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Abstract

Effective information disclosure in the context of databases with a large con-
ceptual schema is known to be a non-trivial problem. In particular the formula-
tion of ad-hoc queries is a major problem in such contexts. Existing approaches
for tackling this problem include graphical query interfaces, query by navigation,
query by construction, and point to point queries. In this article we propose the spi-
der query mechanism as a final corner stone for an easy to use computer supported
query formulation mechanism for InfoAssisant.

The basic idea behind a spider query is to build a (partial) query of all informa-
tion considered to be relevant with respect to a given object type. The result of this
process is always a tree that fans out over existing conceptual schema (a spider).

We also provide a brief discussion on the integration of the spider quer mech-
anism with the existing query by navigation, query by construction, and point to
point query mechanisms.
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1 Introduction

Most present day organisations make use of some automated information system. This
usually means that a large body of vital corporate information is stored in these infor-
mation systems. As a result an essential function of information systems is the support
of disclosure of this information. Without a set of adequate information disclosure
avenues an information system becomes worthless since there is no use in storing in-
formation that will never be retrieved. An adequate support for information disclosure,
however, is far from a trivial problem. Most query languages do not provide any sup-
port for the users in their quest for information. Furthermore, the conceptual schemata
of real-life applications tend to be quite large and complicated. As a result, the users
may easily become lost in conceptual space and they will end up retrieving irrelevant
(or even wrong) objects and may miss out on relevant objects. Retrieving irrelevant
objects leads to a low precision, missing relevant objects has a negative impact on the
recall ([SM83]).

The disclosure of information stored in an information system has some clear paral-
lels to the disclosure problems encountered in document retrieval systems. To draw
this parallel in more detail, we quote the information retrieval paradigm as introduced
in [BW92]. The paradigm starts with an individual or company having an informa-
tion need they wish to fulfil. This need is typically a vague notion and needs to be
made more concrete in terms of an information request (the query) in some (formal)
language. The information request should be as good as possible a description of the
information need. The information request is then passed on to an automated system,
or a human intermediary, who will then try to fulfil the information request using the
information stored in the system. This is illustrated in the information disclosure, or
information retrieval paradigm, presented in figure 1 which is taken from [BW92].

We now briefly discuss why the information retrieval paradigm for document retrieval
systems is also applicable for information systems. For a more elaborate discussion on
the relation between information systems and document (information) retrieval systems
in the context of the information retrieval paradigm, refer to [Pro94a]. In the paradigm,
the retrievable information is modelled as a set K of information objects constituting
the information base (or population).

In a document retrieval system the information base will be a set of documents ([SM83]),
while in the case of an information system the information base will contain a set of
facts conforming to a conceptual schema. Each information object o ∈ K is charac-
terised by a set of descriptors X (o) that facilitates its disclosure. The characterisation
of information objects is carried out by a process referred to as indexing. In an infor-
mation system, the stored objects (the population or information base) can always be
identified by a set of (denotable) values, the identification of the object. For example,
an address may be identified as a city name, street name, and house number. The char-
acterisation of objects in an information system is directly provided by the reference
schemes of the object types.
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The actual information disclosure is driven by a process referred to as matching. In
document retrieval applications this matching process tends to be rather complex. The
characterisation of documents is known to be a hard problem ([Mar77], [Cra86]), al-
though newly developed approaches turn out to be quite successful ([Sal89]). In infor-
mation systems the matching process is less complex as the objects in the information
base have a more clear characterisation (the identification). In this case, the identifica-
tion of the objects (facts) is simply related to the query formulation q by some (formal)
query language.

Information
Need

Information
Request

q
Information

Base
K

Character-
isation

X
Formulation Matching Indexing

Figure 1: The information retrieval paradigm

The remaining problem is the query formulation process itself. An easy and intuitive
way to formulate queries is absolutely essential for an adequate information disclosure.
Quite often, the quest from users to fulfil their information need can be aptly described
by ([Bru93]):

I don’t know what I’m looking for, but I’ll know when I find it.

In document retrieval systems this problem is attacked by using query by navigation
([BW92], [Bru93]) and relevance feedback mechanisms ([Rij89]). The query by nav-
igation interaction mechanism between a searcher and the system is well-known from
the Information Retrieval field, and has proven to be useful. It shall come as no sur-
prise that these mechanisms also apply to the query formulation problem for infor-
mation systems. In [BPW93], [BPW94], [HPW94b], [Pro94a] such applications of
the query by navigation and relevance feedback mechanisms have been described be-
fore. When combining the query by navigation and manipulation mechanisms with the
ideas behind visual interfaces for query formulation as described in e.g. [ADD+92]
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and [Ros94] powerfull and intuitive tools for computer supported query formulation
become feasible. Such tools will also heavily rely on the ideas of direct manipulation
interfaces ([Sch83]) as used in present day computer interfaces.

One important step in the improvement of the information disclosure of information
systems, is the introduction of query languages on a conceptual level. Examples of such
conceptual query languages are RIDL ([Mee82]), LISA-D ([HPW93], [HPW94a]), and
FORML ([HHO92]). By letting users formulate queries on a conceptual level, users are
safeguarded from having to know the exact mapping to internal representations (e.g. a
set of tables which conform to the relational model) to be able to formulate queries in
a non conceptual language such as SQL. The next step is to introduce ways to support
users in the formulation of queries in such conceptual query languages (CQL).

In line with the above discussed information retrieval paradigm and the notion of rel-
evance feedback, a query formulation process (both for a document retrieval system,
and an information system) can be said to roughly consist of the following four phases:

1. The explorative phase. What information is there, and what does it mean?

2. The constructive phase. Using the results of phase 1, the actual query is formu-
lated.

3. The feedback phase. The result from the query formulated in phase 2 may not
be completely satisfactory. In this case, phases 1 and 2 need to be re-done and
the result refined.

4. The presentation phase. In most cases, the result of a query needs to be incorpo-
rated into a report or some other document. This means that the results must be
grouped or aggregated in some form.

Depending on the user’s knowledge of the system, the importance of the respective
phases may change. For instance, a user who has a good working knowledge of the
structure of the stored information may not require an elaborate first phase and would
like to proceed with the second phase as soon as possible.

In this report, we discuss an additional mechanism to support automated disclosure of
information stored in information systems, the spider query mechanism. As stated be-
fore, the related notions of query by navigation and query by construction have already
been discussed in [BPW93], [PW95], [Pro94a]. The point to point query mechanism
was already discussed in [Pro94b].

The idea behind spider queries is to start out from one object type, and to associate all
information that is relevant to this object type. The essential part of a spider query is
selecting the object types in the direct suroundings of the initial object type that are
considered to be relevant. This style of querying corresponds to a situation where users
only know about the existance of some object types in the conceptual schema about
which they would like to be informed.
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The structure of this report is as follows. In section 2, we discuss an example spider
query session, and elaborate briefly on the integration with the existing query by nav-
igation, query by construction, and point to point querie mechanisms. Section 3 deals
with the representation of conceptual schema as a graph. Building a spider query (es-
sentailly also a graph) is covered in section 4. Before concluding, section section 5
discusses the representation of a spider query as a path expression. For the reader
who is unfamiliar with the notation style used in this report, it is advisable to first read
[Pro94c].

2 An Example Spider Query Session

In this section we discuss a sample session involving a spider query, and also discuss
briefly the relationship to the existing query by navigation, query by construction and
point to point queries. The discussed example operates on a conceptual schema for the
administration of the election of American presidents. The example schema itself is not
shown; the structure of the domain will become clear from the sample session. Note
that the quality of the verbalisations of the paths in the examples used in this section
should be improved, however, this is subject of further research. In figure 2 a possible
screen is depicted for building queries using a point to point query mechanism. No
special window is needed for a spider query (see also [Pro94b]).

We start out from an existing query in a query by construction window. Note that this
could also be single object type, e.g. politician. The spider query mechanism adds one
important aspect to the query by construction window, the spider button: . When
a user presses this button, the system calculates the spider query of the object type
directly to the right of the button. This is illustrated in figure 3. The system allows
for the removal of parts of the resulting spider query that are not considered to be
relevant by the user. Suppose the user is not interested in administration is headed by

and election won by, then these paths can be deleted, which leads to the screen depicted
in figure 4.

It is now interesting to see that a query essentially is a double tree with a shared root
(politician in the example). Furthermore, the leaves on the tree resulting from the spider
query can be extended further if desired by commencing new spider queries. Finally,
since the result of a spider query is constructed from path expressions as well, these
expressions have the

�
associated that can be used to select alternative paths between

the head and tail object types. Furthermore, the paths can also be used as a starting
point of a query by navigation session. This latter posibility is illustrated in figure 5.

As stated before in [Pro94b], the query by construction window is basically a syntax
directed editor. In the left part of the window all possible constructs from the query lan-
guage are listed. In our examples we have used the constructs defined in LISA-D. Once
the FORML and LISA-D languages have been merged, a more complete language for
the query by construction part will result.
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3 A Conceptual Schema as a Graph

For the purpose of finding a path between object types in a conceptual schema, the
schema first needs to be translated to a graph. This translation is exactly the same as
provided in [Pro94b], but for reasons of completeness we provide it again. We start out
from a formalisation of ORM based on the one used in ([HP95]). However, since only
a very limited part of the formalisation is needed, we do not cover the formalisation in
full detail.

A conceptual schema is presumed to consist of a set of types TP . Within this set
of types two subsets can be distinguished: the relationship types RL, and the object
types OB. Furthermore, let RO be the set of roles in the conceptual schema. The
fabric of the conceptual schema is then captured by two functions and two predicates.
The set of roles associated to a relationship type are provided by the partition: Roles :
RL→℘(RO). Using this partition, we can define the function Rel which returns for
each role the relationship type in which it is involved: Rel(r) = f ⇐⇒ r ∈ Roles(f).
Every role has an object type at its base called the player of the role, which is pro-
vided by the function: Player : RO→TP . Subtyping and polymorphy of object types
are captured by the predicates SpecOf ⊆ OB × OB and HasMorph ⊆ OB × OB re-
spectively. For any ORM conceptual schema the following (undirected) labelled graph
G = 〈N, E〉 can then be defined:

N , TP (1)
E ,

{

〈{Player(r), Rel(r)}, r〉
∣

∣ r ∈ RO
}

(2)
⋃

{

〈{x, y}, SpecOf〉
∣

∣ x SpecOf y
}

(3)
⋃

{

〈{x, y}, HasMorph〉
∣

∣ x HasMorph y
}

(4)

The edges in the resulting graph have the format 〈{x, y}, l〉, where x and y are the
source/destination (no order) of the edge, and l is the label of the edge. The labels on
the edges either result from the roles in the relationship types (2), or they result from
specialisation or polymorphism (3,4). In the remainder, the graph G will be used as
an implicit parameter for all introduced functions and operations. As a convention, the
nodes of graph G are accessed by G.N , and the edges by G.E.

As an example, consider the conceptual schema depicted in figure 6. For this schema
we have:

TP = {A, B, C, D, f, g} Roles(f) = {r, s}, Roles(g) = {t, u}

RL = {f, g} Player(r) = A, Player(s) = B, Player(t) = C, Player(u) = A

OB = {A, B, C, D} A HasMorphC, A HasMorph g

RO = {r, s, t, u} D SpecOf B

From this schema the graph as depicted in figure 7 can be derived.

Note that for spider queries, it might be usefull to limit the edges resulting from roles
to those roles which are not used in the reference schemas of other object types. We
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cannot yet decide on this until we have finallised the path expression language, but it is
simply a matter of filtering the proper edges.

4 Building a Spider Query

The construction of a spider query corresponds to the construction of a graph. The
nodes and edges in this graph are based on the nodes (object types) and edges from the
original conceptual schema graph. A spider query graph is a labelled tree (connected
directed acyclic graph). It is not just a subgraph of the conceptual schema graph, since
one object type can be visited more than once on different branches of the graph (legs
of the spider query graph). Let N be the set of all nodes that can occur in a spider
query, and let L ,RO∪{SpecOf, HasMorph} be the set of labels that can occur in a
spider query graph. The spider query graph itself is now constructed by the function:

SpiderQuery : N → (N � TP) ×℘(N × N × L)

The result of a spider query SpiderQuery(x) is a tuple 〈O, S〉, where O : N � TP
provides the relation between the spider query graph and the conceptual schema, and
the spider query graph itself is defined by the (directed!) edges in S ⊆ ℘(N×N×L).

The construction process itself is driven by a recursive function σ, which is activated
as follows:

SpiderQuery(x) , σ({〈NewNode(x), x〉}, ∅, {x})

where NewNode is a function returning a new node each time it is called. The σ func-
tion is the actual engine of the construction process. This function tries to extend the
spider query graph in a number of steps. In each step the possible extensions of the
existing graph at that moment are calculated by the ε function. The ε function takes
as parameters the current spider query graph: O, S, and the nodes which are allowed
to be extended: T . It returns a number of tuples of the form 〈n, t, l〉, where n is an
extendable node in the existing spider query graph, and t is a type in the conceptual
schema that is reachable in (the conceptual schema graph) from object type O(n). A
restriction on the returned tuples is that no cycles may be formed, i.e. no revisiting of
object types on one path in the spider query graph. The formal definition is given by:

ε(O, S, T ) ,
{

〈n, t, l〉
∣

∣ 〈{O(n), t}, l〉 ∈ G′.E ∧ n ∈ T ∧ t 6∈ Top(n)
}

where Top(n) ,
⋃

m:〈m,n,l〉∈S

(Top(m)∪{m}) is the set of types on the path in the spider

query graph leading from the root to n.

The actual driver function σ evolves around three parameters. These parameters are
updated in every step of the function. In the definition we use O, S and T as variable
names, where T contains the nodes in the spider query graph that may be used for
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further extensions, and O and S represent the spider query graph so-far. The σ function
is identified by:

σ(O, S, T ) ,

{

σ(O′, S′, T ′) if ε(O, S, T ) 6= ∅

〈O, S〉 otherwise

where:

O′ = O ∪
{

〈NewNode(t), t〉
∣

∣ t ∈ π2 ε(O, S, T )
}

(5)

S′ = S ∪
{

〈n, m, l〉
∣

∣ 〈n, t, l〉 ∈ ε(O, S, T ) ∧ O′(m) = t
}

(6)

T ′ =
{

m
∣

∣ 〈n, m, l〉 ∈ ε(O, S, T ) ∧ CWeight(O′(m)) ≤ CWeight(O′(n))
}

(7)

In 4, the newly found object types in ε(O, S, T ) are assigned a new node so that they
can be added to the existing spider query graph. The set of edges of the spider query
graph is updated in 5. The new set of nodes that will be considered for further ex-
tensions in the next step of σ are determined by 6. In this definition, the conceptual
weight function CWeight is the same function as used in [Pro94b], and should provide
the conceptual importance of each object type. This importance could for instance be
based on the abstraction level at which the object type occurs ([CH94]). The rationale
behind the use of the CWeight function is that as soon as the conceptual importance in-
creases, any new neigbouring object type from the last added object type (the one with
the increased CWeight) is not relevant for the root of the current spider query graph, i.e.
we have left the relevance scope of the current root. Note, however, the neighbours of
the last added object type could quite well be relevant for a spider query starting out
from this latter object type. These nodes will be added if the user presses the spider
query button that will be associated to this node.

As an example of the operation of the SpiderQuery function, consider the graph depicted
in figure 8. Each edge in this graph is labelled, and each node has associated its name
(object type), and the conceptual weight. In figure 9 the tree is depicted with which the
σ function is started. The double circle around node B is used to indicate that node B

is in the set of extendible nodes T .

Figure 10 depicts the spider query graph after one incremental step of σ. All neighbours
of B are added to the graph, and since they do not have a higher conceptual weight than
B, they can be used for further extensions.

The next step of the algorithm is illustrated in figure 11. Node A has two neigbours: B

and F. However, since adding B to the spider query graph would lead to a repetition
of an existing node on the path to the root of the spider query graph, B is not added.
Similarly, B is not added as a neighbour of C and F. Nodes D and E are not marked as
points of further extensions since they both have a higher conceptual weight then node
C. As a resuolt, node H is not part of node B’s scope of rellevance. However, node B

would be part of a spider query starting from H. Note that nodes D and E will both have
associated a spider query button when the result is presented to the user, so a user can
always explicitly decide to further ‘climb the conceptual importance mountain’.
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The result of the last step of σ is shown in figure 12. The second node A, and node
G, do not lead to further extensions. All neighbours of these two nodes are already
present on the paths to the root of the graph. Only the leftmost node F leads to a further
extension with a G. After this extension no further extensions are possible.

Finally, it is good to realise that the σ function always terminates:

Lemma 4.1 The σ function always terminates.

Proof:
This corresponds to saying that the resulting graph is finite.

The number of object types in an ORM schema is (presumed to be) finite, and
the paths of the spider query will not contain cycles (follows from the definition
of ε).

As a result, each node only has a finite number of outgoing arcs, and each path
from the root to a leaf is finite. Hence the resulting graph is finite. 2

5 The Resulting Path Expressions

In this section we discuss how to transfer a spider query graph into a path expression.
We use the spider query graph O, S as an implicit parameter for all definitions in this
section.

Given a node x in the spider query graph, then the following path expression can be
associated to this node:

NodeExpr(x) ,

{

[a1 : PathSeg(y1, l1, x), . . . , an : PathSeg(yn, ln, x); O(x)] if S 6= ∅

O(x) otherwise

where S = {〈y1, l1〉 , . . . , 〈yn, ln〉} is a set such that S =
{

〈y, l〉
∣

∣ 〈x, y, l〉 ∈ S
}

,
and a1, . . . , an is a set of fresh attribute names. A good choice for these latter names
are the names of the object types where the PathSegs end (suffixed with a number to
make the name unique if needed). The ◦ operation is the concatenation operation for
path expressions, and the [X1, . . . , Xn] construct is the path confluence operation. It
allows us to combine a variety of path expressions. For more details about the path
expression operators, refer to [HPW93] and the forthcomming Asymetrix report on
path expressions. One single edge from the spider query graph is converted to a path
expression as follows:

PathSeg(y, l, x) , NodeExpr(y) Connector(l, x) O(x)

where

Connector(l, x) ,











◦ if l ∈ {HasMorph, SpecOf}

◦ l ◦ if x ∈ RL ∧ l ∈ Roles(x)

◦ l← ◦ otherwise
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The linear path expressions are for internal use only. They can be mapped to proper
SQL queries on the one hand, and verbalised as semi-natural language sentences using
the verbalisation information as provided in the conceptual schema on the other hand.
As stated before, the verbalisation of path expressions is subject of further research.

Finally, the (unique) root of a spider query graph is determined as follows:

IsRoot(r) ⇐⇒ O↓r ∧¬∃x,l [〈x, r, l〉 ∈ S]

If r is the (unique) root of a spider query graph, then NodeExpr(r) results in the com-
plete path expression for this spider query graph.

6 Conclusions

In this article we introduced a novel way to computer supported query formulation
called spider queries. We provided a sample session with a provisional tool supporting
spider queries, and briefly discussed the relationship to query by navigation, query by
construction, and point to point queries. Together with these existing mechanisms a
powerfull query formulation tool can now indeed be build.

As a next step, the path expressions should be further developed to suit our needs.
Furthermore, elegant verbalisations of the path expressions should be catered for.

asy
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Figure 8: Example graph for a spider query
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Figure 9: Initial spider query graph

B

CA

j qk

F
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Figure 11: Second step in building the spider query graph

17



GF A

B

D

C

E

FA

G

j qk

p

r

l m p r

Figure 12: Last step in building the spider query graph
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