
Introduction to Formal Notations

Asymetrix Report 94-0

H.A. Proper
Asymetrix Research Laboratory

Department of Computer Science
University of Queensland

Australia 4072
E.Proper@acm.org

Version of June 23, 2004 at 10:29

PUBLISHED AS:

H.A. Proper. Introduction to formal notations. Asymetrix Research Report
94-0, Asymetrix Research Laboratory, University of Queensland, Bris-
bane, Australia, 1994.

Abstract

In this report we provide a short discussion on the formal notations used in the
reports from the research lab. The intention is that this documents evolves in the
course of time. This evolution is driven by two sources. Firstly, any unclarities
in the used notations, either due to terse explanation or limitations in the existing
knowledge in the fields of formalisation. Secondly, due to the possible introduction
of new notations and formalisms in new reports.

Although this first report is entirely written by me, it is the intention that all
researches from the research lab, so: T.A. Halpin and L. Campbell, will contribute
to this report when needed.

1 Sets

A set itself is either denoted by enumeration, such as: {1, 2, 3}, {10, . . . , 100}, or by a
using a so called set comprehension:

{

x
∣

∣ P (x)
}

1

The occurrence of an element x in a set X is denoted as x ∈ X . By x 6∈ X we denote
the fact that x does not occur in X . As an example set comprehension, the following
set contains all positive even numbers:

{

n
∣

∣ n ∈ INI ∧ (n DIV 2) × 2 = n
}

Alternatively, this can be rewritten as:
{

n ∈ INI
∣

∣ (n DIV 2) × 2 = n
}

The empty set, i.e. the set that does not contain any value, is denoted as: ∅.

In definitions of sets or values in general, we will usually use the format T ,E, where
T is the term to be defined and E is the defining expressions. On sets we can now
define the following additional operations:

A ⊆ B ⇐⇒ ∀x [x ∈ A ⇒ x ∈ B] subset
A ⊂ B ⇐⇒ A ⊆ B ∧ A 6= B proper subset
A 6⊆ B ⇐⇒ ¬A ⊆ B no subset
A 6⊂ B ⇐⇒ ¬A ⊂ B no proper subset

A∪B ,
{

x
∣

∣ x ∈ A ∨ x ∈ B
}

union

A∩B ,
{

x
∣

∣ x ∈ A ∧ x ∈ B
}

intersection

A − B ,
{

x
∣

∣ x ∈ A ∧ x 6∈ B
}

difference/filtering

℘(A) ,
{

Y
∣

∣ Y ⊆ X
}

powerset

For the ℘ operator it is important to realise that the emptyset is always included, and
that the result is a set of sets. For instance, ℘({1, 2}) =

{

{1, 2}, {1}, {2}, ∅
}

. Related
to this operation is the following variation of the union operation. If X is a set of sets,
then we can define: ∪X ,

{

x
∣

∣ ∃A∈X [x ∈ A]
}

, which unites all sets in X into one
large set. As an example: ∪

{

{1, 2}, {a, b, c}
}

=
{

1, 2, a, b, c
}

.

The number of elements in a set X is counted by |X |. So we have: |{1, 2, 3, a, b}| = 5.

Some sets will have a total ordering or arithmetic operations defined over them, for
instance INI . For such sets, the following operations are usefull:

max(X) , x ∈ X such that ∀a∈X [a ≤ x]

min(X) , x ∈ X such that ∀a∈X [x ≥ a]

Σ({x1, . . . , xn}) , x1 + . . . + xn

Some further notational convention concerning these operations is:

maxx∈X E(x) , max(
{

E(x)
∣

∣ x ∈ X
}

)

minx∈X E(x) , min(
{

E(x)
∣

∣ x ∈ X
}

)

Σx∈XE(x) , E(x1) + . . . + E(xn) if X = {x1, . . . , xn}

2

where E(x) is an expression in terms x.

The operations on sets as defined above are quite uniform, and can be found in most
literature on set theory. However, we introduce two special operations that are not
common to the literature, but that allow us to delete or add one element from a set:

A	x , A − {x}

X ⊕x , A∪{x}

2 Tuples

Using the so-called cartesian product, we can introduce tuples. A tuple over domains
A1, . . . An is introduced as: 〈a1, . . . , an〉 ∈ A1 × . . . × An. As an example, for
{1, 2}× {a, b} we have the following possible tuples:

{

〈1, a〉 , 〈1, b〉 , 〈2, a〉 , 〈2, b〉
}

.

In the literature no real standard operations on tuples exist. However, we introduce two
operations on tuples. Tuples can be joined into larger tuples by:

〈x1, . . . , xn〉 ∗ 〈y1, . . . , yn〉 , 〈x1, . . . , xn, y1, . . . , yn〉

One element of a tuple can be selected by the projection operation: π i. Formally:

πi 〈a1, . . . , an〉 , ai

An example is: π2 〈1, a〉 = a. The projection operation is usually used in combi-
nation with sets of tuples rather than single tuples. For this purpose we generalise the
projection operation as follows: πi X ,

{

πix
∣

∣ x ∈ X
}

, where X must be a set of
tuples.

3 Relations

Now that we know what tuples are we can introduce relationships. An n-ary rela-
tionship over domains A1, . . . , An is a set of tuples over A1 × . . . × An. An n-ary
relationship R is therefore usually introduced as: R ⊆ A1 × . . . × An.

For a relationship R we have the following abbreviations:

R(x1, . . . , xn) , 〈x1, . . . , xn〉 ∈ R

x R y , 〈x, y〉 ∈ R if R is a binary relationship

These abbreviations are both borrowed from predicate logic, and allow for elegant
notations. The x R y notation is a so-called infix notation. They are quite common.
For instance: ≤, <, = are all infix notations for binary relationships.

3

Binary relations can be combined into new binary relationships using the ◦ operations:

R ◦S , {〈x, z〉 | 〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ S}

4 Functions

A partial function f from A to B is defined by f : A � B. Formally, it is a relation
f ⊆ A × B such that 〈a, b〉 ∈ f ∧ 〈a, c〉 ∈ f ⇒ b = c. A possibly more familiar
verbalisation of this rule is: each A has at most one B. This property makes it possible
to write f(a) = b instead of 〈a, b〉 ∈ f . Note that A and B could be complex objects.
For instance: f : (A � B) � C is a function that takes a function as its argument, and
f : A × B →C × D × E is a function that converts binary tuples to ternary tuples.

A total function is introduced by f : A→B. From a formal point of view, it is a
function f : A � B such that a ∈ A ⇒ ∃b [〈a, b〉 ∈ f], i.e. every A has a B.

A function f is a set of binary tuples. This allows for the following functions on
functions:

dom(f) , π1(f) the domain of a function
ran(f) , π2(f) the range of a function

We obviously have for a function f : A � B:

dom(f) ⊆ A and ran(f) ⊆ B

For a total function f : A→B we have: dom(f) = A.

The above definitions for functions are rather standard, and can be found in the litera-
ture. We introduce some more abbreviations for reasons of convenience:

f(a)↓ , a ∈ dom(f) function f is defined for a

f(a)↑ , a 6∈ dom(f) function f is not defined for a

For unary functions, we will write f↓a, and f↑a, instead of f(a)↓, and f(a)↑ respec-
tively. Evenmore, f1, . . . , fn↓a1, . . . , am is employed as an abbreviation for: ∀1≤i≤n∀1≤j≤m [fi↓aj].
For a function f we also define the following operation which allows us to override ex-
isting values:

f �〈x, y〉 ,
{

〈v, w〉 ∈ f
∣

∣ v 6= x
}

⊕〈x, y〉

This operation replaces (if existing) the value associated to x by y.

In some cases, functions have to be denoted as an expression, for this purpose we apply
lambda calculus ([Bar84]). An example is: f = λx.if x = 0 then 0 else 1/x fi. In the
definition of functions, we will use ⊥ to indicate that the function is not defined for a

4

particular value. Sometimes we will also use error instead of ⊥, to indicate that the
function/operation leads to an error situation.

The inverse of a function, or relation, R is defined as: f←, {〈y, x〉 | 〈x, y〉 ∈ f}. The
inverse f← of a function, is a function if f is an injection (and thus a bijection on
dom(f)). Functions f and g can be composed, if ran(g) ⊆ dom(f) by · as follows:
f · g ,λx.f(g(x)).

5 Sequences

Sequences, or lists, are denoted as: [x1, . . . , xn]. A sequence is basically a set with an
order defined over it, where elements can occur more than once. The empty sequence
is denoted as: []. If X is a set of elements, than X∗ is the set of all sequences of
elements from X , and X+ is the set of all non-empty sequences of elements from X .
They are defined formally as:

X+ ,
{

[x1, . . . , xn]
∣

∣ n < 0 ∧ {x1, . . . , xn} ⊆ X
}

X∗ , X+ ∪ { [] }

Sequences are concatenated by the following operation:

[x1, . . . , xn] ++ [y1, . . . , yn] , [x1, . . . , xn, y1, . . . , yn]

We can select elements from a sequence [x1, . . . , xn] by the following operation:

[x1, . . . , xn][i] , xi

which results in the i-th element of the sequence. Similar to sets, we use the∈ operation
to denote the occurrence of elements in a sequence S. It is defined as:

x ∈ S ⇐⇒ ∃i [S[i] = x]

Using the ∈ operation for sequences, we can finally introduce a usefull operation co-
ercing between a sequence S and a set:

SET(S) ,
{

s
∣

∣ s ∈ S
}

6 Algorithms

As an example of the notations used for algorithms, consider the following algorithm:

5

GenPattern : RL × (TP → INI) → (TP � INI) ×℘(RO→ INI)

GenPattern(Rel ,Size) ,

VAR

Pattern: ℘(RO→ INI);
FreshTuple: RO→ INI ;
WorkTuple: RO→ INI ;
Used: TP � INI ;
p: RO;

MACROS

Extendable(P : ℘(RO)) ≡

∀p∈P [Used(Player(p)) < Size(Player(p))] ∧

Used(Rel(p)) + |P | ≤ Size(Rel(p));

IncrUsed(p : RO) ≡

BEGIN

Used(Player(p)) +:= 1;
Used(Rel(p)) +:= 1;

END;

BEGIN

Initialise variables

Pattern := ∅;
Used(Rel) := 0;
FOR EACH p ∈ Roles(Rel) DO

Used(Player(p)) := 0;
END FOR;

WHILE Extendable(Roles(p)) DO

Generate fresh tuple

FOR EACH p ∈ Roles(Rel) DO

IncrUsed(p);
FreshTuple(p) := Used(Player(p));

END FOR;

Probe uniqueness

6

Pattern +:= {FreshTuple};
FOR EACH p ∈ Roles(Rel) DO

WorkTuple := FreshTuple;

Try to mutate tuple

IF ¬∃τ⊆Roles(Rel) [Unique(τ) ∧ p 6∈ τ] ∧ Extendable({p}) THEN

IncrUsed(p);
WorkTuple(p) := Used(Player(p));
Pattern +:= {WorkTuple};

END IF;
END FOR;

Generate nil tuple

FOR EACH p ∈ Roles(Rel) DO

IncrUsed(p);
FreshTuple(p) := 0;

END FOR;

Probe totality

FOR EACH p ∈ Roles(Rel) DO

WorkTuple := FreshTuple;

Try to mutate tuple

IF ¬Total(p) ∧ Extendable({p}) THEN

IncrUsed(p);
WorkTuple(p) := Used(Player(p));
Pattern +:= {WorkTuple};

END IF;
END FOR;

END WHILE;

RETURN 〈Used ,Pattern〉;
END.

Most aspects of this algorithm will be clear to people who are proficient with pro-
gramming languages such as C or PASCAL. One important class of operations are

7

the operations based on the := operation. The := operation is the traditional becomes
statement from programming languages. For variables of simple types we now have
the following abbreviations:

A +:= B , A := A + B

A−:= B , A := A − B

For sets this becomes:

A +:=B , A := A∪B

A−:=B , A := A − B

In the case of a sequence we can write:

S ++:= B , S := S ++ B

Finally, an important class of variables are functions. In an algorithm, they can be
treated similarly to arrays. So if f is defined as a variable of type A→B, then we
would have:

f(A) := B , f := f �〈A, B〉

References

[Bar84] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundations of Mathematics. North-Holland,
Amsterdam, The Netherlands, Revised Edition, 1984.

8

