
Modelling the Evolution of Information Systems∗

J.L.H. Oei,
H.A. Proper,

E.D. Falkenberg,
E.Proper@acm.org

June 23, 2004

PUBLISHED AS:

J.L.H. Oei, H.A. Proper, and E.D. Falkenberg. Modelling the Evolution of Information Sys-
tems. Technical Report 92-36, Department of Information Systems, University of Nijmegen,
Nijmegen, The Netherlands, EU, 1992.

Abstract

In this article, we discuss the need for information systems capable of evolving to the same extent as
organisation systems do. A set of requirements for evolving information systems is presented, implying
the importance of the time concept in these systems. On the basis of these requirements an architecture
and a conceptual framework for evolving information systems is proposed.

In our conceptual framework for update we distinguish recording, correction and forgetting. State
transitions are considered on three different levels of abstraction, viz. the event level, the recording
level and the correction level. A formal specification of the transformation process between user update
requests, primitive update requests, and the three-level model for update is provided.

1 Introduction
As argued in [FOP92a], [FOP92c] and [Rod91], there is a substantial demand for information systems
which are able to evolve to the same extent and at the same pace at which the supported organisation system
evolves due to changes in the universe of discourse ([ISO87]). Most traditional information systems hardly
support any aspect of evolution.

First of all, most traditional information systems only allow for update of the information base, i.e. the
set of facts obeying a fixed (conceptual) schema with a fixed set of constraints. In other words, update
of the conceptual schema, and consequently the internal data base schema, constraints, and specifications
of dynamic aspects - i.e. activity and behaviour specifications - have not yet been supported by these
traditional information systems. The evolving information systems at which we aim, however, do support
update of all these specifications. A very important requirement for these evolving information systems
is that no update of any sort should result in the interruption of activities of the evolving organisation
([FOP92a], [FOP92c], [FOP92b]). Related work on conceptual schema evolution can be found in e.g.
[MS90], [Rod91].

Another limitation of many traditional systems is that they are snapshot systems, i.e. they reflect infor-
mation valid at a certain point of time, but lack the ability to preserve the history of information. An evolv-
ing information system, on the contrary, must be conservative or temporal ([SA85] [SA86], [FOP92a],
[FOP92c]) in the sense that it should not forget anything ever fed to the system, unless explicitly asked
for, thus allowing for the formulation of queries about the history of the information base (populations).

∗The investigations were partly supported by the Foundation for Computer Science in the Netherlands (SION) with financial sup-
port from the Netherlands Organization for Scientific Research (NWO). Department of Information Systems, University of Nijmegen,
Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands

1

In such systems, the distinction between event time - the time at which an event occurs in the universe
of discourse - and recording time - the time at which the event is recorded in the information system -
is of great importance ([Bub80], [SA85], [SA86], [Sno90]). Traditional systems can thus be regarded as
degenerations of these evolving information systems ([FOP92c]). For a more elaborate discussion on the
difference between traditional and evolving information systems, see also [FOP92a].

An important concept in evolving information systems are updates. In traditional information systems,
updates are a non-trivial aspect, in the field of evolving information systems, this is even more the case.
In this article we focus on a suitable meta model for update in generalised evolving information systems.
The presented model is equally applicable to evolving as well as historical information system, and may be
characterised as state-transition-oriented and taking place on different levels of abstraction. On the event
level, transitions of states of the organisation system are described - these states are modelled in what we
call the application model states - which are caused by events in the universe of discourse. On the next
level, the recording level, transitions of histories of these states are considered due to recording of these
events. Finally, on a third level, which we will call the correction level, corrections of incorrect recordings
are viewed as transitions of recording histories on the recording level. Such a correction is performed by
a roll-back to the latest correctly recorded state. This roll-back should be followed by the recording of all
events which happened after the event resulting in the state to which has been rolled back.

The organisation of the paper is as follows. In section 2, the need for evolving information systems,
and their requirements are identified. Section 3 discusses a global architecture for an evolving information
system. In section 4, distinct types of update requests in evolving information systems are identified, and
captured in a formal framework. These types of updates are refined to a smaller set of, more primitive,
types of update, in section 5. The processing of update requests by an evolving information system is
discussed and formalised in section 6, where the three levels of state transitions as mentioned above, play
a crucial role. The article is finallised in section 7 with a short summary, and outlook on future research on
the field of evolving information systems.

2 Evolution of Information Systems
Nowadays, in order for an organisation to be competitive on the global market place, it must be flexible. The
organisation must be able to adapt itself quickly to the production of new or different products - changes in
the primary process of an organisation - and to the ever changing and more and more demanding consumer
needs. The present day requirements of organisations imply a new, more demanding, set of requirements
on their information systems. Due to the dynamic behaviour of organisations they have to deal with rapidly
changing information needs. Given the fact that information is gradually becoming a production factor of
more and more importance, it becomes crucial to have information systems which can, easily, be adapted
to the same extent as these information needs change. In this context, it is interesting to note that in the
current situation already 42% of all maintenance of information systems is needed for extensions/changes
of the information system due to changes of the information needs ([Bem87]). In case of a highly dynamic
organisation, this latter percentage is likely to be even higher.

Realizing this situation, it can be concluded that information systems are needed which can be adapted
to the changing environment in smaller, easier, and more frequent steps than generally is the case. In
[Bem87], the adaptability of (information) systems is termed flexibility in a broader sense, and the ability
of a (information) system to continue to function in a satisfactory way without having to change the in-
formation system, although the organisation has changed, is termed flexibility in the narrower sense. The
requirements for an evolving information systems are beyond those of traditional, including temporal, in-
formation systems. The main requirement for an evolving information system is that, as stated before, it
is able to evolve to the same extent and at the same pace as the underlying organisations does, without the
need to interrupt the processes of that organisation. The notion of ‘to the same extent’ and ‘at the same
pace’ is now refined in more detail:

1. The information system allows update of all information depending on the specific universe of dis-
course of the information system. The notion of update, including recording, correction and forget-
ting, is discussed in section 4. The specification of information depending on a specific universe of
discourse is part of the architecture for evolving information systems as discussed in section 3.

2

2. As information recorded in the information system may appear to be (empirically) invalid, the infor-
mation system allows correction of all information (previously) recorded in the system. The notion
of correction is discussed in section 4. Note that the need for correction results from validation and
not from verification. Consistency of the recorded information is checked by the information system
itself.

3. The system does not forget any information recorded in the information system unless explicitly
asked for. In other words, the complete history of information inside the information system is
kept, including that of correction, unless a user request or a law demands that information has to be
forgotten (e.g. because of privacy reasons).

4. Updates of the information system may not interrupt activities of the organisation. As the intention
of evolving information systems is to minimize the discrepancy between the information needs of
the organisation and the information supply by the information system, the information system is
required to remain on line when any part of the stored information is updated.

A major consequence of these requirements, is that the notion of time has to be introduced in the
information system as a distinct concept, in order to meet these requirements. Even more, at least two
distinct notions of time have to be distinguished. It will be obvious that for meeting requirement 3 events
in the organisation have to be recorded together with their time of occurence. The point of time at which
an event occurs in the organisation is called the event time of that event. To perform corrections a roll-
back operator is needed (see section 4). This roll-back operator enables us to restore a former state of the
information system. To accomplish this, the point of time at which recordings of events take place in the
information system are needed. These point of times are called the recording time of events.

Our notion of event time and recording time is identical to the notions of valid time, and transaction
time, respectively, in [SA86]. (The reason for this renaming is that the new names correspond better to
the three level architecture we will introduce in section 6.) The classification made in [SA86] is based
on the support of this valid and/or transaction time. Conform this classification, distinguishing snapshot-,
historical-, rollback-, and temporal systems, evolving information systems are temporal systems, as both
valid and transaction time are supported. It should be noted, however, that not all temporal systems are
evolving information systems. As we have seen in this subsection, evolving information systems have to
meet additional requirements.

3 The Architecture of Evolving Information Systems
In our systems view on organisations, conform the approach taken in [FHL+98], an organisation system
is considered to be a set of interrelated actors, activities, states and points of time. The information sys-
tems considered here, are restricted to information systems where the only actor performing information
processing activities is computerized. This computerized actor is called the information processor. The
information processor may be composed out of several sub-processors, which may be (physically) dis-
tributed. In this paper, however, the specific aspects of distributed information systems are not taken in
consideration.

The restriction to a computerized actor performing information system processing activities, corre-
sponds to what has been defined in [Ver89] as an information system in the narrower sense IS(N). In
this paper, whenever the term information systems is used, information systems in the narrower sense are
meant. Conform this systems view on organisations and information systems, a general architecture for
information systems is presented. On the basis of this architecture the distinction between traditional and
evolving information systems is explained.

The architecture of an evolving information system is depicted in figure 1. The information processor in
an evolving information system accepts input messages (requests) reflecting, among other things, changes
of state (events) in the universe of discourse, and triggering the information processor to perform activities.
As a result of these activities, the information processor may produce output messages (responses). These
output messages are received in turn by the universe of discourse, which is embedded in the environment
of the information system. In an information system, the description of that part which is consulted by

3

'
&

$
%

Application
Model

'
&

$
%Meta Model

'
&

$
%Responses

'
&

$
%Requests

Information
ProcessingAA

A���
Information
Processor

Universe of
Discourse

6
?

?

�

J
J
J
Ĵ

J
J

J
J]

�
�
�
�
��

Information System Environment of the Inf. Syst.

Legend:

Actor

Activity

�� ��Operand Environment
Actor performing Activity

� Information-flow

Figure 1: An (Evolving) Information System and its Environment

the information processor to process user requests, is called the processing model. (The description of
the user requests themselves is not considered to be part of the processing model). The processing model
can be divided into a part describing a particular universe of discourse, the application model, and a part
describing the language (technique) in which this application model is specified and can be manipulated.
The latter part is called the meta model, and contains the description of a classification of domain elements,
general rules about these elements, their behaviour, and how they can be treated ([BF91]).

In this paper the meta model and the corresponding specification language(s) are assumed to be stable.
Changes are restricted to the application model only. Conform the terminology introduced in [OHFB92]
this means that in this paper we restrict ourselves to information systems supporting first-order evolution.
Second-order evolution involves changes of the meta model as well. As a result, in the scope of this
paper the meta model is provided in a particular information system once and for all, while the application
model must be built up and maintained for each new application. The building-up and maintenance of an
application model is done by the information processor, which acts on, or reacts to events in the universe
of discourse (after receiving input messages) by consulting both the meta model and application model.
Thus, unlike the meta model, the application model is not only input, but also output of the activities of
the information processor. Besides update of the application model, information can be retrieved from the
application model as well. Messages are correspondingly classified into update and retrieval messages.
The language for formulating such messages in an information system are based on the meta model of that
particular information system.

An application model can be subdivided further. On the one hand, a model of that part of the perceived
world (universe of discourse) the interaction between the information system and the environment is about
can be identified. This model is called the world model, and can be described in a modelling technique like
ER ([Che76]), NIAM ([Win90]) or, for complex application domains, PSM ([HPW92b]).

On the other hand, rules are needed which determine the actions of the information processor. These
rules are specified in what is called the action model. The action model can be subdivided into a part that
specifies activities - the activity model - and a part that describes the (trigger-) relations between the activity
model and the world model. This latter part is referred to as the behaviour model. In the behaviour model,
for example, the relationship between events in the universe of discourse and the activities performed by the
information processor in the information system is described. In other words, the behaviour model contains
the description of when activities, under which conditions, and what activities should be performed by

4

the information processor, whereas the activity model specifies how these activities should be performed.
Examples of modelling techniques for the action model are Data Flow Diagrams ([GS86]), the A-schemas
in ISAC ([LGN81]), or Task Structures ([HN93]). The complete architecture of the processing model is
depicted in figure 2.

-� -� -�

-�

6

?

6

?

World
Model

Activity
Model

Behaviour
Model

Action
Model

Meta
Model

Application
Model

Figure 2: The Structure of the Processing Model

On the basis of this architecture, the distinction between a traditional information system and an evolv-
ing information system can be explained more specifically. In a traditional information system, where the
traditional schema (type) vs. instance dichotomy (e.g. [BF91]) is applied to the application model, only the
instances can be updated. That is, schema specifications, as well as activity and behaviour specifications
(which are usually hidden in program procedures), cannot be updated in traditional information systems.
The intention of an evolving information system, however, is that the complete application model becomes
updatable.

In accordance with the above proposed architecture for evolving information systems, the metamodel
contains all the application-independent knowledge needed by the information processor to perform its
activities. Among other things, this knowledge includes the knowledge needed by the information pro-
cessor to transform requests from users of the information system into update and retrieval actions on the
application model, as well as output messages (responses), if any. The design of an Evolving Information
System-shell has to be based on this transformation process. The input of this transformation process con-
sists of the requests formulated by the users, and the state of the processing model of a particular evolving
information system. The updated application model is, together with produced responses, if any, the output
of the transformation process.

In this article, we focus on the update requests entered by the user. These requests will be considered
on three levels, resulting in three models for user updates:

User update requests model This model reflects the updates as entered by the user, containing several
kinds of updates, allowing for the specification of user update requests in a user friendly way.

Primitive user update requests model The updates as entered by the user can be transformed to primitive
update requests, conform a set of more primitive (atomic) kinds of update requests.

User update processing model In this model, the effect of the primitive user update requests on the ap-
plication model is reflected. The semantics of the user update requests is defined in terms of the
semantics of the underlying modelling techniques used for modelling the application model.

The transformation process betweeen these three models will be defined subsequently in the following
sections.

5

4 Update in Evolving Information Systems
Information systems are meant to fulfill the information needs of organisations. As both the information
needs and the information itself change in time, information systems have to be updated from time to time.

In the remainder of this paper, a framework for update in evolving information systems is introduced,
which is based on the possible causes for update requests. As argued in [FOP92c], update in traditional
systems can be regarded as a degeneration of update in evolving systems. This is solely possible due to
the fact that the requirements of traditional information systems, with respect to update are less demanding
than those of evolving information systems.

In this section, three main classes of user update requests are identified: recording, correction and
forgetting.

4.1 A Taxonomy of Update in Evolving Information Systems
Updates in (evolving) information systems, result in a change of state of the application model. In tra-
ditional information systems an elementary update is usually considered to be an addition, deletion or
modification of (pieces of) information contained in the application model. Furthermore, traditional in-
formation systems do not support any notion of time. As a consequence, if there is a change of state in
the information system due to an update (addition, deletion or modification), the former state cannot be
remembered by the information system. Such systems are called snapshot systems ([SA86]), due to the
fact that these information systems can only model and remember (single) snapshots of an organisation’s
evolution.

For evolving information systems, as well as for temporal or historical information systems ([SA86]),
the traditional notion of update has to be revised. The framework for the processing of updates in evolv-
ing information systems, as it will be presented in this paper, is based on the possible causes for update
requests. On this basis, three main classes of update are distinguished: recording, correction and forgetting
([FOP92c], [FOP92b]).

Since the application model should be a reflection of the universe of discourse, every event (change of
state at a point of time) in the universe of discourse (for instance the hiring/firing of personell) should be
reported to the information system by means of a recording of this event.

In an ideal (evolving) information system, the application model reflects the state of the modelled
universe of discourse in a (empirically) correct way at any point of time. It can, indeed, be checked whether
the application model is consistent with the meta model, but there is no automatable way to guarantee that
the contents of the application model reflect the real state of the universe of discourse. The latter case has to
be checked empirically. This implies that in case of a found flaw in the application model, an update should
be performed which corrects this flaw. This class of update is called a correction, and corrects recordings
which have already been performed, or which have not been performed at all.

A third class of update can be distinguished if information systems are required to be able to remove
information if requested. For instance, a law may exist stating that information about former personell
working for a company, may be stored for at most two years. This kind of update is called forgetting. Due
to its complexity - the consistency of the stored information must be maintained even when parts of it are
removed - this class of update is not considered in depth in this paper.

4.2 Recording of Events
The state of the universe of discourse, at a point of time, is reflected by a set of modelling constructs (e.g.
entities, relationships, data base schemata, instances, rules, etc.) in the application model. These modelling
constructs are referred to as application modelling elements ([FOP92a], [FOP92b]). A recording of an
event can thus be regarded as the modification of the set of application model elements constituting the
state of the application model. A (to be) recorded event is denoted as a sentence conform the language as
determined by the chosen meta model.

As an example domain for an event specification, consider a rental store for audio records (lp’s). This
example will be used as a running example in the sequel. In this rental store, a record is kept of, among
other things, the songs that are recorded on the lp’s present in the library. In order to keep track of the wear

6

LP

Title
Artist

Song

Title
Author

Frequency

Natno

����
QQQQ����

QQQQ

Recording

����
QQQQ����

QQQQ

Lending-
frequency

@
@

@
@

@

Figure 3: The Data Model of a lp library

and tear of the lp’s, the number of times the lp has been lent is recorded as well. This part of the universe of
discourse of the rental store has been modelled in figure 3 in the style of ER. Note that we abbreviated the
graphical notation of attributes (Title) to a mark symbol (#) followed by the attribute (# Title), for reasons
of readability. An example event specification conform the language LISA-D ([HPW93],[HPW94]) would
be:

ADD Song: ’Walk of Life’ on Record: ’Brothers in Arms’

stating that the song ‘Walk of Life’ is recorded on record ‘Brothers in Arms’
In the next section, the modification of an application model state is performed by means of a set of

elementary transitions. These transitions are the reflection of the events in the universe of discourse in
the information system. Three kinds of elementary transitions are determined: a birth-transition, creating
an application model element, a death-transition, terminating an element, and a change transition which
transforms an existing application model element ([FOP92c]).

As has been argued in e.g. [FOP92c] and [SA85], the time of recording of an event is different from its
occurence time. The time at which an event occurs in a universe of discourse is the event time, and the time
at which the event is recorded is the recording time. This, and the above discussion leads to the following
definitions:

Definition 4.1

1. ES is the set of event specifications.

2. Tr is the time axis for event recordings, with a total order <.

3. Te is time axis for event occurences, also with a total order <. Both the Tr and Te time axis can be
defined in a multitude of ways, see e.g. [CR87], [WJL91] or [All84].

4. EO = ES × Te is the set of all event occurences. An event occurence is identified by an event
specification and the point of time at which the event occurs.

5. ER = EO × Tr is the set of all event recordings. A recording of an event occurence is identified by
the recorded event occurence, and the point of time at which the recording takes place

On these concepts, the following functions (access routines) are defined:

Definition 4.2

1. The point of time at which a recording has taken place:

RcAt : ER → Tr

RcAt(x, t) = t

2. The event occurence which is recorded by a recording:

RcOf : ER → EO

RcOf(x, t) = x

7

3. The point of time at which an event occurence, or a recorded event occurence, has taken place:

OccAt : ER ∪ EO → Te

OccAt(x, t) = if x ∈ EO then OccAt(x) else t fi

4. The event specification of an occured, or recorded, event occurence:

OccOf : ER ∪ EO → ES

OccOf(x, t) = if x ∈ EO then OccOf(x) else x fi

The order on points of time, from both time axes, can be generalised to an order on recordings and event
occurences as:

Definition 4.3
Let x, y ∈ ER then:

x <Tr
y ≡ RcAt(x) < RcAt(y)

x =Tr
y ≡ RcAt(x) = RcAt(y)

x ≤Tr
y ≡ x <Tr

y ∨ x =Tr
y

Let x, y ∈ ER ∪ EO then:

x <Te
y ≡ OccAt(x) < OccAt(y)

x =Te
y ≡ OccAt(x) = OccAt(y)

x ≤Te
y ≡ x <Te

y ∨ x =Te
y

In a traditional snapshot information system, a birth transition of an application model element is re-
alised by means of an addition, and a death-transition by means of a deletion. In both cases, the old
application model states are lost. In an evolving information system, on the other hand, one of the ma-
jor requirements is that no information may be lost, implying that no application model element may be
deleted. An exception to this rule is formed by the forget operator. The history of application model el-
ements, in an evolving information system, is kept by storing the birth, death and change transitions of
application model elements together with the points of time at which these transitions take place.

4.3 Correction of Recordings
The actual state of an information system depends completely on the processing of update requests formu-
lated by users of the system. These update requests should result in an information system reflecting the
modelled universe of discourse in a correct way.

An information system reflects an organisation correctly if and only if there exists a isomorphism
between the states and transitions of the application model and the states and transitions in the universe of
discourse ([HW93], [HPW92a]). From this requirement follows that the order in which the events occured
in the universe of discourse (should) be the same as the order of the recorded events. This is needed
because recordings of several events may interfere with each other, such that a different order may result in
a different state of the information system. As an illustration of this phenomenon, consider the following
two events for the rental store:

e1: ADD Song: ’Walk of Life’ on Record: ’Brothers in Arms’
e2: DELETE Song on Record: ’Brothers in Arms’

The event specifications in the above example are, again, denoted in the semi-natural language LISA-D as
defined in [HPW93]. The first event specification (e1) represents the adding of the fact that song ‘Walk
of Life’ is recorded on record ‘Brothers in Arms’, whereas the second event specification (e2) represents
the deletion of all facts about songs recorded on record ‘Brothers in Arms’. When recording e1, e2 in the
obvious order, a state of the system will result in which record ‘Brothers in Arms’ has no song recorded on
it. When e2 is recorded before e1, i.e. in the wrong order, the result will be that ‘Walk of Life’ is the only
song recorded on the record ‘Brothers in Arms’.

8

From the above example can be concluded that events should be recorded correctly, in order of their
occurence. In practice, however, recordings may be performed too late, implying a violation of the proper
order in which the events occured. Or, alternatively, a recording of an event which actually did not happen
at all, or occured differently (i.e. the event specification was wrong), may have been performed. This
means that three kinds of corrections can be identified: the insertion of a (late) recording of an event in the
sequence of already performed recordings, a removal of an already performed recording, or a replacement
of a recording by a new recording of another event.

To accomplish these kinds of corrections, it must be possible to travel backwards in the sequence of
recordings which is ordered on time of recording. The operation accomplishing this task is called a roll-
back, and is the most primitive form of correction. In section 5, a formal definition is given of how the above
discussed three kinds of corrections can be mapped onto roll-backs and (re)-recordings. The introduction
of a correction mechanism leads to the following definitions:

Definition 4.4

1. RM = Tr ×Tr the set of all removals. A removal of a recording is concerned with the removal of a
recording, which is identified by a recording time, and occurs at a point of time. Therefore, a removal
is identified by two points of time, the recording time of the recording which is to be removed, and
the recording time of the removal.

2. RP = Tr ×ES ×Tr the set of all replacements. All replacements of recordings, replace a recording
of an event specification which happened at a certain point of time by a new event specification.
Thus, a replacement can be identified by means of the point of time of the recording to be replaced,
the new event specification, and the recording time of the replacement.

3. RB = Tr × Tr the set of all roll-backs. Every roll-back rolls back to a recording which is identified
by a recording time. Therefore, a roll-back is identified by the recording time of the recording to
which the roll-back takes place, and the recording time at which the roll-back takes place.

4. For reasons of convenience the set of all possible corrections (CR), as well as the set of all possible
update requests (UR) are defined as well:

CR = RB ∪ RM ∪ RP

UR = ER ∪ CR

Now that roll-backs have been defined formally, it is interesting to note that a recording can be regarded as
an operation on event occurences, whereas a rollback can be regarded as an operation on recordings. On
the above defined concepts, the following operations exist:

Definition 4.5

1. The RcAt operation on recordings of events is generalised to all updates. The point of time at which
an update took place is given by:

RcAt : UR → Tr

RcAt(x, t) = t

RcAt(x, y, t) = t for replacements

2. The point of time (of the recording) to which (and including) the given roll-back takes place is
determined by:

RbTo : CR → Tr

RbTo(t, x) = t

RbTo(x, y, t) = t for replacements

3. For replacements, the new event specification which is to replace the old one at RbTo(t1, o, t2), is
given by:

RpBy : RP → ES

RpBy(t1, e, t2) = e

9

Finally, based on the generalised RcAt function the order on points of time on recordings (<Tr
) can be

generalised to an order on updates (UR) as:

Definition 4.6
Let x, y ∈ UR then:

x <Tr
y ≡ RcAt(x) < RcAt(y)

x =Tr
y ≡ RcAt(x) = RcAt(y)

x ≤Tr
y ≡ x <Tr

y ∨ x =Tr
y

4.4 User Update Requests
By means of the concepts defined in the previous subsections, the user update requests can be defined
formally. As stated before, the update requests for an evolving information system are assumed to con-
sist of four kinds of update requests: recordings, rollbacks, removals of recordings and replacements of
recordings. This leads to the following definition:

Definition 4.7 The set of update requests entered by the user are modelled as:

UI = 〈UIrc,UIrb,UIrm,UIrp 〉 such that UI ∈ ℘(ER) × ℘(RB) × ℘(RM) × ℘(RP)

where UIrc (recordings), UIrb (roll-backs), UIrm (removals) and UIrp (replacements) are presumed to
be disjoint. As a shorthand, the set of corrections (UI cr) and the set of updates (UIud) are also defined:

UIcr = UIrb ∪ UIrm ∪ UIrp

UIud = UIrc ∪ UIcr

As a simplifying assumption it is presumed that only one update occurs at one point of time. Note
that this does not mean that an evolving information system has to be a single user system, it is simply
demanded that there exists a global order on the user’s updates. The assumption is formulated as:

Axiom 4.1 Different updates are not recorded at the same point of time:

u1, u2 ∈ UIud ∧ u1 =Tr
u2 ⇒ u1 = u2

The set of event occurences recorded by the recordings in UI rc is denoted as UIocc, and the set of
event specifications associated with the recordings in UIrc as UIspc. They are identified by:

Definition 4.8

UIocc = {RcOf(r) |r ∈ UIrc }

UIspc = {OccOf(r) |r ∈ UIrc }

As an overview of the hitherto defined concepts, a (meta) conceptual schema of the update requests,
relating all concepts used for user update requests, is given in figure 4. The model depicted there is in the
style of the modelling technique from NIAM ([NH89], [Win90]).

5 Derivation of Primitive Update Requests
Update requests for the manipulation of an application model at hand, are formulated by the user in a
particular language. This language is based on a user update request model, describing the set of possible
update requests. Conform the architecture discussed in the section 3, user update requests are mapped onto
primitive update requests.

The update requests as entered by the user may consist of recordings of events or corrections of record-
ings, where corrections may be roll-backs to old recordings, removals of old recordings, or replacements
of old recordings by new (correct) ones. The semantics of these four kinds of user update requests can thus

10

'
&

$
%

Tr

'
&

$
%

UIspc
t

'
&

$
%t

'
&

$
%

Te

RbTo RcAt
UIrb

�-%
%

%
%

%
%

%
%

%
%

�
�

�
�

�
�

�
�

�

RbTo RcAt
UIrm

�-�
�
�
�
�
�
�
�
�

UIrp

RbTo RcAtRpBy

�-�
�
�

E
E
E

l
l

l
l

l

RcOf RcAt
PIrc

�-
�
�
�
�
�
�
�
�
�
�

UIocc

OccOf OccAt

� -

Figure 4: A Meta Model for Update Requests

be expressed in terms of recordings and roll-backs, representing the primitive user update requests. This
section solely deals with this mapping.

From axiom 4.1, it follows that <Tr
defines a strict total order on the set of user update requests in

UIud. This allows for the following definition:

Definition 5.1 Let UUI be a list of updates such that UUI(i) is the i-th update in UIud based on the order
implied by <Tr

. This definition implies that dom(UUI) = {1, . . . , |UIud|}.

Before defining the actual translation, an extra function returning a first recording in a set of recordings
has to be defined:

Definition 5.2 The first recording in a set of recordings:
First : ℘(ER) → ER

First(R) = r such that: r ∈ R ∧ RcAt(r) = min({RcAt(s) |s ∈ R})

The set of rollbacks and recordings, at a primitive level, can now defined by translating removals and
replacements of recordings, and inserted recordings, to rollbacks and rerecordings. This translation is
formulated as:

11

Definition 5.3 RUI is defined as a list of sets of recordings such that dom(RUI) = {0, . . . , |UIud|} and:

RUI(i) = if i = 0 then ∅

else
if UUI(i) ∈ UIrc then Insert(UUI(i), RUI(i − 1))

elsif UUI(i) ∈ UIrb then RollBack (UUI(i), RUI(i − 1))

elsif UUI(i) ∈ UIrm then Remove(UUI(i), RUI(i − 1))

else Replace(UUI(i), RUI(i − 1))

fi
fi

Note that by dom(E) the domain of the sequence is meant, i.e. all the indices such that the sequence has a
value at that position. In the above definition, the following extra functions (refinements) have been used:

1. The function RollBack applied to an update request u on a set of recordings R results in the set
of recordings in R which are still correct after performing a proper rollback. RollBack (u, R) ≡

if u ∈ UIrc then {r ∈ R |r <Te
u} else {r ∈ R |r <Tr

RbTo(u)} fi

2. The set of recordings which are undone by the rollback is the result of the function Undone. Undone(u, R) ≡
R − RollBack (u, R)

3. Rerecording of all recordings in a set of recordings R from t onwards, implies the selection of the
recordings in R one by one, ordered by time, and rerecording them at 2t.

ReRec(t, R) ≡

if R = ∅ then ∅

else { 〈RcOf(First(R)), 2t〉 } ∪ ReRec(2t, R − {First(R)})

fi
Note that the recordings in R are selected one by one, as due to axiom 4.1 there is just one candidate
for First(R).

4. In order to remove the recording which happened at RbTo(b) from a set of recordings, first a roll-
back to RbTo(b) has to be performed on R. After this, the undone recordings (except for the one
which happened at RbTo(b)) have to be rerecorded.

Remove(u, R) ≡ RollBack (u, R) ∪ ReRec(RcAt(u),UnDone(u, R) − {u})

5. Inserting a recording s in a set of recordings R means that s has to be added, and that all recordings
which happened too early (may be none!) have to be removed from R, and rerecorded from RcAt(s)
onwards.

Insert(u, R) ≡ RollBack (u, R) ∪ ReRec(RcAt(u),UnDone(u, R))

6. A replacement is performed by an appropriate rollback, followed by the recording of the new event
specification, followed by the rerecording of all undone recordings, except the one to be replaced.

Replace(u, R) ≡ RollBack (u, R) ∪ {〈〈RpBy(u), OccAt(r)〉 , RcAt(u)〉}

∪ ReRec(RcAt(u),Undone(u,R) − {r})
where RcAt(r) = RbTo(u)

By means of the definition of UUI and RUI some extra axioms on the user update requests, which
could not be formulated before, can be formulated. As a well-formedness rule, every rollback implied by a
correction has to rollback to an existing (on the primitive level) recording. Formally:

Axiom 5.1 UUI(i) ∈ UIcr ⇒ ∃r∈RUI(i−1)[RcAt(r) = RbTo(UUI(i))]

Furthermore, the recording times of the user’s update requests have to be such that there exists enough tem-
poral space (a large enough time-interval) between the updates to allow for rerecordings. This is formulated
by:

12

Axiom 5.2 0 < i ≤ |UUI | ∧ r ∈ RUI(i) ⇒ r <Tr
UUI(i + 1)

The set of primitive user update requests (PI) for the user update requests (UI) can now be defined as
two sets containing recordings and roll-backs:

Definition 5.4 The primitive user update requests for the set of user upate requests UI is defined as:
PI = 〈PIrc,PIrb 〉 where:

PIrc =

|UIud|
⋃

i=1

(RUI(i))

The set of recordings, at a primitive level, is the union of all recording sets in RUI .

PIrb = { 〈RcAt(r), RcAt(UUI(i))〉 | RUI(i − 1) 6⊂ RUI(i) ∧ r = First(RUI(i − 1) − RUI(i)) }

A roll-back has taken place iff RUI(i − 1) is not a subset of the recordings in RUI(i). The set of un-
rolled recordings due to a roll-back is RUI(i − 1) − RUI(i). Therefore the roll-back must have been to
First(RUI(i − 1) − RUI(i)). Note that PIrc ⊆ ER and PIrb ⊆ RB.

On the primitive user update requests two usefull properties hold. In [FOP92b], where only the primi-
tive user update request were taken into account, these properties were axioms on the primitive user update
requests. In this article, these properties are to be regarded as requirements on the translation algorithm in
definition 5.3.

The first property reflects the uniqueness of primitive update requests with respect to their recording
time, i.e. the uniqueness of recording time is inherited from the external level. This property is formulated
as:

Lemma 5.1 u1, u2 ∈ PIrc ∪ PIrb ∧ u1 =Tr
u2 ⇒ u1 = u2

Proof: We will not give an exact proof here, instead the correctness of the lemma (and thus of defini-
tion 5.3) is made plausible, as this property is a requirement on definition 5.3. Three cases can be
distinguished:

1. If u1, u2 ∈ PIrc, then from definitions 5.3, 5.4 and axioms 5.2, 4.1 follows that u1 = u2.

2. If u1, u2 ∈ PIrb then from definition 5.1 and axiom 4.1 follows that

i 6= j ⇒ RcAt(UUI(i)) 6= RcAt(UUI(j))

Then because of PIrb’s definition, it follows that that u1 = u2.
3. u1 ∈ PIrc and u2 ∈ PIrb or vice versa.

From definitions 5.1, 5.3 follows that u1 6= u2.

2

The second property, being a direct consequence from the previous lemma (requirement), reflects the exis-
tance of a global order on the set of primitive user updates, i.e. definition 5.3 maintains the order implied
by axiom 4.1 on the user updates:

Lemma 5.2 The <Tr
relation defines a strict total order on PIrc ∪ PIrb.

Finally, the set of occurences associated with the recordings in PIrc is denoted as PIocc, and the set of
event specifications associated with the recordings in PIrc as PIspc. They are identified by:

Definition 5.5

PIocc = {RcOf(r) |r ∈ PIrc }

PIspc = {OccOf(r) |r ∈ PIrc }

An overview of the concepts defined thus far, is provided by the (meta) conceptual schema of the
primitive user input depicted in figure 5. The model depicted there is, again, in the style of the modelling
technique from NIAM.

13

'
&

$
%

'
&

$
%

Tr

'
&

$
%

PIspc
t

'
&

$
%t

'
&

$
%

Te

RbTo RcAt
PIrb

�-
%

%
%

%
%

%
%

%
%

RcOf RcAt
PIrc

�-
�
�
�
�
�
�
�
�
�
�

PIocc

OccOf OccAt

� -

Figure 5: A Meta Model for the Primitive User’s Input

6 Processing Primitive Update Requests
Based on the notion of primitive update request as defined in the previous section, a framework for the
processing of these updates is presented ([FOP92b]). This framework distinguishes and relates different
types of state transitions. Each type of state transition corresponds to a different level of abstraction in
the context of update in evolving information systems. These levels are the event level, the recording
level, and the correction level. State transitions on the event level take place due to events occuring in
the organisation, state transitions on the recording level are caused by recordings of these events, whereas
corrections of previous recordings cause state transitions on the correction level.

6.1 The Event Level
It is generally assumed that in the universe of discourse, described in the information system, a set of stable
states can be recognised, and that there exist a number of actions that result in event occurences see e.g.
[HW92], [HW93]. As stated before, the elements of the application model reflect the application-dependent
or time-variant elements in the universe of discourse, implying that the state of a universe of discourse at
a particular point of time can be modelled by means of a set of application model elements. This set of
application model elements is called the application model state.

An event, and the underlying state transition in the universe of discourse, is communicated to the system
by means of an event specification (and the occurence time of the event). This event occurence implies a
state transition of the application model state. In the section 3, it was discussed that there exist three kinds
of elementary transitions: birth transitions, death transitions, and change transitions. These concepts are
captured formally by means of the following definition:

14

Definition 6.1

AME = “Set of Application Model elements”

B = “Set of Birth transitions”

D = “Set of Death transitions”

C = “Set of Change transitions”

T R = B ∪ D ∪ C The set of all transitions

The transitions operate on application model elements. Which elements they operate upon is presumed to
be determined by the following functions:

Definition 6.2

Brth : B → AME

Dth : D → AME

ChOf : C → AME

ChTo : C → AME

The actual definitions of these functions depend on the chosen meta model, in particular on definition of the
semantics of the event specifications. These event specifications, as they were introduced in the previous
section, are application model elements themselves. This is expressed as:

Axiom 6.1 ES ⊆ AME

The set of elementary transitions, implied by an event occurence can be determined (can be given a
Concrete value) by means of the Concr function. The actual set of elementary transitions as implied by
a given event occurence, depends on the current state and past states of the application model. These
states can, as will be shown below, be derived from the sequence of sets of already performed elementary
transitions. The actual definition of the Concr function will not be given here, since its definition depends
on the chosen meta model (and language) for the application model. For instance, in the example discussed
in the previous section, the set of elementary transitions implied by the statement DELETE Song on Record:
’Brothers in Arms’ depends on the semantics of LISA-D ([HPW93]). The signature of the Concr function,
nonetheless, can indeed be given:

Definition 6.3 Concr : EO × (INI → ℘(T R)) → ℘(T R)

Concr(e, T) must be interpreted as the set of elementary transitions needed to perform the event e, if the
transitions in T have already occured.

The actual definition of the Concr is beyond the scope of this paper.
An event taking place in the universe of discourse, usually a part of an organisation, is considered

to occur on the organisational level ([FOP92a]). The corresponding events in the information system,
implying transitions on the application model states, are considered to occur on the so called event level.
A sequence of such application model state transitions is called an application model history. Such an
application model history, models a sequence of events occurring in the underlying universe of discourse
of the information system.

����AMS0

����AMS1

����AMS2- -e1

at t1

e2

at t2

Figure 6: Application Model State (AMS) transitions on the event level

15

In figure 6 a graphical representation of a sample application model history is given. The circles rep-
resent the application model states, whereas transitions between these application model states are rep-
resented by arrows. Furthermore, the arrows are labeled with the denotation of the event causing the
transition, and the event time of that event. This example illustrates that, to every sequence of event oc-
curences, an application model history can be associated. This means that a function from a sequence of
event occurences to an application model history AMH can be defined. In the definition of AMH, we make
use of a slicing operation on lists. The slicing of a list is defined as:

Definition 6.4 If E is a list, then En is the list containing the first n elements of E. So E is the list such
that dom(En) = {i ∈ dom(E) |i ≤ n} and i ∈ dom(En) ⇒ En(i) = E(i). Note that E−1 = E0.

For a given sequence of event recordings, the associated application model history is identified by:

Definition 6.5 Let E be a list of event occurences. Then AMH(E) = 〈E, σams , Hams , β, δ, γ 〉, where T is
a list of sets of transitions such that T (i) = Concr(E(i), T i−1) and dom(E) = dom(T), and furthermore:

σams = AMS(T, 0)

Hams = { 〈AMS(T, i), AMS(T, i + 1), E(i + 1)〉 | 0 ≤ i < |E| }

β = { 〈E(i), Brth(T (i))〉 | 1 ≤ i ≤ |E| }

δ = { 〈E(i), Dth(T (i))〉 | 1 ≤ i ≤ |E| }

γ = { 〈E(i), ChOf(T (i)), ChTo(T (i))〉 | 1 ≤ i ≤ |E| }

The Brth, Dth, ChOf, and ChTo functions are presumed to be generalised to sets of transitions as:

Brth(T) = {Brth(t) |t ∈ T ∩ B}

Dth(T) = {Dth(t) |t ∈ T ∩ D}

ChOf(T) = {ChOf(t) |t ∈ T ∩ C }

ChTo(T) = {ChTo(t) |t ∈ T ∩ C }

In the above definition, there is one lose end in the form of the AMS(T, i) function. This, recursive, function
returns the i-th state of the application model based on a list of sets of elementary transitions. This function
is defined as:

Definition 6.6 Let T be a list of sets of transitions. Then AMS(T, i) is defined as:

AMS(T, i) = if i = 0 then ∅

else AMS(T, i − 1) −Dth(T (i)) − ChOf(T (i)) ∪ Brth(T (i)) ∪ ChTo(T (i))

fi

where, again, the Brth, Dth, ChOf, and ChTo functions are presumed to be generalised to sets of transi-
tions.

6.2 The Recording Level
In this section, a second level is introduced on which state transitions take place: the recording level.
Whenever an event occurs in the organisation, it should be communicated to the information system by
means of an update request. The processing of this update request, i.e. the recording of the event, should
result in an appropriate state transition in the information system. The point of time at which the recording
of an event takes place in the information system, is called the recording time of that event.

The resulting state transition is more than a single transition of an application model state, it can be seen
as a transition of the complete application model history modelling the history of the organisation up to the
occurence of the newly recorded event. So this transition corresponds to a transition of a complete state
transition graph. A sequence of these application model history transitions due to successive recordings is

16

����AMS0

AM History0

-Rec(e1 at t1)

at T1

����AMS0

����AMS1-e1

at t1

AM History1

-Rec(e2 at t2)

at T2

����AMS0

����AMS1

����AMS2- -e1

at t1

e2

at t2

AM History2

Figure 7: Application Model History (AMH)transitions on the recording level

called an application model recording history. Such an application model recording history reflects both
the events occurring in the organisation, and the recordings of these events in the information system.

In figure 7, the graphical representation of application model state transitions (due to events in the
organisation) on the event level is extended with the above discussed second level, the recording level,
on which the application model history transitions (due to recording of these events) take place. The
arrows representing transitions between application model histories are labeled with the denotation of the
recording of the event causing that transition, and the recording time of the event in question.

As can be seen in the example, an application model recording history is determined by a set of record-
ings. In general, the application model recording history, for a given sequence of recordings, is identified
by:

Definition 6.7 Let R be a list of recordings, then AMRH(R) = 〈R, σamh , Hamh 〉, where E is a list of
event occurences such that E(i) = RcOf(R(i)) and dom(R) = dom(E), and furthermore that:

σamh = AMH(E0)

Hamh =
{

〈AMH(Ei), AMH(Ei+1), R(i + 1)〉 | 0 ≤ i < |E|
}

6.3 The Correction Level
As a user may make mistakes when entering recordings of event occurences into the information system,
three kinds of correction have been identified in section 3. A recorded event may have to be replaced by
another one, a recording may have to be inserted in the sequence of already recorded events, and a recording
may have to be removed. As shown in section 5, these three kinds of recordings can be implemented by
means of a roll-back and a series of re-recordings of already recorded (correct) events. In all cases where a
correction is needed, a roll-back should take place to the latest correct application model history.

In order to process the primitive user’s input requests (PI) the roll-backs, contained in the input, have
to be ordered in time. By means of this order, the recordings can be split up in a list of sets of recordings,
such that each of these sets implies an application model recording history. The roll-backs in the primitive
user input (PIrb), can be ordered according to the following definition:

Definition 6.8 Due to lemma 5.2 there exists a strict total order on the elements of PIrb. Let BPI(i)
denote the i-th rollback in PIrb based on this order. So dom(BPI) = {1, . . . , |PIrb|}

In figure 8, the performance of a correction by means of a roll-back is graphically represented in the
case of a replacement of the recording of an event e1 having event time t1 by a recording of event e′1 with
the same event time. The replacement is presumed to take place after the recording of event e2.

A sequence of successive recordings, an application model recording history, can be seen as the believed
world (organisation) of the information system. A a correction of this belief of the world is performed
by means of a roll-back, causing a transition of the current application model recording history in the
information system. A sequence of these application model recording history transitions due to roll-backs
is called the application model evolution, which is said to take place on the correction level.

In figure 9 the situation of figure 8 is represented in an alternative way, identifying the three levels of
state transitions more clearly. Note that the roll-back performed by the correction is implicitly present in
this figure. In the same way corrections requiring the removal or insertion of a recording of an event can
be represented. In [FOP92a] more examples are given and elaborated.

17

����AMS0

AM History0

-Rec(e1 at t1)

at T1

"
"

"
"

"
"

"
"

"b
b

b
b

b
b

b
b

b

����AMS0

����AMS1-e1

at t1

AM History1

-Rec(e2 at t2)

at T2

!
!

!
!

!
!

!
!

!
!

!
!

!a
a

a
a

a
a

a
a

a
a

a
a

a

����AMS0

����AMS1

����AMS2- -e1

at t1

e2

at t2

AM History2

kk

RollBack to AMH0

AT T3

^

Rec(e′
1

at t1)

at T4

����AMS0

����AMS′
1

-e′
1

at t1

AM History′
1

-Rec(e2 at t2)

at T5

����AMS0

����AMS′
1

����AMS′
2

- -e′
1

at t1

e2

at t2

AM History′
2

Figure 8: Correction by means of a roll-back

����AMS0

AM History0

-Rec(e1 at t1)

at T1

����AMS0

����AMS1-e1

at t1

AM History1

-Rec(e2 at t2)

at T2

����AMS0

����AMS1

����AMS2- -e1

at t1

e2

at t2

AM History2

AM Recording History1

?

CORRECT Rec(e1 at t1)
TO Rec(e′

1
at t1) AT T3

����AMS0

AM History0

-Rec(e′
1

at t1)

at T4

����AMS0

����AMS1-e′
1

at t1

AM History′
1

-Rec(e2 at t2)

at T5

����AMS0

����AMS′
1

����AMS′
2

- -e′
1

at t1

e2

at t2

AM History′
2

AM Recording History2

Figure 9: Application Model recording History (AMRH) transition on the correction level

18

As stated before, the recordings of the user’s update requests have to be split up, based on the roll-
backs, in a list of sets of recordings. Each of these sets will correspond to an application model’s recording
history. This distribution of recordings is given by:

Definition 6.9 UPI is a list of sets of recordings such that dom(UPI) = {0, . . . , |PIrb|}, and:

UPI(i) = if i = 0 then
{r ∈ PIrc | |dom(BPI)| ≥ 1 ⇒ r <Tr

BPI(1) }

else
{r ∈ UPI(i − 1) | RcAt(r) < RbTo(BPI(i))} ∪

{r ∈ PIrc | |dom(BPI)| ≥ i + 1 ⇒ r <Tr
BPI(i + 1) }

fi

The initial set of recordings UPI(0) contains all recordings in PIrc which have not been undone by the
first roll-back (if present). The successive sets of recordings contain all recordings in the previous set of
recordings UPI(i − 1) which have not been rolled-back by BPI(i), and the set of new recordings done
before the next roll-back at BPI(i + 1) (if present).

The sets of recordings in the above defined list have to be ordered themselves as well. Each of the resulting
ordered list of recordings of events implies an application’s model recording history. Due to axiom 4.1, and
definition 6.9, <Tr

defines a strict total order on the recordings in UPI(i). This allows for the following
sequence of the recordings in UPI :

Definition 6.10 RPI(i) is a list of lists of recordings such that RPI(i)(j) is the j-th recording based on
<Tr

in UPI(i), and such that dom(RPI) = dom(UPI). So for all i ∈ dom(RPI) the following holds:
dom(RPI(i)) = {1, . . . , |RPI(i)|}.

The evolution of the application model (AMEV) for a given user input PI is now defined as:

Definition 6.11 AMEV(PI) = 〈PIrb, σ
amrh , Hamrh 〉, where:

σamrh = AMRH(RPI(0))

Hamrh = { 〈AMRH(RPI(i)), AMRH(RPI(i + 1)), BPI(i + 1)〉 | 0 ≤ i < |PIrb| }

Finally, an overview of all the defined concepts is provided in the conceptual schema (meta schema),
of the framework of the processing of the user update requests, in figure 10. The schema depicted there
is in the style of PSM ([HW93], [HPW92b]), being an extension of the modelling technique from NIAM
([NH89], [Win90]). The extension used in figure 10 deals with schema objectifications, where a population
of the objectified schema at hand is to be looked upon as an abstract object instance. The schemas contained
in the graphical denotation of AMRH, AMH and AMS are objectified schemas, each reflecting a level of
the discussed three level framework for updates. Note that the three objectified schemata are nested.

7 Conclusions & Further Research
In this paper the importance of evolving information systems has been shown. These systems are able
to evolve at the same pace, and to the same extent as organisations do. This makes organisations more
flexible, allowing them to react more quickly on changes in their dynamic environment.

An evolutionary approach to information systems development has been advocated which should result
in evolving information systems. On the basis of requirements, and an general architecture for evolv-
ing information systems, the distinction with traditional information systems was explained. Traditional
information systems appeared to be degenerations of evolving information systems.

In order to handle temporal and evolutionary aspects in an evolving information system (as well as
in an historical information system), the traditional notion of update was revised, resulting in the triple:
recording, correction and forgetting. It was stated that update should not forget any aspect ever fed to
the system, unless explicitly asked for. The notion of updating an application model was described by

19

'
&

$
%

'
&

$
%

'
&

$
%

Tr

'
&

$
%

PIspc
t

'
&

$
%t

'
&

$
%

Te

'
&

$
%

AME

'

&

$

%

AMS

AMRH

AMH

RbTo RcAt
PIrb

�-

�
�
�
�
�
�
�
�
�
�
�

σamrh

�-�-�-Hamrh

RcOf RcAt
PIrc

�-
�
�
�
�
�
�
�
�
�
�
�
�

σamh

�-�-�-Hamh

PIocc

OccOf OccAt

� -

σams

�-Hams

β
?

6

�
�
�
�
�

L
L

L
L

L
L

L
L

L

δ
?

6

#
#

#
#

#
#

J
J

J
J

J
J

J
J

J

γ

?

6

""
"

""
""

""

e
e

e
e

e
e

e
e

e
e

e

e
e

e
e

e
e

e
e

e
e

"
"

"
"

"
"

"3

Figure 10: A Meta Model for the Processing of Update Requests

20

introducing a state-transition-oriented model on three levels of abstraction (organisation, recording and
correction level). This model has been formalised.

An evolving information system shell is being developed on the basis of the meta model presented
in this paper. This meta model should be extended with a general theory for the evolution of application
models, and concrete modelling techniques for world models and action models. At the moment, the
presented framework is being implemented.

References
[All84] J.F. Allen. Towards a General Theory of Action and Time. Artificial Intelligence,

1984(23):123–154, 1984.

[Bem87] Th.M.A. Bemelmans. Bestuurlijke informatiesystemen en automatisering. Stenfert Kroese,
Leiden, The Netherlands, 3rd edition, 1987. In Dutch.

[BF91] S. Brinkkemper and E.D. Falkenberg. Three Dichotomies in the Information System Method-
ology. In P.W.G. Bots, H.G. Sol, and I.G. Sprinkhuizen-Kuyper, editors, Informatiesystemen
in beweging. Kluwer, Deventer, The Netherlands, 1991.

[Bub80] J.A. Bubenko. Information Modelling in the Context of System Development. In S.H. Laving-
ton, editor, Information Processing 80, pages 395–411. North-Holland/IFIP, Amsterdam, The
Netherlands, 1980.

[Che76] P.P. Chen. The entity-relationship model: Towards a unified view of data. ACM Transactions
on Database Systems, 1(1):9–36, March 1976.

[CR87] J. Clifford and A. Rao. A simple, general structure for Temporal Domains. In C. Rolland,
F. Bodart, and M. Leonard, editors, Temporal Aspects in information Systems, pages 17–28.
North-Holland/IFIP, Amsterdam, The Netherlands, 1987.

[FHL+98] E.D. Falkenberg, W. Hesse, P. Lindgreen, B.E. Nilsson, J.L.H. Oei, C. Rolland, R.K. Stamper,
F.J.M. Van Assche, A.A. Verrijn-Stuart, and K. Voss, editors. A Framework of Information
Systems Concepts. IFIP WG 8.1 Task Group FRISCO, 1998. ISBN 3-901-88201-4

[FOP92a] E.D. Falkenberg, J.L.H. Oei, and H.A. Proper. A Conceptual Framework for Evolving Infor-
mation Systems. In H.G. Sol and R.L. Crosslin, editors, Dynamic Modelling of Information
Systems II, pages 353–375. North-Holland, Amsterdam, The Netherlands, EU, 1992. ISBN
0444894055

[FOP92b] E.D. Falkenberg, J.L.H. Oei, and H.A. Proper. A Metamodel for Update in Information Sys-
tems. Technical Report 92-05, Department of Information Systems, University of Nijmegen,
Nijmegen, The Netherlands, EU, 1992.

[FOP92c] E.D. Falkenberg, J.L.H. Oei, and H.A. Proper. Evolving Information Systems: Beyond Tem-
poral Information Systems. In A.M. Tjoa and I. Ramos, editors, Proceedings of the Data Base
and Expert System Applications Conference (DEXA’92), pages 282–287, Valencia, Spain, EU,
September 1992. Springer Verlag, Berlin, Germany, EU. ISBN 3211824006

[GS86] C. Gane and T. Sarson. Structured System Analysis: Tools and techniques. IST Databooks.
MacDonald Douglas Corporation, St. Louis, 1986.

[HN93] A.H.M. ter Hofstede and E.R. Nieuwland. Task structure semantics through process algebra.
Software Engineering Journal, 8(1):14–20, January 1993.

[HPW92a] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. A Note on Schema Equiva-
lence. Technical Report 92-30, Department of Information Systems, University of Nijmegen,
Nijmegen, The Netherlands, EU, 1992.

21

[HPW92b] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Data Modelling in Complex Ap-
plication Domains. In P. Loucopoulos, editor, Proceedings of the Fourth International Confer-
ence CAiSE’92 on Advanced Information Systems Engineering, volume 593 of Lecture Notes
in Computer Science, pages 364–377, Manchester, United Kingdom, EU, May 1992. Springer
Verlag, Berlin, Germany, EU. ISBN 3540554815

[HPW93] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Formal definition of a conceptual
language for the description and manipulation of information models. Information Systems,
18(7):489–523, October 1993.

[HPW94] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. A Conceptual Language for
the Description and Manipulation of Complex Information Models. In G. Gupta, editor, Sev-
enteenth Annual Computer Science Conference, volume 16 of Australian Computer Science
Communications, pages 157–167, Christchurch, New Zealand, January 1994. University of
Canterbury. ISBN 047302313

[HW92] A.H.M. ter Hofstede and Th.P. van der Weide. Formalisation of techniques: chopping down
the methodology jungle. Information and Software Technology, 34(1):57–65, January 1992.

[HW93] A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data modelling.
Data & Knowledge Engineering, 10(1):65–100, February 1993.

[ISO87] Information processing systems – Concepts and Terminology for the Conceptual Schema and
the Information Base, 1987. ISO/TR 9007:1987.
http://www.iso.org

[LGN81] M. Lundeberg, G. Goldkuhl, and A. Nilsson. Information Systems Development - A Systematic
Approach. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[MS90] E. McKenzie and R. Snodgrass. Schema evolution and the relational algebra. Information
Systems, 15(2):207–232, 1990.

[NH89] G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational Database Design: a fact
oriented approach. Prentice-Hall, Sydney, Australia, 1989. ASIN 0131672630

[OHFB92] J.L.H. Oei, L.J.G.T. van Hemmen, E.D. Falkenberg, and S. Brinkkemper. The Meta Model
Hierarchy: A Framework for Information System Concepts and Techniques. Technical Report
92-17, Department of Information Systems, University of Nijmegen, Nijmegen, The Nether-
lands, 1992.

[Rod91] J.F. Roddick. Dynamically changing schemas within database models. The Australian Com-
puter Journal, 23(3):105–109, August 1991.

[SA85] R. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. In Proceedings of the ACM SIG-
MOD International Conference on the Management of Data, pages 236–246, Austin, Texas,
1985.

[SA86] R. Snodgrass and I. Ahn. Temporal Databases. IEEE Computer, 19(9):35–42, 1986.

[Sno90] R. Snodgrass. Temporal Databases Status and Research Directions. SIGMOD Record,
19(4):83–89, December 1990.

[Ver89] A.A. Verrijn-Stuart. Some Reflections on the Namur Conference on Information Systems
Concepts. In E.D. Falkenberg and P. Lindgreen, editors, Information System Concepts: An
In-depth Analysis. North-Holland/IFIP, Amsterdam, The Netherlands, 1989.

[Win90] J.J.V.R. Wintraecken. The NIAM Information Analysis Method: Theory and Practice. Kluwer,
Deventer, The Netherlands, EU, 1990.

22

[WJL91] G. Wiederhold, S. Jajodia, and W. Litwin. Dealing with the Granularity of Time in Temporal
Databases. In R. Andersen, J.A. Bubenko, and A. Sølvberg, editors, Proceedings of the Third
International Conference CAiSE’91 on Advanced Information Systems Engineering, volume
498 of Lecture Notes in Computer Science, pages 124–140, Trondheim, Norway, May 1991.
Springer-Verlag.

23

