
�(C-name)

r

�
�

�
�Streetr rr

�
�

�
�(S-name)

r

�
�

�
�Addressr r

�
�

�
�(H-nr)

r?6
?6

�-

?6

�-

?6

p1

p2

p5

p6

p9

p10

p3 p4 p7 p8

f1 f3 f5

f2 f4

�� ��u
�� ��u

�
�

�
�(String)

�
�

�
�(Natno)

HHHHHj

������ ?

Figure 12: Associating concrete domains to label types

Besides its structure, the population of the concrete structure is also predefined, and may not be subject
to change. For example, the domain Natno is populated with the set of all natural numbers, and the relation
< on the domain Natno is populated with the set of all tuples with first component smaller than the second
component.

Appropriate names for the object types and predicators in the concrete structure are assumed as de-
scribed in the previous section. On top of that, names (denotations) for concrete values are also assumed.
However, as all concrete domains are considered mutually disjoint, each concrete value belongs to precisely
one domain. Let SortOf be the function that returns the name of this domain for any concrete value:

SortOf(c) = d⇔ c ∈ d

In order to effectively use the functions and relations from F , they are considered as (concrete) fact types. A
signature convention is assumed for each concrete fact type. This convention is a complete ordering of the
predicators in any fact type (see function Ident in section 2.3), with the restriction that for functions the pred-
icator corresponding to the result of the function, is first in this ordering. For example, the signature conven-
tion for the operator + could be: result+, first-argument+, second-argument+. The addition 5+3 then

23

is represented in the population of fact type + by the tuple 〈8, 5, 3〉 =
{

result+ : 8, first-argument+ : 5, second-argument+ : 3
}

.
For relations, special naming conventions can be introduced, for example:

Path(Natno, Natno, <) = first-argument< ◦ second-argument<
←

4.3 Syntax and Semantics of Information Descriptors
As in natural languages, LISA-D has a very liberal syntax, especially for information descriptors. Some
information descriptors are very specific, some are very general, others may not even make sense. Rather
than excluding senseless information descriptors syntactically, the semantic interpretation will yield a void
meaning for such constructs. Static semantics checks can easily detect such flaws in information descrip-
tors.

LISA-D is built around a number of syntactical categories. In this section the category Information
Descriptor is introduced. In later sections predicates, updates and queries will follow. The underlying
elementary syntactical categories are: Var for simple variables andN for names. The naming conventions
for instances of these syntactical categories are as follows: for Information Descriptor: P , P ′, P1, P2, O,
Q, for Var: v, forN : n.

The semantics of the syntactic category Information Descriptor is specified by the valuation function
D : Information Descriptor× ENV → PE that maps information descriptors on path expressions. This
valuation function is defined inductively on the structure of information descriptors. With each syntactic
construct for the syntactic category Information Descriptor a recurrence rule is associated. ENV : Var →
PE denotes the environment containing the current values of variables from the syntactical category Var.
In a later section, the assignment of values to variables is discussed.

Atomic Information Descriptors

The foundation of information descriptors in LISA-D is formed by the defined names of N , as introduced
in the previous section. The meaning of a name is obtained as the sum of all possible interpretations as
recorded by the Path-function. Variables form another elementary construct for information descriptors, as
they are used to store intermediate results. The meaning of the elementary constructs is summarised by:

D[[n]] (e) =
⋃

Path (x,y,n)↓

Path (x, y, n)

D[[v]] (e) =

{

e(v) if e(v) is defined
∅PE otherwise

Some examples of atomic information descriptors are constant denotations (for example ‘Roosevelt F.D.’),
names for object types (Year), and role names (born-in). Note that the information descriptor born-in
corresponds to two connectors (for simplicity, it is assumed that in the Presidential Database the same
names are chosen for predicator names and role names; normally these names will be chosen differently)
and two predicator names:

D[[born-in]] (e) = Birthyear.born-in
∪ Birthyear.born-in ◦ being-birthyear-of←

∪ Birthstate.born-in
∪ Birthstate.born-in ◦being-birthstate-of←

Concatenation of Information Descriptors

Atomic information descriptors by themselves are rather limited. For instance, the atomic information
descriptor born-in has a very general meaning. More fruitful information descriptors emerge by making
combinations. The most fundamental way is concatenation of information descriptors:

D[[P1 P2]] (e) = D[[P1]] (e) ◦D[[P2]] (e)

24

A crucial effect of the concatenation operator is that it filters out the apparent intention of the user. Both
information descriptors P1 and P2 may be very ambiguous, if they are used in the context of each other,
much of the ambiguity will disappear. The strongest case is when both information descriptors have no
meaning in each others context, i.e. when there is no connection from the one to the other. If there is no
connection between information descriptors, concatenation will result in an information descriptor with a
void meaning:

D[[born-in Hobby]] (e) = D[[born-in]] (e) ◦Hobby
= ∅PE

Note that it can be statically decided (i.e. without the need for evaluation) whether a connection exists
between two information descriptors. This is expressed by the first filter property:

Theorem 4.1 (First Filter Property) Suppose n1 and n2 are names, then:

D[[n1 n2]] (e) =
⋃

z1∼z2

Path(x, z1, n1) ◦Path(z2, y, n2)

Proof: Suppose z1 6∼ z2, then in each population Pop of information structure Σ (i.e. IsPop(Σ, Pop)) z1

and z2 have no values in common (axiom P1): Pop(z1) ∩ Pop(z2) = ∅. As a result, there is no
contribution from Path(x, z1, n1) ◦Path(z2, y, n2) to the result of n1 n2 for any x and y.

2

As a next example, the information descriptor born-in State is composed by the concatenation of two
atomic information descriptors.

D[[born-in State]] (e) = D[[born-in]] (e) ◦State
= Birthstate.born-in ◦being-birthstate-of← ◦State

As this path expression is homogeneous (see section 3), it follows that the information descriptor born-in
State has the same meaning as President born-in State. The next example concatenates two atomic
information descriptors, that both correspond to an object type:

D[[President Person]] (e) = President ◦Person
= President

Sometimes, parts of an information descriptors will be added just to make the expression readable by a
human being. Semantically, there does not have to be a difference, as is stated in the second filter property:

Theorem 4.2 (Second Filter Property) Suppose n1 and n2 are names of object types X1 and X2 respec-
tively, then:

X1 Spec X2 ∨X2 Gen X1 ⇒ n1 n2 ≡ n1

Proof: Suppose n1 and n2 are names of object types X1 = Obj(n1) and X2 = Obj(n2), such that
X1 Spec X2∨X2 Gen X1, then in each population Pop of information structure Σ (i.e. IsPop(Σ, Pop)):
Pop(n1) ⊆ Pop(n2). As a result, D[[n1 n2]] (e) = D[[n1]] (e) in each environment e.

2

In case of objectification, the predicator name can be fruitfully employed to form fluent sentences. For ex-
ample, suppose PNm(p4) = in instead of the name presented in figure 11. Then the information descriptor
President in Marriage resulting-in Nr-of-children translates to a path expression connecting presidents
with the corresponding number of children:

D[[President in Marriage resulting-in Nr-of-children]] (e)

= President ◦ in ◦Marriage ◦ resulting-in ◦ resulting-from← ◦Nr-of-children

25

Keywords as Information Descriptor

Until now only defined names are introduced for constants, object types and predicators. This naming
serves as a verbalisation of the abstract information structure. In this section the keywords are introduced.
An important purpose of keywords is to serve as an abstraction mechanism for handling implicit fact types.
The keywords are summarized in figure 13.

�
�

�
�E

�
�

�
�(L)

-WITH

�
IS-NAME-OF

�
�

�
�A

�
�

�
�B

-OF

�
INVOLVED-IN

�
�

�
�A

'
&

$
%

B

-

IN

�
CONTAINING

�
�

�
�A

�
�

�
�B

C

�
COMPRISING

�
PART-OF

�
�

�
�I

@B

'
&

$
%

-INDICES

�
AT-POSITION

∈B

�
�

�
�A

B

�ELEMENTS

-
HAVING

�SEQUENCES

-
OCCURRING-IN

Figure 13: Keywords

Keywords for bridge types.

For relating object types to label types, the keywords WITH and IS-NAME-OF can be used. The keyword
WITH relates object types via bridge types to label types, the keyword IS-NAME-OF is its inverse:

for all b ∈ B:

{

Path(Base(abstr(b)), Base(concr(b)), WITH) = abstr(b) ◦ concr(b)←

Path(Base(concr(b)), Base(abstr(b)), IS-NAME-OF) = concr(b) ◦ abstr(b)←

This significantly reduces the need to have role names for predicators from bridge types. The keywords are
particularly relevant when entity types are directly identifiable by single label types, which is the case for
the entity types in figure 11, since in such cases bridge types are not visualised.

Example: President WITH Person-name ‘Roosevelt F.D.’ denotes the president with name ‘Roo-
sevelt F.D.’. Part-name IS-NAME-OF Party having-as-member President WITH Person-name ‘Roo-
sevelt F.D.’ results in the name of all parties which have president Roosevelt registered as a member.

26

Keywords for predicator referencing.

The keywords OF and INVOLVED-IN are intended to facilitate the manipulation of objectified fact types.
They are also useful as shorthands for predicator names. The keyword OF represents all relations between
fact type instances and their constituent object type instances, the keyword INVOLVED-IN is its inverse:

for all x ∈ O and f ∈ F :

{

Path(x, f, INVOLVED-IN) =
⋃

q∈f,Base(q)=x q

Path(f, x, OF) =
⋃

q∈f,Base(q)=x q←

The union operator in this definition is required to deal with fact types that contain predicators with identical
bases.

Example: The information descriptor President INVOLVED-IN Marriage relates all married presi-
dents to their respective marriages, while the information descriptor Marriage OF President relates all
marriages to the presidents involved.

The combination of these keywords can be used to to unite all connections via fact types between two
given object types. The information descriptor Administration INVOLVED-IN OF Person, for example,
relates administrations to persons that were either president or vice-president of those administrations. The
keyword ASSOCIATED-WITH serves as an abbreviation of this combination of keywords allowing for the
formulation: Administration ASSOCIATED-WITH Person.

Keywords for power types.

The keywords IN and CONTAINING verbalise the implicit relation between a power type and its under-
lying element type. The keyword IN relates an element type with its associated power type(s), the keyword
CONTAINING is its inverse:

for all x ∈ G:

{

Path(Elt(x), x, IN) = ∈e
x ◦∈

p
x
←

Path(x, Elt(x), CONTAINING) = ∈p
x ◦∈

e
x
←

Example: Ships can be related to the convoy in which they sail (see figure 3) via the information descriptor
Ship IN Convoy. The information descriptor Convoy CONTAINING Ship relates convoys to their con-
stituent ships.

Keywords for sequence types.

The implicit fact types for sequence types capture the indexing relations for sequences. The keyword
SEQUENCES is a generic name for predicators ∈s

x. Consequently, it relates sequences to the sequence
membership relations (instances from ∈x) in which they occur. The keyword OCCURRING-IN, does the
reverse, it relates sequence membership relations to the involved sequences:

for all x ∈ S:

{

Path(x,∈x, SEQUENCES) = ∈s
x

Path(∈x, x, OCCURRING-IN) = ∈s
x
←

The keyword ELEMENTS is a generic name for predicators ∈e
x. Consequently, it relates elements to the

sequence membership relations in which they occur. The keyword HAVING, does the reverse, it relates
sequence membership relations to the involved elements:

for all x ∈ S:

{

Path(Elt(x),∈x, ELEMENTS) = ∈e
x

Path(∈x, Elt(x), HAVING) = ∈e
x
←

The keyword INDICES relates indices to the associated sequence membership relations, while the keyword
AT-POSITION does the reverse:

for all x ∈ S:

{

Path(I,∈x, INDICES) = @i
x ◦@

s
x
←

Path(∈x, I, AT-POSITION) = @s
x ◦@

i
x

←

27

Example: Consider the schema of figure 4. The freight cars that are part of the train with T-code ’NE
99’ are described by: Freight-car ELEMENTS OCCURRING-IN Freight-car-sequence of Train WITH T-
code ’NE 99’ . The trains containing freight car ’A702’ are found by: Train has Freight-car-sequence
SEQUENCES HAVING Freight-car WITH C-Code ’A702’ . The head freight cars of all trains are found
by: Freight-car ELEMENTS AT-POSITION 1.

Keywords for composition types.

The keywords COMPRISING and PART-OF deal with the relations between instances of schema types
and instances of their constituent object types. The keyword COMPRISING relates instances of schema
types to instances of object types of their decomposition, the keyword PART-OF does the reverse:

for all x ∈ C, x≺ y:

{

Path(x, y, COMPRISING) = ∈c
x,y ◦∈

d
x,y

←

Path(y, x, PART-OF) = ∈d
x,y ◦∈

c
x,y
←

Example: Consider figure 5. The information descriptor Output PART-OF Activity-graph results in the
output relations occurring in activity graphs. The information descriptor Activity-graph COMPRISING
Output results in the activity graphs which contain at least one output relation.

Logical connectors and set operators

The LISA-D logical connectors AND-ALSO, OR-ELSE and BUT-NOT have a meaning very similar to that
of their logical counterparts. The LISA-D set operators INTERSECTION, UNION and MINUS correspond
to the well-known set operators intersection, union, and difference. The logical connectors ignore the
values in the second component of the information descriptors involved, the set operators do not. The NOT
operator is based on the active complement as defined for path expressions.

D[[P AND-ALSO P ′]] (e) = f←D[[P]] (e)∩ f←D[[P ′]] (e)

D[[P INTERSECTIONP ′]] (e) = D[[P]] (e)∩D[[P ′]] (e)

D[[P OR-ELSE P ′]] (e) = f←D[[P]] (e)∪ f←D[[P ′]] (e)

D[[P UNION P ′]] (e) = D[[P]] (e)∪D[[P ′]] (e)

D[[P BUT-NOT P ′]] (e) = f←D[[P]] (e)− f←D[[P ′]] (e)

D[[P MINUS P ′]] (e) = D[[P]] (e)−D[[P ′]] (e)

D[[NOT P]] (e) = ¬D[[P]] (e)

To find the presidents that were born in California and served four years one can formulate: President(born-
in State WITH State-name ’California’ AND-ALSO serving Nr-of-years WITH Nr 4).

Remark 4.1 The use of constructions such as Year WITH Year-nr and Year-nr IS-NAME-OF Year can be
simplified by the introduction of special names:

Path(Nr-of-years, Nr, Nr-of-years) = p ◦ q←

Path(Nr, Nr-of-years, Nr-of-years) = q ◦ p←

if p and q are the predicators in this bridge type. This would allow the following construction: President(born-
in State WITH State-name ’California’ AND-ALSO serving Nr-of-years 4). For all bridge types in the
Presidential Database this extension of the Path-function is assumed in the remainder of this paper.

Predicator inversion

Predicator names are introduced as information descriptors that correspond to a path expression consisting
of that predicator. The inverse path is obtained via the following construction. Let n be the name of a
predicator, then:

D[[n :]] (e) =
⋃

PNm(p)=n

p←

28

Binary operators

In section 4.2 the introduction of binary relational operators was discussed. In this section binary operators
are introduced as information descriptors, resulting in information descriptors as 45 + 20, or 45 + Year
being-birthyear-of. The general format of such an expression is P1 n P2 where n is the name of any
concrete binary operator (i.e., ternary fact type). The interpretation of this construct is as follows:

P1 n P2 ≡ n0 (n AND-ALSO n1 : P1) n2 : P2

where n0, n1, n2 is the signature convention of the operator with name n.

Transitive closure

The information descriptor ANY-REPETITION-OFP describes the transitive closure of information descrip-
tor P , and is defined as follows:

D[[ANY-REPETITION-OFP]] (e) = (D[[P]] (e))+

As an example, consider the construction of formulas as described in example 2.5. Suppose V is an infor-
mation descriptor describing some set of variables. All formulas that contain variables from V , but are not
variables themselves, are obtained by the following information descriptor: Formula ANY-REPETITION-OF
(having-left-arg UNION having-right-arg) V . The expression ANY-REPETITION-OF (having-left-arg
UNION having-right-arg) connects formulas to all their subformulas. By concatenating V , the restriction
to variables from V is realised. The information descriptor Formula has no effect and is only added to
improve readability.

As another example of the use of the transitive closure consider figure 5. According to this schema,
activities may have a decomposition, consisting of substates and subactivities. Subactivities may have a
decomposition as well. The relation between activities, and their corresponding subactivities, subsubactiv-
ities, etc., is captured by the following expression: ANY-REPETITION-OF (Activity being-decomposed-
into Activity-graph COMPRISING Activity). This information descriptor relates activities to the activities
occurring in their direct or indirect decompositions.

Correlation

In order to find the presidents who where inaugurated at an age younger than 45 years, i.e. inaugurated at
least once within 45 years of their birth year, a convenient formulation is: President being-president-of
Administration inaugurated-in Year ≤ 45 + Year being-birthyear-of THAT President This is called a
correlation expression. A correlation expression cannot be formulated using the primitives introduced so
far. The formal semantics of correlation expressions is defined as:

D[[P THAT O]] (e) = D[[P O]] (e)∩D[[O]] (e)

Usually, the second information descriptor involved (i.e. O) is the name of a object type.

Type coercions

In LISA-D there exist some explicit forms of object type coercion. These can be divided into two groups:

1. Conversion of the population of an information descriptor to a single value. This value can again be
used as an information descriptor.

2. Conversion of the population of an information descriptor to a population of a different type.

These coercions are discussed successively. Coercions that lead to a single value of some label type typi-
cally perform some computation.

29

1. The function NUMBER-OF counts the number of elements (including duplicates!) occurring in an
information descriptor.

D[[NUMBER-OF P]] (e) = Cnt(D[[P]] (e))

The number of presidents that were born in Virginia is given by: NUMBER-OF President born-in
State ’Virginia’.

2. The function SUM adds the elements occurring in the first component of an information descriptor
(including duplicates). This function is only applicable if addition is defined for the elements in the
first component of the involved information descriptor.

D[[SUM P]] (e) = Sum(D[[P]] (e))

The total number of children of presidents is found by: SUM Nr IS-NAME-OF Nr-of-children
resulting-from Marriage.

3. The functions MIN and MAX calculate the minimal and the maximal element occurring in the first
component of an information descriptor. These functions require the existence of an ordering on the
elements occurring in the first component of the involved information descriptor.

D[[MIN P]] (e) = Min(D[[P]] (e))

D[[MAX P]] (e) = Max(D[[P]] (e))

The highest age of death of a president is found by: MAX Nr OF Age being-age-at-death-of
President.

For the second type of coercion the following operators are available:

1. Multiple occurrences are filtered from the result of an information descriptor by the use of the
DISTINCT operator:

D[[DISTINCTP]] (e) = ds(D[[P]] (e))

An example of the application of this operator is DISTINCT State being-birthstate-of President
as some states are birthstate of more than one president.

2. The elements in an information descriptor P can be grouped into sets, according to a certain grouping
criterion Q, using the LISA-D group operator:

D[[GROUP P BY Q]] (e) = ϕ(D[[P]] (e), D[[Q]] (e))

The information descriptor GROUP President BY President having-as Hobby groups presidents
sharing a hobby.

3. The coercion from sets to elements from these sets is achieved by the UNITE operator. Naturally, it
is required that the elements in the first component of the involved information descriptor are sets
themselves.

D[[UNITE P]] (e) = Υ(D[[P]] (e))

For example, the information descriptor UNITE Convoy yields all ships sailing in any convoy.

4. The elements in an information descriptor P can be ordered, according to an ordering criterion Q,
using the LISA-D sort operator:

D[[SORT P BY Q]] (e) = ψ(D[[P]] (e), D[[Q]] (e))

The information descriptor SORT President dying-at Age BY Age < Age orders presidents on
their age of death.

30

Generators are operators required for the formulation of special types of constraints.

D[[P PAIRED-WITHP ′]] (e) = D[[P]] (e) �D[[P ′]] (e)

D[[ALL-SUBSETS-OFP]] (e) = ℘(D[[P]] (e))

As an example, the information descriptor President PAIRED-WITH State pairs all presidents with all
states, and ALL-SUBSETS-OF Ship yields all possible sets of ships (see figure 3). Obviously, all convoys
are part of this information descriptor.

4.4 Assignments
A convenient mechanism to reduce the complexity of expressions is the assignment of subexpressions to
variables. The format of an assignment is:

LET v BE P

The effect of such an assignment is a change of the environment. A special operator ⊕ is introduced to
record such changes. For environment e, e′ = e⊕{x← c}, denotes the same environment as e except for
variable x: e′(x) = c.

The semantics of assignments is given by the valuation function

A : Assignment × ENV → ENV

which is defined as:

A[[LET v BE P]] (e) = e⊕{v ← D[[P]] (e)}

The meaning of an assignment A in the context of an information descriptor is:

D[[A; P]] (e) = D[[P]] (A[[A]] (e))

The following assignment may serve as an illustration:
LET Old-Presidents BE President dying-at Age > 90

4.5 Denotations
In this section, constructions are introduced that facilitate the denotation of object instances used in infor-
mation descriptors considerably. For this purpose, structured constants are introduced via the syntactical
category Constant Denotation, with the following abstract syntax:

c constants
v variables

d1, . . . , dk denotation of entities
[d1, . . . , dk] denotation of facts

[q1 = d1, . . . , qk = dk] alternative denotation of facts
{d1 . . . , dk} denotation of power type instances
〈d1, . . . , dk〉 denotation of sequence type instances

where c is a Constant name, v ∈ Var , dj is a Constant Denotation and qi ∈ ran(PNm).
Values of a label type named L can be used in information descriptors as follows:

D[[L : c]] (e) = D[[L c]] (e)

The expression Person-name:’Eisenhower D D’, for example, is a valid information descriptor.
Consider figure 10. To denote a concrete address, while only using the constructs that have been

introduced so far, one would have to write:

Address(in Street(in Community WITH C-name ’New York’
AND-ALSO
WITH S-name ’Fifth Avenue’) AND-ALSO WITH H-nr 17)

31

where it is assumed that RNm(p8) = RNm(p4) = in.
Obviously, one would prefer to write:

Address: ’New York’, ’Fifth Avenue’, 17

This is an example of an entity denotation. The formal definition of entity denotations uses the functions
Ident and Copred introduced in section 2.3. If E is the name of an entity type, then:

D[[E : d1, . . . , dk]] (e) = Obj(E) ◦
k
∩

i=1
f←(Copred(pi) ◦ pi

← ◦D[[Bi : di]] (e))

where pi = Ident(Obj(E))[i] and Bi = ONm(Base(pi)).
The function Ident has been extended to fact types in section 2.3. This extension allows for the de-

notation of fact type instances as sequences of values. The ordering as defined in the function Ident can
then be used to determine which value corresponds to which base. An instance of a fact type named F can
therefore be denoted as a structured constant of the form [d1, . . . , dk]. The formal interpretation is given
by:

D[[F : [d1, . . . , dk]]] (e) = Obj(F) ◦
k
∩

i=1
f←(pi

← ◦D[[Ni : di]] (e))

where pi = Ident(Obj(F))[i] and Ni = ONm(Base(pi)).
For example, president Eisenhower was president during administration 49. The corresponding in-

stance of fact type Admin-pers can be denoted as:

Admin-pers : [49, ’Eisenhower D D’]

if
Ident(Obj(Admin-pers)) = 〈Admin-pers.headed-by, Admin-pers.being-president-of〉

The names of the predicators of a fact type can also be used in the denotation of its instances. In this
case, fact type instances of a fact type named F are denoted as structured constants of the form [q1 =
d1, . . . , qk = dk], where q1, . . . , qk are the names of the predicators of F . The formal interpretation is:

D[[F : [q1 = d1, . . . , qk = dk]]] (e) = Obj(F) ◦
k
∩

i=1
f←(F.qi

← ◦D[[Ni : di]] (e))

where Ni = ONm(Base(F.qi)).
The fact type instance of the previous example can be denoted as:

Admin-pers : [headed-by = 49, being-president-of = ’Eisenhower D D’]

Evidently, the advantage of this new type of denotation is that the assignments in the function Ident need not
be known. However, this example demonstrates that denotations of this new form can be far less elegant.

The denotation of an instance of a power type consists of a set of denotations of its elements:

D[[G : {d1, . . . , dk}]] (e) = Obj(G) ◦

{

D[[X : d1]] (e), . . . , D[[X : dk]] (e)

}

where X = ONm(Elt(Obj(G))).
For example, a convoy (see figure 3) consisting of ships ’S101’ and ’S102’ (instances of label type

S-code) can be denoted as:
Convoy : {’101’,’102’}

The denotation of instances of a sequence type consists of a sequence of denotations of its elements:

D[[S : 〈d1, . . . , dk〉]] (e) = Obj(S) ◦

〈

D[[X : d1]] (e), . . . , D[[X : dk]] (e)

〉

where X = ONm(Elt(Obj(S))).
A freight car sequence (see figure 4) consisting of freight cars ’FC96’ and ’FC99’ (instances of label

type FC-code), respectively, can be denoted as:

Freight-car-sequence : 〈’FC96’,’FC99’〉

32

4.6 Predicates
In this section the extension of LISA-D with the syntactic category Predicate is discussed. Information
descriptors form the basis for this new category. The names C1, C2 are used to denote a predicate. The
semantics of predicates is defined by the function P : Predicate × POP×ENV → Bool. The basis
for LISA-D predicates is the test whether an information desciptor has an empty result. From this basic
predicate new predicates can be formed in the usual way, using logical connectives and quantification:

P[[P]] (Pop, e) = µ[[D[[P]] (e)]] (Pop) 6= ∅

P[[C1 AND C2]] (Pop, e) = P[[C1]] (Pop, e) ∧ P[[C2]] (Pop, e)

P[[C1 OR C2]] (Pop, e) = P[[C1]] (Pop, e) ∨ P[[C2]] (Pop, e)

P[[NO C]] (Pop, e) = ¬P[[C]] (Pop, e)

P[[FOR-EACH x IN P HOLDS C]] (Pop, e) = ∀y∈Rn[[D[[P]] (e)]] (Pop)

[

P[[C]] (Pop, e⊕
{

x←
{[

y
]}}

)
]

The construction
{

x←
{[

y
]}}

is motivated, as each multiset is allowed as path expression. New constructs
may be derived as usual, for example:

FOR-SOME x IN P HOLDS C ≡ NO FOR-EACH x IN P HOLDS NO C

As an example of the use of predicates, we consider the situation that some federal law forbids presidents
to be younger than 20 years. This can be formulated as follows: NO President being-president-of
Administration inaugurated-in Year < 20 + Year being-birthyear-of THAT President.

A more complex example in the context of activity graphs (see figure 5) is the rule that forbids recursive
decomposition of activities (e.g. an activity containing itself as subactivity, either directly or indirectly).
The relation between an activity and its subactivities (at any depth) was discussed in the previous section.
This leads to the following predicate: NO Activity ANY-REPETITION-OF (Activity being-decomposed-
into Activity-graph COMPRISING Activity) THAT Activity .

4.7 Updates
In this section the LISA-D constructs for updating populations are introduced. For a proper introduction, a
partial orderingv on populations of an information structure is useful.

Definition 4.1 Let I be an information structure and let Pop and Pop′ be populations of I (IsPop(I , Pop)
and IsPop(I, Pop′)), then PopvPop′ if and only if:

∀
x∈O [Pop(x) ⊆ Pop′(x)]

Clearly v is a reflexive partial ordering. The above definition makes it possible to speak of minimal (or
maximal) populations with respect to an other population and a condition.

In this section, the syntactic category Update statement is introduced. The semantics of LISA-D update
statements is given by the function U : Update statement × POP×ENV → POP, which operates on a
population in some environment and yields an (updated) population. In LISA-D update statements either
add or delete object instances to populations.

Adding instances to a population is performed by the add statement, with the format ADD P , where
P is any information descriptor. The meaning of this statement is to enforce a minimal extension of the
current population, that populates P , i.e. a minimal extension Pop′ of the current population Pop, such that
information descriptor P has no empty result in the extended population Pop′. Formally, this meaning is
expressed by: U[[ADD P]] (Pop, e) is a minimal population Pop′ such that:

1. IsPop(I, Pop′),

2. PopvPop′ and

3. µ[[D[[P]] (e)]] (Pop′) 6= ∅

33

As an example, the following statement adds the address stated in the beginning of section 4.5 to the current
population:

ADD Address: ’New York’ ’Fifth Avenue’ 17

If this address is not yet available in the current population, then some (arbitrary) abstract instance is added
to the population of entity type Address. This abstract intance is connected (directly or indirectly) to
the labels ’New York’, ’Fifth Avenue’ and 17. Note that if any of these label values is not present in the
current population, then this label value is also added. This example shows why it is necessary to speak of
a minimal population instead of the minimal polation: any abstract instance may be added, as long as the
requirements are fulfilled.

It is a good convention to use object denotations as objective for the add statement. However, the
definition of the add statement makes it possible to formulate such things as

ADD President

This statement adds an arbitrary president if and only if there are no presidents in the population at hand.
An other example is:

ADD President having-as Hobby

This statement assigns an arbitrary hobby to an arbitrary president if and only if such a relation is not
available in the current population. Besides, it may lead to the creation of a president, and the creation of a
hobby.

Instances can be deleted from a population by the delete statement, with the format DELETEP , where
P is any information descriptor. The meaning of this statement is to enforce a minimal reduction of the
current population, that unpopulates P , i.e., a maximal part Pop′ of the current population Pop, such that
information descriptor P has an empty result in the reduced population Pop′. Formally, this meaning is
expressed by: U[[DELETE P]] (Pop, e) is a maximal population Pop′ such that:

1. IsPop(I, Pop′),

2. Pop′vPop and

3. µ[[D[[P]] (e)]] (Pop′) = ∅

As an example, the statement DELETE President will result in a population, in which the object type
President has an empty population. The statement DELETE President having-as Hobby will empty the
population of the fact type that relates presidents to their hobbies.

It should be noted that the population resulting from an update statement may not fulfil all constraints.
To avoid constraint violations, transactions are introduced. A transaction is a sequence of update state-
ments, enclosed between START-TRANSACTION and END-TRANSACTION. The constraints then serve as
invariant relations (i.e., pre- and post-conditions) for these transactions.

4.8 Queries
Basically, queries in LISA-D are formulated using information descriptors. However, an extra language
facility (the syntactic category Query) is required to formulate a query yielding multiple aspects of some
object type. For example one may be interested in the hobbies, the age of death of, and the birth year of
presidents from Texas. This is formulated as:

LIST Hobby of, Age being-age-of-death-of, Year being-birth-year-of, President born-in State: ’Texas’

This query will result in a Hobby, Age, Year triple for each president resulting from President born-in
State: ’Texas’. The example shows the general format of a query: LIST P1, . . . , Pn, P.

However, one is not interested in the abstract entities representing Hobby, Age and Year, but in a
proper denotation in terms of label values. Such a proper denotation is called the name of the entity value.
Weak identification is a property, which guarantees a name for each object instantiation. The identification
rules from section 2.3 provide a naming convention for all object types. In section 4.5 it is shown how the

34

identification rules are specified within LISA-D. From this specification a naming convention Nm : O →
PE for object types is derived as follows:

Nm(X) =

X if X is a label type

δ(X, Nm(Elt(X))) if X is a power type
or a sequence type

δ(X,
⋃

X ≺Y Nm(Y)) if X is a composition type
[

Nm(X1) ◦P1
←, . . . , Nm(Xk) ◦Pk

←
]

if X is an object type, identified
as X(P1 X1, . . . , Pk Xk)

These standard names form a substitution mechanism to transform instances of abstract entities into con-
crete label values. The effect of the LIST-statement is to properly list these values.

The semantics of the syntactic category Query is specified by the valuation function L : Query ×
ENV → PE that maps queries on path expressions.

L[[LIST P1, . . . , Pn, P]] (e) = [StdNames ◦D[[P1]] (e), . . . , StdNames◦D[[Pn]] (e) | D[[P]] (e)]

where StdNames denotes all standard naming convention: StdNames =
⋃

X∈O Nm(X). The filtering
mechanism will filter out all proper names in the context of its associated path expression.

5 Conclusions and Further Research
In this paper the conceptual language LISA-D based on the data modelling technique PSM, has been
introduced. In LISA-D constraints, queries and updates can be expressed in a way closely following the
naming in the conceptual schema. This makes LISA-D statements (generally) easy to read and interpret
intuitively. The formal foundation of LISA-D makes it possible to implement the language and formally
proof properties. In [Hof93], LISA-D and Task-Structures ([HN93]) have been integrated, resulting in
HYDRA.

Further research is necessary to establish the expressive power of LISA-D and to provide the language
with a more powerful typing mechanism to support static semantic checks. Research is being performed
in the development of a version of LISA-D supporting the (on line) evolution of information systems
([FOP92b], [PW93], [FOP92a]) based on EVORM, an extention of PSM supporting evolution ([PW94]).
Furthermore, research is conducted providing a better disclosure of the information stored in the informa-
tion system ([BPW93]), by means of an approach based on stratified hypermedia architecture ([BW92]).
Currently a prototype implementation of LISA-D is being developed.

6 Acknowledgements
This work has been partially supported by:

1. SERC (Software Engineering Research Centre), within the context of the SOCRATES project.

2. The Foundation for Computer Science in the Netherlands (SION) with financial support from the
Netherlands Organization for Scientific Research (NWO), The Netherlands.

Special thanks go to Ernst Lippe, for many very useful ideas, and possibilities for further research.

35

Appendix: Legend of graphical symbols
This appendix contains an overview of the symbols for object types, generalisations and specialisations,
and graphical constraints used in this paper.

���� object type

����(x)
label type x

role

���� predicator

����x

�
�

�
�
y

y power type of x

����x
y y sequence type

of x

����x

6

����y

y is generalisation of x

����y

6

����x

y is specialisation of x

�-
uniqueness constraint
over a single fact type

�
�	u
uniqueness constraint
over several fact types

�
�	• total role or cover constraint

�
 �	n..m

occurrence frequency constraint
or cardinality constraint

�
�	× exclusion constraint

�
�	∈ membership constraint

�
�	⊆ subset constraint

�
�	= equality constraint

�
�	{x1..xk}

enumeration constraint

References
[AH87a] S. Abiteboul and R. Hull. IFO: A Formal Semantic Database Model. ACM Transactions on

Database Systems, 12(4):525–565, December 1987.

[AH87b] S. Abiteboul and R. Hull. IFO: A Formal Semantic Database Model. ACM Transactions on
Database Systems, 12(4):525–565, December 1987.

[Bar84] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in
Logic and the Foundations of Mathematics. North-Holland, Amsterdam, The Netherlands,
Revised Edition, 1984.

36

[BHW91a] P. van Bommel, A.H.M. ter Hofstede, and Th.P. van der Weide. Semantics and verification of
object-role models. Information Systems, 16(5):471–495, October 1991.

[BHW91b] P. van Bommel, A.H.M. ter Hofstede, and Th.P. van der Weide. Semantics and verification of
object-role models. Information Systems, 16(5):471–495, October 1991.

[Boi92] E.A. Boiten. Views of Formal Program Development. PhD thesis, University of Nijmegen,
Nijmegen, The Netherlands, 1992.

[BPW93] C.A.J. Burgers, H.A. Proper, and Th.P. van der Weide. Organising an Information System as
Stratified Hypermedia. In H.A. Wijshoff, editor, Proceedings of the Computing Science in the
Netherlands Conference, pages 109–120, Utrecht, The Netherlands, EU, November 1993.

[BW92] P.D. Bruza and Th.P. van der Weide. Stratified Hypermedia Structures for Information Dis-
closure. The Computer Journal, 35(3):208–220, 1992.

[Che76] P.P. Chen. The entity-relationship model: Towards a unified view of data. ACM Transactions
on Database Systems, 1(1):9–36, March 1976.

[De 88] O.M.F. De Troyer. On Rule-Based Generation of Conceptual Database Updates. In Data and
Knowledge, pages 99–117, 1988.

[DMP84] O.M.F. De Troyer, R. Meersman, and F. Ponsaert. RIDL User Guide. Research report,
International Centre for Information Analysis Services, Control Data Belgium, Inc., Brussels,
Belgium, 1984.

[DMV88] O.M.F. De Troyer, R. Meersman, and P. Verlinden. RIDL* on the CRIS Case: A Workbench
for NIAM. In T.W. Olle, A.A. Verrijn-Stuart, and L. Bhabuta, editors, Information Systems
Design Methodologies: Computerized Assistance during the Information Systems Life Cycle,
pages 375–459, Amsterdam, The Netherlands, EU, 1988. North-Holland/IFIP WG8.1.

[FN85] A.L. Furtado and E.J. Neuhold. Formal Techniques for Data Base Design. Springer-Verlag,
Berlin, Germany, 1985.

[FOP92a] E.D. Falkenberg, J.L.H. Oei, and H.A. Proper. A Conceptual Framework for Evolving Infor-
mation Systems. In H.G. Sol and R.L. Crosslin, editors, Dynamic Modelling of Information
Systems II, pages 353–375. North-Holland, Amsterdam, The Netherlands, EU, 1992. ISBN
0444894055

[FOP92b] E.D. Falkenberg, J.L.H. Oei, and H.A. Proper. Evolving Information Systems: Beyond Tem-
poral Information Systems. In A.M. Tjoa and I. Ramos, editors, Proceedings of the Data Base
and Expert System Applications Conference (DEXA’92), pages 282–287, Valencia, Spain,
EU, September 1992. Springer Verlag, Berlin, Germany, EU. ISBN 3211824006

[FS76] J.P. Fry and E.H. Sibley. Evolution of Data-Base Management Systems. Computing Surveys,
8(1):7–42, 1976.

[HHO92] T.A. Halpin, J. Harding, and C-H. Oh. Automated Support for Subtyping. In B. Theodoulidis
and A. Sutcliffe, editors, Proceedings of the Third Workshop on the Next Generation of CASE
Tools, pages 99–113, Manchester, United Kingdom, May 1992.

[HM81] M. Hammer and D. McLeod. Database Description with SDM: A Semantic Database Model.
ACM Transactions on Database Systems, 6(3):351–386, September 1981.

[HN93] A.H.M. ter Hofstede and E.R. Nieuwland. Task structure semantics through process algebra.
Software Engineering Journal, 8(1):14–20, January 1993.

[HO92] T.A. Halpin and M.E. Orlowska. Fact-oriented modelling for data analysis. Journal of Infor-
mation Systems, 2(2):97–119, April 1992.

37

[Hof93] A.H.M. ter Hofstede. Information Modelling in Data Intensive Domains. PhD thesis, Uni-
versity of Nijmegen, Nijmegen, The Netherlands, 1993.

[HPW92] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Data Modelling in Complex
Application Domains. In P. Loucopoulos, editor, Proceedings of the Fourth International
Conference CAiSE’92 on Advanced Information Systems Engineering, volume 593 of Lecture
Notes in Computer Science, pages 364–377, Manchester, United Kingdom, EU, May 1992.
Springer Verlag, Berlin, Germany, EU. ISBN 3540554815

[HW92] A.H.M. ter Hofstede and Th.P. van der Weide. Formalisation of techniques: chopping down
the methodology jungle. Information and Software Technology, 34(1):57–65, January 1992.

[HW93] A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data modelling.
Data & Knowledge Engineering, 10(1):65–100, February 1993.

[ISO87] Information processing systems – Concepts and Terminology for the Conceptual Schema and
the Information Base, 1987. ISO/TR 9007:1987.
http://www.iso.org

[JG87] D.A. Jardine and J.J. van Griethuysen. A logic-based information modelling language. Data
& Knowledge Engineering, 2:59–81, 1987.

[KV85] G.M. Kuper and M. Vardi. On the Expressive Power of the Logical Data Model. In Pro-
ceedings of the ACM SIGMOD International Conference on the Management of Data, pages
180–187, Austin, Texas, 1985. ACM Press.

[Lev79] A. Levy. Basic Set Theory. Springer-Verlag, Berlin, Germany, 1979.

[Lew85] A. Lew. Computer Science: A Mathematical Introduction. Prentice-Hall, Englewood Cliffs,
New Jersey, 1985.

[Mai88] D. Maier. The Theory of Relational Databases. Computer Science Press, Rockville, Mary-
land, 1988.

[Mee82] R. Meersman. The RIDL Conceptual Language. Research report, International Centre for
Information Analysis Services, Control Data Belgium, Inc., Brussels, Belgium, 1982.

[Mey90] B. Meyer. Introduction to the Theory of Programming Languages. Prentice-Hall, Englewood
Cliffs, New Jersey, 1990.

[NH89] G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational Database Design: a fact
oriented approach. Prentice-Hall, Sydney, Australia, 1989. ASIN 0131672630

[Par90] H. Partsch. Specification and Transformation of Programs - a Formal Approach to Software
Development. Springer-Verlag, Berlin, Germany, 1990.

[PW93] H.A. Proper and Th.P. van der Weide. Towards a General Theory for the Evolution of Appli-
cation Models. In M.E. Orlowska and M.P. Papazoglou, editors, Proceedings of the Fourth
Australian Database Conference, Advances in Database Research, pages 346–362, Brisbane,
Australia, February 1993. World Scientific, Singapore. ISBN 981021331X

[PW94] H.A. Proper and Th.P. van der Weide. EVORM - A Conceptual Modelling Technique for
Evolving Application Domains. Data & Knowledge Engineering, 12:313–359, 1994.

[Sch84] G. Scheschonk. Eine auf Petri-Netzen basier-en-de Konstruk-tion-s, Ana-ly-se und (Teil)-
Veri-fica-tion-s-me-tho-de zur Modellierungsunterstützung bei der Entwicklung von Informa-
tionssystemen. PhD thesis, Berlin University of Technology, Berlin, Germany, 1984. (In
German).

38

[Shi81] D.W. Shipman. The Functional Data Model and the Data Language DAPLEX. ACM Trans-
actions on Database Systems, 6(1):140–173, March 1981.

[Sto77] J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language
Semantics. MIT Press, Cambridge, Massachusetts, 1977.

[VB82] G.M.A. Verheijen and J. van Bekkum. NIAM: an Information Analysis Method. In T.W.
Olle, H.G. Sol, and A.A. Verrijn-Stuart, editors, Information Systems Design Methodolo-
gies: A Comparative Review, pages 537–590. North-Holland/IFIP WG8.1, Amsterdam, The
Netherlands, EU, 1982.

[WBGW73] S.E. Willner, A.E. Bandurski, W.C. Gorhan, and M.A. Wallace. COMRADE data manage-
ment system. In Proceedings of the AFIPS National Computer Conference, pages 339–345,
Montvale, New Jersey, 1973. AFIPS Press.

[WHB92] Th.P. van der Weide, A.H.M. ter Hofstede, and P. van Bommel. Uniquest: Determining
the Semantics of Complex Uniqueness Constraints. The Computer Journal, 35(2):148–156,
April 1992.

[Win90a] J.J.V.R. Wintraecken. The NIAM Information Analysis Method: Theory and Practice.
Kluwer, Deventer, The Netherlands, EU, 1990.

[Win90b] J.J.V.R. Wintraecken. The NIAM Information Analysis Method: Theory and Practice.
Kluwer, Deventer, The Netherlands, EU, 1990.

[WW88] Y. Wand and R. Weber. An Ontological Analysis of some fundamental Information Systems
Concepts. In Proceedings of the Ninth International Conference on Information Systems,
pages 213–226, Minesota, Mineapolis, November 1988.

[You89] E. Yourdon. Modern Structured Analysis. Printice-Hall, Englewood Cliffs, New Jersey, 1989.

39

