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Abstract

Conceptual data modelling techniques aim at the rep-
resentation of data (structures) at a high level of ab-
straction. This implies that conceptual data modelling
techniques should not only be capable of represent-
ing complex structures in a natural way, but also the
rules (constraints) that must hold for these structures.
Contemporary data modelling techniques, however,
do not provide a language which, on the one hand,
has a formal semantics and, on the other hand, leads
to natural looking expressions. In this paper, an infor-
mal introduction to such a language (LISA-D) for the
data modelling technique (PSM), is presented. PSM
is a generalisation of object-role models (such as ER,
NIAM and FORM).

1 Introduction

Currently, many conceptual data modelling techniques
exist. The Conceptualisation Principle ([ISO87]) states
that a conceptual schema should deal only, and ex-
clusively, with aspects of the underlying Universe of
Discourse (UoD). Any aspect irrelevant to that mean-
ing, e.g. machine efficiency, should be avoided. Con-
temporary data modelling techniques are not capa-
ble of adhering to the Conceptualisation Principle for
each UoD. Firstly, choices that are not relevant with
respect to the UoD may have to be made, leading

to overspecification. Secondly, even worse, the UoD
may have to be adapted to meet the requirements of
the modelling technique, e.g. by the introduction of
extra object types (see [HPW92]). These problems
are caused by the lack of sufficiently powerful con-
struction mechanisms.

A second important principle of conceptual data mod-
elling is the 100% Principle ([ISO87]), stating that a
conceptual schema completely prescribes all the per-
mitted states and transitions of the conceptual data
base. As a result, a conceptual data modelling tech-
nique should not only be capable of representing com-
plex structures. It should also be able to represent
rules (constraints) that must hold for these structures.
In most modelling techniques this is not possible, and
one must resort to the use of natural language to spec-
ify these constraints.

Besides constraints, it would also be convenient to be
able to express queries and updates on a conceptual
level. Many query and manipulation languages (e.g.
SQL) require a fairly high level of training, or are
based on a rather primitive data modelling technique
(e.g. ER).

In [HW93], the conceptual data modelling technique
PSM (Predicator Set Model) has been defined, which
is capable of representing complex object structures
without violating the Conceptualisation Principle. PSM
is an extension of PM (Predicator Model [BHW91])
which on its turn is a formalisation of NIAM ([NH89],
[Win90], [HO92]). This means that all NIAM schemas
can be seen as PSM schemas. It also means that
the design procedure supporting the construction of
NIAM schemas (the way of working [Wij91]) and
the NIAM philosophy are not lost, they only need
to be extended to support the additional constructs
as well. An alternative formalization of NIAM is
FORM ([HO92], [Hal89]).

The NIAM analysis method is based on an analysis
method for natural language. The method starts from
verbalisations of examples, which form a (partial) de-
scription of the underlying domain, and are provided
by domain experts. We refer to the language (idiom),
in which the examples are verbalised, as the expert
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language. The verbalisation leads in a straightfor-
ward way to an information structure.

It is only natural that the language for manipulating
and querying also has the format of a semi natural
language, and is designated to approximate the ex-
pert language as close as possible. The rationale be-
hind this has also been addressed in [HH93]. As a
result, sentences in this language are meaningful ex-
pressions within the context of the U◦D, understand-
able and expressible by domain experts. The sen-
tences, verbalising the original examples, form exten-
sional specifications, while queries (in general) corre-
spond to intentional specifications.

The language RIDL (Reference and IDea Language
[DMP84], [Mee82]) was developed for this purpose.
However, due to its informal definition, no rigid base
for both its syntax and semantics was provided, the
language never got much acceptance. Furthermore,
RIDL was based on the restricted binary version of
NIAM ([VB82]).

In [HPW93] and [Hof93] the language LISA-D (Lan-
guage for Information Structure and Access Descrip-
tions) has been formally introduced, covering both
its syntax and semantics. This language is based on
PSM. Its functionality far exceeds the intended func-
tionality of RIDL. As PSM has been designed as a
general object-role modelling technique, LISA-D is
also applicable to well-known representatives of the
object-role modelling paradigm such as FORM, ER
([Che76]), FDM ([Shi81]) or IFO ([AH87]).

In this paper we provide an informal introduction to
LISA-D. In section 3 we propose a CASE-Tool, facil-
itating a convenient way of support for LISA-D. How
intentional specifications (queries) can be formulated
is discussed in section 4 and section 5. Finally, in
section 6 we focus on the part of LISA-D which is
concerned with updating of populations.

The running example

In this paper, we will relate most of the examples to
the following case. In the example, we consider air-
forces and their relation to political entities. An air-
force consists of a set of squadrons, and is assigned
to a political entity. For instance the RAF is the air-
force of the United Kingdom, and the RCAF is the
Canadian air-force. Air-forces can, however, be as-
signed to other political entities than states. The 1-
th ATAF (First Allied Tactical Air-force) is an air-
force consisting of several squadrons from air-forces
of the Northern European states of NATO. As a re-
sult, one squadron may be assigned to more than one
air-force. Every squadron may be referred to by a
squadron name (a code), and political entities may
have a name as well. Note that the identification of

both a squadron and a political entity will be pro-
vided later on. The resulting schema is displayed in
figure 5.

A squadron consists of aircrafts, each of which is ei-
ther a transport aircraft or a combat aircraft. Both
classes of aircrafts have their own identification, a
T-code and a C-code respectively. For a transport air-
craft, its capacity is stored in the database. We dis-
tinguish between two classes of combat aircrafts, a
bomber and a fighter. A combat aircraft may simul-
taneously be a bomber and a fighter, for instance the
Tornado fighter/bomber as used by some of the Euro-
pean air forces. As a result we have introduced two
subtypes for combat aircrafts. For a bomber, its max-
imum bomb load is stored, whereas for a fighter its
number of guns is considered to be relevant. The re-
sulting subschema is presented in figure 8

2 Describing an Information Model

In this section a short (informal) introduction to the
concepts of PSM is given. In addition to that, we
show how a PSM schema is described in the lan-
guage LISA-D. A schema description in LISA-D not
only captures the relevant object types and their in-
terrelationships, but also captures the denotation of
instances of object types.

In the next section we will describe the user interface
of a provisional CASE Tool supporting the specifica-
tion of Lisa-D schemata, and the maintenance of their
populations.

2.1 Label types

In many conceptual data modelling techniques, a dis-
tinction exists between objects that can be represented
directly and objects that can not be represented di-
rectly. In ER, this distinction is reflected by the differ-
ence between entities and attributes, while in NIAM
and PSM this distinction corresponds with the dif-
ference between entities and labels. Labels (or at-
tributes) are elements from a concrete domain (e.g.
strings). As a result, label types have an associated
concrete domain. In LISA-D, label types are related
to this associated domain in the following way:

LABEL TYPE L HAS DOMAIN D;

For the air forces schema we have:

LABEL TYPE T-code HAS DOMAIN String;

Nr-guns HAS DOMAIN Natno;

C-code HAS DOMAIN String;
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Values of label type L can be denoted in LISA-D by
the construct L : d where d is a denotation to be inter-
preted as a value of type L. For instance, Nr-guns: 10

denotes a value of type Nr-guns with denotation 10.

2.2 Fact types

One of the key concepts in data modelling is the con-
cept of relation type, in NIAM and PSM referred to
as fact type. Generally, a relation type is considered
to be an association between object types. A role de-
notes the way an object type participates in this asso-
ciation. The participation itself is called a predicator.
As a result, a fact type can be seen as a set of predi-
cators.

In LISA-D, a fact type (relation type) is specified
by its name, followed by the description of its con-
stituent predicators. A predicator is specified by its
name and the name of the corresponding object type,
its so-called base. The declaration has the following
format:

FACT TYPE F (p1:N1, . . . , pk:Nk)

For example, the fact type Assignment from the Air-
Force database may be declared as follows:

FACT TYPE Assignment (assigned-to: Air-force,

having-as: Political-entity);

A fact type instance is denoted as an enumeration
of the (denotations of the) instances involved: F :
d1, . . . , dk, where di is a constant denotation for an
instance of the object type named Ni, being the base
of predicator pi.

Bridge types are a special kind of binary fact types.
They cross the gap between the concrete and the ab-
stract world, by connecting abstract object types with
concrete object types (label types). Usually the bridge
type and its predicators remain anonymous. This ex-
plains the following format:

BRIDGE TYPE FROM N TO L

where N is the name of an entity type, and L the
name of a label type. Some examples are:

BRIDGE TYPE FROM Combat-aircraft TO C-code,
FROM Weaponload TO Nr-guns

An alternative formulation, conforming to ER con-
ventions, is the following:

ENTITY TYPE N HAS ATTRIBUTE L

This format is discussed in the next section.

2.3 Entity types

Entities correspond to relevant objects in the UoD.
As a result, they are abstract objects, which have to
be identified by label values. Entity types are entered
into a schema in two steps. In the first step, the name
of the entity type is introduced (and optionally its at-
tributes):

ENTITY TYPE E HAS ATTRIBUTES L1, . . . , Lk

Other variants of the entity type declaration will fol-
low. Some examples are:

ENTITY TYPE

Combat-aircraft HAS ATTRIBUTE C-code;

Weaponload HAS ATTRIBUTE Nr-guns;

In the second step, the identification of the entity type
is specified, in the form of an identification descrip-
tor:

IDENTIFICATION E : x1 . . . xn =

E (information descriptor)

Information descriptors are introduced in a next sec-
tion. This declaration can be regarded as a macro
declaration with parameters x1, . . . , xn. The expres-
sion that results after substitution of the parameters
by constants, should be a proper identifier for instan-
tiations of object type E. This means that this in-
formation descriptor may retrieve at most one object
instance (in any population). Testing whether this
property is universially valid, is part of the schema
verification process.�
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Figure 1: An example of a complex identification

As an example, consider the information structure
from figure 1. This schema (omitting the constraints)
is described as follows:

LABEL TYPE

H-nr HAS DOMAIN Int;

S-name HAS DOMAIN String[30];

C-name HAS DOMAIN String[30];

Page



ENTITY TYPE

Address HAS ATTRIBUTE H-nr;

Street HAS ATTRIBUTE S-name;

Community HAS ATTRIBUTE C-name;

FACT TYPE

In-street (in: Address, from: Street);

In-community (in: Street, from: Community);

IDENTIFICATION

Address: x y = Address(in Street: x

AND-ALSO

WITH H-nr: y);
Street: x y = Street(in Community: x

AND-ALSO

WITH S-name: y);
Community: x = Community WITH C-name: x;

In this example, an address now can be denoted as:
Address: (’New York’ ’Fifth Avenue’) 17. In this expres-
sion, the parentheses may be omitted.

2.4 Specialisation

Specialisation is a mechanism for the introduction of
special subclasses of objects, which all satisfy some
property, referred to as the subtype defining rule. These
subclasses inherit all properties of their supertypes,
but may have other properties as well. The special-
isation hierarchy is described by specifying for each
subtype S its direct supertypes (X1, . . . , Xk), together
with the associated subtype defining rule P , where P
is an information descriptor. Information descriptors
are discussed in a subsequent section.

ENTITY TYPE S SUBTYPE OF X1, . . . , Xk

ACCORDING TO P

An example of such a declaration is:

ENTITY TYPE Bomber SUBTYPE OF Combat-aircraft

ACCORDING TO Combat-aircraft having Type ’bomber’

2.5 Generalisation

Generalisation provides the opportunity to group dif-
ferent kind of object types (specifiers) and to assign
new properties to this group. Generalised objects in-
herit their properties from their specifiers. The gener-
alisation hierarchy is described by specifying for each
generalised entity type its specifiers:

ENTITY TYPE G GENERALISATION OF X1, . . . , Xk

The object type Aircraft is used as a generic name for
both Combat-aircraft and Transport-aircraft.

ENTITY TYPE Aircraft

GENERALISATION OF Combat-aircraft, Transport-aircraft

2.6 Power types

Power types are the data modelling pendant of pow-
ersets from conventional set theory. An instance of
a power type is a set of instances of its element type.
Power types are introduced by a statement of the fol-
lowing format:

POWER TYPE P OF X

This statement introduces a power type with name P ,
having as element type the object type named X . The
denotation of an instance of a power type consists of
an enumeration of denotations of its elements. For
example, an instance of Convoy in figure 2 is denoted
as follows: Convoy:

{

Ship1, . . . , Shipn

}

where each
Shipi is a denotation for a ship.

�
�

�
�Ship r

has-code code-of

�
�

�
�(Ship-

code)
r�-�-

'
&

$
%

Convoy

Figure 2: Convoys of ships

2.7 Sequence types

Sequence typing forms the data modelling counter-
part of the mathematical notion of (homogeneous) tu-
ple. The following statement introduces a sequence
type with name S and element type named X .

SEQUENCE TYPE S OF X

The denotation of instances of a sequence type con-
sists, similarly to power types, of an enumeration of
denotations of its elements. For sequence types, how-
ever, the order of the elements is of importance. For
example, the format Freight-car-sequence: 〈Freight-car1, . . . , Freight-carn〉
is the way to denotate an instance of the sequence
type Freight-car-sequence from figure 3, provided each
Freight-cari is a denotation of a freight car.

�
�

�
�Train

(T-code)
rr �

�
�
�

Freight-
car

(C-code)

�
�

�
�

Loco-
motive

(L-code)

r
Freight-car-sequence

has of

�-

part-of contains

�-�-

Figure 3: Freight trains

2.8 Schema types

The PSM modelling technique offers the possibility
of schema (de)composition. A schema type is a com-
position of some underlying (sub)schema, called its
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decomposition. An instance of a schema type is a
population of its decomposition. For example, figure 4
contains a meta model of activity graphs (see [Sch84]),
using schema decomposition. Activity graphs are used
for modellling processes and information passing be-
tween processes. They are bipartite directed graphs,
consisting of Activities (processes) and States. States
can be input for, or output of activities. In an activ-
ity graph, both activities and states may be subject
to refinement. This is modelled in figure 4, where
Activity-graph is a schema type, corresponding to the
notion of activity graph.

�
�

�
�Activity

Input

� -

Output

� -

�
�

�
�State

������

PPPPPP

PPPPPPP

�������

'

&

$

%

Activity graph
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being-decom-

position-of

�-�-

being-decom-
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being-decom-

posed-into

�-�-

Figure 4: A meta model for activity graphs

A new schema type named G, being the composition
of the object types named X1, . . . , Xk, is introduced
as follows:

SCHEMA TYPE G OF X1, . . . , Xk

For instance, the Activity-graph schema type is de-
clared by:

SCHEMA TYPE Activity-graph OF Activity, State, Input, Output

Usually a schema type is described in a separate PSM
schema, and is imported in the current schema by:

SCHEMA TYPE G

3 Doolittle: A Provisional LISA-
D Tool

In this section we discuss a way of support for the
LISA-D language, in the form of the provisional CASE-
Tool Doolittle. The behaviour of this CASE-
Tool is described in terms of an interpreting automa-
ton (see [Win90]). Furthermore, we introduce a user
interface for this CASE-Tool supporting the special

constructs of LISA-D. Several prototype implemen-
tations of Doolittle have been set up. We men-
tion [PEPW93], an implementation in the functional
language Clean ([BELP87]), and [Hub93], which is
based on the language Prolog.

The conceptual schema for the Universe of Discourse
for the air-forces running example is depicted by the
LISA-D Tool, conforming to the drawing style of NIAM,
in figure 5.

3.1 Decomposition

In figure 5, the decompose button5 qualifies Political-entity

as an object type with an underlying decomposition.
In this case, the decomposition is a refinement of Political-entity,
resulting in a more detailed schema. This refinement
deals with states (such as Canada or Norway), and
the grouping of states (or political entities) into po-
litical entities (for instance the NATO or the Western
European Union).

The decomposition of Political-entity may be included
in the current diagram by clicking its decompose but-
ton. This will lead to the screen of figure 7, in which
Political-entity has associated a compose button 4.
Subsequently selecting this compose button removes
the expansion of Political-entity from the screen, re-
sulting in the original screen from figure 5.

The decompose button of Squadron indicates an un-
derlying decomposition for this object type. How-
ever, the object type Squadron has the status of a schema
type. In PSM, a schema type has an associated (sub)schema.
The population of a schema type thus consists of a set
of populations of this underlying subschema.

Besides the (de)compose mechanism described above,
LISA-D offers navigation as another mechanism for
hiding details, in particular for handling of object types
with an underlying decomposition. The zoom in item
from the Options menu results in a transfer to the
(sub)schema associated with the selected object type.
For instance, zooming in on object type Squadron in
figure 5 results in the screen from figure 8. The zoom
out option performs the inverse navigation. Note that
zooming in on the object type Political-entity leads to
a screen, which displays the construction of political
entities from states and groups of political entities.

3.2 Drawing styles

Information structures from PSM can be represented
(as complete as possible) according to several draw-
ing styles. For example, figure 6 shows the schema
from figure 5 according to ER-conventions ([You89]).
The LISA-D Tool offers the user the possibility to
choose between ER and PSM (NIAM). However, some
extensions to ER are required, for example, ER can
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Figure 5: Air Forces

not handle power types, sequence types, schema types
and generalisation. In figure 6 we have chosen to
represent the power type Air-force by putting an extra
square around the corresponding element type Squadron

(the graphical symbol for entity types in ER). Some
extended ER versions (e.g. [EWH85]) can indeed han-
dle some of these concepts.

Generally, graphical descriptions tend to be incom-
plete, as, for example, not all constraints can be repre-
sented graphically. A complete description of the un-
derlying information structure can be provided by a
textual description (see figure 9 for a textual descrip-
tion of the schema from figure 5). As a result, a draw-
ing style can be seen as a special (graphical) view
on the textual description. This (sub)viewing mecha-
nism is intended to offer the possibility to employ (as
far as possible) one’s favourite design methodology.

4 Retrieving Information

LISA-D provides a set of grammar rules which, com-
plemented with a concrete lexicon as obtained from
a particular information structure, leads to a concrete
information retrieval language tuned for the particu-
lar information structure, i.e. closely resembling the
expert language. As a result, LISA-D defines a class
of languages, where each language is based on a par-
ticular underlying lexicon. This is analogous to, say,

predicate calculus, in which a set of predicate sym-
bols provides the lexicon, whereas the construction
rules for formulas correspond to the grammar. Start-
ing from an example, we will first provide the con-
struction rules of the lexicon, followed by a discus-
sion of the grammar rules.

An information descriptor is interpreted as a rule for
the retrieval of information, fulfilling some informa-
tion need. An example of an information need is:

All political entities having an air-force,
that contains a squadron known under
the squadron-name ‘316’.

This sentence corresponds to the following LISA-D
information descriptor:

Political-entity having-as Air-Force CONTAINING

Squadron known-as Squadron-name ’316’

This information descriptor is composed of the fol-
lowing simple information descriptors:

Political-entity, having-as, Air-force,
CONTAINING, Squadron, known-as,
Squadron-name, ’316’

The semantics of an information descriptor I is ex-
pressed as a binary relation ρ(I). The simplest form
of information descriptor is the name of an object
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Figure 6: Air Forces according to ER

type, such as: Political-entity, Air-force and Squadron.
In this case, the associated binary relation consists of
all tuples 〈v, v〉, with v an instance of the object type:

ρ(x) =
{

〈v, v〉
∣

∣ v ∈ Pop(x)
}

The transition of one object type to another, through a
fact type, is called a connector. For instance, having-as

is the name of the connector corresponding to the
transition from Political-entity to Air-force via fact type
Assignment. Connector names are information descrip-
tors as well, having as semantics the binary relation
consisting of all tuples 〈v, w〉 such that instance v is
connected to w via an instance of the corresponding
fact type.

LISA-D provides a number of generic connector names,
which are also information discriptors. The name
CONTAINING, is an example of such a generic con-
nector name. It denotes the transition from any power
type (such as Air-force) to its associated element type
(Squadron). The semantics of a generic connector
name is the sum of all associated concrete connec-
tors.

The next category of elementary information descrip-
tors is formed by denotations of constants. They are
interpreted in the obvious way:

ρ(’316’) =
{

〈316, 316〉
}

Next we focus at the grammer rules for forming in-
formation descriptors. The main construction mecha-

nism for information descriptors is juxtaposition. The
general rule for concatening information descriptors
P and Q is:

ρ(P Q) = ρ(P ) ◦ ρ(Q)

where ◦ denotes concatenation of binary relations.
The semantics of the example information descriptor
can thus be expressed as:

ρ(Political-entity has-as . . . Squadron-name ’316’)

= ρ(Political-entity) ◦ ρ(has-as) ◦ ρ(Air-Force) ◦

ρ(CONTAINING) ◦ ρ(Squadron) ◦ ρ(known-as) ◦

ρ(Squadron-name) ◦ ρ(’316’)

Thus far, an information descriptor corresponds to a
linear path through the information structure, with a
unique begin and end point. These information de-
scriptors are qualified as linear, and have the follow-
ing property:

if P is a linear information descriptor from
object type x to y, then:

ρ(P ) ⊆ Pop(x)×Pop(y)

The Doolittle CASE tool supports the formula-
tion of such information descriptors by succesively
clicking (using a mouse) the elements of the path.
Next we consider construction rules leading to non-
linear information descriptors. A first group contains
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Figure 7: Squadron decomposed

operators such as union, intersection and set differ-
ence:

expression ρ(expression)

P INTERSECTION Q ρ(P )∩ ρ(Q)
P UNION Q ρ(P )∪ ρ(Q)
P MINUS Q ρ(P ) \ ρ(Q)

Information descriptors relate beginning and ending
points of paths through the information structure. The
operator THE makes a restriction to the beginning
points of these paths:

expression ρ(expression)

THE P
{

〈x, x〉
∣

∣ 〈x, y〉 ∈ ρ(P )
}

The second group of binary operators operates on first
elements of (binary) tuples:

expression interpretation

P AND-ALSO Q (THE P ) INTERSECT (THE Q)

P OR-ELSE Q (THE P ) UNION (THE Q)

P BUT-NOT Q (THE P ) MINUS (THE Q)

The third group of binary operators consists of arith-
metic operators:

expr. ρ(expression)

P op X

{

〈x op y, z〉

∣

∣

∣

∣

〈x, x〉 ∈ ρ(THEP ) ∧
〈y, z〉 ∈ ρ(Q)

}

where op ∈
{

+,−, ∗, /
}

.

5 Specifying Constraints

The basis for LISA-D predicates is formed the fol-
lowing existential operator for information descrip-
tors:

SOME P , ρ(P ) 6= ∅

Instead of SOME P we will also write P . From these
atomic predicates, new predicates can be formed in
the usual fashion, using logical connectives and quan-
tification:

C1 AND C2

C1 OR C2

NO C

FOR EACH x IN P HOLDS C

FOR SOME x IN P HOLDS C

where C1, C2, C are predicates, and P1, P2, P infor-
mation descriptors. In the quantification constructs,
x is a variable bound to P , as follows:

FOR EACH x IN P HOLDS C , ∀〈a,b〉∈ρ(P ) [C|xa)]

FOR SOME x IN P HOLDS C , ∃〈a,b〉∈ρ(P ) [C|xa)]

Using the above predicates, the following compari-
son operators on information descriptors can be for-
mulated.

P1 INCLUDES P2 , NONE (P1 MINUS P2)
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Figure 8: Zooming in on Squadron

P1 EQUALS P2 , (P1 INCLUDES P2) AND

(P2 INCLUDES P1)

P1 OVERLAPS P2 , SOME(P1 INTERSECTION P2)

Predicates can be used to resolve yes-no information
requests, such as: is it the case that . . . ? Besides,
these expressions are also useful for the description
of constraints. An example is the following sentence:

An aircraft may be in a squadron in an
air-force assigned to a political entity at
most once.

This constraint cannot be represented graphically in
PSM. The corresponding LISA-D expression would
be:

CONSTRAINT

p6: FOR EACH x IN Aircraft:

NUMBER-OF(Political-entity having-as Air-force CONTAINING

Squadron COMPRISING Air-Craft x) ≤ 1

In this expression, COMPRISING embodies the tran-
sition from a schema type instance to instances from
its decomposition, and NUMBER-OF is a function on
information descriptors yielding a relation with one
tuple 〈n, n〉 where n is the number of elements of the
information descriptor involved.

6 Updates

In this section the LISA-D constructs for updating
populations are discussed. In LISA-D update state-
ments either add or delete object instances to popula-
tions. For a proper introduction, a partial ordering v
on populations of an information structure is useful.

Definition 6.1
Let Pop and Pop′ be populations of a PSM in-
formation structure, then PopvPop′ if and only
if:

∀x∈O [Pop(x) ⊆ Pop′(x)]

2

Clearly v is a reflexive partial ordering.

Adding instances to a population is performed by the
add statement, with the format ADD P , where P is
any information descriptor. The meaning of this state-
ment is to enforce a minimal extension of the current
population, that populates P , i.e. a minimal extension
Pop′ of the current population Pop, such that informa-
tion descriptor P has no empty result (i.e., SOME P )
in the extended population Pop′.

Usually, the extension will involve label type instances
as well as abstract objects. The possible extension
with abstract instances, shows why it is necessary to
speak of a minimal population instead of the mini-
mal population: any abstract instance may be added
when needed, as long as the requirements are fulfilled
(especially the minimality of the extention).
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SCHEMA Air-forces

IMPORT Squadron,Political-entity;

LABEL TYPE

Squadron-name HAS DOMAIN String, Name HAS DOMAIN String;

ENTITY TYPE Squadron-name, Group-name;

SCHEMA TYPE Squadron;

BRIDGE TYPE Group-name HAS Name;

FACT TYPE
Assignment

(has (having-as): Political-entity, to (assigned-to): Squadron),

Squadron-naming

(has (known-as): Squadron, to (name-of): Squadron-name),

Group-naming (has (having): Political-entity, to (is-of): Group-name);

IDENTIFICATION

Squadron-name:x = Squadron-name WITH Sq-code x,

Course:x = Group-name WITH Name x

CONSTRAINT
UNIQUENESS

p1: { Squadron-naming.to },

p2: { Group-naming.to }

TOTAL

p3: { Squadron-naming.to },

p4: { Group-naming.to },

p5: { Assignment.to }
END SCHEMA Air-forces.

Figure 9: Textual representation of the Air Forces case

It is a good convention to use object denotations as
objective for the add statement. However, the defini-
tion of the add statement makes it possible to formu-
late such things as

ADD Aircraft

This statement adds an arbitrary aircraft if and only
if there is no aircraft in the population at hand. An
other example is:

ADD State having-as Air-force

This statement assigns an arbitrary air-force to an ar-
bitrary state if and only if such a relation is not avail-
able in the current population. Besides, it may lead to
the creation of a state, and the creation of an air-force.

Instances can be deleted from a population by the
delete statement, with the format DELETE P , where
P is any information descriptor. The meaning of this
statement is to enforce a minimal reduction of the
current population, that unpopulates P , i.e. a maxi-
mal part Pop′ of the current population Pop, such that
information descriptor P has an empty result (i.e.,
NO P ) in the reduced population Pop′. The reduced
population must be a correct population with respect
to the PSM modelling technique. However, constraints
may be violated, in which case the delete statement is
rejected, as we will see in the example below.

As a more elaborate example of updates, let us sup-
pose that the schema of figure 8 has been populated
as follows:

Aircraft c1, c2, c3, t1, t2

Combat-aircraft c1(’F270’), c2(’F271’), c3(’F401’)

Type ’bomber’, ’fighter’

Bomber c3

Fighter c1, c2

Weaponload w1(4), w2(6)

Bombload b1(200)

Transport-aircraft t1(’TR300’), t2(’TR301’)

Capacity tl1(’2000 kg’), tl2(’2500 kg’)

Combat-aircraft-typing 〈c1, ’fighter’〉 , 〈c2, ’fighter’〉 ,

〈c3, ’bomber’〉

Fighter-weaponry 〈c1, w1〉 , 〈c2, w2〉

Bomber-weaponry 〈c3, b1〉

Transport-capacity 〈t1 , tl1〉 , 〈t2, tl2〉

In the above example population, ci, wi, bi, ti and
tli’s denote instances of abstract object types. The
identification (denotation) of these abstract instances
is given between parentheses. Suppose the following
fact is entered:

the transport aircraft with code ’TR400’
has a capacity of 3000 kg.

This can be formulated in LISA-D as follows:

ADD Transport-aricraft: ’TR400’ has-a Capacity: ’3000 kg’

This statement is accepted by the LISA-D Tool. This
acceptance is communicated to the user by the mes-

Page



sage:
Command completed.

and leads to the following population (the new in-
stances are underlined):

Aircraft c1, c2, c3, t1, t2, t3

Combat-aircraft c1(’F270’), c2(’F271’), c3(’F401’)

Type ’bomber’, ’fighter’

Bomber c3

Fighter c1, c2

Weaponload w1(4), w2(6)

Bombload b1(200)

Transport-aircraft t1(’TR300’), t2(’TR301’),

t3(’TR400’)

Capacity tl1(’2000 kg’), tl2(’2500 kg’),

tl3(’3000 kg’)

Combat-aircraft-typing 〈c1, ’fighter’〉 , 〈c2, ’fighter’〉 ,

〈c3, ’bomber’〉

Fighter-weaponary 〈c1, w1〉 , 〈c2, w2〉

Bomber-weaponary 〈c3, b1〉

Transport-capacity 〈t1, tl1〉 , 〈t2, tl2〉 , 〈t3, tl3〉

Elements may also be deleted from a population.
Suppose the capacity 2000 kg is to be deleted. In
order to achieve this, the following statement can be
used:

DELETE Capacity: ’2000 kg’

This statement is, however, not accepted by the sys-
tem. The removal of the capacity 2000 kg would
lead to the deletion of the Transport-capacity instance:
〈t1, tl1〉, and thus leave transport aircraft TR300 with-
out an associated capacity. This is in contradiction
with the total role constraint for the capacity of a
transport aircraft. The LISA-D Tool reports this loom-
ing violation by:

Command rejected due to constraint p3

in schema Squadron.

The above discussed updates can be entered in the
LISA-D-Tool as illustrated in figure 10 (page ).

As can be seen in the above example, the population
resulting from an update statement may not fulfil all
constraints. To avoid constraint violations, transac-
tions are introduced. A transaction is a sequence of
update statements, enclosed between START-TRANSACTION

and END-TRANSACTION. The constraints then serve
as invariant relations (i.e., pre- and post-conditions)
for these transactions.

7 Conclusions and Further Research

In this paper the conceptual language LISA-D based
on the data modelling technique PSM, has been intro-
duced informally. In LISA-D constraints, queries and
updates can be expressed in a way closely following
the naming of roles and object types in the conceptual

schema. This makes LISA-D statements (generally)
easy to read and interpret intuitively.

Further research is necessary to establish the expres-
sive power of LISA-D in relation to other query lan-
guages such as SQL or DataLog ([Ull89]), and to
provide the language with a more powerful typing
mechanism to support static semantic checks. Fur-
thermore, research is being performed in the develop-
ment of Elisa-D, a version of LISA-D supporting the
(on line) evolution of information systems ([FOP92],
[PW93], [PW94], [PW95], [Pro94]). Currently pro-
totype implementations of LISA-D are being further
developed, and used in an educational environment.

In order to improve the support of the query formu-
lation process the suitability of a hypertext approach
is being studied ([BPW93], [BW92], [Pro94]). When
using such an approach, the user is able to navigate
through the information structure (index), meanwhile
formulating the information need (Query By Naviga-
tion).
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