
Architecture-driven
Information Systems Engineering

H.A. Proper
Version of: 25-05-2005

The DAVINCI Series – The Art & Craft of System Alignment

Architecture-driven
Information Systems Engineering

H.A. Proper

This textbook was entirely produced by means of open source software, in particular: LATEX for
type setting, Kile for editting, ISpell as spelling checker and XFig for drawings.

Contents

The DAVINCI Series 11

Course Description 15

Preface 17

1 Introduction 19

1.1 The digital era . 19

1.2 Enablers of the digital era . 20

1.3 The information systems area . 22

1.3.1 Information systems . 22

1.3.2 Information systems as work systems . 23

1.3.3 Information systems engineering . 24

1.4 Challenges for information system engineering . 25

1.4.1 Ambient technology . 25

1.4.2 Pluriformity of stakes . 26

1.4.3 Intangiable systems . 26

1.4.4 Evolution is a constant . 27

1.4.5 Complexity; the gravitational force of software construction 29

1.5 Architecture-driven information systems engineering 30

1.5.1 Architecture . 30

1.5.2 Alignment . 32

1.5.3 Architecture-driven information system engineering 33

1.6 A fundamental approach . 34

1.7 Structuring the domain . 34

1.7.1 Methodological framework . 34

1.7.2 Structure of this text-book . 36

Questions . 36

Recommended reading . 37

Optional reading . 38

Bibliography . 38

5

6 CONTENTS

I Domain Modeling 43

2 Work Systems 45

2.1 Exploring systems . 45

2.2 Observing systems . 46

2.2.1 Subjectivity . 47

2.2.2 Observing the universe . 48

2.2.3 Conceptions . 50

2.2.4 Model . 56

2.2.5 System . 57

2.3 Studying systems . 59

2.3.1 Sub-systems . 59

2.3.2 Describing systems . 61

2.3.3 Open-active systems . 62

2.4 Information system . 63

2.4.1 Knowledge, information and data . 63

2.5 Dealing with evolution of conceptions . 64

2.6 Conclusion . 68

Questions . 68

Bibliography . 69

3 Basic Object-Role Modeling 71

3.1 Natural language grounding of modeling . 71

3.2 The logbook heuristic . 71

3.3 Verbalizing conceptions . 73

3.4 Elementary facts . 73

3.5 From instances to types . 77

3.6 Standard constraints . 79

3.7 Temporal ordering . 80

Questions . 83

Bibliography . 85

4 Advanced Object-Role Modeling 87

4.1 Subtyping . 87

4.2 Overlap of populations . 89

4.3 Abstraction . 90

4.4 Set types . 99

4.5 Multi-set types . 100

CONTENTS 7

4.6 Sequence types . 101

4.7 Schema types . 102

Questions . 103

Bibliography . 103

5 The Act of Modelling 105

5.1 What to model? . 105

5.2 The modeling challenge . 105

5.2.1 Goal-bounded and communication-driven 105

5.2.2 Aspects of a method . 106

5.2.3 The process of modeling . 107

5.3 Ambition levels for modeling . 108

5.4 Meeting the challenge . 108

5.4.1 Modeling a singular domain . 108

II Systems Modeling 111

6 Natural-Language Foundations of Information-Systems Modeling 113

6.1 Classes of roles . 113

6.2 Activity types . 116

Questions . 117

Bibliography . 117

7 Activity Modeling 119

7.1 Introduction . 119

7.2 Basic modeling language . 120

7.3 Composed activities . 122

7.4 Petri-net based semantics . 122

7.5 Quantative semantics . 125

7.6 Mapping to UML 2.0 activity diagrams . 125

7.7 Modeling approach . 127

7.7.1 Identify key use cases . 127

7.7.2 Describe key use cases . 127

7.7.3 Compose initial model . 127

7.7.4 Detail model . 127

7.7.5 Re-examine models . 127

7.7.6 Identify phases of activity . 127

Questions . 128

Bibliography . 129

8 CONTENTS

8 Resource Modeling 131

8.1 Actor modeling . 131

8.2 Actand modeling . 133

Questions . 133

9 Service modeling 137

9.1 Service . 137

9.2 Modeling services . 138

9.3 Quality of service . 138

9.4 Information systems as event-driven machines . 140

Bibliography . 140

III Model-driven System Engineering 141

10 Models in System Engineering 143

10.1 Systems engineering . 143

10.2 System engineering community . 145

10.2.1 Stakeholders and their concerns . 146

10.3 Information system engineering as a wicked problem 147

10.3.1 Wicked problems . 147

10.3.2 Traditionele informatiesysteemontwikkeling 150

10.3.3 Evenwichtsdenken . 150

10.4 Viewpoints for system description . 153

10.4.1 Origin of viewpoints . 154

10.4.2 Viewpoints on systems . 154

10.4.3 Viewpoint frameworks . 156

Questions . 157

Recommended reading . 158

Optional reading . 158

Bibliography . 159

IV Apendixes 161

A Mathematical Notations 163

A.1 Sets . 163

A.2 Functions . 163

A.3 Relations . 164

CONTENTS 9

B Answers to questions 165

B.1 Questions from Section 1.4 . 165

B.2 Questions from Chapter 2 . 165

B.3 Questions from Chapter 3 . 171

B.4 Questions from Chapter 4 . 174

B.5 Questions from Chapter 6 . 175

B.6 Questions from Chapter 7 . 176

B.7 Questions from Chapter 8 . 177

B.8 Questions from Chapter 10 . 178

Bibliography 181

List of Symbols 191

Dictionary 193

Author Index 199

Subject Index 203

10 CONTENTS

The DAVINCI Series

Version:
16-02-05The subtitle of the DAVINCI series of lecture notes is The Art & Craft of Information Systems En-

gineering. On the one hand, this series of lecture notes takes a fundamental view (craft) on the
field information systems engineering. At the same time, it does so with an open eye to practical
experiences (the art) gained from information system engineering in industry.

The kinds of information systems we are interested in range from personal information appli-
ances to enterprise-wide information processing. Even more, we regard an information system
as a system that “handles” information, where “handling” should be interpreted in a broad fash-
ion. The actors that do this “handling” can be computers, but can equally well be other “symbol
wielding machines, but can also be humans. The mix of humans and computers/machines in
information systems makes the field of information system engineering particularly challenging.

The concept of “information” itself is very much related to the concepts of data, knowledge and
communication. Based on [FVSV+98], we will (throughout the DAVINCI series) use the following
definitions:

Data – Any representation in some language. Data is therefore simply a collection of symbols
that may, or may not, have some meaning to some actor.

Information – The knowledge increment brought about when a human actor receives a message.
In other words, it is the difference between the conceptions held by a human actor after
interpreting a received message and the conceptions held beforehand.

Knowledge – A relatively stable, and usually mostly consistent, set of conceptions posessed by
a single (possibly composed) actor.

In more popular terms: “an actor’s picture of the world”.

Communication – An exchange of messages, i.e. a sequence of mutual and alternating message
transfers between at least two human actors, called communication partners, whereby these
messages represent some knowledge and are expressed in languages understood by all
communication partners, and whereby some amount of knowledge about the domain of
communication and about the action context and the goal of the communication is made
present in all communication partners.

When referring to an information system, we therefore really refer to systems that enable the
communication/sharing of knowledge by means of the representation (by human actors), stor-
age, processing, retrieval, and presentation (to human actors) of the underlying representations
(data). This also implies that we will treat information retrieval systems, knowledge-based systems,
groupware systems, etc., as special classes of information systems.

The lecture notes in the DAVINCI series have been organized around five key aspects of an infor-
mation system’s life-cycle:

Definition – The description of the requirements that should be met by both the desired infor-
mation system as well as the documents documenting this information system. In literature
this is also referred to as requirements engineering.

11

12 THE DAVINCI SERIES

With regards to the information system, the resulting descriptions should identify: what it
should do, how well it should do this, and why it should do so. With regards to the docu-
mentation of the information system, the descriptions should identify what should be docu-
mented, how well it should be documented, and why/what-for these documents are needed.

Design – The description of the design of an information system. These descriptions should
identify how an information system will meet the requirements set out in its definition. The
resulting design may (depending on the design goals) range from high-level designs to the
detailed level of programming statements or specific worker tasks.

Deployment – The processes of delevering/implementating an information system to/in its us-
age context. The design of an information system is not enough to arrive at an operational
system. It needs to be implemented-in/delivered-to a usage context.

Maintenance – An information system which is operational in its usage context, does not remain
operational by itself. Both technical and non-technical elements of the system need active
maintenance to keep the information system operational as is.

Architecting – The processes which tie definition, design, deployment and maintenance to the
explicit and implicit needs, desires and requirements of the usage context. Issues such
as: business/IT alignment, stakeholders, limiting design freedom, negotiation between
stakeholders, enterprise architectures, stakeholder communication, and outsourcing, typify
these processes.

Domain modeling – Modeling of the domains that are relevant to the information system be-
ing developed. The resulting models will typically correspond to ontologies of the domains.
These domains can pertain to the information that will be processed by the information sys-
tem, the processes in which the information system will play a role, the processing as it will
occur inside the information system, etc. Understanding (and modeling) these domains is
fundamental to the other activities in information system engineering.

For each these aspects, attention will be paid to relevant theories, methods and techniques to
execute the tasks involved. When put together, these aspects can be related as depicted in figure 1.

Architecting

D
efinition

D
esign

D
eploym

ent

M
aintenance

Domain Modelling

Figure 1: Aspects of Information Systems Engineering

The use of the name DAVINCI originates from earlier work [Pro98] done on architecture-driven
information systems engineering. The work reported in [Pro98] was the result of a confronta-
tion between industrial practice and a theoretical perspective on information systems and their

THE DAVINCI SERIES 13

evolution [Pro94]. The result was a shared vision on the architecture-driven development of in-
formation systems by a Dutch IT consultancy firm. In this shared vision, a foundation was laid
for an integrated view on information system engineering. At that stage, the name “DAVINCI”
was also selected. Not as some artificial acronym, but rather to honour an inspiring artist, scien-
tist, inventor and architect. To us he personifies a balance between art and engineering, between
human and technology.

After the development of the first DAVINCI version, a more elaborate version [Pro04] was de-
veloped at the Radboud University Nijmegen in the form of lecture notes associated to a course
on Architecture & Alignment. In this version, a more fundamental outlook on information system
development was added to complement the practical orientation of the first version.

As a third step, we have now taken on the underlying philosophy of the first two DAVINCI doc-
uments, and used this as the source of inspiration to shape an entire line of lecture notes for
a number of mutually related courses on different aspects of information systems engineering.
In making this step we have also been able to anchor some of the fundamental research results
from the co-authors, on subjects such as information modeling [BHW91, BW92a, HW93, HPW93,
PW94, BBMP95, CHP96, CP96, PW95a, BFW96, HPW97, Pro97, HVH97, FW02, FW04a], informa-
tion retrieval [BW90, BW91, BW92b, BB97, WBW00, SFG+00, PB99, PPY01, WBW01], (enterprise)
information architecture [JLB+04] and information system engineering [Pro01, VHP04] into the
core of the DAVINCI series.

14 THE DAVINCI SERIES

Course Description

Short description

This course comprises three parts. It starts by discussing information systems and information
systems engineering from an abstract point of view. As such, it ties the courses of the previ-
ous courses in the DAVINCI series together. This abstract view translates to taking a system
theoretical perspective on information systems, their engineering and the role of architecture in
bounding/guiding the engineering processes.

We then move on to the architecture level, by discussing both the definition of architecture in
an information systems engineering context, its need, as well as its potential role as a means of
negotiation and communication. Special attention will be paid to the mechanism of architecture
principles as a mechanism to guide/bound the engineering processes.

In the third part, we zoom in on aspects of the process of architecting information systems, in
particular on communication strategies and negotiation between different stakeholders. An in-
formation system involves organisational, human and technological issues, leading to a plethora
of stakes and stakeholders. These stakes need to be balanced during the development of an in-
formation system’s architecture.

Learning goals

After this course, students are able to:

1. argue about the different aspects of information system engineering and position the meth-
ods & techniques as presented in the other courses in the DAVINCI series relative to these
aspects,

2. reason about organisations, information systems, and computerised information systems
at an abstract (system theoretical) level,

3. argue the need, and potential role, for architecture in the context of information systems
engineering,

4. discuss and relate different definitions of architecture,

5. reason about different levels of abstraction at which an information system, and its context,
can be modelled/designed/architected, as well as identify situations for which these levels
are relevant,

6. reason about the selection of modelling techniques, for given goals and situations during
information systems engineering, that are most apt to the situation at hand,

7. develop, and reason about, communication and negotiation strategies relevant to informa-
tion systems engineering.

Topics

1. System theory

2. Viewpoints

15

16 COURSE DESCRIPTION

3. Architecture

4. Architecture principles

5. Communication & negotiation

6. Stakeholders

Outline

To be done

Preface

Version:
04-04-05In 2005, the course “System Theory: Structure and Design” is taught for the first time. It is a

continuation of the Architecture & Alignment course which was taught in the past as part of the
information science curriculum. In the new curriculum, this course was renamed and moved to
the third year. This text-book, which is a continuation of an older version [Pro04], is to be used
as the lecture notes for this course. Over the next years, this course will be extended with an
additional block of 3ec focussing on design rationale, eventually leading to an integrated course
of 6ec focussing in Information Systems Architecture.

The intention of this document is that it evolves into a text-book on architecture-driven informa-
tion system engineering at the Radboud University. The current version does require the reader
to have a considerable willingness to read between the lines, as the text is still rather steno-
graphic in nature and while parts of the text-book are still sketchy. Over the next few years, the
text should be improved. The priority of this initial version of this textbook is on completeness
of the topics that need to be covered, rather than readability and completeness of text. Students
are advised to make notes during lectures.

The current version of this text-book shares two chapters with another course in the DAVINCIseries
of lecture notes. These chapters (chapter 2 and 3) will be forked into two distinct versions of the
next years. An introductory version will become part of the 1th year course “Information In-
tensive Organizations” (Modelleren van Organisaties), while a more fundamental version will
remain part of this (3rd year) course.

My personal interest in the field of architecture-driven development of information systems was
raised in 1997/1998 when I was employed as a consultant by Origin (now called Atos-Origin)
and was first exposed to the field. This lead to a first document referred to as “Da Vinci” [Pro98].
Management at Origin gave me the freedom – for which I am still grateful – to work on “Da
Vinci”, drawing together many valuable ideas on architecture-driven development of informa-
tion systems from several colleagues from within Origin. The resulting document stipulated a
shared Origin vision on architecture-driven development of information systems. The name “Da
Vinci” is not some artificial acronym. The name was chosen by me to honour an inspiring artist,
scientist, inventor and architect.

To acknowledge the origins of my interest in the field, I have chosen to also use the name “Da
Vinci” on this new document.

Needless to say that any feedback from either students or colleagues is more than welcome.
Please sent any comments to the author at: E.Proper@acm.org

To do:

• Add a running example.

• Add questions from past exams.

17

18 PREFACE

Chapter 1

Introduction

Version:
22-04-05There is a theory which states that if ever anyone

discovers exactly what the Universe is for and why
it is here, it will instantly disappear and be replaced
by something even more bizarre and inexplicable.

There is another theory which states that this has
already happened.

From: “The Restaurant at the End of the Universe”,
Douglas Adams, Pan Books Ltd.

This version of the introduction is still a mix between Dutch and English. The current contents
is based on an older version (in English) and more recent materials from my inaugural address,
which was written in Dutch. Over the next few years, this chapters content will be integrated
further and converted into (International) English.

1.1 The digital era

This section is based on [Pro03] and still needs to be trimmed down to better fit the context of
this textbook. It, obviously, also needs to be translated.

Onze maatschappij kan niet meer zonder computers. De rol van computers is allang niet meer
beperkt tot de voor de hand liggende voorbeelden zoals tekstverwerkers, spelcomputers of web-
sites. Ook allerlei andere vormen van reeds bestaande technologie raken steeds meer “door-
drenkt” met computers. Van wasmachines tot rolstoelen, van vrachtautos tot vliegtuigen, van
bibliotheek tot bushalte, van elektronische agenda tot digitale leeromgeving, overal vinden we
technologische ondersteuning die niet meer zonder computers kan. Zelfs gebouwen worden
dankzij computers steeds slimmer, onder andere door hoogwaardige beveiliging, voortdurende
bewaking van het interne klimaat, automatische aanpassing van sfeerverlichting, etcetera.

De laatste 80 jaar heeft voor een belangrijk deel in het teken gestaan van de verdere ontwikkeling
en uitbouw van de industriële samenleving; het industriële tijdperk. Als samenleving hebben
we inmiddels de eerste schreden gezet in een nieuw tijdperk; het digitale tijdperk. Let wel, we
noemen dit nieuwe tijdperk bewust niet het informatietijdperk.

In de laatste decennia van de vorige eeuw was regelmatig te horen en te lezen hoe we het indus-
triële tijdperk achter ons zouden laten, en over zouden gaan naar het informatietijdperk [Cas00].
Naar mijn mening liepen die uitspraken zo’n honderd á honderdvijftig jaar achter de feiten aan.

19

20 CHAPTER 1. INTRODUCTION

Of, iets genuanceerder gezegd, ik ben van mening dat de naamgeving “het informatietijdperk”
zo’n honderd á honderdvijftig jaar achter de feiten aanloopt. Mijns inziens is het informatietijd-
perk onlosmakelijk verbonden met de opkomst van het industril̈e tijdperk. Immers, tegelijkertijd
met de industrialisering van de samenleving, kwamen er ook steeds meer informatie- en docu-
mentstromen op gang om diezelfde samenleving in goede banen te leiden. Natuurlijk waren er
voor de industrialisering ook al informatiestromen, en heeft bijvoorbeeld de uitvinding van de
boekdrukkunst deze stromen verder gestimuleerd. Echter, de informatiestromen zijn pas echt
aangezwollen toen de industrialisering eenmaal op gang kwam. Gaandeweg zijn er steeds meer
organisaties ontstaan, zoals financiële instellingen, overheden en regeluitvoerende instanties,
die in essentie te zien zijn als grote informatieverwerkende fabrieken. Belastingaangiften, over-
schrijvingsformulieren, subsidieaanvragen en chartaal geld zijn allemaal voorbeelden van infor-
matiedragers die door dergelijke fabrieken stromen.

In de tweede helft van de vorige eeuw waren de informatiestromen tot dermate grote propor-
ties aangezwollen dat het bijna onmogelijk werd om ze nog handmatig te verwerken. Toen de
computer zijn intrede deed, werd daar dan ook gretig gebruik van gemaakt om delen van deze
informatiestromen per computer te verwerken.

Inmiddels kunnen we in de wereld om ons heen zien hoe computers steeds verder doordringen
in alle delen van de samenleving. Het gebruik van computers is daarbij allang niet meer beperkt
tot de informatieverwerkende fabrieken. Ook andere sectoren van de samenleving kunnen niet
meer zonder. Het vervoer per trein, boot of auto, is inmiddels ook door allerlei vormen van
gecomputeriseerde informatieverwerking omgeven. Zonder computers staan de vrachttreinen,
vrachtschepen en vrachtauto’s van “Nederland transportland” stil. En kan de moderne medische
wereld nog zonder computer? We hoeven maar in een gemiddeld Westers ziekenhuis te gaan
kijken om te beseffen dat men ook daar niet meer zonder kan.

De industrialisering is begonnen met het mechaniseren van de aandrijving. Eerst per stoomma-
chine, toen per brandstofmotor en later per elektromotor. Inmiddels heeft deze mechanisering
zelfs zijn weg gevonden naar onze tandenborstels. Het digitale tijdperk is feitelijk begonnen toen
de verwerking van informatie werd gemechaniseerd door de inzet van computers. Het is een
kwestie van tijd voordat ook de computer onze tandenborstel bereikt.

Een essentiële eigenschap die alle hedendaagse computers gemeen hebben is dat ze informatie
verwerken in digitale vorm. Feiten, documenten, muziek, foto’s, films, allemaal worden ze in
digitale vorm door computers verwerkt. Zoals het stenen tijdperk vernoemd is naar de introduc-
tie van stenen gereedschappen, en het bronzen tijdperk naar het gebruik van bronzen gereed-
schappen, kunnen we het aankomende tijdperk het beste betitelen als het digitale tijdperk. Di-
verse auteurs die proberen een inschatting te maken van de mogelijke invloed van computertech-
nologie op mensen, maatschappij en organisaties, gebruiken daarbij dan ook metaforen zoals:
Being Digital [Neg96], Digital Economy [Tap96] en Digital Places [Hor00]. Ook de Nederlandse
overheid spreekt in haar toekomstbespiegelingen over “Digitale Delta” en “Digitale Economie”.
Men gebruikt zelfs al enige tijd het begrip de “Digitale Overheid”, terwijl het Ministerie van Bin-
nenlandse Zaken zich reeds waagt aan de “grondrechten in het digitale tijdperk”. We kunnen
dus stellen dat het leven steeds meer een digitaal leven wordt waarin informatie steeds meer in
digitale vorm wordt verwerkt. In die zin lijken we ons dan ook te bevinden in de overgangsfase
van het industriële tijdperk naar het digitale tijdperk. Enablers van het digitale tijdperk

1.2 Enablers of the digital era

Alvorens nader in te gaan op de rol van informatiesystemen (en hun ontwikkeling) in het digitale
tijdperk, is het nuttig eerst kort stil te staan bij de belangrijkste enablers van het digitale tijdperk.
Er zijn hierbij een drietal belangrijke voorwaardenscheppende factoren te onderkennen, twee
van technologische en één van financiële aard.

1.2. ENABLERS OF THE DIGITAL ERA 21

Ten eerste worden computers steeds verder geminiaturiseerd. Dit maakt het mede mogelijk dat
computers steeds makkelijker zijn te integreren in bestaande vormen van technologie. We hebben
een ontwikkeling kunnen zien van zaalvullende mainframes, via PCs, tot alomtegenwoordige
computers zoals we die kunnen terugvinden in onze mobiele telefoons, elektronische agendas,
autonavigatiesystemen, wasmachines, bankpassen, etcetera.

Ten tweede worden computers steeds meer met elkaar verbonden. Hier hebben we een on-
twikkeling kunnen zien van alleenstaande mainframes die middels ad-hoc verbindingen met
elkaar werden verbonden, via het ontstaan van het Internet als structureel en robuust verbind-
ingsmedium tussen diezelfde mainframes, tot aan de hedendaagse situatie waarin inmiddels
naast de PC op het werk, de PC thuis en zelfs telefoons, DVD spelers, pacemakers, elektronische
agenda’s en spelcomputers via het Internet met elkaar verbonden zijn.

Tenslotte wordt de beschikbare rekenkracht en opslagcapaciteit steeds goedkoper. Let op: ik stel
dat rekenkracht en opslagcapaciteit goedkoper wordt. Ik stel niet dat alle computergebaseerde
apparatuur die wij kopen goedkoper wordt. PC’s zijn, bijvoorbeeld, de afgelopen jaren niet
dramatisch in prijs gedaald. De rekenkracht en opslagcapaciteit die je per Euro krijgt is echter
wel fors toegenomen.

Een extreem, maar wel tot de verbeelding sprekend voorbeeld van de miniaturisering en de
toenemende interconnectiviteit, is het zogenaamde “smart dust” [Koe03]. Het gaat hierbij om
heel kleine computertjes met ingebouwde communicatiemiddelen, die daadwerkelijk kunnen
zweven in de lucht. Omdat deze computertjes slechts bestaan uit één chip zijn ze ook nog
eens erg goedkoop te produceren. Naast het onvermijdelijke militaire gebruik zijn mogelijke
toepassingen: het detecteren of traceren van luchtvervuiling, het bewaken van verkeersstromen
en het verkennen van planeten. Wat de uiteindelijke invloed van dergelijke technologie op de
maatschappij zal zijn laat zich vooralsnog raden, maar “smart dust” is wel een mooie illustratie
van de drie zojuist geschetste enablers van het digitale tijdperk.

Het zijn de miniaturisering, de toenemende interconnectiviteit, en de dalende prijs van rekenkracht,
die het mogelijk maken dat computers daadwerkelijk doordringen tot in elke uithoek van onze
samenleving. Nog even en dan herinnert mijn tandenborstel me er aan weer eens een afspraak
te maken met de tandarts.

De enablers van het digitale tijdperk bieden legio mogelijkheden voor nieuwe toepassingen van
gecomputeriseerde informatieverwerking. Dit betekent ook dat computers een toenemende in-
vloed zullen hebben op de manier waarop we met zijn allen leven en werken. Diverse auteurs
hebben zich gewaagd aan voorspellingen van deze invloed. Zie bijvoorbeeld [TC93, Kee91,
Neg96].

Een kritische vraag die we daarbij moeten stellen blijft uiteraard of deze ontwikkelingen in alle
gevallen leiden tot een nuttige of wenselijke toevoeging aan de samenleving. Zit de moderne
mens, bijvoorbeeld, nu echt wel te wachten op een tandenborstel die je herinnert aan afspraken
met je tandarts? Hoeveel mensen maken er inmiddels echt, vrijwillig, gebruik van de chipknip?
Zijn de baten van gecomputeriseerde informatieverwerking werkelijk hoger dan de kosten? In
het stellen en beantwoorden van dergelijke vragen ligt de basis voor het vakgebied “information
systems engineering”.

In the digital age, the role of information becomes paramount. This puts a considerable emphasis
on the role of “systems” that handle this information, i.e. information systems. As a result, the effort
of creating these information systems becomes more and more crucial in modern day society.

De introductie van de computer heeft in eerste instantie geleid tot software engineering. Naar-
mate dit gebied beter begrepen werd, en computers meer en meer geı̈ntegreerd raakten in de
samenleving, ontstond echter een steeds grotere behoefte aan een dieper inzicht in de relatie
tussen computers en de context waarin deze gebruikt worden. Zo ontstond, aan het begin van het
digitale tijdperk, het vakgebied “information system engineering”. Het zijn, naar mijn mening,
met name de information system engineers die ervoor dient te waken dat de digitalisering in

22 CHAPTER 1. INTRODUCTION

goede banen wordt geleid. Zij zijn de vormgevers, architecten en planologen van het digitale
tijdperk.

1.3 The information systems area

Many different terminologies are used in discussing different aspects from the information sys-
tems area. In this introduction, we start by first defining a basic terminology which we will use,
and refine, throughout this text-book. In doing so, we will draw from three main sources. We
will (mainly) draw terminology pertaining to:

• architectures from the IEEE recommended practice for software intensive systems [IEE00],

• systems and information systems from the framework of information system concepts [FVSV+98],

• development processes from the information services procurement library [FV99, Pro01].

1.3.1 Information systems

As stated in [FVSV+98], “information systems” concerns the use of “information” by individual
or groups of people in organizations, in particular through computer-based systems. In line
with [FVSV+98], we use the term “organization” here, and throughout this textbook, in the most
general sense. Not only large companies are meant. One-man companies, profit- and non-profit-
oriented organizations, clusters of companies interacting with each other, even the community
of all Internet users and similar communities, may all be considered organizations.

The concept of information system can roughly be defined as that aspect of an organization that
provides, uses and distributes information. An information system may contain computerized
sub-systems to automate certain elements. Some information system may not even be computer-
ized at all. A filing cabinet used to store and retrieve several dossiers is, in essence, an information
system. The kind of information systems we are interested in, however, are indeed presumed to
have some computerized core parts.

What we may perceive to be an information system, may vary highly in terms of their scope.
Some examples would be:

• Personal information appliances, such as electronic agenda’s, telephone registries in mobile
phones, etc.

• Specific information processing applications.

• Enterprise wide information processing.

• Value-chain wide information processing.

Some concrete examples:

• An insurance-policy administration is an information system

• A bank is (primarily) an information system

• Clients are actors in that information system

• The taxation department is an information system

• The PDA you use as an agenda

• The phone number collection in your mobile phone

In practice, the concept of “information system” is used quite differently by different groups of
people. It seems (see e.g. [FVSV+98]) to be interpreted in at least three different ways:

• As a technical system, implemented with computer and telecommunications technology.

1.3. THE INFORMATION SYSTEMS AREA 23

• As a social system, such as an organization, in connection with its information processing
needs.

• As a conceptual system (i.e. an abstraction of either of the above).

A more precise definition (based on [FVSV+98]) of the way we view the concept of information
system system is:

Information system – A sub-system of an organizational system, comprising the conception of
how the communication and information-oriented aspects of an organization are com-
posed and how these operate, thus leading to a description of the (explicit and/or im-
plicit) communication-oriented and information-providing actions and arrangements ex-
isting within the organizational system.

This definition refers in its term refers to the concept of organizational system, which is essentially
a systemic view on an organization:

Organizational system – A special kind of system, being normally active and open, and com-
prising the conception of how an organization is composed and how it operates (i.e. per-
forming specific actions in pursuit of organizational goals, guided by organizational rules
and informed by internal and external communication), where its systemic property are
that it responds to (certain kinds of) changes caused by the system environment and, itself,
causes (certain kinds of) changes in the system environment.

Using the definition of information system, we may specialize this to its computerized parts as
follows:

Computerized information system – A sub-system of an information system, whereby all activ-
ities within that sub-system are performed by one or several computer(s).

In Chapter 2, we will provide more context to these definitions, making them more precise.

1.3.2 Information systems as work systems

Information systems are systems! To be more precise, they are generally systems that, in addition
to processing information, are:

• capable of undergoing (state) changes,

• able to perform actions,

• able to respond to external triggers,

in other words, they are so-called [FVSV+98] open and active systems. The latter three properties
hold for numerous other systems as well. Some random examples include:

• The human nervous system.

• An ant colony.

• A train.

• A school of fish.

• A group of people.

The list is, obviously, sheer endless. When we discuss information systems and their design, we
consider it to be worthwhile to first look at active systems from a more general perspective, and
then zoom in on information system specific properties when/if needed.

In civil and military architecture it has become an accepted practice to copy patterns from con-
structions in nature and use them in our own constructions. In line with this practice, it makes
perfect sense to see if we can use patterns and properties of other systems, such as systems that

24 CHAPTER 1. INTRODUCTION

occur in nature, in the design of information systems. For instance, the way in which the develop-
ment and design of software agents is approached, draws more and more on the way biological
organisms interact and grow [Ode00a, Ode00b, WJK00]. In the field of complex-adaptive systems
[HM95], even more inspiration may be gained on the development of information systems that
are better equipped to deal with complexity and evolution of their environment.

Rechtin and Maier in [Rec91, MR02], also subscribe to the point of view that it is worthwhile to
look at development of systems in general as it allows the development and evolution of specific
classes of systems to benefit from each other’s insights. In these observations lies our motiva-
tion to, whenever possible, to first look at systems in general before zooming in on information
systems in particular.

In [Alt99, Alt02] Alter defines a work system as:

A work system is a system in which human participants and/or machines perform business
processes using information, technologies, and other resources to produce products and/or
services for internal or external customers [Alt99].

where information systems are to be regarded as special classes of work systems. In this text-book,
we will indeed take the approach that information systems are work systems. Note, however,
that in the current version of this text-book we still do so rather implicitly. In future versions of
this text-book (and the DAVINCI Series in general) we will more explicitly work with the idea
that we have the following hierarchy of systems:

1. Systems in general.

2. Subclass of systems: Open active systems.

3. Subclass of open active systems: Work systems.

4. Subclass of work systems: Organisational systems (i.e. organisations “as we know them”).

5. Subclass of work systems and a sub-system of organisational systems: Information systems.

6. Subclass of work systems and a sub-system of information systems: Computerised infor-
mation systems.

In adopting work systems as the common denominator of the kinds of systems considered in the
DAVINCI Series, we will also slightly modify the original definition of work systems to:

A work system is an open active system in which actors perform processes using information,
technologies, and other resources to produce products and/or services for internal or external
customers.

We purposely generalize “human participants and/or machines” to the notion of actors, in order
to abstract from the fact wether these actors are of a biological, mechanical, chemical, electronical,
or whichever, means. Actors are presumed to perform activities (work!) in order to achieve some
purpose.

1.3.3 Information systems engineering

Most information systems, in particular computerized ones, do not appear out of the blue. They
need to be developed using some development process. We view the development of active
systems as involving four processes:

Definition process – A process aiming to identify all requirements that should be met by the
system and the system description.

In literature this process may also be referred to as requirements engineering.

1.4. CHALLENGES FOR INFORMATION SYSTEM ENGINEERING 25

Design process – A process aiming to design a system conform stated requirements. The result-
ing system design may range from high-level designs, such as an strategy or an architecture,
to the detailed level of programming statements or specific worker tasks.

Construction process – A process aiming to realise and test a system that is regarded as a (pos-
sibly artificial) artifact that is not yet in operation.

Installation process – A process aiming to make a system operational, i.e. to implement the use
of the system by its prospective users.

In these definitions, the term system means to refer to either an organizational system, infor-
mation system or computerized information system. The definitions of the construction process
and the installation process are conform the definitions used in [FV99]. Conform [FV99], the
definition process and definition process are collectively referred to as the description process.
However, in the context of this text-book, a clear distinction between the definition of the future
system in terms of its requirements, and the actual system design is indeed needed. The combi-
nation of the construction and the installation process may also be referred to as the realization
process.

The concept of system engineering may now be defined as:

System engineering – A process aimed at producing a changed system, involving the execution
of four sub-processes: definition, design, construction and installation. Processes that may
be executed sequentially, incrementally, interleaved, or in parallel.

This can be specialized to information systems as:

Information system engineering – A system engineering process pertaining to the creation or
change of information systems.

Note that, the processes involved in (information) system engineering in no way need to be ex-
ecuted linearly. Most practical situations require a non-linear execution of these processes, e.g.
an evolutionary or incremental approach. In this text-book we are mainly concerned with the
definition and design processes.

1.4 Challenges for information system engineering

De overgang naar het digitale tijdperk brengt een aantal uitdagingen met zich mee voor de on-
twikkeling van (gecomputeriseerde) informatiesystemen. Hieronder bespreken we een vijftal
belangrijke uitdagingen.

1.4.1 Ambient technology

De eerste uitdaging betreft de verwevenheid van de producten van de informatietechnologie
met ons dagelijks leven en werken. Als gevolg van de toenemende verwevenheid zullen de
gevolgen van eventuele problemen met diezelfde informatietechnologie steeds groter worden.
Tegelijkertijd maakt deze verwevenheid het moeilijk om, bij het ontwikkelen van grootschalige
informatiesystemen, precies af te bakenen met welke andere systemen en belanghebbenden er
rekening gehouden dient te worden. Traditioneel viel een informatiesysteem binnen de muren
van één organisatieonderdeel van beperkte omvang. Bijvoorbeeld een afdeling of een filiaal. De
grenzen van zo’n organisatieonderdeel vormden als het ware een natuurlijke begrenzing van het
informatiesysteem. Dit is echter in veel situaties allang niet meer het geval. Op steeds meer plaat-
sen zien we informatiesystemen ontstaan die geen natuurlijke grenzen meer kennen. Het ultieme
voorbeeld daarvan is het World-Wide-Web. Probeer maar eens van dat systeem de grenzen een-
duidig af te bakenen. Maar ook op andere plekken zien we dit probleem terug. Denk eens aan de

26 CHAPTER 1. INTRODUCTION

informatievoorziening binnen éń productieketen, zoals de productieketen voor auto’s. Het zou
voor de aanstaande koper van een auto erg prettig zijn als hij tot op een paar dagen nauwkeurig
kan weten wanneer zijn aanstaande heilige koe opgehaald kan worden. Theoretisch kan dit
berekend worden op basis van de voorraden en doorlooptijden in de hele productieketen. Maar,
waar moeten we beginnen om een dergelijk informatiesysteem af te bakenen? Een nachtmerrie
voor een projectleider; een uitdaging voor een Informatiekundige.

1.4.2 Pluriformity of stakes

De tweede uitdaging heeft betrekking op de pluriformiteit van de belangen en de belanghebben-
den van de systemen die ontwikkeld worden. Denk hierbij maar eens aan de eerdergenoemde
organisatorische, menselijke, informationele en technologische aspecten die voor informatiesys-
temen onderkend kunnen worden. Informatiesysteemontwikkeling vindt in de praktijk plaats
in situaties waarin sprake is van een ruime schakering aan belanghebbenden met vaak tegen-
strijdige belangen. Neem als voorbeeld het OV chipkaart project . De hoofddoelstelling van dit
project is de introductie van de chipkaart als vervoerbewijs bij het OV met als einddoel n kaart
die overal in het land bruikbaar is voor de trein, metro, tram, bus en boot. Het zal duidelijk
zijn dat de belangen van de diverse vervoerders, de overheid, de leveranciers van de benodigde
infrastructuur en, oh ja, de reizigers, nogal sterk uiteen zullen lopen.

Bij het ontwikkelen van informatiesystemen kunnen en mogen we onze ogen niet sluiten voor
deze pluriforme realiteit. De theorieën, methoden en technieken die we hiervoor gebruiken
moeten dus plek bieden voor deze “dans der belangen”.

De pluriformiteit van de belanghebbenden en hun belangen maakt ook dat de broodnodige af-
stemming tussen de eerdergenoemde organisatorische, menselijke, informationele en technol-
ogische aspecten van informatiesystemen van essentieel belang is. Hierbij moeten we ons er
terdege van bewust zijn dat deze afstemming meer vergt dan het “aan elkaar praten” van een
aantal aspectspecifieke modellen. Het gaat uiteindelijk om de afstemming van denkwerelden,
belangen, motivaties, en de daadwerkelijke integratie van modellen.

1.4.3 Intangiable systems

De derde uitdaging wordt gevormd door de ongrijpbaarheid van informatiesystemen. Bij het
ontwerpen van “iets” is het prettig als de belanghebbenden zich goed kunnen inleven in hoe
het resultaat er uit zou kunnen zien. Zonder dat inlevingsvermogen wordt het vaak moeilijk
voor belanghebbenden om zich een voorstelling te maken van de mogelijke invloed van het ein-
dresultaat op hun belangen. Daar komt men dan vaak pas achteraf achter, met alle gevolgen van
dien. Zolang een ontwerp slechts op de tekentafel bestaat blijft het voor veel belanghebbenden
te abstract; ongrijpbaar.

Bij het ontwerpen van artefacten in de fysieke wereld, zoals een auto of een huis, zullen be-
langhebbenden zich van tevoren al een voorstelling kunnen maken van het te ontwerpen object.
Op basis van analogieën met reeds bestaande fysieke objecten kan men zich voorstellen hoe het
eindresultaat er uit zou kunnen zien. In die situaties wordt de ongrijpbaarheid dus wat verzacht.
Dit is bij het ontwerpen van informatiesystemen veel minder het geval. Gecomputeriseerde in-
formatiesystemen zijn moeilijk in te beelden dingen. Het enige fysieke dat aan hun bestaan raakt
zijn de kasten waarin de computer hardware zich bevindt, de beeldschermen, en eventuele af-
drukken op papier. Het informatiesysteem zelf blijft ongrijpbaar. Er is zelfs niet éń specifieke
kast aan te wijzen waarin het informatiesysteem zich bevindt.

1.4. CHALLENGES FOR INFORMATION SYSTEM ENGINEERING 27

1.4.4 Evolution is a constant

De vierde uitdaging is de veranderlijkheid van de socio-economische en technologische context
waarin informatiesystemen worden ontwikkeld. Evolutie is een constante. Die schijnbare tegen-
stelling is een bondige omschrijving van de condities waaronder veel organisaties tegenwoordig
moeten opereren.

Informatietechnologie ontwikkelt zich snel. In de context van het World-Wide-Web wordt er wel
eens gekscherend gesproken over “web-jaren” , als waren het hondenjaren. De ontwikkelingen
op het World-Wide-Web lijken sneller te gaan dan in het ?echte? leven. Het uiteenspatten van
de e-commerce zeepbel lijkt de duur van web-jaren weer wat meer in overeenstemming gebracht
te hebben met de realiteit. Desondanks is de verwachting dat de informatietechnologische on-
twikkelingen zich in hoog tempo zullen blijven voortzetten.

Het zijn echter zeker niet alleen de ontwikkelingen van de informatietechnologie die evolutie tot
een constante maken. De liberalisering van markten, het verminderen van protectionisme, de
privatisering van staatsbedrijven, de toenemende wereldwijde concurrentie en grensoverschrij-
dende bedrijfsfusies zijn allemaal aspecten die bijdragen aan de dynamiek van de huidige socio-
economische context. Het is het samenspel tussen de socio-economische en de informatietech-
nologische ontwikkelingen die evolutie tot een constante maken. In deze dynamische omgeving
moet de Informatiekunde helder krijgen wat de behoeften en belangen zijn ten aanzien van te
ontwikkelen informatiesystemen. Het beantwoorden van die vraag verwordt al snel tot ?het
schieten op een bewegend doelwit?.

The prevailing conditions under which most organizations currently operate have a tendency
to evolve constantly. Reduced protectionism, de-monopolization of markets, deregulation of
international trade, privatisation of state owned companies, increased global competition, cross-
border merges, the emergence of new trade blocks, the introduction of common currencies, all
contribute toward this increasingly dynamic business environment. Developments that are fu-
elled even more by the advances of eCommerce, Networked Business, Virtual Enterprises, etc.
To improve their chances for survival, organizations need the ability to quickly adapt themselves
to such socio-economic developments.

Organizations make use of (largely computerized) information systems to provide in their infor-
mation processing needs. When an organization evolves, these information systems should be
able to co-evolve in a natural way [Pro94]. In practice, this has proven to be a difficult task, in
particular where it concerns the computerized (parts of the) information systems, i.e. information
technology (information technology). Studies, such as the ones reported in [LS80, BP88, NP90]
have shown that a large part of the costs associated to computerized information systems are
spent on such modifications.

Ideally, information technology should empower an organization with the ability to go out and
seek new challenges. However, one of the current dilemmas of information technology seems
to be that in most cases it smothers an organization’s ability to change rather than supporting
it. While it is quite reasonable to say that advanced computerized information systems should
lead to revolutionary improvements in the flexibility and effectiveness of organizations, orga-
nizations still find themselves anchored to their pre-existing information systems. Quite often,
these systems are the embodiment of the prevailing cultures and structures of the organization’s
past. These systems tend to have an almost tangible monolithic nature that would be a feast to
software archologists.

Example 1.4.1
Two concrete examples of such application domains with rapidly changing information
needs are:

Taxes In most nations the (income) tax laws change quite often as they are used both to
manage the economy, and to finance government policy.

28 CHAPTER 1. INTRODUCTION

Software firms developing and maintaining software for the calculation of, say, income
taxes for company employees, have to change their software each time the government
changes income tax. The change in information needs is caused by the changed laws.
Recent examples of changes in tax laws can be found in many of the nations of the
European Community, due to the tax harmonizations brought about by the unification
process.

Insurance Most insurance companies change the rules by which policy prices are calcu-
lated regularly. These changes are usually intended to improve the competitiveness of
the policy pricing, for instance, the no-claims bonus for not claiming damages in the
case of car insurances. As a result, the software for calculating the policy prices has to
be changed to cope with any extra information required (history of damages claimed),
as well as new formulas to perform the calculation. In this case, the changes in the
information need are caused by marketing arguments.

An organization can deal with changes in their environment in a variety of ways. While some
may try and continue their business as usual, others may choose to embrace the new develop-
ments and try to exploit their potential to their fullest. Neither approach is a guaranteed way
to success or failure. Embracing new developments too early may lead to organizational chaos
and decline, while waiting too long may result in missed business opportunities. The role of in-
formation technology can be characterized as a position between two undesirable extremes. On
the one extreme, information technology can completely restrain organizational change. In the
other extreme, it can (try to) bring about organizational changes in a pace which is far too high.
The latter situation can be compared to putting a Ferrari engine in a VW Beetle, while the driver
is used to easing along at maximum speeds of 80 to 100 km/h. In the first extreme, information
technology appears to smother any organizational change. This seems to be one of the dilemmas
of information technology. In the second extreme, information technology will drive an orga-
nization to a pace of change that goes beyond the speed its organizational fabrics can manage.
Some organizations are just not ready to cope with the profound changes brought about by a
technology push. For example, organizations that have only just reached a stage at which they
are confident with the use of some basic information technology to automate the processing of
orders might simply not survive a quick move towards electronic commerce.

Already in [Kee91] and [TC93], an elaborate discussion can be found on the changes in context
and culture that are occurring inside organizations as well as in their environments as a result of
different socio-economic changes in combination with technological developments in informa-
tion technology. Tapscott [TC93] proposes an architectural approach as a solution to make the
needed changes to the organizational structure and in particular information technology. These
new demands on information technology in the new and rapidly evolving world, can be summed
up by quoting [Tap96]:

In the past an architecture was really the design of a system that had been created to meet spe-
cific application needs. In the new business environment, organizations have little idea what
their application needs will be in two, let alone five or ten years. Consequently, we need archi-
tectures that can enable the exploitation of unforeseen opportunities and meet unpredictable
needs.

Development of information systems in such rapidly evolving contexts becomes like shooting
at a moving target [PW95a, PW94, PW95b]. This requires us to look at organizations and their
information systems as evolving systems [Pro94] that are in a constant state of co-evolution.

Ideally, business strategists should be able to focus solely on the development of a business,
while information technology plays the role of a catalyst. Tapscott [TC93] argues that organi-
zations move between different levels of organizational development, improving their ability to
cope with changes/evolution in their environment. information technology should act as one of
the essential enablers of this process. In Figure 1.1, taken from [TC93], these levels have been

1.4. CHALLENGES FOR INFORMATION SYSTEM ENGINEERING 29

depicted. By redesigning their business processes, organizations will be able move to a situa-
tion in which teams can perform better. This development leads to high-performance business
teams, where the focus is on the use of information technology to enable teams to perform busi-
ness functions. This requires a shift away from a hierarchical view on organizations to a more
team based view. The next shift involves the integration of the business teams to an integrated
whole, leading to an integrated organization. The role of information technology in these cases,
is increasingly one of being an enabler; from cost center to profit center. By linking their systems
to other organizations, in particular customers and suppliers, an organization can finalize the
paradigm shift, and become an extended enterprise.

enterprise

Integrated

organisation

team

High−performance

Extended

Enabling technology

Interenterprise

computing

Integrated

systems

Workgroup

computing

external

Organisation

transformation

Business
process

redesign

The changeThe promise

Recasting

relationships

Figure 1.1: The enabling effect of information technology

All these shifts and developments pose new requirements on the information technology func-
tion. These shifts, however, will not come from information technology alone. As Michael Ham-
mer argued in his seminal paper: Re-engineering work: don’t automate, obliterate [Ham90], im-
proving the flexibility and efficiency of business processes is more than just using information
technology to make it go faster. information technology is only part of the answer, it should
not be looked upon as the sole bringer of solutions, but rather as an enabler. Investments in
a re-engineering of the business and better business-IT alignment will be needed just as well.
However, organizational change should be business-driven, and not (solely) information tech-
nology-driven. The outcry for information technology that enables organizational change rather
than inhibits it is clearly louder than ever. information technology, and associated application
development, should therefore be driven by the needs of the business.

1.4.5 Complexity; the gravitational force of software construction

In architectural design of man-made constructions, a pivotal role is played by the struggle with
gravity. In the software architectures for computerized information systems, this role seems to
be played by the struggle with complexity. We can all see around us how the software systems
we develop, start to break down under their own weight. The complexity of these systems has
already reached a point where no single person is able to grasp all details of a systems working.

30 CHAPTER 1. INTRODUCTION

The increase of complexity is fuelled by our thirst for ever more functionality. We want our com-
puterized information systems to do more and more work for us. We require them to increase
their scopes from a single unified organization to cover entire coalitions of networked organiza-
tions, leading all sorts of interoperability problems. The constant pressure to evolve, as discussed
above, makes this situation even more serious, leading to unreliable software, high maintenance
costs, maintenance backlogs, etc.

The seriousness of software complexity has been reported in several sources. For example, in
[Coc01], the following can be read:

What’s the most important problem in computer science?

Languages, tools, programmers?

Well, according to a growing number of researchers and computer users, it’s software complex-
ity. “We’ve known about this problem for 40 years,” says Alfred Spector, vice-president
at IBM Research.

“This is probably the number one problem...It can’t go on.”

Brooks, in his Mythical Man-Month review [Bro95], mentions three distinctive concerns of soft-
ware engineering, of which the last one reads: How to maintain intellectual control over complexity
in large doses. Brooks, furthermore, writes:

The tar pit of software engineering will continue to be sticky for a long time to come. One can
expect the human race to continue attempting systems just within or just beyond our reach;
and software systems are perhaps the most intricate of man’s handiworks.

1.5 Architecture-driven information systems engineering

1.5.1 Architecture

During the last decade, software architecture has received an increasing amount of attention in
the software engineering community; both from research and from industry. The rationale be-
hind this interest is that software architecture provides a number of important benefits [BCK98]:

• It is a vehicle for communication among stakeholders. A software architecture, often de-
picted graphically, can be communicated with end users, the client, designers, and so on.

By developing scenarios of anticipated use, relevant quality aspects can be analyzed and
trade-offs can be discussed with various stakeholders.

• It captures early design decisions, both functional aspects as well as quality aspects. In a
software architecture, the global structure of the system has been decided upon, through
the explicit assignment of functionality to components of the architecture.

These early design decisions are important since their ramifications are felt in all subse-
quent phases. It is therefore paramount to assess their quality at the earliest possible mo-
ment. By evaluating the architecture, a first and global insight into important quality as-
pects can be obtained. The global structure decided upon at this stage also structures de-
velopment: the work-breakdown structure may be based on the decomposition chosen at
this stage, testing may be organized around this same decomposition, and so on.

These advantages are not only limited to software (as it may be found in computerized informa-
tion systems), but equally well relate to most types of systems.

Several definitions of the concept of architecture, in the context of systems, exist. According to
[Mer03], architecture is:

1.5. ARCHITECTURE-DRIVEN INFORMATION SYSTEMS ENGINEERING 31

1 the art or science of building; specifically: the art or practice of designing and building struc-
tures and especially habitable ones,

2a formation or construction as or as if as the result of conscious act,

2b a unifying or coherent form or structure,

3 architectural product or work,

4 a method or style of building,

5 the manner in which the components of a computer or computer system are organized and
integrated.

In the context of software-intensive systems, an IEEE working group [IEE00] has provided a def-
inition of architecture. The resulting definition is, indeed, in line with the general definition of
architecture (in particular interpretations 1 and 5), but specializes it to software-intensive sys-
tems. As (computerized information systems are generally software-intensive systems, we shall
use this definition throughout this text-book:

Architecture – A model of which the system description, the so-called architectural description,
is used during system engineering to:
• express the fundamental organization of the system domain in terms of components,

their relationships to each other and to the environment and
• the principles guiding its evolution and design,

and which’s explicit intend is to be used as a means:
• of communication & negotiation among stakeholders,
• to evaluate and compare design alternatives,
• to plan, manage, and execute further system development,
• to verify the compliance of a system implementation’s.

As an architecture provides guidelines for the (detailed) design and evolution of a system, it is
a powerful means to approach evolution and complexity of organizations, their context and their
information systems. Note that approach not necessarily mean control of every detail.

Architectures are usually expressed in terms of architectural descriptions, essentially design de-
scriptions pertaining to a systems architecture. In [IEE00] the following potential uses of archi-
tectural descriptions are identified:

• Expression of the system and its (potential) evolution.

• Analysis of alternative architectures.

• Business planning for transition from a legacy architecture to a new architecture.

• Communications among organizations involved in the development, production, fielding,
operation, and maintenance of a system.

• Communications between acquirers and developers as a part of contract negotiations

• Criteria for certifying conformance of implementations to the architecture.

• Development and maintenance documentation, including material for reuse repositories
and training material.

• Input to subsequent system design and development activities.

• Input to system generation and analysis tools.

• Operational and infrastructure support; configuration management and repair; redesign
and maintenance of systems, subsystems, and components.

• Planning and budget support.

• Preparation of acquisition documents (e.g., requests for proposal and statements of work).

• Review, analysis, and evaluation of the system across the life cycle.

• Specification for a group of systems sharing a common set of features, (e.g., product lines).

32 CHAPTER 1. INTRODUCTION

1.5.2 Alignment

In information systems development, another pivotal role is played by alignment. In literature
this is usually referred to as business-IT alignment or as strategic alignment [TC93, Kee91, PB89,
HV93]. According to [Mer03], alignment is:

1 the act of aligning or state of being aligned; especially: the proper positioning or state of
adjustment of parts (as of a mechanical or electronic device) in relation to each other

2a a forming in line

2b the line thus formed

3 the ground plan (as of a railroad or highway) in distinction from the profile

4 an arrangement of groups or forces in relation to one another <new alignments within the
political party>

The importance of a good alignment between business and information technology is discussed
by several authors. For example, Tapscott & Caston [TC93], [Boa99] and Keen [Kee91], and they
are certainly not the first in doing this, provide extensive motivations. In [PB89], Parker and
Benson already discussed the need for strategic alignment between business and information
technology strategies. They argued that information technology planning and strategic consid-
erations are part of a circular process as depicted in Figure 1.2. In this process, a distinction is
made between the business domain on the one side, and the technology domain on the other
side. Business planning drives how an enterprise will be organized, which should on its turn
drive the technology planning to support the business. Technology planning leads to the discov-
ery of further opportunities for future uses of technology, which will influence further business
planning and strategy.

Information
Technology and

Systems Planning

Business

Planning
Organisation

Driving

E
na

bl
in

g
Technology domain

D
ri

vi
ng

Enabling

Business domain

Business Planning
and Strategy

Information Technology
Opportunities

Figure 1.2: Strategic alignment cycle

Parker and Benson also recognized the fact that this cyclic process may not work on an organization-
wide scale. Organizations usually do not operate in a way that supports a ‘monolithic’ view of
their information systems. However, they also argue that these cycles can be specialized to a
specific line-of-business, or a specific business unit. In other words, the cycle of Figure 1.2 can be
applied to smaller, more focused, scopes within an organization. Scopes that may range from an
entire value-chain, via business-units to teams and individual work places.

1.5. ARCHITECTURE-DRIVEN INFORMATION SYSTEMS ENGINEERING 33

The views of Parker and Benson were refined further by Henderson and Venkatraman [HV93].
On the importance of alignment between business and information technology strategies, they
argue:

We argue that the inability to realize value from information technology investments is, in
part, due to the lack of alignment between business and information technology strategies of
organizations.

They also conclude:

Strategic alignment is not an event, but a process of continuous adaptation and change.

Alignment, however, does not only play a role at a strategic level. Proper alignment between
information systems and their organizational (and human!) context is just as important at a
tactical and operational level. For example, at a tactical level one would be concerned with the
selection of a specific portfolio of information systems to be developed on the shorter term and
how they align to the organizational activities & goals on the shorter term. At the operational
level, one would be concerned with the development of a specific information system and its
direct organizational and human environment.

1.5.3 Architecture-driven information system engineering

This textbook takes the view that the use of architecture enables the alignment between an infor-
mation system and its organizational and human context. An alignment that should range from
the strategic levels to operational levels. We therefore take the perspective that proper alignment
is at the heart of what we define to be architecture-driven information systems engineering:

Architecture-driven-system-engineering – System engineering, using architecture as a means
to

• guide & control the design and evolution of the system,
• evaluate & compare different information system alternatives,
• negotiate the concerns of the information system’s stakeholders,

with the aim of optimising the alignment of the resulting information system to its relevant,
technological, organisation and human context (systems).

Architecture-driven information system engineering – Information system engineering, using
architecture as a means to

• guide & control the design and evolution of the information system,
• evaluate & compare different information system alternatives,
• negotiate the concerns of the information system’s stakeholders,

with the aim of optimising the alignment of the resulting information system to its relevant,
technological, organisation and human context (systems).

This definition is a further elaboration of the definitions provided in [Pro98, PBHJ00]. As men-
tioned before, this text-book mainly focuses on the definition and design processes as these are
influenced the most by the use of architecture.

34 CHAPTER 1. INTRODUCTION

1.6 A fundamental approach

Modeling is at the very heart of the field of information systems engineering as well as organiza-
tional engineering. Any course on the engineering of information systems should therefore also
provide a fundamental understanding of modeling. As we will see in the next chapter, when two
people model the same domain, they are likely to produce quite different models. Even when
they use the same information (informants, documents, etc.) to produce the models, the models
are still likely to differ considerably. This also means that if two people communicate about the
same domain, they are likely to do so with different models of this domain in mind. Why do
these differences occur What are the origins of these different models? What happens when people produce
models? Questions that beg for a fundamental answer. In this text-book we aim to provide a
fundamental discusion on at least some of these issues.

In developing our understanding of modeling (information system) domains, we will discuss
several modeling languages for different aspects of such systems. When discussing these mod-
eling languages, we will also discuss their syntax and semantics from a formal (mathematical)
perspective. In [HW92, Hof93, HP98] three major reasons for a formal approach to the syntax
and semantics of modeling techniques are given.

Even though in literature it has often been emphasized that modeling languages should have
a rigorous formal basis (see e.g. [Coh89, TP91, Spi88, Jon86, HL89], somehow this need for for-
mality has not been generally acknowledged in the field of information systems engineering and
organization engineering. This has contributed greatly to the appearance of the “Methodology
Jungle”, a term introduced in [Avi95]. In [Bub86] it is estimated that during the past years, hun-
dreds if not thousands of information system development methods have been introduced. Most
organizations and research groups have defined their own methods. The techniques advocated
in these methods usually do not have a formal foundation. In some cases their syntax is defined,
but attention is hardly ever paid to their formal semantics. The discussion of numerous exam-
ples, mostly with the use of pictures, is a popular style for the “definition” of new concepts and
their behavior. This has led to fuzzy and artificial concepts in information systems development
methods (see also [Bub86]).

1.7 Structuring the domain

The aim of this text-book is to discuss several aspects from the domain of architecture-driven in-
formation system engineering. Even though the aim of this book is not to define a specific method
for architecture-driven information system engineering, it makes sense to use a methodological
framework to structure the contents of this text-book.

1.7.1 Methodological framework

At the end of the eighties of the last century, there was a growing need to compare different
information system development methods. For example, in [SWS89, WH90, HW92] different
frameworks and strategies are discussed to position development methods. Approaches to chop-
down the so-called methodology jungle.

The methodological framework we will employ, is based on the framework originally presented
in [WH90] and [SWS89], and refined further, with a way of communicating, in [PW94, PW95b]
and [Pro94]. In the resulting framework, as depicted in Figure 1.3, a modeling method is dis-
sected into the following six aspects:
Way of thinking – Articulates the assumptions on the kinds of problem domains, solutions and

modellers. This notion is also referred to as die Weltanschauung [Sol83, WAA85], underlying
perspective [Mat81] or philosophy [Avi95].

1.7. STRUCTURING THE DOMAIN 35

Way of modeling – Identifies the core concepts of the language that may be used to denote, anal-
yse, visualise and/or animate system descriptions.

Way of communicating – describes how the abstract concepts from the way of modeling are
communicated to human beings, for example in terms of a textual or a graphical notation.

The way of communicating essentially forms the bridge between the way of modeling and
the way of working, it matches the abstract concepts of the way of modeling to the prag-
matic needs of the way of working.

Note that it may very well be the case that different modeling techniques are based on the
same way of modeling, yet use different notations.

Way of working – Structures (parts of) the way in which a system is developed. It defines the
possible tasks, including sub-tasks, and ordering of tasks, to be performed as part of the
development process. It furthermore provides guidelines and suggestions (heuristics) on
how these tasks should be performed.

Way of controlling – The managerial aspects of system development. It includes such aspects
as human resource management, quality and progress control, and evaluation of plans, i.e.
overall project management and governance (see [Ken84, Sol88]).

Way of supporting – The support to system development that is offered by (possibly automated)
tools. In general, a way of supporting is supplied in the form of some computerized tool
(see for instance [McC89]).

communicating

Way ofWay of

modelling

Way of

working

Way of supporting

Product Process

Way of controllingManagerial

Operational

Way of thinking

Figure 1.3: Aspects of a method

The arrows in Figure 1.3 should be interpreted as: if x → y, then aspect x supports aspect y.
The combination of a way of modeling and communicating is usually referred to as a “modeling
technique”.

Some methods may provide a very detailed way of working. For example, for the information
modeling method as discussed in [Hal01], a very detailed way of working is presented. However:

36 CHAPTER 1. INTRODUCTION

A method should never become an excuse to stop thinking!

This text-book primarily focuses on a way of thinking, way of thinking and provides some as-
pects of a way of working and way of controlling for architecture-driven information system
development.

For as far as this text-book portrays a complete method for the definition and design parts of
architecture-driven development of information systems, its way of thinking is that the actual
ways of modeling, working, controlling and support should be highly situational. In [WAA85],
the authors state:

In a practical discipline, one must always distinguish between the ideal methodology as
thought in text-books, and the realities of any situation which causes departure from the ideal
in order to allow for the exigencies of the real world. Many design methodologies are prescrip-
tive not only of what must be done but of the order in which it has to be done. In the real world,
decisions are often made before all the facts have been gathered.

In other words, let the reader be warned. The document you are currently reading is a text-book.
A text-book that should inspire. It, however, will not provide all-inclusive answers that will fit
all practical situations.

1.7.2 Structure of this text-book

This text-book is split into three themes:

• Information system modeling

• Information system engineering

• Architecture-driven information system engineering

Questions
Version:
04-04-05 1. What is an information system? Give some examples of an information system.

2. What is information system development? What does ‘architecture-driven’ add to this?

3. What are the consequences of an evolving environment on information systems?

4. Sometimes organisations use the introduction of IT as a way to force changes in organisa-
tions.

Why is this likely to fail?

5. Why is complexity a challenge for information system development?

What will happen if you add evolution to the equation?

6. Why is it important to use an ‘architecture-driven’ approach for the development of systems
that are used by some organisation in achieving its goals?

Which role is played by the environment of the organisation?

What is the role of the possible evolution of the organisation and its environment?

7. What is the essence of architecture in an information systems context?

8. Explain, in your own words, the essence of alignment.

9. Why is it important to optimise the alignment of an information system to its context?

RECOMMENDED READING 37

Recommended reading

[Neg96] N. Negroponte. Being Digital. Vintage Books, New York, New York, 1996. ISBN
0679762906

[Rec91] E. Rechtin. Systems architecting: creating and building complex systems. Prentice-Hall
PTR, Upper Saddle River, New Jersey, 1991. ISBN 0138803455

Chapter 1 in particular.

[Alt02] S. Alter. The work system method for understanding information systems and in-
formation system research. Communications of the Association for Information Systems,
9(9):90–104, 2002.
http://cais.isworld.org/articles/default.asp?vol=9&art=6

The work system method is a broadly applicable set of ideas that use the concept
of “work system” as the focal point for understanding, analyzing, and improving
systems in organizations, whether or not IT is involved. The premises underlying
this method may be controversial in the IS community because they imply that the
traditional jargon and concerns of IS practitioners and researchers address only part
of the issues that should be covered and may discourage focusing on other core
issues related to successful projects and systems.

[WAA85] A.T. Wood-Harper, L. Antill, and D.E. Avison. Information Systems Definition: The
Multiview Approach. Blackwell Scientific Publications, Oxford, United Kingdom, EU,
1985. ISBN 0632012168

This book offers an inspiring view on information system development. Even
though the book may be regarded as dated, it should still provide ample inspira-
tion to people who are new to the field of information system development.

The book presents a multi-view approach to the development of information sys-
tems, distinguishing five points of view – organisation’s human activities, informa-
tion, socio-technical, human-computer and technical.

[Ode00b] J. Odell. Agents (part 2): Complex systems. Technical report, Cutter Consortium,
Arlington, Massachusetts, USA, 2000.

This report discusses how the complex adaptive systems (or simply, complex sys-
tems) approach is applicable to developing multiagent applications. In particular, it
discusses topics such as adaptation, emergence, “edge-of-chaos” phenomena, and
the difference between agents and objects.

This makes it a useful introduction to the promise of using principles and patterns
from the structure of other types of systems for the design of (computerized) infor-
mation systems.

[Alt02] S. Alter. The work system method for understanding information systems and in-
formation system research. Communications of the Association for Information Systems,
9(9):90–104, 2002.
http://cais.isworld.org/articles/default.asp?vol=9&art=6

The work system method is a broadly applicable set of ideas that use the concept
of “work system” as the focal point for understanding, analyzing, and improving
systems in organizations, whether or not IT is involved. The premises underlying
this method may be controversial in the IS community because they imply that the
traditional jargon and concerns of IS practitioners and researchers address only part
of the issues that should be covered and may discourage focusing on other core
issues related to successful projects and systems.

http://cais.isworld.org/articles/default.asp?vol=9&art=6
http://cais.isworld.org/articles/default.asp?vol=9&art=6

38 CHAPTER 1. INTRODUCTION

Optional reading

[FVSV+98] E.D. Falkenberg, A.A. Verrijn-Stuart, K. Voss, W. Hesse, P. Lindgreen, B.E. Nilsson,
J.L.H. Oei, C. Rolland, and R.K. and Stamper, editors. A Framework of Information
Systems Concepts. IFIP WG 8.1 Task Group FRISCO, IFIP, Laxenburg, Austria, EU,
1998. ISBN 3901882014

[Hor00] T.A. Horan. Digital Places – Building our city of bits. The Urban Land Institute (ULI),
Washington DC, United States of America, 2000. ISBN 0874208459

[TC93] D. Tapscott and A. Caston. Paradigm Shift – The New Promise of Information Technology.
McGraw-Hill, New York, New York, USA, 1993. ASIN 0070628572

[Kee91] P.W.G. Keen. Shaping the Future - Business Design Through Information Technology. Har-
vard Business School Press, Boston, Massachusetts, USA, 1991. ISBN 0875842372

[Tap96] D. Tapscott. Digital Economy - Promise and peril in the age of networked intelligence.
McGraw-Hill, New York, New York, USA, 1996. ISBN 0070633428

[Boa99] B.H. Boar. Practical steps for aligning information technology with business strategies. Wi-
ley, New York, New York, 1999. ISBN 0471076376

[FV99] M. Franckson and T.F. Verhoef, editors. Introduction to ISPL. Information Services
Procurement Library. ten Hagen & Stam, Den Haag, The Netherlands, 1999. ISBN
9076304858

[HV93] J.C. Henderson and N. Venkatraman. Strategic alignment: Leveraging information
technology for transforming organizations. IBM Systems Journal, 32(1):4–16, 1993.

[PB89] M.M. Parker and R.J. Benson. Enterprisewide information management: State-of-
the-art strategic planning. Journal of Information Systems Management, (Summer):14–
23, 1989.

Bibliography

[Alt99] S. Alter. A general, yet useful theory of information systems. Communications of the
Association for Information Systems, 1(13), 1999.
http://cais.isworld.org/articles/1-13/default.asp

[Alt02] S. Alter. The work system method for understanding information systems and in-
formation system research. Communications of the Association for Information Systems,
9(9):90–104, 2002.
http://cais.isworld.org/articles/default.asp?vol=9&art=6

[Avi95] D.E. Avison. Information Systems Development: Methodologies, Techniques and Tools.
McGraw-Hill, New York, New York, USA, 2nd edition, 1995. ISBN 0077092333

[BCK98] L. Bass, P.C. Clements, and R. Kazman. Software Architecture in Practice. Addison
Wesley, Reading, Massachusetts, USA, 1998. ISBN 0201199300

[Boa99] B.H. Boar. Practical steps for aligning information technology with business strategies.
Wiley, New York, New York, 1999. ISBN 0471076376

[BP88] B.W. Boehm and P.N. Papaccio. Understanding and controlling software costs. IEEE
Transactions of Software Engineering, 14(10):1462–1477, October 1988.

http://cais.isworld.org/articles/1-13/default.asp
http://cais.isworld.org/articles/default.asp?vol=9&art=6

BIBLIOGRAPHY 39

[Bro95] F. Brooks. The Mythical Man-Month; anniversary edition. Addison-Wesley, Reading,
Massachusetts, 1995. ISBN 0201835959

[Bub86] J.A. Bubenko. Information System Methodologies - A Research View. In T.W. Olle,
H.G. Sol, and A.A. Verrijn-Stuart, editors, Information Systems Design Methodologies:
Improving the Practice, pages 289–318. North-Holland/IFIP WG8.1, Amsterdam, The
Netherlands, EU, 1986.

[Cas00] M. Castells. The Information Age: Economy, Society and Culture. Volume 1 – The Rise
of the Network Society. Blackwell, Oxford, United Kingdom, EU, 2nd edition, 2000.
ISBN 0631221409

[Coc01] S. Cochran. The rising cost of software complexity. Dr. Dobb’s Journal, April 2001.

[Coh89] B. Cohen. Justification of formal methods for system specification. Software Engineer-
ing Journal, 4(1):26–35, January 1989.

[FV99] M. Franckson and T.F. Verhoef, editors. Introduction to ISPL. Information Services
Procurement Library. ten Hagen & Stam, Den Haag, The Netherlands, 1999. ISBN
9076304858

[FVSV+98] E.D. Falkenberg, A.A. Verrijn-Stuart, K. Voss, W. Hesse, P. Lindgreen, B.E. Nilsson,
J.L.H. Oei, C. Rolland, and R.K. and Stamper, editors. A Framework of Information
Systems Concepts. IFIP WG 8.1 Task Group FRISCO, IFIP, Laxenburg, Austria, EU,
1998. ISBN 3901882014

[Hal01] T.A. Halpin. Information Modeling and Relational Databases, From Conceptual Analy-
sis to Logical Design. Morgan Kaufman, San Mateo, California, USA, 2001. ISBN
1558606726

[Ham90] M. Hammer. Re-engineering work: don’t automate, obliterate. Harvard Business
Review, 68(4):104–112, April 1990.

[HL89] I. van Horenbeek and J. Lewi. Algebraic specifications in software engineering: an intro-
duction. Springer-Verlag, Berlin, Germany, 1989.

[HM95] J.H. Holland and H. Mimnaugh, editors. Hidden Order : How Adaptation Builds Com-
plexity. Perseus Press, Cambridge, Massachusetts, 1995. ISBN 0201442302

[Hof93] A.H.M. ter Hofstede. Information Modelling in Data Intensive Domains. PhD thesis,
University of Nijmegen, Nijmegen, The Netherlands, 1993.

[Hor00] T.A. Horan. Digital Places – Building our city of bits. The Urban Land Institute (ULI),
Washington DC, United States of America, 2000. ISBN 0874208459

[HP98] A.H.M. ter Hofstede and H.A. (Erik) Proper. How to Formalize It? Formalization
Principles for Information Systems Development Methods. Information and Software
Technology, 40(10):519–540, October 1998.

[HV93] J.C. Henderson and N. Venkatraman. Strategic alignment: Leveraging information
technology for transforming organizations. IBM Systems Journal, 32(1):4–16, 1993.

[HW92] A.H.M. ter Hofstede and Th.P. van der Weide. Formalisation of techniques: chop-
ping down the methodology jungle. Information and Software Technology, 34(1):57–65,
January 1992.

[IEE00] Recommended Practice for Architectural Description of Software Intensive Systems.
Technical Report IEEE P1471-2000, The Architecture Working Group of the Software
Engineering Committee, Standards Department, IEEE, Piscataway, New Jersey, USA,
September 2000. ISBN 0738125180
http://www.ieee.org

http://www.ieee.org

40 CHAPTER 1. INTRODUCTION

[Jon86] C.B. Jones. Systematic Software Development using VDM. Prentice-Hall, Englewood
Cliffs, New Jersey, 1986.

[Kee91] P.W.G. Keen. Shaping the Future - Business Design Through Information Technology. Har-
vard Business School Press, Boston, Massachusetts, USA, 1991. ISBN 0875842372

[Ken84] F. Kensing. Towards Evaluation of Methods for Property Determination: A Frame-
work and a Critique of the Yourdon-DeMarco Approach. In T.M.A. Bemelmans,
editor, Beyond Productivity: Information Systems Development for Organizational Effec-
tiveness, pages 325–338. North-Holland, Amsterdam, The Netherlands, 1984.

[Koe03] B.I. Koerner. What is smart dust, anyway? Wired, 11(6), June 2003.
http://www.wired.com/wired/archive/11.06/start.html?pg=10

[LS80] B. Lientz and E. Swanson. Software Maintenance Management – a study of the main-
tenance of computer application software in 487 data processing organizations. Addison-
Wesley, Reading, Massachusetts, 1980. ISBN 0201042053

[Mat81] L. Mathiassen. Systemudvikling og Systemudviklings-Metode. PhD thesis, Aarhus Uni-
versity, Aarhus, Denmark, 1981. In Danish.

[McC89] C.L. McClure. CASE is Software Automation. Prentice-Hall, Englewood Cliffs, New
Jersey, 1989. ISBN 0131193309

[Mer03] Meriam-Webster Online, Collegiate Dictionary, 2003.
http://www.webster.com

[MR02] M.W. Maier and R. Rechtin. The Art of System Architecting. CRC Press, Boca Raton,
Florida, 2nd edition, 2002. ISBN 0849304407

[Neg96] N. Negroponte. Being Digital. Vintage Books, New York, New York, 1996. ISBN
0679762906

[NP90] J. Nosek and P. Palvia. Software maintenance management: Changes in the last
decade. Journal of Software Maintenance, 3(2):157–174, 1990.

[Ode00a] J. Odell. Agents (part 1): Technology and usage. Technical report, Cutter Consortium,
Arlington, Massachusetts, USA, 2000.

[Ode00b] J. Odell. Agents (part 2): Complex systems. Technical report, Cutter Consortium,
Arlington, Massachusetts, USA, 2000.

[PB89] M.M. Parker and R.J. Benson. Enterprisewide information management: State-of-
the-art strategic planning. Journal of Information Systems Management, (Summer):14–
23, 1989.

[PBHJ00] H.A. (Erik) Proper, H. Bosma, S.J.B.A. Hoppenbrouwers, and R.D.T. Janssen. An
Alignment Perspective on Architecture-driven Information Systems Engineering. In
D.B.B. Rijsenbrij, editor, Proceedings of the Second National Architecture Congres, Ams-
terdam, The Netherlands, EU, November 2000.

[Pro94] H.A. (Erik) Proper. A Theory for Conceptual Modelling of Evolving Application Domains.
PhD thesis, University of Nijmegen, Nijmegen, The Netherlands, EU, 1994. ISBN
909006849X

[Pro98] H.A. (Erik) Proper. Da Vinci – Architecture-Driven Business Solutions. Technical
report, Origin, Amsterdam, The Netherlands, EU, Summer 1998.

http://www.wired.com/wired/archive/11.06/start.html?pg=10
http://www.webster.com

BIBLIOGRAPHY 41

[Pro01] H.A. (Erik) Proper, editor. ISP for Large-scale Migrations. Information Services Pro-
curement Library. ten Hagen & Stam, Den Haag, The Netherlands, EU, 2001. ISBN
9076304882

[Pro03] H.A. (Erik) Proper. Informatiekunde; Exacte vaagheid. Nijmegen Institute for Informa-
tion and Computing Sciences, University of Nijmegen, Nijmegen, The Netherlands,
EU, November 2003. In Dutch. ISBN 9090172866

[PW94] H.A. (Erik) Proper and Th.P. van der Weide. EVORM - A Conceptual Modelling
Technique for Evolving Application Domains. Data & Knowledge Engineering, 12:313–
359, 1994.

[PW95a] H.A. (Erik) Proper and Th.P. van der Weide. A General Theory for the Evolution of
Application Models. IEEE Transactions on Knowledge and Data Engineering, 7(6):984–
996, December 1995.

[PW95b] H.A. (Erik) Proper and Th.P. van der Weide. Information Disclosure in Evolving
Information Systems: Taking a shot at a moving target. Data & Knowledge Engineering,
15:135–168, 1995.

[Rec91] E. Rechtin. Systems architecting: creating and building complex systems. Prentice-Hall
PTR, Upper Saddle River, New Jersey, 1991. ISBN 0138803455

[Sol83] H.G. Sol. A Feature Analysis of Information Systems Design Methodologies:
Methodological Considerations. In T.W. Olle, H.G. Sol, and C.J. Tully, editors,
Information Systems Design Methodologies: A Feature Analysis, pages 1–7. North-
Holland/IFIP WG8.1, Amsterdam, The Netherlands, EU, 1983. ISBN 0444867058

[Sol88] H.G. Sol. Information Systems Development: A Problem Solving Approach. In Pro-
ceedings of 1988 INTEC Symposium Systems Analysis and Design: A Research Strategy,
Atlanta, Georgia, 1988.

[Spi88] J.M. Spivey. Understanding Z: A Specification Language and its Formal Semantics. Cam-
bridge University Press, Cambridge, United Kingdom, EU, 1988.

[SWS89] P.S. Seligmann, G.M. Wijers, and H.G. Sol. Analyzing the structure of I.S. method-
ologies, an alternative approach. In R. Maes, editor, Proceedings of the First Dutch
Conference on Information Systems, Amersfoort, The Netherlands, EU, 1989.

[Tap96] D. Tapscott. Digital Economy - Promise and peril in the age of networked intelligence.
McGraw-Hill, New York, New York, USA, 1996. ISBN 0070633428

[TC93] D. Tapscott and A. Caston. Paradigm Shift – The New Promise of Information Technology.
McGraw-Hill, New York, New York, USA, 1993. ASIN 0070628572

[TP91] T.H. Tse and L. Pong. An Examination of Requirements Specification Languages. The
Computer Journal, 34(2):143–152, April 1991.

[WAA85] A.T. Wood-Harper, L. Antill, and D.E. Avison. Information Systems Definition: The
Multiview Approach. Blackwell Scientific Publications, Oxford, United Kingdom, EU,
1985. ISBN 0632012168

[WH90] G.M. Wijers and H. Heijes. Automated Support of the Modelling Process: A
view based on experiments with expert information engineers. In B. Steinholz,
A. Sølvberg, and L. Bergman, editors, Proceedings of the Second Nordic Conference
CAiSE’90 on Advanced Information Systems Engineering, volume 436 of Lecture Notes
in Computer Science, pages 88–108, Stockholm, Sweden, EU, 1990. Springer-Verlag,
Berlin, Germany, EU. ISBN 3540526250

42 CHAPTER 1. INTRODUCTION

[WJK00] M. Wooldridge, N.R. Jennings, and D. Kinny. The gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent Systems,
3(3):285–312, 2000.

Part I

Domain Modeling

43

Chapter 2

Work Systems

Version:
25-04-051In this chapter, we discuss our fundamental view on organizations, information systems and

work systems. We will provide a definition of terms, which is based on a system theoretic [Ber01]
foundation. In doing so, we also provide a fundamental discussion of the concepts of system,
organization and information.

2.1 Exploring systems

Even though the notion of system is, in an IT context, often equated to “software system”, the
original sense of the word is much broader. The notion of system2 is also not uniquely defined
in the literature, but typically, it can be found explained as: “A collection of interrelated parts char-
acterized by a boundary with respect to its environment” [Iiv83] or just as: “A set of objects with a set
of links” [Lan71]. In general, humans refer to all sorts of things as ‘systems’. The broadness of
our understanding of the concept of ‘system’ comes, for example, to the fore in the definition as
it may be found in [Mer03]:

A regularly interacting or interdependent group of items forming a unified whole, as

1. a group of interacting bodies under the influence of related forces,
2. an assemblage of substances that is in or tends to equilibrium,
3. a group of body organs that together perform one or more vital functions,
4. the body considered as a functional unit,
5. a group of related natural objects or forces,
6. a group of devices or artificial objects or an organization forming a network es-

pecially for distributing something or serving a common purpose,
7. a major division of rocks usually larger than a series and including all formed

during a period or era,
8. a form of social, economic, or political organization or practice.

In the IEEE Recommended Practice for Architectural Description of Software-Intensive Systems [IEE00]
one can find a functionality-oriented perspective on systems:

1Parts of this chapter are based on work the author was doing with A.A. (Xander) Verrijn-Stuart on a revised edition
on the FRISCO report [FVSV+98]. As Xander passed away unexpectedly, the revised edition was never finished.

2The term ‘System’ is derived from the Greek phrase ‘Syn histanai’ (συν ı́στηναι): “to put together”.

45

46 CHAPTER 2. WORK SYSTEMS

A collection of components organized to accomplish a specific function or a set of
functions.

In practice, most people intuitively agree on such simple definitions of systems. Apparently these
definitions are broad enough to cover the meaning of usual linguistic constructs where ‘system’
is used. But system is a much more difficult concept. If we look at what in practice are considered
systems, and if we really think about it, it becomes obvious that some very important aspects of
the system concepts are missing in the traditional definitions. In [FVSV+98] some examples are
given of what we would, and would not, observe to be systems in our daily life:

Example 2.1.1
One can regard an organization or a bicycle as systems. Also a Hitchcock film recorded on
a video cassette, which is inserted in a video cassette player, which again is connected to a
TV-set, could easily be interpreted as a system. Nothing is unusual with such system views,
and they are well covered by the definitions. But if you buy some eggs from a farmer and
use two of them for breakfast, then the domain of obviously interrelated phenomena: You,
the farmer, the farmers hen that laid the eggs, the frying pan you used to prepare the eggs,
and the two eggs now in your stomach (and thereby in some transformed form a part of
yourself) – this domain might probably not be regarded as a system, because it might be
difficult to see a purpose for that. But it fits the definitions.

Or consider a single raindrop in an April shower: It consists of a vast number of water
molecules, kept together by surface tension and constantly moving around among each
other in a complicated manner controlled by a set of (thermo-) dynamic forces. Again ac-
cording to the simple definitions above, the drop qualifies as a system. But that is strange,
because when you on your way back from the farmer, happen to get soaked in the shower,
you might feel it is caused by raindrops – not by systems.

On the other hand, a meteorologist studying possible weather situations that could cause
rain, may see a purpose in regarding a raindrop as a system in interaction with the sur-
rounding atmosphere, but in most other situations a raindrop is just a raindrop.

However, when looking at what is regarded as a system in practice, it becomes apparent that
some very important aspects of the system concept are missing from the traditional definitions.

In [Rop99] it is argued that, strictly speaking, there exist three different interpretations of systems:

Structural – The structural interpretation is known best. According to this interpretation, a sys-
tem includes a set of elements and a set of links between these elements. This interpretation
complies with the ancient definition of the holon by Aristotle.

Functional – The functional interpretation views a system as an entity, sometimes called black
box, which transforms inputs into outputs. Depending on specific internal states; the kind
of transformation is called a function (in the descriptive meaning of the word).

Hierarchical – The structural interpretation turns into the hierarchical interpretation, if (some of)
the constituting elements are regarded as subsystems. Concluding by analogy, the original
system may be considered as a subsystem of a more extensive supersystem.

2.2 Observing systems

The aim of this section is to define the concept of system. In terms of this definition, we can then
continue to define the concept of organization more fundamentally as well.

2.2. OBSERVING SYSTEMS 47

2.2.1 Subjectivity

When two people discuss a system, do they really mean the same system? One serious cause for
confusion in our professional domain is, that people, usually, think about a system as something
that can be objectively determined, for example by a specification of its parts and their relation-
ships, as the above quoted definitions may indicate. But even then, the problem remains. Are
both people indeed discussing the same system?

As an example take the simple domain of a car and its driver in the traffic of a city. One person
may see it as a useful transport system in action, which is able to move large objects from one
location to another in a convenient way. The driver alone cannot, nor can the car, but in combi-
nation they can. However, a policeman on his job will regard the same domain differently – as a
controllable system which behavior can be directed by road regulations, traffic lights, arm signals
and by certain traffic rules. Again, an environmental activist would probably regard the car as a
dangerous polluting system, which is a potential cause of injury or death to persons in the traffic.

Here we have three views of the same domain, but with quite different sets of properties. All
three persons could in fact be the same viewer of the same system, e.g. a transport conscious
public servant caring about the conditions for people in the city, who just conceives different
properties by regarding the same system from different points of view.

Let us elaborate this car example a little further in order to illustrate the difficulties we face when
we regard something as a system. Consider for example the question about which parts and
which activities are involved in the possible system view: Are the driver and the car two inter-
acting sub-systems – one with the property of being able to observe the traffic and to control the
car, and the other with the property of being able to transform chemical energy into movement
in a controlled manner. Or is the car to be regarded as a single system with the driver, motor,
gear, and steering devices as sub-systems each with their own properties? Is the motor the active
part and the chassis a passive component, or is it the other way around – the car as a device
transporting among other things the motor. Quite another view – but still one from the same
domain – could be to regard the car as a moving Faraday cage protecting the driver from certain
kinds of dangerous electrical fields. There are many possible system views, and still the domain
is extremely simple compared with the organizational domains usually considered as systems.

If we regard a business enterprise, an institution or any other kind of organization as a system –
an organizational system – we have a domain which is much more complicated than a car and
driver. Furthermore, the number of possible views of an organization is most often enormous.

Key to understanding the system concept, and ultimately organizations is therefore to realize
that a system is a subjective phenomenon. In other words, it is not an absolute or objective thing.
Systems are not a priori given. As Checkland expresses it, there must be a describer/observer
who conceives or thinks about a part of the world as a system [Che81]. In other words, it is
important, that there is a viewer who can see a purpose in regarding something “set of elements”
as a system.

Viewers may also be regarded at an aggregated level. For example, a single business manager,
observing an organization, is indeed a viewer, but the collective business management can be seen
as a viewer of the organization as well.

The purpose in regarding something “set of elements” as a system should be expressed in terms
of at least one meaningful links between the “set of elements” and its “environment”. Such a link
is called a systemic property. It is a property the viewer associates with the set of elements they
experience as a system. One viewer may regard the set of elements as a system having one set
of systemic properties, while another viewer may see other systemic properties concerning the
same set of elements.

Most often, the systemic properties of a system cannot be attributed exclusively to any of its con-
stituent components. For example, none of the constituent parts of a train has the exclusive “train

48 CHAPTER 2. WORK SYSTEMS

property”. A separate carriage is not a train. A locomotive on its own is (from the perspective of
a passenger) also not a train. Together, however, the parts do have the “train property”. In other
words, the whole is more than just the collection of its parts. The farmer-you-frying-pan-eggs-
hen situation as discussed in the above example, is a situation which may not constitute a ‘whole’
with any sensible systemic property. In which case we will not consider it to be a system. In the
case of the train, we have an interesting situation if the train consists of two connected train-sets.
In this case, each of the individual train-sets still has the “train property”.

In order for us to gain a fundamental understanding of systems, and ultimately the kind of sys-
tems we refer to as organizations, we first need to introduce some core concepts, most of which
are based on the ones found in [FVSV+98].

2.2.2 Observing the universe

Let us start by considering what happens if some viewer observes ‘the universe’. It is our as-
sumption, based on the work of C.S. Peirce [Pei69a, Pei69b, Pei69c, Pei69d], that viewers perceive
a universe, leading to a perception of this universe and then produce a conception of that part they
deem relevant. Peirce argues that both the perception and conception of a viewer are strongly
influenced by their interest in the observed universe. This leads to the following (necessarily
cyclic, yet irreflexive) set of definitions:

Universe – The ‘world’ under consideration.

Viewer – An actor perceiving and conceiving (part of) a domain.

Perception – That what results, in the mind of a viewer, when they observe a domain with their
senses, and forms a specific pattern of visual, auditory or other sensations in their minds.

Conception – That what results, in the mind of a viewer, when they interpret a perception of a
domain.

In general, people tend to think of the universe as consisting of elements. In [FVSV+98] this
approach is indeed taken. In our view, presuming that the universe consists of a set of elements
constitutes a subjective choice, which essentially depends on the viewer observing the universe.
Nevertheless, taking this assumption has proven to be a sensible assumption, in particular in the
context of systems. However, we do not presume the universe itself to consist of elements, but
rather the conception of a universe. This makes the identification of elements relative to a viewer.

The conceptions harbored by a viewer are impossible to communicate and discuss with other
viewers unless they are articulated somehow. In other words, a conception needs to be described
somehow in terms of a description:3

Description – The result of a viewer denoting a conception, using some language to express
themselves.

The resulting situation is illustrated in Figure 2.1. Descriptions may be:

• Formal or informal

• Complete or incomplete

• More refined/less refined

The underlying relationships between viewer, universe, conception and description can be ex-
pressed in terms of the so-called FRISCO tetrahedron [FVSV+98], as depicted in Figure 2.24.

3In [FVSV+98] the term representation is used rather than the term description as it is used here. We have chosen to
favor the term description, as it is the term of choice of [IEE00].

4The original FRISCO tetrahedron uses ‘domain’ where we use ‘universe’. This difference is due to the above, more
refined, discussion on the subjectivity of viewing the universe as a set of elements.

2.2. OBSERVING SYSTEMS 49

Conceptionconceiving

perceiving

Description

describing
Universe

Figure 2.1: A viewer, having a conception of the universe, and describing this in terms of a
description.

Conception

Viewer

Universe Description

Figure 2.2: The (revised) FRISCO tetrahedron.

50 CHAPTER 2. WORK SYSTEMS

2.2.3 Conceptions

To express the above discussions more formally, let UN 5 be the set of universes that may be
observed, and let VW6 be the set of all possible viewers. Let furthermore, EL be the set of elements
that may be part of conceptions. These basic sets should be disjoint:

[S1] VW , UN and EL are mutually disjoint.

Let |=c ⊆ UN ×VW ×℘(EL) be the links expressing which conception is held by which viewer.
The fact that a viewer v ∈ VW harbors a conception C ⊆ ℘(EL) for universe U ∈ UN can be
expressed as U |=c v C. This situation is depicted more graphically in Figure 2.3. A viewer, when
observing a domain, draws a picture of the observed universe (their conception). In painting this
picture of the world, they will use certain “constructs”. At the moment the only constructs we
presume to exist are elements. Note: the fact that viewers can change their conception over time
is ignored for the moment.

Conception

perceiving

conceiving

Elements

Viewer’s "picture of the universe"

Viewer

Universe

Figure 2.3: Painting a picture of the universe

Domains and their environments

A viewer may zoom in on a particular part of the universe they observe, or to state it more
precisely, they may zoom in on a particular part of their conception of the universe.

Domain – Any ‘part’ or ‘aspect’ of the universe a viewer may have an interest in.

When reasoning about systems, which we will regard as a particular class of domains, it is com-
monplace to also identify their environments [Ber01]. Even more, the very definition of a system
depends on our ability to distinguish it from its environment. This is illustrated in Figure 2.4.

5The reader is advised that appendix A provides an overview of the mathematical notations/conventions used in this
textbook.

6One should actually regard this set as the set of states a viewer may have. A viewer may for example have, in differing
states, different interests with which they conceive the universe. The elements from VW should really be regarded as the
states of these viewers.

2.2. OBSERVING SYSTEMS 51

Conception

perceiving

conceiving

Elements

Viewer’s "picture of the universe"

Viewer

Universe

Figure 2.4: Identifying a domain and its environment

To be able to define the environment of a domain in general and a system in particular, however,
we must first be able to define the direct environment of a domain. Formally, a domain D can
be regarded as a subset of a conception C, in other words a sub-conception D ⊆ C. If U |=c v C
and D ⊂ C is some domain within C, then the environment of D will not generally be C −D as
a whole, but rather a subset E ⊆ C −D. For E to be a sensible environment of domain D, the
elements in E must have some links to the elements in D. In order to more precisely define the
notion of environment, we should therefore first refine our notion of elements of a conceptions.
There are really two types of elements: concepts and links connecting the concepts. We will
define these notions as follows:

Element – The elementary parts of a viewer’s conception.

Concept – Any element from a conception that is not a links.

Link – Any element from a conception that relates two concepts.

The distinction between a link and an concept for the elements of a given conception, may not
always be that clear, as the distinction is rather subjective. It all depends, to no surprise, on the
viewer of a domain.

Let CO ⊆ EL be the set of concepts and let LI ⊆ EL be the set of links. These sets should form a
partition of EL:

[S2] CO∩LI = ∅ and EL = CO∪LI.

In terms of Figure 2.4, our viewer can now select from two classes of elements: concepts and
links. This is depicted in Figure 2.5. In the next chapter, we will provide an even more refined
view on the classes of elements we identify.

Figure 2.6 provides a model, our ontology, of the classes of elements which a conception may
consist of and their mutual relationships. The notation we have used there is the ORM (Object-
Role Modeling) [Hal01]7 notation, which is the same notation as used in the Domain Modeling
course.

7We have used the extension introduced in [HP95] to signify that Entity and Relationship are really self-defining sub-
types, i.e. not requiring a dedicated subtype defining rule.

52 CHAPTER 2. WORK SYSTEMS

Conception

perceiving

conceiving

Viewer’s "picture of the universe"

Viewer

Universe

RelationshipsEntities

Figure 2.5: Painting a more refined picture of the observed domain

Element

LinkConcept
from

to

Figure 2.6: The ontology of a viewer’s conception

2.2. OBSERVING SYSTEMS 53

If X ⊆ EL, then we will use the following abbreviations:

COX , X ∩CO and LIX , X ∩LI

Links run between concepts. In other words, we can presume functions From : LI→CO and
To : LI→CO to exist, providing the source and destination of these links respectively. As an
abbreviation we will use Involved(r) , {From(r),To(r)}. A conception C is considered to be
closed iff:

∀r∈LIC [Involved(r) ⊆ C]

Conceptions of viewers should be closed:

[S3] If U |=c v C, then C is closed.

A conception C which is closed under LI can essentially be regarded as a graph:

〈COC ,LIC ,From,To〉

A conception C is called connected iff the associated graph is connected. A conception is required
to be a connected graph:

[S4] If U |=c v C, then C is connected.

Note: if a conception would not be a connected graph, it would be a conception of multiple
universes.

We generalise From and To to sets of relations as follows:

From(R) ,
{
From(r)

∣∣ r ∈ R
}

To(R) ,
{
To(r)

∣∣ r ∈ R
}

We are now in a position to properly define the environment of a domain:

Environment – The environment of a domain is that part of a viewer’s conception of a universe,
which has a direct link to the domain.

Formally, we view a domain D and an environment E as being a subset of a conception C, in
other words a sub-conception D,E ⊆ C. Let |=d 〈 : : 〉 ⊆ UN ×VW ×℘(EL)×℘(EL)×℘(EL)
now be the relation expressing which domain and environment a viewer conceives. The fact that
a viewer v harbors a conception of domain D and environment E for universe U can be expressed
as U |=d v 〈C : E : D〉. This link should limit itself to the conceptions held by viewer v:

[S5] If U |=d v 〈C : E : D〉, then U |=c v C and E,D ⊆ C.

A domain and its environment should not overlap:

[S6] If U |=d v 〈C : E : D〉, then E ∩D = ∅.

The domain and environment should be closed:

[S7] If U |=d v 〈C : E : D〉, then D is closed.

[S8] If U |=d v 〈C : E : D〉, then E is closed.

The combination of a domain and its environment is closed as well:

Corollary 2.2.1
If U |=d v 〈C : E : D〉, then E ∪D is closed.

Proof:
Left as an exercise to the reader.

A domain should be connected:

54 CHAPTER 2. WORK SYSTEMS

[S9] If U |=d v 〈C : E : D〉, then D is connected.

The combination of a domain and its environment is connected as well:

[S10] If U |=d v 〈C : E : D〉, then D∪E is connected.

Note that an environment does not have to be connected!

Concepts in the environment are related somehow to concepts in the domain:

Lemma 2.2.1
Let U |=d v 〈C : E : D〉 with a non-empty environment E. If P is a maximum8 subset of E
such that it is connected, then:

∃e∈COP
∃r∈LIC ,d∈COD

[{e, d} = Involved(r)]

Proof:
Left as an exercise to the reader.

The authors of [FVSV+98] also define the notions of domain and environment. However, they do
not take the subjectivity with regards to viewing the universe as a set of elements into consider-
ation. As a result, they define domain and environment as being parts of the universe as opposed
to being parts of a viewer’s conception of the universe.

In the remainder of this book, we will use the phrase: a viewer v observing a domain (of interest) D
(with environment E) as an abbreviation for: a viewer v having a conception of the universe, zooming
in on domain D (with environment E).

Decomposition of conceptions

When a viewer conceives a domain, we presume there to be an concept in their conception rep-
resenting the whole of the domain as well as one representing the whole of the environment. The
same applies to the universe. In other words, the concepts in the domain and the environment
can be regarded as decompositions of entities representing the whole of the domain and en-
vironment, while these latter concepts are decompositions of another concept representing the
universe as a whole. This is illustrated in figure 2.7.

Environment Domain

Universe

Figure 2.7: Decomposition of the universe

8In other words, there is no P ′ such that P ⊂ P ′ ⊆ E while P ′ is still connected.

2.2. OBSERVING SYSTEMS 55

This “decomposition game” can be played repeatedly. When viewing a domain a viewer may
decide to zoom in further into a specific part of this domain. For example, when observing an
insurance claim-handling process, involving amongst other things an evaluation of the claim,
one may decide to zoom in closer into the actual evaluation process. This has been illustrated in
figure 2.8.

Environment Domain

Universe

Figure 2.8: Decomposition of a part of a domain

The fact that one concept is in the “decomposition” of another concept really means that there is
a link between them in the viewer’s conception. This has been illustrated in figure 2.9. This really
implies we need to identify a specific class of links called decomposers. Let us therefore presume
we have a set: DC ⊆ LI of links.

To more easily reason about decompositions within a conception, we will introduce the derived
relationship → ⊆ CO×℘(EL) × CO. If x→C y, the concept x in conception C is decomposed
into (possibly amongst others) concept y. This relationship is defined (precisely) by the three
following (recursive) derivation rules:

1 : ∃d∈DCC [x = From(d) ∧ y = To(d)] ` x→C y

2 : x→C y ∧ y→C z ` x→C z

The decompositions should be acyclic:

[S11] x→C y⇒x 6= y

As an abbreviation we introduce: x→C y , x = y ∨ x→C y.

To enforce the fact that a viewer’s conception of a universe consists of one “top” concept repre-
senting the universe as a whole, we require:

[S12] If U |=c v C, then: ∃u∈COC
∀x∈COC

[u→C x]

Even more, the u ∈ C is unique:

Corollary 2.2.2
If U |=c v C, then: ∃!u∈COC

∀x∈COC
[u→C x]

56 CHAPTER 2. WORK SYSTEMS

Environment Domain

Universe

Figure 2.9: Decomposer relationships

Proof:
Left as an exercise to the reader.

Similarly, for domains and environments we have:

[S13] If U |=d v 〈C : E : D〉, then: ∃d∈D∀x∈COD
[d→D x]

[S14] If U |=d v 〈C : E : D〉, then: ∃e∈E∀x∈COE
[e→E x]

Corollary 2.2.2 applies to each of these as well. So for C, D and E there are unique tops in the hi-
erarchies. This unique top elements will be referred to as Top(C), Top(D) and Top(E) respectively.
For these tops, we should have:

[S15] If U |=d v 〈C : E : D〉, then: ∃!d∈DCC [Top(C) = From(d) ∧ Top(E) = To(d)]

[S16] If U |=d v 〈C : E : D〉, then: ∃!d∈DCC [Top(C) = From(d) ∧ Top(D) = To(d)]

[S17] If U |=d v 〈C : E : D〉, then: ∃!r∈LIC −DCC [Top(D) = From(d) ∧ Top(E) = To(d)]

These three axioms require the top part of a conception to have the structure as depicted in Fig-
ure 2.9.

By adding the set of decomposers, we have now enriched our ontology to the situation as de-
picted in figure 2.10. Note that the asterisk (*) attached to the is decomposed into relationship
signifies this to be a derived relationship.

2.2.4 Model

In the context of organizations, we are not interested in all types of conceptions. Our interest is
limited to those conceptions, that may be referred to as a model:

Model – A purposely abstracted domain (possibly in conjunction with its environment) of some
‘part’ or ‘aspect’ of the universe a viewer may have an interest in.

For practical reasons, a model will typically be consistent and unambiguous with regards
to some underlying semantical domain, such as logic.

2.2. OBSERVING SYSTEMS 57

*

"is decomposed into"
Decomposer

Element

LinkConcept
from

to

Figure 2.10: Ontology refined with decomposers

As a model is a conception, it also consists of elements, which can be specialized further into
concepts and links:

Model element – An element from a conception which is a model.

Model concept – A concept from a conception which is a model.

Model link – A link from a conception which is a model.

We are now also in a position to define more precisely what we mean by modeling:

Modeling – The act of purposely abstracting a model from (what is conceived to be) a part of
the universe.

For practical reasons, we will understand the act of modeling to also include the activities involved
in the description of the model by means of some language and medium.

To represent the fact that some viewer produces a model in an environment when they observe
some part of the universe, we introduce the relation:

|=m 〈 : : 〉 ⊆ UN ×VW ×℘(EL)×℘(EL)×℘(EL)

Formally, the fact that a viewer v views the universe U and in doing so has a conception C
including a model M with environment E is represented by: U |=m v 〈C : E : M〉. Every model is a
conception. We should therefore have:

[S18] If U |=m v 〈C : E : M〉, then U |=d v 〈C : E : M〉.

Note that not all conceptions of a domain produce models. So the reverse of the above axiom
does not hold! As an abbreviation we also introduce:

U |=m v M , ∃C,E [U |=m v 〈C : E : M〉]

2.2.5 System

Using the above general definitions, we can, in line with [FVSV+98], more precisely define the
way we view systems:

58 CHAPTER 2. WORK SYSTEMS

System domain – A domain that is conceived to be a system, by some viewer, by the distinction
from its environment, by its coherence, and because of its systemic property.

Systemic property – A meaningful relationship that exists between the domain of elements con-
sidered as a whole, the system domain and its environment.

System viewer – A viewer of a system domain.

System – A special model of a system domain, whereby all the things contained in that model
are transitively coherent, i.e. all of them are directly or indirectly related to each other and
form a coherent whole.

A system is conceived as having assigned to it, as a whole, a specific characterisation (a
non-empty set of systemic properties) which, in general, cannot be attributed exclusively
to any of its components.

System description – The description of a system.

The elements, concepts and links concepts can be further specialized to systems:

System element – Any element from a system.

System concept – Any element from a system that is a concept.

System link – Any element from a system that is a link.

As identified in [FVSV+98], there is a potential objection against our subjectivity-based definition
of system. In daily life, it is quite sensible to talk about “designing, constructing and implement-
ing a system” or “to interact with a system”. The use of the terms ‘system’ gives associations to
this term as denoting something that can be interacted with in a rather concrete way and not just
as a conception. These associations, however, do not lead to any inconsistencies. These example
phrases are simply convenient abbreviations for more elaborate expressions. For instance, “to
interact with a system” really means:

to interact with phenomena in the system domain that is conceived as a system (because of its
systemic properties).

To “design, construct and implement” a system really means:

to bring together and structure phenomena in a particular part of the world (which then be-
comes the system domain) with the purpose of constructing them such they together have
certain systemic properties.

To represent the fact that some viewer “sees” a system in an environment when they observe
some part of the universe, we introduce the relation:

|=s 〈 : : 〉 ⊆ UN ×VW ×℘(EL)×℘(EL)×℘(EL)

Formally, the fact that a viewer v views the universe U and in doing so has a conception C
including a system S with environment E is represented by: U |=s v 〈C : E : S〉. Every system is a
model. We should therefore have:

[S19] If U |=s v 〈C : E : M〉, then U |=m v 〈C : E : M〉.

Note that not all conceptions of a domain produce models. So the reverse of the above axiom
does not hold! As an abbreviation we also introduce:

U |=s v S , ∃C,E [U |=s v 〈C : E : S〉]

In our informal exploration of the concept of system, we already discussed that there are three
major ways of viewing systems [Rop99]: structural, functional and hierarchical (as a specific class of

2.3. STUDYING SYSTEMS 59

structural). A major difference between a structural and a functional perspective is the distinction
between the white-box and black-box approach when regarding systems. In other words, is one
looking inside the system (white-box) or is one only looking at the outside of the system. This does
seem to raise the question whether, when viewing a system as a black-box, one can still argue
that the system consists of elements? The answer to this question is a resounding yes. When a
viewer, for some reason, views a domain as a system, and does so using a black-box approach,
that what they conceive of as being a system is still a conception consisting of elements. The
difference between a white-box and a black-box approach when viewing a system, however, is
in the concepts and links one will see. When taking a black-box approach, one will only see
the external behavior of the system, while when taking the white-box approach one will see the
internal structure/behavior of the system as well.

2.3 Studying systems

In order to really to understand the concept system it is necessary to be aware of a number of
important aspects:

• that the system domain always comprises several elements,

• that all elements are related to each other such that it constitutes a transitively coherent
whole,

• that the whole is conceived to have at least one systemic property,

• that it is only relevant to incorporate a thing as an element of the particular system domain
if in the system view it somehow contributes to the systemic property,

• that when viewing a thing as an element of a system domain then only those aspects of the
thing that directly or indirectly contributes to the systemic properties are relevant for the
system view.

2.3.1 Sub-systems

To gain a better understanding of complex systems it has proven to be useful to identify smaller-
scale systems within a larger system, leading to sub-system. A detailed discussion on dealing
with complexity by systems in general, and the role played by hierarchical decomposition, may
be found in e.g. [Sim62]. In this textbook, for example, information systems will be positioned as
sub-systems of organizational systems.

However, when it comes to the point of being less intuitive and more explicit about the concept,
there is little consensus about what really characterizes a sub-system – or rather what should
characterize it, if the concept is to be a useful one. The influence from the absoluteness of the
‘classical’ system concept together with some apparent preference to associate the understanding
of sub-system with the subset concept seem to be the main cause of the confusion.

The ‘old’, simple interpretation of the concept system as being just“a set of interrelated parts”,
made it rather obvious to think of sub-system as: A subset of the parts together with an appro-
priate subset of their mutual relationships. However, with the introduction of the notion that
in order for something to be a system, it must have at least one systemic property, the matters
became more difficult: Should the definition of sub-system then also involve the specification
of a subset of the systemic properties? Intuitively this notion could be reasonable, and it may
even work in some cases, but the problem is that this is not always so. Consider, for example, a
well-functioning mechanical watch. It can be conceived to have the systemic property that un-
der certain conditions it “shows the time”. A possible sub-system of such a watch is the energy
supplying device for the clockwork consisting of the spring, the winding knob, the exchange and

60 CHAPTER 2. WORK SYSTEMS

click mechanism for tightening the spring, and a part of the frame to support these mechanical
parts. The only sensible systemic property of such a sub-system is that it serves as a storage of
mechanical energy. But then we have a serious problem with the subset notion applied on the
systemic property, because being an energy storage is in no way a subset of the systemic property
of showing the time.

The problem of defining a sensible sub-system concept by means of subset relationships becomes
even more difficult with the notion of a system as a subjective issue. Apart from the systemic
properties not being absolute, but rather depending of the viewer, one element in the system
domain may now also potentially be viewed as several different components in the system. Con-
sider, for example, an organization that is viewed as an and a person from that organization:
Here the person may appear as an actor of the type “salesman” that is the agent of various sales
activities. But independent hereof, the same person may also be conceived as having the type
“employee” relevant in connection with calculations of salaries and the planning of sales cam-
paigns. The person may even be regarded as being of type “transportable object” in the context
of an activity “transport by car during sales trips”. This causes the following question: Should
a possible subset relationship applied in attempts to define a sub-system concept then refer to
the domain alone, or to the system alone, or to both? It is certainly difficult to find logical or
pragmatic arguments that universally justify any of these choices. (For further aspects of the
problems encountered when one is aiming at defining sub-system by means of subsets, see the
more comprehensive discussion in [FVSV+98].)

It is necessary to consider the sub-system concept differently – in fact, in a way that very well
is in accordance with the way people intuitively apply it in practice. The ‘solution’ is to realize
that when viewing something as a system then only one system should be considered at a time.
Applied here, either one must consider that which is regarded as the system or that which is
regarded as the sub-system. The advantage of this sub-system interpretation is exactly what
appears to be the main positive feature of the intuitively applied concept: Depending on which
level of detail as regard potential components you want to consider, you can use the concept to
encapsulate unnecessary details on a chosen level of abstraction. Applied to organizations one
obvious way to consider the relationship between an organization and a sub-system of it, is to
conceive the sub-system equivalent with what an actor in the organization does (or a part of
that). Typically a whole department (a possible system candidate in itself) may be considered a
single actor in the organization, and (part of) what is done in that department in respect to other
departments (i.e. possible systemic properties of the “department system”) may be conceived as
a single action at the organizational-level. A data-processing system may be conceived as a single
(artificial) actor carrying out data-processing actions in the organization, even if we know that it,
in fact, is composed of a lot of components.

A sub-system may, in line with [FVSV+98], defined as:

Sub-system – A sub-system S′ of a system S, is a system where the set of elements in S′ is a
subset of the elements in S.

Formally, this can be expressed as:

U |=s v S′ ⊂ S , U |=s v S, U |=s v S′ and S′ ⊂ S

Corollary 2.3.1
If U |=s v S′ ⊂ S, then: ∃s∈S′∀x∈COS′ [s→S′ x]

Proof:
Left as an exercise to the reader.

Two common dimensions along which to define sub-systems are: component system and aspect
system.

2.3. STUDYING SYSTEMS 61

Component system – A component-system S′ of a system S, is a sub-system, where the set of
model concepts in S′ is a proper subset of the set of entities in S.
Formally:

U |=s v S′ ⊂c S , U |=s v S′ ⊂ S and (S′ ∩CO) ⊂ S

Aspect system – an aspect-system S′ of a system S, is a sub-system, where the set of model links
in S′ is a proper subset of the set of the links in S.
Formally:

U |=s v S′ ⊂a S , U |=s v S′ ⊂ S and (S′ ∩LI) ⊂ S

Note that some authors, for example [Vel92, Bem98], use the term sub-system to refer to the above
defined concept of component system. However, we prefer to use the term sub-system as defined
above (following the definition in [FVSV+98]), as it allows us to view it as a generalization of the
concepts component system and aspect system.

Different viewers may disagree on the fact whether some sub-system is an aspect system or a
component system (or a combination thereof). This can be traced back to the subjectivity involved
in distinguishing between links and concepts. Whenever there is a ‘clear’ analogy to physical
structures, it will be easier to identify the difference. Consider a freight-train as an example
system. Typical component systems of such a system are: the locomotive, the engine-driver,
several types of box-cars, etc. An aspect system of a freight-train would be the hydraulic braking
system of the train as a whole.

A sub-system is indeed a system. As such, a sub-system S′ of a system S will also have its
own systemic properties. However, these properties are most likely no subset of the systemic
properties of S. For example, the engine-driver’s systemic properties are by no-means a clear
subset of the systemic properties of a freight-train.

2.3.2 Describing systems

When a system developer in a system viewing/modeling process gradually realizes what (cur-
rently) “is the system”, i.e. becomes conscious of all relevant aspects of the involved elements and
of each of the systemic property, it is very useful to be aware of the type of system in question
and to produce a system exposition in accordance with the system type.
System type – A type that determines the potential kinds of systemic properties, elements of the

system domain and roles of the elements in achieving the systemic properties.
System exposition – a description of all the elements of the system domain where each element

is specified by all its relevant aspects and all the roles it plays, being of importance for the
interest of the viewer. (The system viewer may conceive one and the same thing in the
system domain to play more than one role in the system.)

A system type can be regarded as a viewing template to be used by a system developer / analyst
/ modeler in order to decide which kinds of things (and thereby which aspects of the things) to
consider relevant in realizing what actually “is the system”. A system type comprises:

• Properties determining ‘the nature’ of the systemic properties, for example for open active
systems that the system is seen as something that changes things in the domain of the
environment and that the environment is seen as changing things in the system domain.
This set of properties may be called the system characteristic.

• Properties determining the kinds of things which it is relevant to incorporate in the expo-
sition of the system domain, and for each kind the kinds of roles they may play in respect
to the potential kinds of systemic properties. Examples of such kinds of things are for dy-
namic systems: states, transitions and transition occurrences, and for open active systems
(among other things): actions, subjects, agents, transitions in the domain of the environ-
ment caused by actions in the system, etc. This set of properties may be called the exposition
characteristic.

62 CHAPTER 2. WORK SYSTEMS

A more detailed elaboration of concepts related with the system viewing process can be found
in [FVSV+98]. A semi-formal description of it based on an example is presented in [Lin92].

In conceiving a domain as an organization, several classes of elements may be relevant to include
in a system exposition of that domain. As part of the domain it may also be relevant to incor-
porate a number of concepts generally relevant in an organizational context, for example public
services, laws or other kinds of constraints imposed by society, or aspects of the particular profes-
sional field of the organization. However, for an organization it is generally relevant to consider
the following kinds of things as candidates to (at least) be included in a system exposition:

Actors – human actors as well as artificial actors and all kinds of symbiotic compositions of these
two kinds.

Actions – (together with the associated goals) such that a (not exclusive) distinction is made
between those influenced by impressions from the environment and those either directly
constituting expressions of the system or only contributing to (or in some cases even ex-
plicitly counteracting) the expressions. Actions that are irrelevant for the expression of the
system should be ignored in the exposition.

Co-actions – i.e. co-ordinated actions performed by several actors together.

Knowledge – that is necessary for the actors to know the relevant pre-states of their actions and
the respective goals. A goal may be situation dependent.

Triggers – involving internal and/or external dynamic criteria for the initiation of actions (tem-
poral, impressive and actor- or action-caused transitions).

Communication – between actors to ensure that they have the information necessary to perform
their actions.

Representation – of the information/knowledge relevant to the organization’s activities, in or-
der to enable the preservation or communication of it. That includes all relevant aspects of
the use of data technology and/or data-technical sub-systems to accomplish the preserva-
tion or communication.

In practice, aspects of organizational culture, social norms, empation (i.e. knowledge that cannot
be properly represented), resources in general (energy, skills, intellect, etc.), ecology, economy,
etc., may be added to this list.

2.3.3 Open-active systems

A work system, an information system as well as an organizational system belong to a system
type that primarily is characterized as being open and active (where the latter implies also that it
is dynamic). We can define these specific types of systems as:

Active system – A special kind of system that is conceived of as begin able to change parts of the
universe.

Dynamic system – A special kind of system that is conceived of as undergoing change in the
cause of time.

Open system – A special kind of dynamic system that is conceived as reacting to external trig-
gers, i.e. there may be changes inside the system due to external causes originating from
the system’s environment.

Note that a system may be active and yet be non-dynamic. For example, the mere presence of
a dummy speeding camera, i.e. one that is able to capture speeding vehicles on film, may lead
drivers to drive more slowly. The dummy speeding camera may thus be seen as an active, yet
non-dynamic, system.

2.4. INFORMATION SYSTEM 63

Note that the sub-system of an open active system does not have to be an open active system.
In other words, even though our main interest lies with open active system, we may quite well
need to consider non-open or non-active sub-systems of these systems.

For open active systems – therefore for organizations too – it is relevant to consider the following.
The behavior of an open active system is generally reflected as:

Internal function – Conceptions of changes in the system domain caused by processes in the
domain itself.

External function – Here the following two kinds are distinguished:

Impression – Conceptions of changes in the system as caused by the environment.
Expression – Conceptions of changes in the environment as caused by the system.

The very fact that something is regarded as a system often serve the purpose of hiding the internal
function and focus on the external function. (Like the phrase “a black-box system”). The internal
function of an open active system is referred to as “the function in the system”, while the external
function is “the function of the system”. The latter is equivalent with the systemic property of an
open active system.

One can classify open active systems in several ways according to their behavior (for details
see [Ack71]). Here we shall only distinguish between three kinds of open active system based on
the following distinctions. A reaction of an open active system is an expression that is seen as
unconditionally caused by an impression. An action of an open active system is an expression
that is seen as being completely independent on any kind of impression. Thereby we can define
the three additional types of open active systems:

Reactive system – An open active system where each expression of the system is a reaction, and
where each impression immediately causes a reaction.

Responsive system – An open active system (possibly also a reactive system) where it holds for
at least one expression that a certain impression or a temporal pattern of impressions is a
necessary, but not a sufficient dynamic condition for its occurrence. The receipt of an order
is a necessary impression to a “sales system”, for the expression “delivery of the ordered
goods”, but it is not a sufficient condition.

Autonomous system – an open active system (possibly also a responsive system, but not a reac-
tive system) where at least one expression is an action. A human being and most (if not all)
organizations can be regarded as autonomous systems.

2.4 Information system

To be able to more precisely define the concept of information systems, we first need a better
understanding of the concept of information.

2.4.1 Knowledge, information and data

In defining what we mean by information, we first need to more clearly define what we mean by
the concepts of knowledge, communication and messages:

Knowledge – A relatively stable, and usually mostly consistent, set of conceptions posessed by
a single (possibly composed) actor.

In more popular terms: “an actor’s picture of the world”.

Information is defined in terms of the knowledge increment brought forward when exchanging
messages:

64 CHAPTER 2. WORK SYSTEMS

Information – The knowledge increment brought about when a human actor receives a message.
In other words, it is the difference between the conceptions held by a human actor after
interpreting a received message and the conceptions held beforehand.

where data and message are defined as follows:

Data – Any representation in some language. Data is therefore simply a collection of symbols
that may, or may not, have some meaning to some actor.

Message – Data that is transmitted from one actor (the sender) to another actor (the receiver).

A message may actually be ‘routed’ via several actors before reaching its actual receiver. For
example, when human actor exchange messages, they usually need to make use of some
other actor playing the role of a medium (for example, vibrations in the air, or an e-mail
system).

To make this list of definitions complete, we also provide the related notion of communication
as:

Communication – An exchange of messages, i.e. a sequence of mutual and alternating message
transfers between at least two human actors, called communication partners, whereby these
messages represent some knowledge and are expressed in languages understood by all
communication partners, and whereby some amount of knowledge about the domain of
communication and about the action context and the goal of the communication is made
present in all communication partners.

Using the above definition of information, we can now also define the notions of information
system and computerized information system more specifically:

Information system – A sub-system of an organizational system, comprising the conception of
how the communication and information-oriented aspects of an organization are com-
posed and how these operate, thus leading to a description of the (explicit and/or im-
plicit) communication-oriented and information-providing actions and arrangements ex-
isting within the organizational system.

Computerized information system – A sub-system of an information system, whereby all activ-
ities within that sub-system are performed by one or several computer(s).

Needless to say that in modern-day information intensive organizations information systems,
and in particular the computerized parts of these systems, play an ever increasing role.

2.5 Dealing with evolution of conceptions

Before concluding this chapter, there is one final issue to deal with. An organizational system is
an open active system. This specifically means that it is a system which changes over time. Thus
far we have taken the assumption that the conception of a viewer is a static notion. If we write
U |=c v C it really means that viewer v has at some point in time the conception C when observing (a
part of) universe U . However, in the course of time this conception will evolve, which raises the
question: How to deal with evolution of conceptions?.

Several strategies exist to deal with evolution [Pro94]. One strategy to deal with this evolution
is to take snapshots, like photographs, of a viewer’s conceptions. This leads to the situation
depicted in figure 2.11. This approach, however, does have as drawback that one cannot ‘trace’
the evolution of a specific element in a viewer’s conception. The approach we take, therefore, is
illustrated in figure 2.12.

Based on the approach taken in [Pro94], the evolution of the elements in a viewer’s conception
is treated as a set of (partial9) functions over time. At each point in time, a specific element (a

9For a discussion on the difference between total and partial functions, see appendix A.

2.5. DEALING WITH EVOLUTION OF CONCEPTIONS 65

Time

Figure 2.11: Modeling evolution by snapshots

Time

Figure 2.12: Modeling evolution by functions in time

version) may be associated to such a function. This means (as also illustrated in figure 2.13),
the situation depicted in figure 2.11 can still be derived. When we know the entire evolution
of a nation, we can also provide a detailed descriptions of the state-of-affairs as it holds at any
arbitrary point in time.

Time

Figure 2.13: Deriving snapshots

In order to introduce the notion of evolution formally, we first need to define a time axes. We
presume all viewers to agree that the time axes (at least) consists of:

• A set of points in time TI.

• A complete and total order < ⊆ TI ×TI.

We also define: t1≤ t2 , t1 <t2 ∨ t1 = t2.

Since we have a complete order on the points in time, we can define the relation � ⊆ TI ×TI
with intended intuition: if t1 � t2, then t2 is the next point in time immediately after t2. Formally,
this relation is defined as:

t1 � t2 , t1 <t2 ∧ ¬∃s [t1 <s < t2]

66 CHAPTER 2. WORK SYSTEMS

As, < provides a complete and total order, for a given t1 there is always at most one t2 such that
t1 � t2:

Corollary 2.5.1
t1 � t2 ∧ t1 � t3⇒ t2 = t3

Proof:
Left as an exercise to the reader.

As a result, we can actually view � as a function: � : TI →TI and write � t as an abbreviation
for: the unique t′ such that t � t′.

The evolution over time of an element from a conception, can now indeed be modelled formally
as a function: h : TI� EL. By means of h(t) we obtain the “version” of the element’s evolution
as described by h at point of time t, while h(� t) would yield the version at the next point in
time. These functions, which represent an element’s evolution, will be referred to as element
evolutions. This also requires us to think of the elements in EL as the possible versions an element
evolution may take on. Whenever we need to emphasize this, we shall therefore use the term
element version.

Element evolutions are partial functions, which means that they are not required to be defined for
all points in time. In other words, at some point in time an element evolution may not have an
element version associated, which really means that the element evolution does not exist yet at
that point in time (it has not been born yet), or that it has ceased to exist (it died). In other words,
element evolutions are allowed to be re-born. We could, for example, have a situation where: h
is an element evolution, t1 <t2 <t3 are points in time, while: h↓tt ∧¬h↓t2 ∧h↓t310.

The set of all element evolutions is defined as: EE , TI� EL, in other words the set of par-
tial functions from the time axes to the possible element versions. The evolution of an entire
conception can then be represented formally as a set of element evolutions. In other words:
CE , ℘(EE). To formally express the fact that H ∈ CE is a conception of viewer v for universe U ,
we will write U |=c v H .

Time

Environment

Domain

Figure 2.14: An element evolution migrating from the environment to the domain

If H ∈ CE , then we will use as abbreviation: H(t) ,
{
h(t)

∣∣ h ∈ H
}

, yielding the entire “state”
of H at time t. If H is a conception of some viewer, then each of the states should be a valid
conception:

[S20] If U |=c v H , then: ∀t∈TI [U |=c v H(t)].

Similarly, to |=c we want to extend |=d 〈 : : 〉, |=m 〈 : : 〉 and |=s 〈 : : 〉 to deal with
evolution as well. We might, for example, view U |=d v 〈HC : HE : HD〉 to means: viewer v has a
conception evolution HC , environment evolution HE and domain evolution HD of universe U ,
where HD,HE ⊆ HC . The difficulty with this is that an element evolution might start out as
being in the environment, but might evolve into the domain, or vice versa. This is illustrated in
Figure 2.14. To properly deal with such evolution, we will need to regard HE and HD as a classi-
fication of the element evolutions from HC at each point in time. In other words as functions:

HE ,HD : TI →℘(HC)
10Please refer to appendix A for an explanation of the notion used.

2.5. DEALING WITH EVOLUTION OF CONCEPTIONS 67

yielding the set of conception evolutions from HC that are part of the environment/domain re-
spectively at a given point in time. This means that HE(t),HD(t) ⊆ HC are sets of element
evolutions, while HE(t)(t) and HD(t)(t) yield the actual environment and domain as it holds at
t. For this we have:
Corollary 2.5.2

If U |=d v 〈HC : HE : HD〉, then: ∀t∈TI [HE(t)(t) ⊆ HC(t)] and ∀t∈TI [HD(t)(t) ⊆ HC(t)].
Proof:

Left as an exercise to the reader.

Note: the same would hold for U |=m v 〈HC : HE : HD〉 and U |=s v 〈HC : HE : HD〉. In each case, the
states of the evolutions should be valid conceptions/environments/domains as well:
[S21] If U |=d v 〈HC : HE : HD〉, then ∀t∈TI

[
U |=d v 〈HC(t) : HE(t)(t) : HD(t)(t)〉

]
[S22] If U |=m v 〈HC : HE : HD〉, then ∀t∈TI [U |=m v 〈HC(t) : HE(t)(t) : HD(t)(t)〉]
[S23] If U |=s v 〈HC : HE : HD〉, then ∀t∈TI [U |=s v 〈HC(t) : HE(t)(t) : HD(t)(t)〉]
Adding evolution of conceptions to our ontology from figure 2.10, leads to the refinement of our
ontology to the situation as depicted in figure 2.15.

*

"is decomposed into"
Decomposer

Element

LinkConcept
from

to

Environment evolution: SET OF

Element evolution: SET OF

occurs at

Domain evolution: SET OF

Conception evolution: SET OF

in domain at

in environment at

Time

Figure 2.15: Ontology with evolution added

Mainly due to Axiom S6 (page 53), we have:
Corollary 2.5.3

If U |=d v 〈HC : HE : HD〉, then: ∀t∈TI [HE(t)(t)∩HD(t)(t) = ∅]
Proof:

Left as an exercise to the reader.

Even more specifically, we have:
Lemma 2.5.1

If U |=d v 〈HC : HE : HD〉, then: ∀t∈TI [HE(t)∩HD(t) = ∅]
Proof:

Left as an exercise to the reader.

68 CHAPTER 2. WORK SYSTEMS

2.6 Conclusion

In this chapter we have taken a highly fundamental and formal outlook on information systems,
organizations and work systems, and the way they are modelled, including their decompositions
and evolutions.

Questions
Version:
16-03-05 1. How are the terms ‘organization’, ‘domain’ and ‘universe’ be related to each other, given

the definitions provided in this textbook?

• Describe this relation in natural language.
• Describe this relation in the formal language given in this chapter.

2. Proof Corollary 2.2.1 (page 53).

3. Proof Lemma 2.2.1 (page 54).

4. Not all conceptions of a domain produce models. Why not?

5. Give an example of a reactive system, of a responsive system and of an autonomous system
(other examples than the ones already given, of course).

6. From a modeling point of view, organizations can be considered as systems containing a.o.
entities and relations.

• Why is it important to be aware of the aspect of subjectivity when creating models?
• What view does an information system developer have when modeling organizations?
• Why would an information system developer want to start by creating a model of an

organization, instead of directly focusing on modeling an information system?

7. Proof Corollary 2.2.2 (page 55).

8. Suppose you are requested by a large organization (a holding company holding some
daughter companies) to create more insight into their own activities by creating some mod-
els of their organization. The focus of this models must, according to the board of directors,
be on their internal information flows, since the organization has the impression that a lot
of business efficiency is lost due to an incompetent set of information systems. Keeping in
mind what is explained in the two previous chapters, give an impression of:

(a) Where would you start modeling?
(b) What would you model?
(c) Why model that?

9. Proof Corollary 2.3.1 (page 60).

10. Consider a home cinema set.

(a) Describe the systems elements.
(b) Distinguish proper sub-systems.
(c) Can you derive typical aspect systems and component systems?

Explain your answers.

11. Consider a travel agency.

(a) Describe the most important system characteristics and exposition characteristics.
(b) Describe its behavior in terms of internal and external functions.

12. Describe why information systems contain databases. Use the descriptions of the terms data,
information and knowledge as described in Chapter 2 in your description.

13. Consider our definition of information intensive organizations.

BIBLIOGRAPHY 69

(a) Give some examples of:

i. Information intensive organizations
ii. Non-information-intensive organizations

(b) How would you describe the distinction between information intensive organizations
and non-information organizations?

14. Describe, in your own words, the differences between knowledge, information and data.

15. Proof Corollary 2.5.1 (page 66).

16. Proof Corollary 2.5.2 (page 67).

17. Proof Corollary 2.5.3 (page 67).

18. Proof Lemma 2.5.1 (page 67).

Bibliography

[Ack71] R.L. Ackoff. Towards a system of system concepts. Management Science, 17, July 1971.

[Bem98] T.M.A. Bemelmans. Bestuurlijke Informatiesystemen en Automatisering. Kluwer, De-
venter, The Netherlands, EU, 7th edition, 1998. In Dutch. ISBN 9026727984

[Ber01] L. von Bertalanffy. General Systems Theory – Foundations, Development, Applications.
George Braziller, New York, New York, USA, revised edition, 2001. ISBN 0807604534

[Che81] P. Checkland. Systems thinking, systems practice. John Wiley & Sons, New York, New
York, USA, 1981. ISBN 0471279110

[FVSV+98] E.D. Falkenberg, A.A. Verrijn-Stuart, K. Voss, W. Hesse, P. Lindgreen, B.E. Nilsson,
J.L.H. Oei, C. Rolland, and R.K. and Stamper, editors. A Framework of Information
Systems Concepts. IFIP WG 8.1 Task Group FRISCO, IFIP, Laxenburg, Austria, EU,
1998. ISBN 3901882014

[Hal01] T.A. Halpin. Information Modeling and Relational Databases, From Conceptual Analy-
sis to Logical Design. Morgan Kaufman, San Mateo, California, USA, 2001. ISBN
1558606726

[HP95] T.A. Halpin and H.A. (Erik) Proper. Subtyping and Polymorphism in Object-Role
Modelling. Data & Knowledge Engineering, 15:251–281, 1995.

[IEE00] Recommended Practice for Architectural Description of Software Intensive Systems.
Technical Report IEEE P1471-2000, The Architecture Working Group of the Software
Engineering Committee, Standards Department, IEEE, Piscataway, New Jersey, USA,
September 2000. ISBN 0738125180
http://www.ieee.org

[Iiv83] J. Iivari. Contributions to the theoretical foundations of systemeering research and
the pioco model. Technical Report 150, University of Oulu, Oulu, Finland, EU, 1983.
ISBN 9514215435

[Lan71] B. Langefors. Editorial notes to: Computer Aided Information Systems Analysis and De-
sign. Studentlitteratur, Lund, Sweden, EU, 1971.

[Lin92] P. Lindgreen. A General Framework for Understanding Semantic Structures. In
E.D. Falkenberg, C. Rolland, and E.N. El Sayed, editors, Information System Concepts:
Improving the understanding – Proceedings of the second IFIP WG8.1 working conference
(ISCO-2), Alexandria, Egypt, April 1992. North Holland/IFIP WG8.1, Amsterdam,
The Netherlands, EU. ISBN 0444895078

http://www.ieee.org

70 CHAPTER 2. WORK SYSTEMS

[Mer03] Meriam-Webster Online, Collegiate Dictionary, 2003.
http://www.webster.com

[Pei69a] C.S. Peirce. Volumes I and II – Principles of Philosophy and Elements of Logic. Collected
Papers of C.S. Peirce. Harvard University Press, Boston, Massachusetts, USA, 1969.
ISBN 0674138007

[Pei69b] C.S. Peirce. Volumes III and IV – Exact Logic and The Simplest Mathematics. Collected
Papers of C.S. Peirce. Harvard University Press, Boston, Massachusetts, USA, 1969.
ISBN 0674138005

[Pei69c] C.S. Peirce. Volumes V and VI – Pragmatism and Pragmaticism and Scientific Metaphysics.
Collected Papers of C.S. Peirce. Harvard University Press, Boston, Massachusetts,
USA, 1969. ISBN 0674138023

[Pei69d] C.S. Peirce. Volumes VII and VIII – Science and Philosophy and Reviews, Correspondence
and Bibliography. Collected Papers of C.S. Peirce. Harvard University Press, Boston,
Massachusetts, USA, 1969. ISBN 0674138031

[Pro94] H.A. (Erik) Proper. A Theory for Conceptual Modelling of Evolving Application Domains.
PhD thesis, University of Nijmegen, Nijmegen, The Netherlands, EU, 1994. ISBN
909006849X

[Rop99] G. Ropohl. Philosophy of socio-technical systems. In Society for Philosophy and Tech-
nology, 4(3), 1999.

[Sim62] H.A. Simon. The architecture of complexity. In Proceedings of the American Philosophi-
cal Society, volume 106, pages 467–482, 1962.

[Vel92] J. in ’t Veld. Analyse van organisatieproblemen – Een toepassing van denken in systemen
en processen. Stenfert Kroese, Leiden, The Netherlands, EU, 1992. In Dutch. ISBN
9020722816

http://www.webster.com

Chapter 3

Basic Object-Role Modeling

Version:
03-06-05This is where the reading of these lecture notes gets bumpy. The previous chapters already have

a reasonable amount of text explaining the theory. This chapter is still in an outline (i.e. close to
powerpoint style) state.

The previous chapter did (see Figure 2.1) refer to the fact that viewers are able to provide a de-
scription of the conception. However, we did not really follow up on this. This chapter, however,
will indeed take these descriptions as a starting point. In this chapter, we will essentially provide
a brief summary of the modeling approach from Domain Modeling. In the next chapter, we will
enrich this modeling approach with constructs that allow us to model work systems.

3.1 Natural language grounding of modeling

Not an uncommon approach:

• ORM [Hal01],

• NIAM [Win90, NH89],

• UML use cases [BRJ99],

• DEMO [RMD99],

• KISS [Kri94] and

• OOSA [EKW92].

When people work together, they are bound to use some language. The language skills of the
human race evolved hand-in-hand with the levels of organization of our activities. From or-
ganization of hunting parties by our pre-historic ancestors, to the organization of factories and
businesses in the present. Without the use of language, it would not have worked. As a re-
sult, most (if not all) organizations we see around us are social constructs that are the result of
communication between actors, mostly human actors.

This makes it all the more natural to base our modeling endeavors on the language we use most
to talk about organizations, i.e. natural language.

3.2 The logbook heuristic

Natural language based modeling approaches such as ORM employ different variations of the
so-called telephone heuristic. This heuristic presumes some viewer to observe a domain (includ-
ing its evolution), and use a ‘telephone’ to convey their observations to some other person (or

71

72 CHAPTER 3. BASIC OBJECT-ROLE MODELING

computer). This is depicted in Figure 3.1. The left hand viewer tells the right hand viewer ‘what
they see’.

Conceptionconceiving Conceptionconceiving

interpreting

perceiving

describing
Universe

Telephone Conversation

Figure 3.1: The telephone heuristic

In this chapter we are interested in having a “transcript” of the telephone conversation from Fig-
ure 3.1. More specifically, we want to maintain a logbook of this telephone conversation, leading
to the situation as depicted in Figure 3.2.

Conceptionconceiving Conceptionconceiving

interpreting

perceiving

describing
Universe

Telephone Conversation

Logbook

Conception Ontology

Figure 3.2: Logging the telephone conversation

Even more, we could actually replace the second person from Figure 3.1, leaving only the original
viewer and the logbook to maintain the transcript. This leads to the logbook heuristic as depicted
in Figure 3.3.

Note that the logbook is regarded as having a conception based on an ontology as well. As a starting
point, we will presume this ontology to consist at least of the situation as depicted in Figure 2.15
(page 67).

Let λ be a logbook, logging the transcript as produced by a viewer leads to a situation where the
logbook has its own conception of the observed universe (by way of the viewer). In the case of a
viewer observing a system, we will denote this as: U |=s λ 〈HC : HE : HS〉.

All of the S axioms apply to the conception held by logbook λ.

In the remainder of this text book, we will further refine the ontology as presented in Figure 2.15
(page 67)

3.3. VERBALIZING CONCEPTIONS 73

Conceptionconceiving

Logbook

Conception Ontology

perceiving

describing
Universe

Account of events

Figure 3.3: The logbook heuristic

3.3 Verbalizing conceptions

We presume the transcriptions that are entered into the logbook to refer to events ‘in the life’ of
specific element evolutions. These events refer to changes in the state of the elements, and are
presumed to be reported in terms of facts about the elements. An example would be:

Person #001 was born 22-05-1967
Person #001 received name Erik Proper 23-05-1967
Person #001 lives at address: Koperwiekstraat 6, Rheden, The Netherlands, EU 23-05-1967
Person #001 lives at address: 3/26 Rylatt Street, Brisbane, Australia 28-06-1994
Person #002 lives at address: Koperwiekstraat 6, Rheden, The Netherlands, EU 29-06-1994
Person #001 works for employer: University of Queensland 28-06-1994
Person #003 works for employer: University of Queensland 22-04-1995

When considering this transcript, it is easy to spot that it really deals with more than one element
evolution. The following element evolutions might be discerned:

persons: #001; #002; #003
name Erik Proper
addresses: Koperwiekstraat 6, Rheden, The Netherlands, EU; 3/26 Rylatt Street, Brisbane, Australia
employer: University of Queensland
ownership of the name Erik Proper by person #001
living of person #001 at some address
living of person #002 at some address
habitation of address Koperwiekstraat 6, Rheden, The Netherlands by some person
habitation of address 3/26 Rylatt Street, Brisbane, Australia by some person
coworkership of person #001 for some employer
coworkership of person #002 for some employer
employment offered by University of Queensland to a group of people

In the above example, an important trade-off already comes to the surface. What should be
selected as element evolutions:

coworkership of person #001 for some employer

and/or
employment offered by University of Queensland to a group of people

What is it that evolves? Either? Both? Ultimately, this is a subjective matter. To be able to better
understand the underlying trade-off, we will now first focus on the transcription of a specific
snapshot of a conception.

3.4 Elementary facts

Similarly to Domain Modeling, we require the facts in the transcripts to be elementary, in other
words, no logical connectors like and and or, and most likely no nots either.

Consider, the following domain:

74 CHAPTER 3. BASIC OBJECT-ROLE MODELING

A person with name Erik is writing a letter to his loved one, at the desk in a romantically lit room, on a mid-summer’s day,
using a pencil, while the cat is watching.

We can rephrase this as the set of elementary facts:

A person is writing a letter
This person has the name Erik
This letter has a romantic nature
This letter has intended recipient Erik’s loved one
The writing of this letter by Erik, occurs on a mid-summer’s day
The writing of this letter by Erik, is done using a pencil
The writing of this letter by Erik, is done while the cat is watching
The writing of this letter by Erik, is taking place at a desk
This desk is located in a room
This room is romantically lit

Within these elementary facts, several players can be discerned. In the above example, we can
isolate the players and facts as follows:

[A person] is writing [a letter]
[This person] has [the name Erik]
[This letter] has a [romantic nature]
[This letter] has intended recipient [Erik’s loved one]
[The writing of this letter by Erik], occurs on a [mid-summer’s day]
[The writing of this letter by Erik], is done using [a pencil]
[The writing of this letter by Erik], is done while [the cat] is watching
[The writing of this letter by Erik], is taking place at [a desk]
[This desk] is located in [a room]
[This room] is lit in [a romantic] way

The links in a conception can be treated as a relationship over concepts:

x LinkedTo y , ∃l∈LI [From(l) = x ∧ To(l) = y]

The roles involved in a fact are linked to the players of these roles and to the facts in which these
roles take part by means of the relationships:

Player,Fact ⊆ LinkedTo

respectively, with intuition:

r Player x = role r is played by x
r Factx = role r is involved in fact x

The set of roles is defined as:

RO ,
{
r

∣∣ ∃x [r Player x ∨ r Factx]
}

The Player and Fact relationships are exclusive:

[S24] Player∩Fact = ∅
Even more, they behave as total functions from roles to concepts:

[S25] Player,Fact ∈ RO→CO
This allows us to write Player(r) and Fact(r). We generalize these functions to sets of roles as
follows:

Player(R) ,
{
Player(r)

∣∣ r ∈ R
}

Fact(R) ,
{
Fact(r)

∣∣ r ∈ R
}

With this we can define the set of facts and players as:

FC , Fact(RO)
PL , Player(RO)

When taking the above example, we can isolate the players and facts as follows:

3.4. ELEMENTARY FACTS 75

[A person] is writing [a letter]
[This person] has [the name Erik]
[This letter] has a [romantic nature]
[This letter] has intended recipient [Erik’s loved one]
[The writing of this letter by Erik], occurs on a [mid-summer’s day]
[The writing of this letter by Erik], is done using [a pencil]
[The writing of this letter by Erik], is done while [the cat] is watching
[The writing of this letter by Erik], is taking place at [a desk]
[This desk] is located in [a room]
[This room] is lit in [a romantic] way

The set of objects is defined as:
OB , FC ∪PL

Objects and roles are disjunct classes of concepts:

[S26] RO∩OB = ∅

The set of roles played by an object is defined as:

Plays(x) ,
{
r

∣∣ Player(r) = x
}

while the set of roles involved in a fact is defined as:

RolesOf(f) ,
{
r

∣∣ Fact(r) = f
}

Facts are to be regarded as complex objects. In other words, the roles and players involved in a
fact are part of its decomposition:

[S27] ∀r∈RolesOf(f) [r DecompOf f]

[S28] r ∈ RO∧r DecompOf f ⇒Player(r) DecompOf f

At this moment, we have actually refined our ontology from Figure 2.15 (page 67) to the situa-
tion as depicted in Figure 3.4 (where we have omitted the aspects pertaining to the evolution of
conceptions for reasons of compactness).

Our formal considerations take place in the context of some logbook λ. In other words, we have:
U |=s λ 〈HC : HE : HS〉. Given a HC , the set of elements of the conception at some point in time t is
given by: HC(t). For any subset X ⊆ EL of elements we introduce the abbreviation:

Xt , X ∩HC(t)

A conception version should be closed with regards to the roles included in it:

[S29] r ∈ ROt⇔Fact(r) ∈ FCt and r ∈ ROt⇔Player(r) ∈ PLt

As a direct consequence we have:

Corollary 3.4.1
FCt = Fact(ROt) and PLt = Player(ROt).

Proof:
Left as an exercise to the reader.

76 CHAPTER 3. BASIC OBJECT-ROLE MODELING

Role

Concept

"Link"

is linked to

Decomposition

Element

Object

Fact Player

Figure 3.4: Our ontology refined with facts and participants

3.5. FROM INSTANCES TO TYPES 77

3.5 From instances to types

Consider the elementary sentences:

Person ”Erik” is examined by Doctor ”Jones”
Person ”Wil” is examined by Doctor ”Smith”
Person ”Marc” is examined by Doctor ”Jones”

As we have learned in Domain Modeling, we can generalize these sentences to the “type” level:

A Person is examined by a Doctor

with sample population:

Person Doctor
Erik Jones
Wil Smith
Marc Jones

Formally, we introduce typing as a special kind of decomposition: HasType ⊆ DecompOf where:

xDecompOf y , ∃l∈DC [From(l) = y ∧ To(l) = x]

The set of instances (IN) and the set of types (TP) can be defined as:

TP ,
{
y

∣∣ ∃x [xHasType y]
}

IN ,
{
x

∣∣ ∃y [xHasType y]
}

Types and instances form a partition of the set of concepts:

[S30] TP ∩IN = ∅ and TP ∪IN = CO.

All instances have some type:

Corollary 3.5.1
∀x∈IN∃y∈TP [xHasType y]

Proof:
Left as an exercise to the reader.

Note that the reverse does not hold. In other words, we do not generally have:

∀y∈TP∃x∈IN [xHasType y]

Some types may have an empty population.

We actually require Corollary 3.5.1 to hold at each point in time:

[S31] Let t ∈ TI, then: ∀x∈IN∃y∈TP [xHasTypet y]

Sets such as FC, PL, etc, contain both types and instances. To be able to refer to the types and
instances respectively, we introduce:

X̂ , X ∩TP and X̌ , X ∩IN

for any set X ⊆ EL of elements. As a direct consequence we have:

Corollary 3.5.2
P̂L , Player(R̂O) P̌L , Player(ŘO)
F̂C , Fact(R̂O) F̌C , Fact(ŘO)

78 CHAPTER 3. BASIC OBJECT-ROLE MODELING

Proof:
Left as an exercise to the reader.

As abbreviations we will also use:

Typest(x) ,
{
y

∣∣ xHasTypet y
}

Typest(X) ,
⋃

x∈X

Typest(x)

Popt(y) ,
{
x

∣∣ xHasTypet y
}

Popt(Y) ,
⋃

y∈Y

Popt(y)

The extra temporal versions are defined as:

xHasType y , ∃t∈TI [xHasTypet y]

Types(x) ,
⋃

t∈TI
Typest(x)

Types(X) ,
⋃

t∈TI
Typest(X)

Pop(y) ,
⋃

t∈TI
Popt(y)

Pop(Y) ,
⋃

t∈TI
Popt(Y)

Typing should adhere to the classification in our ontology. In other words:

[S32] For all X ∈ {FC,RO,PL} we have:

xHasType y⇒(x ∈ X⇔ y ∈ X)

The Fact and Player functions should never cross the type/instance level:

[S33] ∀r∈RO [r ∈ TP ⇔Fact(r) ∈ TP]

[S34] ∀r∈RO [r ∈ TP ⇔Player(r) ∈ TP]

All non-typing forms of decomposition should also not cross the type/instance level:

[S35] If xDecompOf y, then:
xHasType y ∨ x, y ∈ TP ∨x, y ∈ IN

Players involved in role instances should behave as stipulated at the type level:

[S36] If r ∈ R̂O, then: Player(Pop(r)) ⊆ Pop(Player(r))

The same applies to facts:

[S37] If r ∈ R̂O, then: Fact(Pop(r)) ⊆ Pop(Fact(r))

Even more, as all role types of a fact type should be populated, the reverse should hold as well:

[S38] If r ∈ R̂O, then: Fact(Pop(r)) ⊇ Pop(Fact(r))

As an immediate result we have:

Corollary 3.5.3
If f ∈ F̂C, then:

Pop(f) = Fact(Pop(Involved(f)))

3.6. STANDARD CONSTRAINTS 79

Proof:
Left as an exercise to the reader.

We can express this at the type level as:

Corollary 3.5.4
Let f ∈ F̌C, then:

Types(RolesOf(f)) = RolesOf(Types(f))

Axiom S38 does not have a pendent for players. In other words, we do not generally have:

Player(Pop(r)) ⊇ Pop(Player(r))

as this would require all instances of a player type to be involved in all roles in which the type is
involved. However, we do have a weaker version:

[S39] If p ∈ P̂L, then:
Pop(p) ⊆ Player(Pop(Plays(p)))

In other words, instances of a player type must be active in one of the associated roles. With
Axiom S36 we have:

Corollary 3.5.5
If p ∈ P̂L, then:

Pop(p) = Player(Pop(Plays(p)))

Proof:
Left as an exercise to the reader.

Facts should behave as a function from role types to instances:

[S40] Let r ∈ R̂O and s1, s2 ∈ Pop(r), then:

Fact(s1) = Fact(s2)⇒ s1 = s2

This axiom allows us, for any fact instance f ∈ F̂C, to define the partial function ~f : R̂O� ǑB as:

~f ,
{
〈r, Player(s)〉

∣∣ s ∈ Pop(r) ∧ Fact(s) = f
}

If f is some fact and R ⊆ RolesOf(Types(f)), then we define the total function ~f [R] : R→ǑB as:

~f [R] ,
{
〈r, ~f(r)〉

∣∣ r ∈ R
}

The ontology resulting after this refinement is depicted in Figure 3.5.

3.6 Standard constraints

Let R ⊆ Involved(f) for some fact type f ∈ ˆFact, then:

Uniquet(f : R) , ∀g1,g2∈Popt(f) [g1[R] = g2[R]⇒ g1 = g2]

Unique(f : R) , ∀t∈TI [Uniquet(f : R)]

Let R ⊆ R̂O such that ∀r,s∈R [Player(r) = Player(s)], then:

Totalt(R) ,
⋃
r∈R

Popt(Player(r)) ⊆
⋃
r∈R

{
f(r)

∣∣ f ∈ Popt(Fact(r))
}

Total(R) , ∀t∈TI [Totalt(R)]

Inter-facttype constraints can, as usual, best be defined as constraints on derived facttypes.

80 CHAPTER 3. BASIC OBJECT-ROLE MODELING

Role

Concept

"Link"

is linked to

Decomposition

Element

Object

Instance

Type

Typing

Fact Player

Figure 3.5: Our ontology refined with typing

3.7 Temporal ordering

Now consider the following verbalizations (at the type level):

A Person fills in a Form
A Person is examined by a Doctor
A Doctor produces a Diagnose
A Doctor writes a Prescription

This leads to the situation as depicted in Figure 3.6.

Thus far we have not discussed properties pertaining to temporal ordering. Suppose now that in
this domain:

Before a Person can be examined by a Doctor, they should have filled in a Form.
Before a Doctor produces a Diagnose, a Person should have been Examined.
Before a Doctor writes a Prescription, a Person should have been Diagnosed.

This is, however, is still an incomplete picture. The production of a diagnose and the writing of
a prescription should all pertain to the same person. Even more, as a person may visit a doctor
twice for two different reasons, the diagnose and prescription really pertain to one specific doctor
visit. This leads to the situation as depicted in Figure 3.7.

But also consider the situation as depicted in Figure 3.8. What is the semantic difference?

As a graphical abbreviation, we will use the notation as depicted in Figure 3.9 and Figure 3.10
respectively.

3.7. TEMPORAL ORDERING 81

examines

Person

Form

Diagnose

produces

fills out

writes

Prescription

Doctor

Figure 3.6: Basic model of a visit to a Doctor

examines

Person

Form

Diagnose

produces

fills out

writes

Prescription

Visit
Doctor Doctor

Figure 3.7: Model of a visit to a Doctor with explicit entity

82 CHAPTER 3. BASIC OBJECT-ROLE MODELING

examines

Person

Form

Diagnose

produces

fills out

writes

Prescription

Visit
Doctor Doctor

Figure 3.8: Model of a visit to a Doctor with alternative semantics

Person

Form

Diagnose Doctor

examines

produces

fills out

Prescription

writes

State sequence:
Doctor Visit

Figure 3.9: Compact model of a visit to a Doctor

QUESTIONS 83

Person

Form

Diagnose Doctor

examines

produces

fills out

Prescription

writes

State sequence:
Doctor Visit

Figure 3.10: Compact model of a visit to a Doctor with alternative semantics

Formally, temporal dependency constraints can be defined as follows. Let f ∈ F̂C, R ∈ RolesOf(f)+

and x ∈ Pop(RolesOf(f))+ such that |R| = |x|, then:

Matches(g, x,R) , ∀1≤i≤|x| [~g(R[i]) = x[i]]

Endedt(x,R) , ∃g∈Popt(f)−Pop� t(f) [Matches(g, x,R)]

Startedt(x,R) , ∃g∈Pop� t(f)−Popt(f) [Matches(g, x,R)]

Let f, g ∈ F̂C, R ∈ RolesOf(f)+, S ∈ RolesOf(g)+ and x ∈ EL+ such that |R| = |S| = |x| and
∀1≤i≤|x| [Player(R[i])∼Player(S[i])], then:

Beforet(x,R, S) , Endedt(x,R)⇔Startedt(x, S)
Beforet(R,S) , ∀x∈CO+ [|x| = |R|⇒Beforet(x,R, S)]

Inter-facttype versions can, again, best be defined as constraints on derived facttypes.

Questions
1. Given the situation:

A person with name Erik is writing a letter to his loved one, at the desk in a
romantically lit room, on a mid-summer’s day, using a pencil, while the cat is
watching.

Produce a graph consisting of concepts and links depicting this domain.

2. Stel je maakt een ontwerp voor een geldautomaat. Wat zijn voor dat domein de belangrijk-
ste concepten en hun onderlinge links? Hoe werken ze samen?

3. Proof Corollary 3.4.1 (page 75).

84 CHAPTER 3. BASIC OBJECT-ROLE MODELING

4. Proof Corollary 3.5.1 (page 77).

5. Proof Corollary 3.5.2 (page 77).

6. Proof Corollary 3.5.5 (page 79).

7. Proof Corollary 3.5.4 (page 79).

8. Consider the following case:

Een onderneming produceert en verkoopt een tiental soorten gevulde chocolade-
artikelen. De verkoop geschiedt aan grossiers tegen prijzen die voor lange tijd
vast zijn. In verband met achteruitgang in kwaliteit wordt op de verpakking een
uiterste verkoopdatum vermeld. Alle afleveringen geschieden met eigen auto’s.
Voor de produktie van chocolade importeert de inkoopafdeling van de onderne-
ming verschillende soorten cacaobonen uit tropische landen. Daartoe worden
inkoopcontracten afgesloten die de behoefte voor ca. een half jaar dekken. De ca-
caobonenprijs is aan sterke schommelingen onderhevig. De ingekochte partijen
hebben belangrijk uiteenlopende vetgehaltes, hetgeen mede in de inkoopprijs tot
uitdrukking komt.
De cacaobonen ondergaan afzonderlijk per partij in de voorbewerkingsafdeling
enkele machinale bewerkingen, zoals zuiveren, schillen, breken, branden, malen
en walsen.
Aan het onstane halffabrikaat worden door de afwerkingsafdeling suiker, smaak-
stoffen en – in verhouding tot het vetgehalte – cacaoboter toegevoegd. Het al-
dus verkregen halffabrikaat is cacaomassa van een bepaalde standaardkwaliteit,
dat in speciaal daartoe geconditioneerde opslagtanks wordt bewaard. De ver-
schillende benodigde vulsels worden ingekocht bij derden. Naar rato van de
ontwikkeling van de verkoop en de gewenste voorraadvorming worden de eind-
produkten gemaakt. Dit geschiedt in één arbeidsgang met behulp van automa-
tische vorm-, vul- en droogmachines.
In de pakafdeling worden de goedkopere soorten gevulde chocolade automatisch
en de duurdere soorten met de hand in sierdozen verpakt, waarna opslag in een
magazijn volgt. Bij alle bewerkingen ontstaan gewichtsverliezen.
In verband met de kwaliteitsachteruitgang kunnen de grossiers de niet tijdig
door hen verkochte artikelen retourneren, mits dit gebeurt binnen 10 dagen na
de uiterste verkoopdatum; meestal geschiedt deze teruglevering via de chauf-
feurs. De teruggenomen artikelen worden vernietigd. Creditering vindt plaats
voor 20 van de door hen betaalde prijs. Verrekening hiervan geschiedt slechts bij
gelijktijdige nieuwe afname.
Elk van de artikelen is voorzien van een of twee cadeaubonnen, afgedrukt op
de verpakking. De waarde van deze bonnen is e 0,10 per stuk. Op de artikelen
met een prijs tot e 5,- komt één, op de overige artikelen (tussen e 5,- en e 11,-)
komen twee bonnen voor. Op deze bonnen kunnen cadeau-artikelen (hand- en
theedoeken e.d.) zonder bijbetaling worden verkregen.
Voorts kunnen op deze bonnen meer duurzame gebruiksgoederen tegen ver-
laagde prijs worden verkregen. Hiervoor wordt elk halfjaar een folder uitgegeven,
waarin per artikel is aangegeven hoeveel bonnen moeten worden ingeleverd en
hoeveel daarnaast moet worden bijbetaald. In het algemeen is het door de afne-
mers bij te betalen bedrag iets lager dan de inkoopprijs voor de fabriek. Veelal
dient de halfjaarlijkse behoefte door de fabrikant in één keer te worden besteld;
latere aanvulling is in het algemeen niet mogelijk.
Op de duurzame gebruiksgoederen wordt veelal garantie of service verleend. Hi-
ervoor is met een gespecialiseerd bedrijf een contract afgesloten waarbij tegen een
eenmalig vast bedrag per apparaat de garantie- en serviceverplichtingen worden
overgedragen

BIBLIOGRAPHY 85

Answer the following questions:

(a) Produce elementary facts for this domain.
(b) Produce an ORM model for this domain.

Bibliography

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modelling Language User Guide.
Addison-Wesley, Reading, Massachusetts, USA, 1999. ISBN 0201571684

[EKW92] D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object-Oriented Systems Analysis – A
model-driven approach. Yourdon Press, Englewood Cliffs, New Jersey, USA, 1992. ASIN
0136299733

[Hal01] T.A. Halpin. Information Modeling and Relational Databases, From Conceptual Analysis to
Logical Design. Morgan Kaufman, San Mateo, California, USA, 2001. ISBN 1558606726

[Kri94] G. Kristen. Object Orientation – The KISS Method, From Information Architecture to Infor-
mation System. Addison-Wesley, Reading, Massachusetts, USA, 1994. ISBN 0201422999

[NH89] G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational Database Design: a fact
oriented approach. Prentice-Hall, Sydney, Australia, 1989. ASIN 0131672630

[RMD99] V.E. van Reijswoud, J.B.F Mulder, and J.L.G. Dietz. Commucation Action Based Busi-
ness Process and Information Modelling with DEMO. The Information Systems Journal,
9(2):117–138, 1999.

[Win90] J.J.V.R. Wintraecken. The NIAM Information Analysis Method: Theory and Practice.
Kluwer, Deventer, The Netherlands, EU, 1990.

86 CHAPTER 3. BASIC OBJECT-ROLE MODELING

Chapter 4

Advanced Object-Role Modeling

Version:
12-05-05This chapter is mainly based on the work reported in [HW93, BBMP95, HP95, CP96].

4.1 Subtyping

Sub-typing is an important feature of fact-based modeling. Figure 4.1 shows an example of sub-
typing in terms of a specialization hierarchy.

Animal
(name)

Flesh eater Plant eater

OmnivoreCarnivore Herbivore

is of

{'carnivore',
 'omnivore',
 'herbivore'}

AnimalType
(name)

Figure 4.1: Example of a specialization hierarchy

In general, sub-typing involves the identification of a sub-set of the population of some super-
type. For example, in the situation depicted in Figure 4.1 flesh eater is a specific sub-set of animals.
In different versions of ORM, different rules apply to sub-typing [HW93, HP95, Hal01]. In this
textbook we present a rather generic interpretation.

Formally, sub-typing is captured as a relationship Sub ⊆ LinkedTo with intuition: if xSub y, then
type x is considered to be a subtype of y. We will also refer to x as the sub-type and y as the
super-type. Sub-typing is a relationship over object types:

[S41] Sub ⊆ ÔB × ÔB

The sub-typing relationship should be transitive and acyclic:

[S42] xSub y Sub z⇒xSub z

[S43] ¬xSub x

87

88 CHAPTER 4. ADVANCED OBJECT-ROLE MODELING

The semantics of sub-typing in terms of populations is that the population of a specialized type
should be a subset of the population of the supertype:

[S44] xSub y⇒Pop(x) ⊆ Pop(y)

The population of a subtype can be restrained further. Rules can be specified that specify the
‘maximum’ and ‘minimum’ population of a sub-type. Normally, if xSub y then the population of
x is bounded by: ∅ ⊆ Pop(x) ⊆ Pop(y). Graphically, this leads to the situation i) as depicted in
Figure 4.2.

X

Y

R S

iv)

X

Y

R

v) vi)

X = R

X

Y

X

Y

S

iii)

X

Y

ii)

R

i)

X

Y

Figure 4.2: Restricting subtyping

The population of a subtyping can be restricted further by requiring it to be a sub/superset of
some set of instances specified by a (subtype constraining) rule. Situations ii), iii) and iv) of
Figure 4.2 depict this graphically. In situation ii), the population of X should at least consist of
those match rule R. In general, this can be defined as follows:

SubSet(x,R) , Σ[R](Popt) ⊆ Popt(x)

where Σ[R](Popt) provides the set of instances in Popt that match rule R. Note: for R to be a
sensible rule, we should at least have:

∀y [xSub y⇒Σ[R](Popt) ⊆ Popt(y)]

otherwise SubSet(x,R) would lead to inconsistent set of constraints on the population.

4.2. OVERLAP OF POPULATIONS 89

While the situation from ii) provides a minimum population for X, the situation depicted in iii)
does the reverse by demanding a maximimum population. The population of X is limited to those
instances of X’s supertypes that match rule S.

SuperSet(x, S) , Popt(x) ⊆ Σ[S](Popt)

The situation provided in iv) combines the maximum and minimum population. Situation v)
represents a very special case. In this case, the rule R actually fully determines the population of
the subtype, since:

Σ[R](Popt) ⊆ Popt(x) ⊆ Σ[R](Popt)

in other words:
Popt(x) = Σ[R](Popt)

As a graphical abbreviation we will use the notation provided in situation vi), which corresponds
to the traditional notion of specialization from ORM [Hal01].

Distance
(km)

Vehicle

has driven

Delivery van
(call sign) (reg. nr)

Car

is of

Car type
(name)

Spare part
(part id)

Product

is used for

is of

Money Amt
(Euro)

Figure 4.3: Example of a multi-rooted specialization hierarchy

A further interesting case of specialization is depicted in Figure 4.3. It illustrates how specializa-
tion hierarchies can have multiple roots. This example also introduces two important classes of
constraints: exclusiveness and totality of specializations. If T is a set of types, then we can define:

Exclusive(T) , ∀x,y∈T [x 6= y⇒Pop(x)∩Pop(y) = ∅]

If T is a set of types with a common supertype s, such that ∀t∈T [t Sub s], then we can define:

Total(s : T) , Pop(s) =
⋃
t∈T

Pop(t)

To express the semantics of totality in general we first need to identify all common supertypes:

CommonSuper(T) ,
{
y

∣∣ ∀x∈T [xSub y]
}

If T is a set of types such that there is some common supertype (CommonSuper(T) 6= ∅), then we
can define:

Total(T) , ∀s∈CommonSuper(T) [Total(s : T)]

Based on [HW93] a graphical abbreviation can be used for this kind of sub-typing. This is de-
picted in Figure 4.4. The right-hand side provides an abbreviation for the situation depicted in
the left-hand side.

4.2 Overlap of populations

When considering the ORM schema as depicted in Figure 4.3, one would expect the populations
of Vehicle and Distance to be disjoint, while the populations of Vehicle and Product are expected to overlap.

90 CHAPTER 4. ADVANCED OBJECT-ROLE MODELING

Y

X1 Xn

Y

XnX1

Figure 4.4: Generalization

Thus far, we have not introduced any formal mechanism to enforce this type of behavior other
that the inclusion of populations for sub-types. To properly formalize this, we first define the
family (as it is ‘alive’ at some point in time) of an object type based on the sub-typing hierarchy
as follows:

Familyt(x) ,
{
y ∈ ÔBt

∣∣ y Sub x ∨ y = x
}

Two object types are deemed type related iff their families overlap:

x∼t y , Family(x)∩Family(y) = ∅

If the population of object types overlaps, then they mus be type related:

[S45] Popt(x)∩Popt(y) 6= ∅⇒x∼t y

Note that the converse does not necessarily hold.

4.3 Abstraction

To introduce abstraction (schema decomposition), we start with an example domain taken from [CP96].

For our example domain, we consider a bank. Figure 4.5 shows the top level abstraction of the
banking domain. This schema displays five types: Bank, Client, Service, enjoy, of. The Bank type is an
abstracted type and forms the top abstraction of the entire banking application. This is also the
reason why the enjoy and of relationship types, together with the remaining object types playing
a role in these relationship types, are drawn inside the Bank type. Both Client and Service types are
abstractions themselves, although their underlying structure is not shown at the moment. When
stepping down to a lower level of abstraction, the void in these types will be filled with more
detail.

The Client and Service type are involved in a relationship type called enjoys. This is a many to many
relationship where each client must at least enjoy one service and each service offering must
be enjoyed by some person. The two black dots indicate that a client of the bank must indeed
enjoy some service, and conversely each service must be used by some client. The arrow tipped
bar spanning the two roles of the enjoys relationship type indicates that it is a many to many
relationship. Similarly, the of relationship type models the fact that a bank has many clients, and
clients can be client of many banks. The (name) suffix to Bank indicates that a bank is identified by
a name. Basically, the use of the (name) suffix is a graphical abbreviation of the schema fragment
depicted in Figure 4.6. The broken ellipse of BankName type indicate that it is a value type; i.e. its
instances are directly denotable (strings, numbers, audio, video, html).

As a first refinement step we can now take a closer look at what a client is. The details of the
Client type are shown in Figure 4.7. There we can see that each client is identified by a Client Nr,
as indicated by the (nr) suffix to Client. Each client provides the bank with a unique address as
indicated by the arrow tipped bar spanning the role of the lives at relationship type that is attached
to Client. This address is mandatory for each client. This ”mandatoryness” is indicated by the

4.3. ABSTRACTION 91

enjoys

ServiceClient

Bank (name)

of

Figure 4.5: The top diagram of the Bank domain

enjoys

ServiceClient

Bank

of

BankName

has

Figure 4.6: Fully detailed top diagram

92 CHAPTER 4. ADVANCED OBJECT-ROLE MODELING

black dot. Address is a normal object type without any other types clustered to it. Therefore, it is
drawn in the traditional ORM way using a solid ellipse. The (description) suffix to Address within the
solid ellipse indicates that an address is identified by a description. This corresponds to the same
underlying graphical abbreviation.

Clients must all provide at least one name, but they may have aliases. This leads to the arrow
tipped bar spanning both roles of the has fact type, and the black dot on the client side. For autho-
rization of transactions ordered by telephone or fax, the bank and the client agree upon a unique
password. The combination of a password and address must uniquely identify a client (indicated
in the diagram by the encircled U). Finally, clients may have a number of phone numbers at which
they can be reached.

With respect to the abstractions, we can now say that the relationship types has identifying, lives at,
reachable at, has (together with the types playing a role in these relationship types) are clustered
to Client. For each abstracted type, like Client, such a clustering of types (from a lower level of
abstraction) is provided. This could be an emptyset.

U

Password
Address

(description)
ClientNamePhoneNr

lives
at

reachable
at

has
identifying

has

Client (nr)

Figure 4.7: Refinement of the client type

In this example we refer to relationship types used in the bank example by means of the text
associated with these relationship types, such as has identifying. This text is a so-called mix fix pred-
icate verbalization. These mix fix predicate verbalizations do not have to be unique. The ver-
balization has typically occurs numerous times in an average conceptual schema. For example:
Client has Client Name and Client has Password. To uniquely identify relationship types (and types in gen-
eral), each type receives a unique name. For instance Client Naming and Issued Passwords for the two
earlier given examples.

The next refinement of the bank domain provides us with more details about the service types
available from the bank. This is depicted in Figure 4.8. The Service type is a generalization
of three basic types: Credit Card Account, Access Account, and Term Deposit Account. The Access Accounts and
Credit Card Accounts are first combined into a so-called Statement Account. It should be noted that during
a top-down modeling process, a type like Credit Card Account will start out as a ‘normal’ entity type
like Address. However, as soon as other types are clustered to such an entity type, they become
abstracted types.

The double lining around the Access Account type indicates that this type occurs in multiple clus-
terings. A CASE Tool supporting this kind of graphical representation, could have a feature in
which clicking on such a double lining results in a list of (abstracted) types in whose clustering
this type occurs.

As stated before, a statement account is a generalization of an access account and a credit card
account. The intuition behind a statement account is that for such an account regular statements
are sent to the clients and that a transaction record is kept. These details of the statement account

4.3. ABSTRACTION 93

Service

Statement Term Deposit
AccountAccount

Account
Access

Account
Credit Card

Figure 4.8: Refinement of the service type

are shown in Figure 4.9. For each statement account, a number of statements can be issued. A
statement lists a number of transactions This is captured by the lists fact type. This fact type is,
however, derivable from the (to be introduced) issue date of a statement and the dates at which
the transactions took place. This derivability is indicated by the asterisk.

lists

for ... was issued ...

Statement
*

Statement Account: Service

Transaction

Figure 4.9: Refinement of statement account

One of the key features of the fact based modeling is inheritance of properties between types
in specializations. Instances (populations) are inherited in the direction of the arrows. For ex-
ample, each credit card account is a statement account. Other properties, like clustered types,
are inherited downwards. Typically, properties at the type level are inherited downward, while
properties on the instance level are inherited upwards. The types clustered to Statement Account are
therefore formally also part of the clusterings of Credit Card Account and Access Account. Nevertheless,
to avoid cluttered diagrams, we have chosen not to show this inheritance explicitly in the dia-
grams. Therefore, the details of the Credit Card type do not show the details of Statement Account. The
details of the Credit Card Type are provided in Figure 4.10. For each credit card the bank stores its
kind, the spending limit, as well as the access account to which the credit card is linked. The
suffix ”: Statement Account” to ”Credit Card Account (nr)” hints at the inheritance of the clustered types to
Statement Account. In a CASE Tool supporting our technique, one could implement the facility that
clicking on the Statement Account suffix leads to the inclusion of the clustered types introduced by
Statement Account. Note that both Access Account and Money Amount have double lining, indicating that they

94 CHAPTER 4. ADVANCED OBJECT-ROLE MODELING

occur in multiple clusters.

(code)

is of is linked
to

spending

Money
Amount

($)

limit

has

CCKind
Access

Account

Credit Card Account (nr): Statement Account

Figure 4.10: Refinement of the credit card type

For Access Account, the details are shown in Figure 4.11. All extra information actually shown there
is the identification of an access account; an Access Account Nr as indicated by the (nr) suffix. Similar
to the Credit Card Account, all types clustered to Statement Account are also clustered to Access Account, but we
do not display this graphically.

Access Account (nr): Statement Account

Figure 4.11: Refinement of an access account

Figure 4.12 shows the details of a statement. Each Statement is issued on a unique date. This date,
together with the Statement Account for which the Statement was issued, identifies each Statement. Note
that we decided to draw some contextual information of the Statement type to show how this type
is identified. The for ... was issued ... and Statement Account types are not part of the clustering of Statement.
The balance as listed on a Statement is, for obvious reasons, derivable from the Transactions that have
taken place on this account.

lists

for ... was issued ...

Statement
*

Statement Account: Service

Transaction

Figure 4.12: Refinement of a statement

4.3. ABSTRACTION 95

The refined view on a transaction is shown in Figure 4.13. A Transaction is identified by the combina-
tion of the account it is for and a unique (for that account) transaction number. Note that contrary
to a Statement, all components needed for the identification of Transactions are part of the clustering.
Each Transaction involves a certain money amount, occurs on a date, and is either a debit or credit
transaction (depicted by TR Kind). Furthermore, for each Transaction, some (unique) description may
be provided. This example also shows that we must allow for mutually recursive abstractions, as
the Transaction and Statement Account refinements refer to each other.

Amount
Money

($)

Transaction
Description

Date
(mm−dd−yy) (code)

TrKind

{ ’D’, ’C’ }

was for took place
on

is ofhas

Transaction

Statement
Transaction

Number

Account

on with

U

Figure 4.13: Refinement of a transaction

Term deposits form a world on their own. This is elaborated in Figure 4.14. On each Term Deposit Account,
a client can have a series of term deposits. Each time a Term Deposit matures, this term deposit
can be rolled-over leading to a new Term Deposit on the current Term Deposit Account. A special kind
of Term Deposit is the Long Term Deposit, which is a subtype of Term Deposit. As each subtype inherits all
properties from its supertype, the Long Term Deposit type is an abstracted type as well. For these
Long Term Deposits we store whether the deposit is to be automatically rolled-over into a new deposit
(the short Term Deposits are of this kind by default). In the refinement of a Long Term Deposit, we shall
also see what the so-called subtype defining rule for these Long Term Deposits is. Upon maturation,
the invested amount including the interest accrued is transferred to a pre-nominated Access Account.
Finally, the interest rate given on the deposit is derived from a table listing the Periods for which
amounts can be invested. The details of the Period type are given below.

A Term Deposit itself is a clustering of the start and ending dates of the deposits and the money
amount invested. This is depicted in Figure 4.15. A Long Term Deposit is a term deposit with a dura-
tion of more than 60 days. In Figure 4.16 the details of a long term deposit are shown, including
the subtype defining rule. The Long Term Deposit type inherits all clustered types from Term Deposit,
while not adding anything to this. Finally, the complete definition of the interest periods are
given in Figure 4.17.

This completes the schema of the example domain. When modeling a domain like this, the mod-
eler has the choice of using as many layers of abstraction as the modeler sees fit. We only provide
a mechanism to introduce these abstractions and are (initially) not so much concerned with the
‘sensibility’ of abstraction steps. One may, for example, argue that the example given in this
section has been split up into too many abstraction levels.

Sometimes, an analyst may want to see the entire schema. This is quite easy to do by uniting all
clusterings into one large schema. From the above discussed schema fragments, one can derive
the complete ORM schema as depicted in Figure 4.18 by uniting all clusters. This is, however,
still not the ‘lowest’ level at which an ORM diagram can be displayed, since we have used the
standard abbreviations for simple identifications and the short notation for objectifications. Ob-
jectification is a concept we have not yet discussed in this paper.

96 CHAPTER 4. ADVANCED OBJECT-ROLE MODELING

Term Deposit Account (nr)

with

Rate
Interest

(%)+

earns

given for

*

Term Deposit

on maturing
deposited

into

Period

Deposit
Long Term

Account
Access

automatic roll−over

Figure 4.14: Refinement of a term deposit account

U

Amount
Money

($)+
(mm−dd−yy)

Date

for

Term Deposit

ended atstarted at

with

Term Deposit Account

Figure 4.15: Refinement of a term deposit

4.3. ABSTRACTION 97

Long Term Deposit: Term Deposit

Long Term Deposit IS A
Term Deposit wich started at Date + 60 days > Date

at which ended THAT Long Term Deposit

Figure 4.16: Refinement of a long term deposit

������ ������ ������

Date
(mm−dd−yy)

($)+

DurationMoney
Amount

Period

starting
at

with
investment

of
for

(nr days)

U

Figure 4.17: Refinement of periods

Also when looking at a design procedure for ORM schemas as presented in [Hal95] the decision
to model a Transaction, say, as an objectification or a flat entity type is based on considerations of
abstraction. When, for the modeling of the relationship types was for, has, took place on, and is of it is
preferred to regard a transaction as an abstraction from its underlying relationships to a statement
account and transaction number, then the objectified view is preferred to the flat entity view. This
directly corresponds to the decision whether these underlying relationships should be clustered
to the Transaction object type or not. Later we shall see that set types, sequence types and schema typing
can be treated in a similar way. In [HW94, HW97] it is shown that set types, sequence types and
some other composed types are not fundamental when introducing a special class of constraints
which correspond to the set theoretic notion of axiom of extensionality. This then allows us to
regard set typing, sequence typing and schema typing as forms of abstraction.

The schema depicted in Figure 4.18 has the same formal semantics as the combination of all pre-
vious schema fragments. However, the conceptual semantics is different as the abstraction levels
(the third dimension) are now missing. Schema abstraction is purely a syntactical issue, and thus
carries no formal semantics. From the point of view of a modeler (and a participant of the uni-
verse of discourse), the abstractions do have a conceptual meaning. The abstractions represent
certain choices of importance within the universe of discourse.

An (E)ER view can easily be derived as well by uniting all clusterings except for the lowest ones,
but interpreting these as attributes. The (E)ER view on this domain is given in Figure 4.19. The
version we used there is based on the one discussed in [BCN92]. Differing extended ER versions
use different notations for this concept [EWH85, EN94, EGH+92]. The names for attributes in this
diagram are simply based on the verbalizations given in the ORM schema. For most ER mod-
elers, the concept of using elaborate verbalizations is new. One could allow for the specification
of specific attribute names to, for example, abbreviate with minimum deposit of MoneyAmount ($)+ to MinDeposit.
In this article we do not discuss naming conventions in detail but rather focus on the underlying
conceptual issues. In [BBMP95] we have provided a more detailed study of the relationship be-
tween different ER versions and ORM. A detailed case study is also presented there, in which the

98 CHAPTER 4. ADVANCED OBJECT-ROLE MODELING

U

U

U

Password

has identifying

Address

(description)

lives at

PhoneNr

reachable at

Client

(nr)
ClientName

has

Service

Account

Statement

has

*

"Transaction"

lists

for ... was issued ...

Statement

Date

(mm−dd−yy)

*
issued on has balance

of
{’D’, ’C’ }

is of

CCKind
(code)

linked to

Access
Account

(nr)

limit

Amount
Money

($)+

Money

($)+
Amount

Term Deposit
Account

(nr)

deposited to
on maturing

Access

(nr)
Account

ending
at

Date

(mm−dd−yy)

for

Deposit
Term

Money

($)+
Amount

starting at

(nr days)

Duration

(%)+
Rate

Interest

*

given for

earns

with

Description

Transaction

Date

(mm−dd−yy)

TRKind
(code)

was for

has

took place on

is of

Amount
Money

($)+

Term
Deposit

Long

automatic prolonging

spending
has

Transaction
Number

period starting at ... for a mimimum deposit of .. for ...

"Period"

(nr)

CardCredit
Account

enjoys

Bank
(name)

of

Figure 4.18: Complete diagram of the Bank domain

4.4. SET TYPES 99

different concepts underlying these modeling techniques are related, together with a mapping of
the (graphical) concepts between the two classes of data modeling techniques.

has identifying Password

lives at Address (description)

reachable at PhoneNr

has ClientName

has ClientNr

enjoys

for ... was issued ...

has

Client

Service

Statement

Account

issued on Date (mm−dd−yy)

*

lists
Statement

has balance of MoneyAmount ($)+

(0,n)

(1,1)

was for MoneyAmount ($)+

has TransactionDescription

took place on Date (mm−dd−yy)

is of TrKind (code)

has AccountTransactionNr
(1,1)

(0,n)

starting at Date (mm−dd−yy)

ending at Date (mm−dd−yy)

for Duration (nr days)

is of CCKind (code)

has CreditCardNr

with mimimum deposit of MoneyAmount ($)+

has start Date (mm−dd−yy)MoneyAmount ($)+
has spending limit

for MoneyAmount ($)+

automatic prolonging {y/n}

earns

Deposit
Term
Long

Term
Deposit

given for

with

on maturing deposited to

linked to

Access

Account

CreditCard

Term Deposit

Account

Interest Rate

Period

of %+

(0,n)

(1,1)

(0,n)

(1,1)

(1,n) (1,1)

(0,n)

(1,1)

has AccessAccountNr

has TermDepositAccountNr

Transaction

*

*

P(1,n)

(1,n)

Figure 4.19: Complete ER diagram of the Bank domain

4.4 Set types

In set theory we use ℘(X) to denote the set consisting of all subsets of X (see for instance [Lev79]).
When modeling complex domains, we sometimes have the need to model set types being types
whose instances can be regarded as being sets of other instances. This notion is the same as the
notion of grouping introduced in the IFO data model [AH87]). An illustrative example, taken
from [HW94], is shown in Figure 4.20. A Convoy is taken to consist of a set of Ships, where this
set of ships really identifies the convoy. In other words, if two convoys contain the same set of
ships, they really are the same convoy. This is actually similar to the existentiality axiom from set
theory:

∀i [i ∈ X⇔ i ∈ Y]⇒X = Y

100 CHAPTER 4. ADVANCED OBJECT-ROLE MODELING

In Figure 4.20 the existential uniqueness is expressed by the circle with the two horizontal bars.
If there would be only one bar, this would be normal uniqueness of the associated role. The extra
(slightly shorter) bar signifies this to be an existential uniqueness constraint.

Ship
(code)

Convoy
composition

Figure 4.20: Convoy of ships

Formally, we introduce existential uniqueness by first identifying the variety an instance of a fact
type may have with regards to a set of roles. Let f ∈ F̂C be a fact type and R ⊆ RolesOf(f) be
a set of roles involved in this fact type. The variety of instances i ∈ Pop(f) with regard to their
roles R is defined as:

Variety(i, f, R) ,
{
j[R]

∣∣ j ∈ Pop(f) ∧ j[R] = i[R]
}

For a set of roles R of some fact type f , we can now express the existantial uniqueness constraint
as:

ExtUnique(f : R) , ∀i,j∈Pop(f)

[
∀e [e ∈ Variety(i, f, R)⇔ e ∈ Variety(j, f,R)]⇒ j[R] = i[R]

]
where R = RolesOf(f)−R. Note the correspondance to existantiality from set theory. A more
compact form (which we are allowed to use due to the existantiality axiom from set theory)
would be:

ExtUnique(f : R) , ∀i,j∈Pop(f)

[
Variety(i, f, R) = Variety(j, f,R)⇒ j[R] = i[R]

]
Using the abstraction mechanism from the previous section, we are able to more introduce a
number of shorthand notations for set types. These are depicted in Figure 4.21.

Ship
(code)

Convoy composition

(code)
Ship

SET OF
Convoy composition: Convoy composition

(code)
Ship

Figure 4.21: Shorthand notations for convoys of ships

4.5 Multi-set types

A variation of sets is a multi-set. In a multiset, elements can occur multiple times. Using the
existantial uniqueness constraints, a multi-set can be modeled as depicted in Figure 4.22. In the
depicted domain, a train composition class is defined as a multi-set of types of carriages.

Using the abstraction mechanism, we are again able to more introduce a number of shorthand
notations for multi-set types. These are depicted in Figure 4.23.

4.6. SEQUENCE TYPES 101

Train
composition

class

Carriage class
(code)

Frequency

Figure 4.22: Train composition classes

Train composition class:
MULTI−SET OF

Frequency

Carriage class
(code)

Train composition class

Carriage class
(code)

Train composition class

Carriage class

(code)

Figure 4.23: Shorthand notations for train composition classes

4.6 Sequence types

A specific train consists of a sequence of carriages. To model this compactly, we introduce the
notion of a sequence type. This leads to the situation as depicted in Figure 4.24.

(code)

Train Position

Carriage

Figure 4.24: Train as a sequence of carriages

Using the abstraction mechanism, we are again able to more introduce a number of shorthand
notations for sequence types. These are depicted in Figure 4.25.

102 CHAPTER 4. ADVANCED OBJECT-ROLE MODELING

(code)

(code)

Train

Carriage

Position

Train:
SEQUENCE OF

Carriage

Carriage

(code)

Train

Figure 4.25: Shorthand notations for trains as sequences of carriages

4.7 Schema types

In some situations we need types whose instances are really entire populations of other (smaller)
schemas. An example of such a situation is shown in Figure 4.26.

Activity State

input
having

having
output

is input
of

is output
of

Activity graph

being decom− being decom−
posed into

being decom−
position ofposition of

being decom−
posed into

Figure 4.26: Activity graphs usign a schema type

Using the abstraction mechanism, we are again able to more introduce a number of shorthand
notations for schema types. These are depicted in Figure 4.27.

X X: POPULATION OF X

Figure 4.27: Shorthand notations for schema types

QUESTIONS 103

Questions
1. Given the following populations: Pop(Carnivore) = {a, b, c}, Pop(Omnivore) = {d, e} and Pop(Herbivore) =
{f, g}. What are the populations of Animal, Flesh eater and Plant eater?

2. To have electrical power supplied to one’s premises (i.e. building and grounds), an appli-
cation must be lodged with the Electricity Board. The following tables are extracted from
an information system used to record details about any premises for which power has been
requested.

The following abbreviations are used: premises# = premises number, qty = quantity, nr = num-
ber, commercl = commercial. Each premises is identified by its premises#.

The electricity supply requested is exactly one of three kinds: ”new” (new connection
needed), ”modify” (modifications needed to existing connection), or ”old” (reinstall old
connection). ”Total amps” is the total electric current measured in Amp units. ”Amps/phase”
is obtained by dividing the current by the number of phases.

premises# city kind of kind of dog on breed qty of supply
premises business premises of dog breed needed

101 Brisbane domestic . yes Terrier 2 new
202 Brisbane commercl car sales no . . modify
303 Ipswich domestic . yes Alsatian 1 old

Poodle 1
404 Redcliffe commercl security yes Alsatian 3 new

Bulldog 2
505 Brisbane domestic . no . . modify
606 Redcliffe commercl bakery no . . old
. .

Further details about new connections or modifications:

load applied for (if known) wiring expected date for
premises# total amps nr phases amps/phase completed? wiring completion
101 200 2 100 no 30-06-03
202 600 3 200 yes .
404 . . . no 01-08-03
505 160 2 80 no 30-06-03
.

The population is significant with respect to mandatory roles. Each premises has at most
two breeds of dog.

Produce a fact-based model for this domain. Use specialization when needed. Include
uniqueness, mandatory role, subset, occurrence frequency and equality constraints, as well as value
type constraints that are relevant. Provide meaningful names.

If a fact type is derived it should be asterisked on the diagram and a derivation rule should
be supplied.

Produce both a flat fact-based model, as well as a version that uses abstraction/decomposition
to split this domain into more comprehensible chunks.

Bibliography

[AH87] S. Abiteboul and R. Hull. IFO: A Formal Semantic Database Model. ACM Transactions
on Database Systems, 12(4):525–565, December 1987.

104 CHAPTER 4. ADVANCED OBJECT-ROLE MODELING

[BBMP95] G.H.W.M. Bronts, S.J. Brouwer, C.L.J. Martens, and H.A. (Erik) Proper. A Unifying
Object Role Modelling Approach. Information Systems, 20(3):213–235, 1995.

[BCN92] C. Batini, S. Ceri, and S.B. Navathe. Conceptual Database Design - An Entity-Relationship
Approach. Benjamin Cummings, Redwood City, California, 1992.

[CP96] P.N. Creasy and H.A. (Erik) Proper. A Generic Model for 3-Dimensional Conceptual
Modelling. Data & Knowledge Engineering, 20(2):119–162, 1996.

[EGH+92] G. Engels, M. Gogolla, U. Hohenstein, K. Hülsmann, P. Löhr-Richter, G. Saake, and
H.-D. Ehrich. Conceptual modelling of database applications using an extended ER
model. Data & Knowledge Engineering, 9(4):157–204, 1992.

[EN94] R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Benjamin Cummings,
Redwood City, California, 1994. Second Edition.

[EWH85] R. Elmasri, J. Weeldreyer, and A. Hevner. The category concept: An extension to the
entity-relationship model. Data & Knowledge Engineering, 1:75–116, 1985.

[Hal95] T.A. Halpin. Conceptual Schema and Relational Database Design. Prentice-Hall, Sydney,
Australia, 2nd edition, 1995.

[Hal01] T.A. Halpin. Information Modeling and Relational Databases, From Conceptual Analysis to
Logical Design. Morgan Kaufman, San Mateo, California, USA, 2001. ISBN 1558606726

[HP95] T.A. Halpin and H.A. (Erik) Proper. Subtyping and Polymorphism in Object-Role
Modelling. Data & Knowledge Engineering, 15:251–281, 1995.

[HW93] A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data
modelling. Data & Knowledge Engineering, 10(1):65–100, February 1993.

[HW94] A.H.M. ter Hofstede and Th.P. van der Weide. Fact Orientation in Complex Ob-
ject Role Modelling Techniques. In T.A. Halpin and R. Meersman, editors, Proceed-
ings of the First International Conference on Object-Role Modelling (ORM-1), pages 45–59,
Townsville, Australia, July 1994.

[HW97] A.H.M. ter Hofstede and Th.P. van der Weide. Deriving Identity from Extensionality.
International Journal of Software Engineering and Knowledge Engineering, 8(2):189–221,
June 1997.

[Lev79] A.Y. Levy. Basic Set Theory. Springer-Verlag, Berlin, Germany, 1979.

Chapter 5

The Act of Modelling

Version:
13-04-05In this chapter, which is based on the work reported in [PBH04, HBP05], we turn to the question

how to model a domain; a question to which there is no simple, one-size-fits-all answer.

5.1 What to model?
• Modeling goal

• Intended audience

• Viewpoint

5.2 The modeling challenge

5.2.1 Goal-bounded and communication-driven

Some modeling approaches, such as NIAM [NH89] and ORM [Hal01], suggest or prescribe a
detailed procedure. Practice shows, however, that experienced modelers frequently deviate from
such procedures [Ver93]:

In most cases, [the information engineers] stated that they preferred to pay attention
to a specific part of the problem domain, usually to fill clear lacunae in their insights in
the problem domain. Their momentary needs strongly influenced the order in which
the several modelling techniques were used. Modelling techniques were used as a
means to increase insights or to communicate insights, be it in the problem domain
itself or in a specific solution domain.

Yet deviating from a modeling procedure should be done with some caution. While a pre-
defined modeling procedure should never become “an excuse to stop thinking”, situational speci-
ficity should not become an excuse for taking an ad-hoc approach to the modeling effort. A
more stable anchor is needed upon which modelers can base themselves when making decisions
during the modeling process. We believe that domain modeling requires a goal-bounded and
communication-driven approach. With goal-bounded we hint at the fact that when modeling a
domain, a modeler is confronted with a plethora of modeling decisions. These decisions range
from the modeling approach used, the intended use of the results, to decisions pertaining to the
model itself. For example:

105

106 CHAPTER 5. THE ACT OF MODELLING

• What parts of the domain should be considered relevant?

• What is the desired level of detail and formality?

• To what level should all stakeholders agree upon the model?

• Should the model be a representation of an actual situation (system analysis) or of a desired
situation (design)?

• Should the model be a representation of what a system should do, or should it be a repre-
sentation of how a system should do this?

• Should a certain phenomenon in the domain be modeled as a relationship, or is it an object
on its own?

Having an explicit, and articulated, understanding of the modeling goals provides modelers with
guidance in making the right decisions with regards to the above mentioned issues. Modeling
goals, therefore, essentially provide the means to bound modeling space.

In most situations where a domain needs to be modeled, the modeler cannot merely passively
observe the domain. Modelers will need to interact with representatives from the domain. These
representatives then become informers (who are likely to also have a stake with regards to the
system being developed). Therefore, modelers will need to communicate intensively with the
informers in order to refine the model. What is more, numerous domain models that are pro-
duced during system development will need to be accepted and agreed upon –validated– by
the informers (being stakeholders of the future system). The claim has often been voiced that in
modeling practice, ‘the process is just as important as the end result’, suggesting that a correct
end-result is not always a guarantee for success. A domain model should ideally be a product of
a shared understanding of a domain’s stakeholders. It requires a ‘buy-in’ by all stakeholders involved.
A domain model that is correct from a theoretical or technical point of view but does not have the
required support from the key stakeholders is arguably worse than a domain model with some
flaws that does have such support.

A modeling process can thus be seen as a communication-driven process [FW04b, VHP03]. The
principles of natural language driven modeling approaches [NH89, EKW92, Kri94, Hal01] can be
used as a basis for shaping the communication process between informer and modeler.

5.2.2 Aspects of a method

When considering a modeling approach or method, several aspects thereof can be discerned
[SWS89, WH90]. An important distinction to be made is that between a product oriented perspec-
tive and a process oriented perspective. In terms of the framework presented in [SWS89, WH90]
these are referred to as the way of modeling and way of working, respectively:

Way of modeling – The way of modelling provides an abstract description of the underlying
modelling concepts together with their interrelationships and properties. It structures the
models which can be used in the information system development, i.e. it provides an ab-
stract language in which to express the models.

Way of working – The way of working structures the way in which an information system is
developed. It defines the possible tasks, including sub-tasks and ordering of tasks, to be
performed as part of the development process. It furthermore provides guidelines and
suggestions (heuristics) on how these tasks should be performed.

In the case of domain modeling, the way of working represents the process followed when mod-
eling a domain. In the following sections, we will mainly elaborate on this aspect. The way of
modeling used for domain modeling is likely to be prescribed by a diagramming technique such
as ORM diagrams [Hal01], ER diagrams [Che76] or UML class diagrams [BRJ99].

5.2. THE MODELING CHALLENGE 107

5.2.3 The process of modeling

In general, the goals underlying (business) domain modeling are [BPH04]-

1. articulate clear and concise meanings of business domain concepts and

2. achieve a shared understanding of the concepts among relevant stakeholders.

Based on the results reported in [Hop03], we consider domain modeling in the context of system
development to chiefly concern three streams of (mutually influencing) activities-

Scoping environments of discourse – The aim of this stream of activities is to scope the envi-
ronments of discourse that are relevant to the system being developed, and determine the
set of actors associated to each of these environments.

Concept specification – For each of the identified environments of discourse, the relevant busi-
ness domain concepts should be specified in terms of their:

• meaning
• relationships to other concepts (and the constraints governing these relationships)
• possible names used to refer to them

Concept integration – The concepts as identified and defined in the different environments of
discourse may well clash. As a part of this, homonyms and synonyms are likely to hold
between different terminologies. The aim of this stream of activities is to determine how to
deal with this, and act upon it.

Since these streams of activities can be expected to influence each other, it is not likely that they
can be executed in a strict linear order.

In general, the processes that aim to arrive at a set of concepts together with their meaning and
names, are referred to as conceptualization processes [Hop03]. When, as in the context of software
development, conceptualization is performed deliberately, as a specific task and with a specific
goal in mind, it is referred to as an explicit conceptualization process. The above mentioned stream
of activities called concept specification is such an explicit conceptualization process. In [Hop03,
BPH04] a reference model for conceptualization processes is provided. This reference model
distinguishes five streams of activities or phases:

Assess domain and acquire raw material – Domain modeling always begins with a brief scan
or assessment of the domain to get a feeling for scope, diversity and complexity of the
domain, as well as to identify the relevant stakeholders for the domain (usually but not
necessarily a subset of the project stakeholders). In addition, the activity aims to bring
together input documents of all sorts that provide a basic understanding of the environment
of discourse that is relevant to the environment of discourse under consideration.

Scope the concept set – In this phase, formal decisions are to be made regarding the concepts
that somehow play a role in the environment of discourse and how these concepts interre-
late.1

Select relevant concepts – The goal of this phase is to focus on those concepts in the environ-
ment of discourse that bear some relevance to the system to be developed. These are the
concepts that should be defined and named formally in the next step.

Name and define concepts – All of the concepts selected in the previous phase should be named
and defined. Defining the concepts may also include the identification of rules/laws/constraints
governing instances of the defined concepts.

Quality checks – Final quality checks on the validity, consistency and completeness of the set of
defined concepts.

These streams should essentially be regarded as sub-streams of the concept specification stream.

1In an earlier version of this framework, this was referred to as scoping the universe of discourse.

108 CHAPTER 5. THE ACT OF MODELLING

5.3 Ambition levels for modeling

We have made a distinction between four levels of ambition at which a modeler may approach
the task of modeling a domain. These levels can also be regarded as the order in which a novice
modeler may learn the art of domain modeling:

Singular – This level of ambition corresponds to the modeling approaches as described in e.g.
NIAM [NH89] and ORM [Hal01]. It involves the modeling of a single environment of dis-
course based on complete input; usually in terms of a complete verbalization of (only) the
relevant parts of the domain.

Elusive – At this level of ambition, modelers need to cope with the unavoidable iterative nature
of the modeling process. As a modeling and/or system development process proceeds, the
insight into the domain may increase along the way. This replaces the idealized notion of
completeness of input with one of incremental input. The increments in the model are not
related to a changing domain, but rather to improved ways of conceptualizing it.

Pluriform – At this next level of ambition, we recognize the fact that when developing a realistic
system, we do not simply deal with one single unified environment of discourse (and re-
lated terminologies and concepts), but rather with a number of interrelated environments
of discourse [PH04].

Evolving – The final ambition level recognizes the fact that domains themselves are not stable;
they evolve over time [PH04]. As a result, what may have started out as a correct model
of a domain, may become obsolete due to changes in the domain. New concepts may be
introduced, or existing ones may cease to be used. However, subtle changes may occur
as well, such as minor changes in the meaning of concepts, or the forms used to represent
them.

In the next section, we will discuss domain modeling at the singular, elusive and pluriform levels
of ambition. The evolving level is omitted for now.

5.4 Meeting the challenge

This section aims to discuss the domain modeling process with respect to three of the identified
levels of ambition- singular, elusive and pluriform. We will structure our discussion by using the
framework of activity streams for domain modeling as introduced in the previous section.

5.4.1 Modeling a singular domain

At this level of ambition we are only interested in the modeling of a single environment of dis-
course based on complete input. In terms of the above framework for domain modeling, this
ambition level assumes that-

• No (further) scoping of the environment of discourse is needed

• The domain has been assessed and raw material is available

• Concept integration only needs to take place within the given environment of discourse

Natural language driven modeling approaches like NIAM [NH89] and ORM [Hal01] concern
elaborately described ways of executing a domain modeling process at this ambition level. For
example, the modeling procedure as described in ORM [Hal01] identifies the following steps:

Step 1 – Transform familiar examples into elementary facts This step involves the verbalization
in natural language of samples take from the domain.

5.4. MEETING THE CHALLENGE 109

Step 2 – Draw the fact types and apply a population check In this step, a first version of the schema
is drawn. The plausibility of the schema is validated by adding a sample population to the
schema.

Step 3 – Trim schema and note basic derivations In this step, the schema is checked to see if
any of the identified concepts are basically the same, and should essentially be combined.
Furthermore, derivable concepts (e.g. sales-price = retail-price + mark-up) are identified.

Step 4 – Add uniqueness constraints and check the arity of fact types At this point, it is deter-
mined how many times an instance of an identified concept can play specific roles. For
example, is a person allowed to own more than one car?

Step 5 – Add mandatory role constraints and check for logical derivations This step completes
the basic set of arity constraints on the relationships in the schema, by stating wether or not
instances of a concept should play a role. For example, for each car, the year of construction
should be specified.

Step 6 – Add value, set-comparison, and subtyping constraints The ORM diagramming tech-
nique provides a rich set of graphical constraints. This step is aimed at specifying these
constraints.

Step 7 – Add other constraints, and perform final checks Finally, there may be some constraints
in the domain that cannot be expressed graphically. In this last step, these constraints can
be specified and

In terms of our framework for domain modeling processes, this procedure constitutes a rather
specific way of executing the concept specification stream of activities. It is really geared towards
the (conceptual) analysis of a domain in order to design a database, rather than a general analysis
of concepts playing a role in a domain. The procedure presented above is not applicable to all
situations and all modelers.

Even though the above order is very explicit, and therefore well suited for educational purposes,
a goal-bounded approach to domain modeling requires a more refined view. The key question
concerns the goal for which a domain is modeled. During the definition phase of the software
development life-cycle, when the main goal is to support requirements engineering activities,
the seven steps as described above are likely to be overkill. In such a context, modelers are likely
to skip steps 6 and 7. The modeling procedure as discussed in [Hal01], also requires modelers to
identify how concepts (such as car, co-workers, patient, etc.) are identified in a domain (e.g. by
means of a registration number, employee number, patient number, etc.). During the definition
phase, these identification mechanisms are not likely to be relevant (yet).

During the design phase of a software system most of the seven identified steps are indeed
needed. However, experienced modelers are also likely to merge steps 1-3, steps 4-5, as well as
steps 6-7, into three big steps. The resulting three steps will generally be executed consecutively
on a ‘per fact’ base. In other words:

1. For each fact type, execute 1-3

2. For each fact type, execute 4-5

3. For each fact type, execute 6-7

Some more empirical background to this, experience based observation, can be found in e.g. [Ver93,
page 161].

The order in which the various modeling tasks are performed differs to a large ex-
tent. A clear distinction exists between prescribed modeling knowledge and applied
modeling knowledge, in this respect. Whereas an almost strictly linear order of per-
forming modeling tasks is prescribed, a very opportunistic order is actually used. This
order seems to be determined by at least two essentially different factors- the problem
domain and the information engineer.

110 CHAPTER 5. THE ACT OF MODELLING

Note that when an initial domain model already exists, e.g. as produced in the definition phase in
support of requirements engineering, this will have to be used as a starting point for completion.
In other words, in practice, a domain model is likely to develop incrementally along with the
software development life cycle.

ORM is not the only modeling approach that is based on analysis of natural language. How-
ever, providing a full survey of such approaches is beyond the scope of this article. Never-
theless, two approaches are worth mentioning here. In [EKW92] the Object-Oriented Systems
Analysis method is presented. It uses a natural-language based approach to produce an Object-
Relationship Model (accidently also abbreviated as ORM) that serves as a basis for further anal-
ysis. The way of working used is not unlike that of ORM. Its way of modeling, however, has a more
sketchy nature and has been worked out to a lesser degree. The KISS approach, as reported
in [Kri94], also uses natural language analysis as its basis. It provides some support in terms of a
way of working, but does this in a rather prescriptive fashion that presumes some very particular
(and limited) intermediary goals. A wide spectrum of modeling concepts are introduced (way of
modeling) covering a wide range of diagraming techniques (not unlike the UML [BRJ99]).

Independent of the approach used, a modeling process always needs to be flanked by a contin-
uous communication process with the stakeholders [VHP03]. Communication brings along the
aspect of documentation. Modeling itself can hardly do without face-to-face discussions; how-
ever, the (intermediate) results need to be recorded in such a way that they can be communicated
effectively to the stakeholder community [FW02, Fre97]. In this respect we could argue that any
modeling approach also needs a way of communication/documenting. Since documentation serves
the purpose of communication, the documentation language should align with the accepted lan-
guage concepts in the domain. In practice it turns out that graphical notations such as ORM or
UML diagrams are not the most obvious way to communicate a model to stakeholders, since
most domain stakeholders do not comprehend this kind of “IT language”. Often, it is better to
use more intuitively readable diagrams and natural language to communicate concepts and their
relationships and constraints, while occasionally, a more mathematical or algorithmic style may
be useful in certain expert domains.

Part II

Systems Modeling

111

Chapter 6

Natural-Language Foundations of
Information-Systems Modeling

Version:
12-05-05In this chapter, we will essentially use the ORM philosophy to model key aspects of information-

systems. This requires the immediate introduction of some new concepts into our ontology, such
as: agentive, experiencing , circumstantial and predicative role, action, predication, agent, subject
and context elements. These concepts allow us to reason about such things as: when does some-
thing happens (triggering), what happens (action), who/what makes it happen (agentr), who/what
does it happen to (subject) in which/what circumstances (context).

With these new concepts, we can typically take ORM domain models and “annotate” them in
terms of the refined concepts. We will base this process of annotation on linguistic foundations,
much in the same vein as the modeling approach from the Domain Modeling course. Based on
these annotated ORM models, we will be able to mechanically derive process models in a model-
ing notation (ArchiMate [Lo05]) that is particularly suited for the modeling of business processes.
This will be the focus of the next chapter.

6.1 Classes of roles

We consider organizational systems, i.e. open active systemor work-systems:

• So there is activity going on.

• In other words, there are active elements.

• A specific class of concepts should therefore be: actions.

• Even more, these actions are performed by agents, and are performed on subjects. We want
to be able to ‘talk’ about these these agents and subjects.

• In other words, we actually need three additional classes of concepts: actions, agents and
subjects.

Let us now analyze this closer from a natural language perspective. Consider, once again, the
following domain:

A person with name Erik is writing a letter to his loved one, at the desk in a romantically lit room, on a mid-summer’s day,
using a pencil, while the cat is watching.

with elementary facts:

113

114CHAPTER 6. NATURAL-LANGUAGE FOUNDATIONS OF INFORMATION-SYSTEMS MODELING

A person is writing a letter
This person has the name Erik
This letter has a romantic nature
This letter has intended recipient Erik’s loved one
The writing of this letter by Erik, occurs on a mid-summer’s day
The writing of this letter by Erik, is done using a pencil
The writing of this letter by Erik, is done while the cat is watching
The writing of this letter by Erik, is taking place at a desk
This desk is located in a room
This room is romantically lit

As mentioned before, within these elementary facts, several players can be discerned. In the above
example, we can isolate the players and facts as follows:

[A person] is writing [a letter]
[This person] has [the name Erik]
[This letter] has a [romantic nature]
[This letter] has intended recipient [Erik’s loved one]
[The writing of this letter by Erik], occurs on a [mid-summer’s day]
[The writing of this letter by Erik], is done using [a pencil]
[The writing of this letter by Erik], is done while [the cat] is watching
[The writing of this letter by Erik], is taking place at [a desk]
[This desk] is located in [a room]
[This room] is lit in [a romantic] way

The writing of the letter is the central fact in the above domain. All players in the facts describing
the above domain are players in this domain. What are the actions, agents and subjects? Several
degrees of activeness exist with regards to the role player plays in a fact/domain:

• Some roles will be more active than others.

• This is where we find inspiration in theories regarding verbs and the ‘things’ that may play
a (functional) role in these verbs.

• We limit ourselves to those classes that are indeed relevant when considering activity in
systems.

In decreasing scale of activity:

Agentive role – A role where the player is regarded as carrying out an activity.

In the example domain: The person.

Two sub-classes may be identified:

Initiating role – An agentive role, where the player is regarded as being the initiator of the
activity.

Reactive role – A non-initiating agentive role.

Experiencing role – A role where the player is regarded as experiencing/undergoing an activity.

In the example domain: a letter, a loved one and the cat.

Three sub-classes may be identified:

Patientive role – An experiencing role, where the player is regarded as purposely under-
going changes (including its very creation)

Receptive role – An experiencing role, where the player is regarded as the beneficiary/recipient
of the results of the activity

Observative role – An experiencing role, where the player is regarded as observing/witnessing
the activity

Contextual role – A role where the player is regarded as being a part of the context in which the
activity takes place.

Four sub-classes may be identified:

Instrumental role – A role where the player is regarded as being an instrument in an ac-
tivity.
In the example domain: a desk and a pencil.

6.1. CLASSES OF ROLES 115

Locative role – A role, where the player is regarded as being the location of an activity, in
terms of a spatial or temporal orientation.
In the example domain: the desk, the room and mid-summer’s day

Catalysing role – A role, where the presence of the player is regarded as being beneficial
(either in a positive or a negative way) to an activity.
In the example domain: the room lit in a romantic way.

Predicative role – A role where the player is regarded as being a predicate on some other player.

In the example domain: the name Erik.

The choice between these different levels of role is subjective. It depends on the viewer. The
players of the four main classes of roles are regarded as agents, subjects, context elements, and
predicators respectively.

In the example domain, the writing of the letter by the person can be regarded as a key activity in
the domain. In other words, writing is an action, while the person is the agent and the letter is the
subject. We may regard the cat and the loved one as a subject as well. What about the pen, the
name Erik, the desk, etc? They are really players in predications over the other players. The fact
that a pen is used by the person to write the letter is a predication of the writing action.

If we were to zoom in on a sub-domain of the above sketched domain, we could actually find that
what was a subject in the super-domain is an agent in the sub-domain. Consider, for example,
the sub-domain:

[The writing of this letter by Erik], is done while [the cat] is watching

When considered in isolation, one may quite easily argue that the primary action here is the
watching, which is something that is being done by the cat. This really makes the cat into an
agent rather than the subject, while the thing that is being watched (the writing) becomes the
subject. This really means that our notions of agent, subject, action and predication are really to
be taken relative to the domain under consideration, which is in line with the subjective approach
to modeling as taken in this textbook.

Formally, we presume the existance of sets AR, ER, CR,PR ⊆ RO with agent and subject roles
respectively. These classes of roles form a partition of the roles:

[S46] AR, ER, CR and PR are a partition of RO.

With this we can also define the sets of actions and predications, respectively, as:

AN ,
{
Fact(r)

∣∣ r ∈ AR
}

PN , FC −AN

In other words, all facts that have an agentive role are regarded as actions. The other facts are
(pure) predications.

Typing should adhere our refined ontology. In other words:

[S47] For all X ∈ {FC,RO,PL} we have:

xHasType y⇒(x ∈ X⇔ y ∈ X)

All experiencing roles must be involved in some action:

[S48] ∀d∈ER [Fact(d) ∈ AN]

For the example given above, we would have:

116CHAPTER 6. NATURAL-LANGUAGE FOUNDATIONS OF INFORMATION-SYSTEMS MODELING

Action: [Agent: A person] is writing [Subject: a letter]
Predication: [This person] has [the name Erik]
Predication: [This letter] has a [romantic nature]
Predication: [This letter] has intended recipient [Erik’s loved one]
Predication: [The writing of this letter by Erik], occurs on a [mid-summer’s day]
Predication: [The writing of this letter by Erik], is done using [a pencil]
Predication: [The writing of this letter by Erik], is done while [the cat] is watching
Predication: [The writing of this letter by Erik], is taking place at [a desk]
Predication: [This desk] is located in [a room]
Predication: [This room] is lit in [a romantic] way

Finally, a word of warning:

• Natural language also harbors ‘conceptual prejudice’

• Most, if not all, Indo-European languages are rather state oriented: ‘Charles the bold’ stands
on ‘the floor’

• Some North-American native languages are activity oriented: ‘Dances with wolves’ stands
on ‘what supports us when walking’

• Imagine the impact on the way we view & design systems/organizations: Is nature state
oriented or a continuous flow of activities?

6.2 Activity types

Based on the above discussions regarding actions and predications, we can identify which roles
are of which class, and mark this in the ORM model. For the example from Figure 3.10, we have
the situation as depictedin Figure 6.1.

Person

Form

Diagnose Doctor

examines

produces

fills out

Prescription

writes

State sequence:
Doctor Visit

Figure 6.1: Compact model of a visit to a Doctor with alternative semantics

Those state-sequence types which comprise a number of action types (or other activity types) are
considered to be (complex) activity types. Action types on their own are (atomic) activity types.

QUESTIONS 117

Questions
1. Given the situation:

A person with name Erik is writing a letter to his loved one, at the desk in a
romantically lit room, on a mid-summer’s day, using a pencil, while the cat is
watching.

Produce a graph consisting of entities and relationships depicting this domain.

2. Consider the following domain:

Docent Proper voert de vakgegevens van Architectuur en Alignment in in het
management informatiesysteem.

Wat zijn hier de entiteiten en de relaties? Wat zijn de acties, actoren, actanden en predica-
tions.?

3. Stel je maakt een ontwerp voor een geldautomaat. Wat zijn voor dat domein de belangrijk-
ste systeem entiteiten en hun onderlinge relaties? Hoe werken ze samen? Wat zijn hier de
entiteiten en de relaties? Wat zijn de acties, actoren, actanden en predications.?

4. Proof Corollary 3.4.1 (page 75).

5. Proof Corollary 3.5.1 (page 77).

6. Consider the case from Question 3.8.

Answer the following questions:

(a) (Re)produce elementary facts for this domain.
(b) What are the actions, actors and actands?

Bibliography

[Lo05] M.M. Lankhorst and others. Enterprise Architecture at Work: Modelling, Communication and
Analysis. Springer, Berlin, Germany, EU, 2005. ISBN 3540243712

118CHAPTER 6. NATURAL-LANGUAGE FOUNDATIONS OF INFORMATION-SYSTEMS MODELING

Chapter 7

Activity Modeling

Version:
14-04-05Suitability! The situation as depicted in Figure 3.9 and Figure 3.10 may be highly explicit, but

one may wonder if the resulting diagrams are still communicatable. Do they still convey the
message?

7.1 Introduction

What do we model?

• Who are involved: Actor domain

• What activities do they perform: Activity domain

• What (information) objects are used/created: Actand domain

• AND: the coherence between these three domains

Modeling domains:

• Actor domain

– Who is involved?
– What are possible interactions?
– Roles, resources, business functions, ...

• Activity domain

– Activities
– Interactions
– Relationships
– Structure/decomposition

• Actand domain

– See ORM/DM
– Advanced/complex types

Core concepts:

Use-case: An activity which is triggered by an external trigger.

“Paying the first month of Mr. Jones’ pension.”

Trigger: A change in the environment, that initiates a use-case.

“Mr. Jones from Bristol turns 65 years of age.”

119

120 CHAPTER 7. ACTIVITY MODELING

Use-case type: A class of similar use-cases.

“Paying the first month of people’s pension.”

Trigger type: A class of business triggers with similar treatment.

“People turning 65 years of age.”

Actor An organizational entity that is capable of performing behavior

Delivers services to its environment

“The NIII providing courses to students”

Collaboration A temporary configuration of two or more actors resulting in a collective behavior

“Insured person and insurance company submitting/receiving a claim”

Can be regarded as a temporary of two role-playing actors into an ad-hoc actor, that plays
a role providing the behavior of the collaboration

7.2 Basic modeling language

The notation is primarily inspired by ArchiMate [Lo05]. However, as ArchiMate (which aims at
an architectural level) does not provide enough detail about process triggering, we have extended
the triggering notation with the symbols used by YAWL [AH05].

The ArchiMate language is actually set up such that ‘local’ specializations can be made quite
easily. In our case. a specialization is called for that honors our natural language and conception
based approach.

Triggering of activities

Participation

Complex triggering

Trigger type

Actor type

Actand type

Activity type

Participation scope

Uniqueness of participants

OR−join

XOR−join

AND−split

OR−split

XOR−split

AND−join

Figure 7.1: Activity modeling notation

A legend of the symbols used is depicted in Figure 7.1. When taking the example from Figure 3.10
and 6.1 and using this new notation, we obtain the situation as depicted in Figure 7.2 and 7.3
respectively.

7.2. BASIC MODELING LANGUAGE 121

Person

Fill in form Examine Diagnose Prescribe

Diagnose Prescription
Form

Visiting patient Examining doctor

Doctor

Doctor visit

Illness Cure

Figure 7.2: Visit to a Doctor in activity modeling notation

Person

Fill in form Examine Diagnose Prescribe

Diagnose Prescription
Form

Visiting patient

Doctor

Doctor visit

Illness Cure

Figure 7.3: Visit to a Doctor with alternative semantics

122 CHAPTER 7. ACTIVITY MODELING

7.3 Composed activities

Activities may be composed of yet other activities. This is illustrated in Figure 7.4.

Accident

Submit claim

Assess damage

Assess claim

Accept claim Pay claim

Inform customer

Pre−phase Handling Settlement

Reject claim

Cure

Figure 7.4: Claim handling

7.4 Petri-net based semantics

In order to gain a more precise understanding of activity models, we will discuss their mapping
to simple petri-nets. In doing so we will, however, loose out on some semantic details. The
exercise we undertake in this section is purely for educational purposes. See e.g. YAWL [AH05]
for a more detailed formalization.

In Figure 7.5 the working of petri-nets are illustrated.

Figure 7.5: Petri-nets

7.4. PETRI-NET BASED SEMANTICS 123

In Figure 7.6, the mapping from complex triggering in activity models to petri nets is given. Note
that the resulting petri-net will only be applicable for one run of the activity.

B

C

X

A

X
A
B
C

A

C

B

A

C

B

A

C

B

A

B

C

X

XB
A

C

X
A
B
C

A

B

C

XXB
A

C

X
A
B
C

X

X

X

XB
A

C

Figure 7.6: Mapping activity models to Petri-nets

An example translation is given in Figure 7.7.

Submit claim

Assess damage

Accident Assess claim

Pay claim Accept claim

Reject claim

Handled

Inform customer

Figure 7.7: Example mapping of activity models to Petri-nets

Mapping the semantics of participations of participants (be it actors, actands, or others) to petri-
nets can be done as illustrated in Figure 7.8 and 7.9. In this mapping we have actually used an
extended version of petri-nets, called colored petri-nets. Note the subtle difference between the
two versions with regards to the size of the scope and its impact on the mapping.

124 CHAPTER 7. ACTIVITY MODELING

X BA Y

P

X A B Y
<p>

<p> <p>

<p>

<p><p>

P

<p><p>

<p> <p>

Figure 7.8: Mapping participation scopes

X BA Y

P

X A B Y
<p>

<p> <p>

<p>

<p><p>

P

<p><p>

<p> <p>

Figure 7.9: Looping and participation scopes

7.5. QUANTATIVE SEMANTICS 125

7.5 Quantative semantics

The petri-net based semantics of activity models focuses on the flow of specific cases through the
activity. In addition to the petri-net based semantics, we identify a quantitative semantics. This
is illustrated in Figure 7.10. The earlier used claim handling example can be made quantitative
as depicted in Figure 7.11.

20%

30%

20%

30%

40%

20%

30%

20%

30%

40%

20%

30%

20%

30%

40%

20%

30%

20%

30%

40%

20%

30%

20%

30%

40%

20%

30%

20%

30%

40%

20%

30%

20%

30%

40%

20%

30%

20%

30%

40%

100

100

100

0

0

0

20

30

20

30

40

80

20

60

0

0

0

80

20

60

20

20

30

0

10

0

0

10

80

30

70

20

20

30

70

80

30

20

20

64
16

30

9

28

6

42

20

20

30

64

6
6

9

7

0

0

19

0

29

26

39

6

42

71

61

29

26

39

Second transition

First transition

Initial Pre−select Execute Settle

Figure 7.10: Quantitative analysis of activities

Accident

Submit claim

Assess damage

Assess claim

Accept claim Pay claim

Inform customer

Pre−phase Handling Settlement

Reject claim

50%

30%

70%
20%

80%

80%

Accident

Assess damage

Submit claim

50%
Assess claim

30%

70%

30%

20%

30%
Accept claim

Reject claim

80%

30%

Finished

Finished
80%

80%

80%

30%

Figure 7.11: Claim handling with quantitative information

Uses for quantative analysis:

• Performance analysis.

• Optimization of design.

• Critical path analysis.

7.6 Mapping to UML 2.0 activity diagrams

In this section we look at the relationship between the activity modeling using the (enriched)
ArchiMate notation and the activity diagrams from UML 2.0 [OMG03]. UML activity diagrams
focus on the flow of activities. Involvement of actors is represented by means of swimming
lanes. The claim handling example from Figure 7.4 can be represented by means of UML activity
diagrams as illustrated in Figure 7.12.

The doctor visit example from Figure 7.2 and 7.3 respectively can be represented as the activity
diagrams depicted in Figure 7.13 and 7.14

126 CHAPTER 7. ACTIVITY MODELING

Accident
Submit claim

Assess damage

Assess claim

Accept claim

Reject claim

Pay claim

Inform customer

Cure

Figure 7.12: Claim handling as an UML 2.0 activity diagram

Fill in form

Illness

Diagnose

Prescribe

Cure

Person Doctor

Examine

Figure 7.13: Doctor visit as an UML 2.0 activity diagram

Fill in form

Illness

Person Doctor 1 Doctor 2 Doctor 3

Cure

Prescribe

Diagnose

Examine

Figure 7.14: Doctor visit as an UML 2.0 activity diagram

7.7. MODELING APPROACH 127

7.7 Modeling approach

Outline

1. Identify key use cases

2. Describe key use cases

3. Compose initial model

4. Detail model

5. Re-examine models

6. Identify phases of activity

7.7.1 Identify key use cases
1. Determine the key entity types in UoD

2. Define for each of the key entity types, the key use case

7.7.2 Describe key use cases
1. Verbalise each use case

2. Single-out: predications, actions, actors, actands and activities.

7.7.3 Compose initial model
1. Relate actions, actors and actands. Use graphical notation.

2. Introduce activities as composed actions when needed.

7.7.4 Detail model
1. Select areas of intest

2. Gather detailed verbalisations

3. Compose detailed diagrams

7.7.5 Re-examine models

Re-examine the models in order to:

1. Identify and resolve unclear parts

2. Restructure processes/actors to better resemble the UoD

7.7.6 Identify phases of activity
1. Improve clarity of the models by introducing a higher level perspective on the domain.

128 CHAPTER 7. ACTIVITY MODELING

Questions
1. Pop-groepen (’bands’) verschijnen en verdwijnen. Ze worden ooit door een of meer per-

sonen opgericht en heffen zich ooit een keer op. In de tussentijd [dus gedurende hun
bestaansperiode] kunnen mensen tot zo’n band toetreden of de band verlaten. Zoals bek-
end spelen bands (muziek)nummers (’songs’) en nemen een vaker gespeelde song meestal
ook op (voor uitgave op CD etc.). Elke song is ooit door een of meer personen gecom-
poneerd en kan daarna door verschillende bands (’life’) gespeeld en/of opgenomen wor-
den (zo is de song ’Dreaming of a white Christmas ..’ in het verleden door heel wat bands
op hun eigen wijze gespeeld..). Elke [aparte] opname van een song door een band wordt
op een bepaalde datum en in een bepaalde studio opgenomen.

Analyseer nu de hierboven beschreven situatie en produceer hier een activity model voor.

2. Consider the domain as discussed in Question 3.8. Produce an activity model for this do-
main.

3. Op een grote, sterk groeiende luchthaven is naast een aantal concurrenten een autoverhu-
urbedrijf gevestigd. Het autoverhuurbedrijf is een zelfstandig opererende onderneming
die werkt op een franchise basis. Dit uit zich in de herkenbare huisstijl en de onlangs
gentroduceerde clubcard waarmee klanten kortingen bij alle aangesloten bedrijven kunnen
krijgen. Inmiddels is er al een groot aantal klanten met een clubcard.

De luchthaven is gevestigd bij een grote metropool, die een constante stroom van zakelijke
bezoekers trekt en in de vakantieperioden een groot aantal toeristen, die worden aangetrokken
door de stad, de stranden in de buurt en de natuurgebieden in het achterland. Deze groepen
vormen de clientèle van het verhuurbedrijf. Zowel de zakelijke reizigers als de toeristen ne-
men in negen van de tien gevallen een retour vlucht vanaf dezelfde luchthaven.

Het bedrijf bestaat uit een ruime verkoopbalie in de aankomsthal van de luchthaven en een
klein kantoortje in de parkeergarage. Verder heeft het bedrijf een nauwe relatie met een
garagebedrijf gevestigd op het terrein van de luchthaven.

Aan de verkoopbalie werkt een tiental verkopers. Zij helpen klanten bij het uitzoeken van
een geschikte auto en sluiten de huurcontracten af. Na afloop van de huurperiode komen
de klanten naar de verkoopbalie om de betaling (alleen met credit card) af te handelen.
Om in aanmerking te kunnen komen voor een huurauto moeten klanten tenminste 25 jaar
oud zijn, minimaal 12 maanden in het bezit van een rijbewijs, kredietwaardig zijn en geen
negatief verzekeringsverleden hebben.

Wanneer een klant een auto wil huren, vraagt de verkoper altijd eerst wat de klant precies
zoekt, waarvoor hij de auto gebruiken, bijvoorbeeld vakantie, verhuizing of zakelijk en
voor welke periode hij de auto wil huren. De verkoper checkt of de klant een clubcard
heeft en adviseert op basis van de klantbehoefte een auto uit een bepaalde tariefgroep.
Hij controleert daarbij ook of er zoń auto in de gewenste periode beschikbaar is. Zo niet,
dan zal hij de klant een ander type auto adviseren, of vragen of de huurperiode eventueel
aangepast moet worden.

Als de klant met het advies accoord gaat, vraagt de verkoper om de adresgegevens van de
klant en de bestuurder(s) en stelt een offerte op. Daarnaast kijkt de verkoper of de klant nog
aanvullende verzekeringen wil afsluiten, zoals bijvoorbeeld een afkoop eigen risicio of een
inzittenden verzekering. Dit wordt ook in de offerte opgenomen. Wanneer de klant ingaat
op de offerte, dan maakt de verkoper een huurcontract nadat hij de credietwaardigheid
van de klant heeft gecontroleerd. Tot slot vraagt de verkoper of de klant direct een auto
wil reserveren of dat hij alleen een voorreservering wil doen. Een voorreservering houdt in
dat de klant alleen een reservering voor een bepaalde tariefgroep heeft maar niet voor een
specifieke auto. Als de klant een reservering maakt betekent dat dat hij ook daadwerkelijk
die specifieke auto mee zal krijgen.

BIBLIOGRAPHY 129

Veel klanten maken een telefonische (voor)reservering. Het autoverhuurbedrijf stuurt de
offerte dan op, per post of per fax. De klant heeft nu 10 dagen, na dagtekening, de tijd om
op de offerte in te gaan door deze ondertekend terug te sturen.

Als de klant komt om de auto op de te halen moet hij het huurcontract ondertekenen, en
betalen. Dit gebeurt pas nadat de verkoper heeft gecontroleerd of de klant voldoet aan de
voorwaarden. Daarnaast moet hij ook een borgsom betalen en wordt er een copie van zijn
rijbewijs gemaakt.

Daarna kunnen de klanten in een grote parkeergarage hun auto ophalen en terugbrengen.
Daar worden ze opgevangen door een contractbeheerder, die hen naar de auto brengt en
uitleg geeft over de werking (startonderbreking, lichten, ruitenwissers enz.). Ook wordt
een schadeformulier ingevuld waarop wordt aangegeven wat de bekende schades zijn van
die auto. Na afloop van de huurperiode kan de klant de auto hier weer inleveren.

Als de klant de auto in ontvangst genomen heeft, wordt dit onmiddellijk geregistreerd.
Als de klant de auto heeft terug gebracht wordt deze gecontroleerd op schade, en wordt
gekeken of de klant de auto afgetankt heeft. Vervolgens wordt geregistreerd dat de auto is
terug gebracht en ontvangt de klant de borgsom terug. Een eventuele schade of een niet
volle tank wordt verrekend met de borgsom.

Niet alle adviestrajecten leiden daadwerkelijk tot het verhuren van een auto. Soms in-
formeren klanten alleen en soms gaan ze niet accoord met de offerte. Maar ook het afs-
luiten van een huurcontract is nog geen garantie. Soms blijkt dat de klant niet kan betalen,
maar het kan ook gebeuren dat de klant op het moment van afhalen toch liever een ander
type auto wil. De verkoper zal dan kijken of er nog zo’n auto beschikbaar is en eventueel
het contract aanpassen. Tenslotte gebeurt het ook nog wel eens dat een klant helemaal niet
komt opdagen. In dat geval vervalt de reservering en kan de auto weer aan een ander
worden verhuurd.

Alle offertes en huurcontracten worden bewaard in het verkoopdossier van de klant en 5
jaar in het archief bewaard. In alle gevallen waarbij een reservering uiteindelijk toch niet
doorgaat, wordt er een aantekening gemaakt op het huurcontract. Wat wel jammer is, is
dat het moeilijk is om overzicht te houden van notoir lastige klanten. Immers, de verkoper
moet dan in het archief gaan zoeken of er van deze klant al een dossier bestaat en of er
aantekeningen op de huurcontracten gemaakt zijn.

Analyseer nu het hierboven beschreven domein en produceer hier een activity model voor.

4. Consider the claim handling process with quantative information as depicted in Figure 7.11.
Suppose 100 accidents are reported. Compute the number of iterations needed to finish at
least one claim. When taking percentages of a number of tokens at a specific place, round-
off downward.

Bibliography

[AH05] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: yet another workflow lan-
guage. Information Systems, 30(4):245–275, 2005.

[Lo05] M.M. Lankhorst and others. Enterprise Architecture at Work: Modelling, Communication
and Analysis. Springer, Berlin, Germany, EU, 2005. ISBN 3540243712

[OMG03] OMG. UML 2.0 Superstructure Specification – OMG Draft Adopted Specification.
Technical Report ptc/03-08-02, August 2003.
http://www.omg.org

http://www.omg.org

130 CHAPTER 7. ACTIVITY MODELING

Chapter 8

Resource Modeling

8.1 Actor modeling

As discussed before, we have the following modeling domains:

• Actor domain

– Who is involved?
– What are possible interactions?
– Roles, resources, business functions, ...

• Activity domain

– Activities
– Interactions
– Relationships
– Structure/decomposition

• Actand domain

– See ORM/DM
– Advanced/complex types

The previous chapter focussed on the activity domain. This chapter promissed to discuss the
actor and actand domains. Thus far, however, we have been “sharpening our axe” by discussing
complex types. Actors and actands are usually complex types from a domain modeling perspec-
tive.

For the actor domain, we (re-)introduce the following core concepts:

Actor – An entity that performs behavior. I.e. it is actively involved in an activity.

Actor type – An entity that performs behavior. I.e. it is actively involved in an activity.

Use-case (instance) – An activity which is triggered by an external trigger.

Use-case type – A class of similar use-cases.

Process – Synonym for use-case type.

Business use-case (instance) – A use-case which an organisation/business executes to fulfill a
service to the outside world.

Business use-case type – A class of similar business use-cases.

Business process – Synonym for business use-case type.

131

132 CHAPTER 8. RESOURCE MODELING

Business role (type) – A named specific contribution that an actor (type) may provide to a busi-
ness use-case (type).

Is a special kind of role (type). Such a role is usually defined by functional responsibilities.

(Business) role-player (type) – An actor (type) playing a (business) role (type).

Business function – A virtual or idealised organisation within a business/organisation.

Identification can be based on different criteria: knowledge/skills required, use of resources,
type of functional behaviour, etc.

(Business) collaboration (type) A temporary configuration of two or more actors (types) result-
ing in a collective behavior.

“Insured person and insurance company submitting/receiving a claim”

Can be regarded as a temporary of two role-playing actors into an ad-hoc actor, that plays
a role providing the behavior of the collaboration

Accident Registration Acceptance Valuation Payment

Damage claiming process

ClaimantPerson
Insurance
company

Insurer

Figure 8.1: Claim handling process with business-roles

Figure 8.1 shows an example activity model with associated actor types and role types. The
underlying ORM domain model is depicted in Figure 8.2.

"Claim handling"

Insurer Insurant

ClientInsurance
company

Figure 8.2: Claim handling process with business roles mapped to ORM

Insurance
company

Insurer

Claim
handling

Claim handling
process

Figure 8.3: Claim handling process with business-functions

8.2. ACTAND MODELING 133

Figure 8.3 shows an example activity model where the business-function within the insurer is
shown wich is responsible for the actual claim handling. The underlying ORM domain model is
depicted in Figure 8.2. The refined ORM domain model is depicted in Figure 8.4.

"Claim handling"

Insurant

Client

Claim
handling

company
Insurance

Insurer

Figure 8.4: Claim handling process with business-functions mapped to ORM

8.2 Actand modeling

For the detailed modeling of actands, we essentially use ORM. This is illustrated in Figure 8.5.

Questions
1. Given the following populations: Pop(Carnivore) = {a, b, c}, Pop(Omnivore) = {d, e} and Pop(Herbivore) =
{f, g}. What are the populations of Animal, Flesh eater and Plant eater?

2. To have electrical power supplied to one’s premises (i.e. building and grounds), an appli-
cation must be lodged with the Electricity Board. The following tables are extracted from
an information system used to record details about any premises for which power has been
requested.

The following abbreviations are used: premises# = premises number, qty = quantity, nr = num-
ber, commercl = commercial. Each premises is identified by its premises#.

The electricity supply requested is exactly one of three kinds: ”new” (new connection
needed), ”modify” (modifications needed to existing connection), or ”old” (reinstall old
connection). ”Total amps” is the total electric current measured in Amp units. ”Amps/phase”
is obtained by dividing the current by the number of phases.

134 CHAPTER 8. RESOURCE MODELING

Insurant

Client

"Claim handling"

Claim
handling

company
Insurance

Insurer

Claim

Figure 8.5: Refining actands for claim handling process

premises# city kind of kind of dog on breed qty of supply
premises business premises of dog breed needed

101 Brisbane domestic . yes Terrier 2 new
202 Brisbane commercl car sales no . . modify
303 Ipswich domestic . yes Alsatian 1 old

Poodle 1
404 Redcliffe commercl security yes Alsatian 3 new

Bulldog 2
505 Brisbane domestic . no . . modify
606 Redcliffe commercl bakery no . . old
. .

Further details about new connections or modifications:

load applied for (if known) wiring expected date for
premises# total amps nr phases amps/phase completed? wiring completion
101 200 2 100 no 30-06-03
202 600 3 200 yes .
404 . . . no 01-08-03
505 160 2 80 no 30-06-03
.

The population is significant with respect to mandatory roles. Each premises has at most
two breeds of dog.

Produce a fact-based model for this domain. Use specialization when needed. Include
uniqueness, mandatory role, subset, occurrence frequency and equality constraints, as well as value
type constraints that are relevant. Provide meaningful names.

If a fact type is derived it should be asterisked on the diagram and a derivation rule should

QUESTIONS 135

be supplied.

Produce both a flat fact-based model, as well as a version that uses abstraction/decomposition
to split this domain into more comprehensible chunks.

136 CHAPTER 8. RESOURCE MODELING

Chapter 9

Service modeling

Version:
24-05-059.1 Service

• Service: The net effect (added value) of an actor’s behaviour that is regarded to be useful
(value!) by at least one actor.

Examples:

– Service your car
– Provide you with a mortgage
– Do yourself a favor, and

• Service offering: The potential of an actor to be engaged in an activity, where this engage-
ment may be perceived as usefull by some other actor.

Note: both of these actors might be complete (open active) systems!

Is at the type level!

• Service delivery: The actual engagement.

At the instance level!

• An information system can be regarded as a service providing actor:

– Environment ⇒ Consumes services
– System ⇒ Delivers services

• The system may use services offered by other systems in order to deliver the service. This
“other system” then become “infrastructure” to the original system.

The latter system is adding value to the basic services offered by the “infrastructural sys-
tem”.

• Regarding a system as a service-providing entity allows us to regard this system as a black
box.

• If some part of a system domain is viewed as an information system by some viewer, then
this information system may be regarded as a black-box which interacts with its environ-
ment.

• The activity and resource modeling as discussed in the previous chapters basically took a
white box approach to a system. We were looking inside the system to see what activities
take place, who the actors are that execute the activities, etc.

• When regarding a system as a black box, we obtain service information hiding, in other words,
we do not see the way a service delivery is actually implemented.

137

138 CHAPTER 9. SERVICE MODELING

• Service information hiding as defined by A.P. Barros:

A technique (for business modeling) should allow the formulation of service requests to be
independent of their actual processing.

In other words, we should be able to talk about service independent of the (business) pro-
cesses that implement them

• Why information hiding?
– One: description of a service
– Many: ways to implement/deliver
– Useful for:

∗ Software
∗ Organisations
∗ ... any system that is purposely designed

9.2 Modeling services
• A service delivery can be regarded as moving through a number of states and transitions.

We do not want to “see” the details of the transition, but do want to see the overall states of
the service delivery as they are experienced by the service consumer.

We will focus on the interaction between the consumer and offerer of the service.

• A service can be regarded as a collaborative activity between the provider of the service
(e.g. an organisation), the consumer of the service, and potentially some additional parties.

• As such, a service can be modeled as any other activity, however, in this case the system
providing the service is treated as a black-box.

• An example is shown below:

ClaimantPerson

Submit claimAccident

Payment

Rejection

Claim damage

Insurance
company

Insurer

• Focus on added value of services

• Focus on interactions needed (between the supplying and consuming actors) in the service
delivery

• Do not (yet) focus on the processes needed to deliver the actual service

9.3 Quality of service

The functional behavior of a service can be modeled by means of an activity model focusing on
the interaction between the service provider and the consumer of the service. However, there is
more to services than their “functional” behavior. Services may occur at different levels of quality.
We now provide a brief discussion of the notion of quality, basing ourselves on [ISO01, ISO96c].
The essence of quality of a system is captured in the following definition:

9.3. QUALITY OF SERVICE 139

Quality – Is the totality of systemic properties of a system that relate to its ability to satisfy stated
and/or implied needs.

The qualities we referred to, are really an abbreviation of quality properties, which are a special
class of systemic properties:

Quality property – A systemic property, used to describe and asses the quality of a system.

These quality properties can be used to judge a service offered by a system, or express a desired
quality level.

In [ISO01, ISO96c] a range of key classes of quality properties are identified. These classes are
referred to as quality attributes:

Quality attribute – A specific class of quality properties.

Each quality attribute may also have a number of sub-characteristics, zooming in on specific
quality characteristics. In [ISO01, ISO96c] the following quality attributes have been identified:

Efficiency – Is the relationship between the level of performance of the system (or a sub-system)
and the amount of resources used, under stated conditions. Efficiency may be related
to time behaviour (response time, processing time, throughput rates) and to resource be-
haviour (amount of resources used and duration of such use).

Functionality – Bears on the existence of a set of functions and their specified properties. The
functions are those that satisfy stated or implied needs.

Sub-characteristics of functionality are: suitability, accuracy, interoperability, compliance,
security and traceability.

Reliability – Is the capability of the system (or a sub-system) to maintain its level of performance
under stated conditions for a stated period of time. The mean time to failure metric is often
used to assess reliability of systems. The reliability can be determined through defining the
level of protection against failures and the necessary measures for recovery from failures.

Sub-characteristics of reliability are: maturity, fault tolerance, recoverability, availability
and degradability.

Maintainability – Bears on the effort needed to make specified modifications to the system
(or a sub-system). Modification may include corrections, improvements or adaptation to
changes in the environment, the requirements and the (higher levels of the) design.

Sub-characteristics of maintainability are: analysability, changeability, stability, testability,
manageability, reusability.

Portability – Is the ability of the system (or one of its components) to be transferred from one
environment to another.

Sub-characteristics of portability are: adaptability, installability, conformance, replaceabil-
ity.

Usability – Bears on the effort needed for the use of the system (or one of its sub-systems) by the
actors in the environment of the system.

Sub-characteristics of usability are: understandability, learnability, operability, explicitness,
customisability, attractivity, clarity, helpfulness and user-friendliness.

From the consumer of a service offered by a system, mainly the functionality, reliability and usabil-
ity attributes will be of interest.

The repeated consumption of a service from one actor by another actor may be governed by a
(formal or informal) contract. Such a contract defines the actual service (i.e. its functional behav-
ior), as well as the non-functional quality properties that it should exhibit. For example: after
lodging an insurance claim, the client will be informed of the outcome within 10 work-days. Such con-
tracts make explicit the mutual committments/responsibilities of the actors involved in a service
delivery.

140 CHAPTER 9. SERVICE MODELING

9.4 Information systems as event-driven machines
• When viewing a system/organisation as a black box, its (model!) becomes a machine that

“eats” input and “produces” output.

In the case of an information system, the input/output consists of data representing infor-
mation.

• Formally, we can model this as: s : (TI� EL)→(TI� EL).

When observing system s, a viewer has a conception of s where in the course of time
“things” are fed into the system, while the system produces yet other “things”. These
“things” are elements from the viewer’s conception.

• If s(I) = O, then system s converts input stream I into stream O.

• If s(I) and I↓t, then one can say that for system s an event occurs at t, being the reception
of I(t).

• In the case of an information system, we could have:

ADD Person ‘Erik’ works for department ‘IRIS’

and

LIST People who work for department ‘IRIS’

as inputs. The output might be:

accept

and

Erik, Stijn, Theo

respectively

Bibliography

[ISO96] ISO. Kwaliteit van softwareprodukten. ten Hagen & Stam, Den Haag, The Netherlands,
1996. In Dutch. ISBN 9026724306

[ISO01] Software engineering – Product quality – Part 1: Quality model, 2001. ISO/IEC 9126-1:2001.
http://www.iso.org

http://www.iso.org

Part III

Model-driven System Engineering

141

Chapter 10

Models in System Engineering

Version:
25-05-2005In this chapter we are concerned with the role of models in (information) system engineering. To

this end, we will study the notion of system engineering more closely, as well as challenges on
information system engineering in the digital age and consequences that follow from this for the
use of models.

10.1 Systems engineering

In Chapter 1, we already defined information (system) engineering as:
System engineering – A process aimed at producing a changed system, involving the execution

of four sub-processes: definition, design, construction and installation. Processes that may
be executed sequentially, incrementally, interleaved, or in parallel.

Information system engineering – A system engineering process pertaining to the creation or
change of information systems.

with as key sub-processes:
Definition process – A process aiming to identify all requirements that should be met by the

system and the system description.
In literature this process may also be referred to as requirements engineering.

Design process – A process aiming to design a system conform stated requirements. The result-
ing system design may range from high-level designs, such as an strategy or an architecture,
to the detailed level of programming statements or specific worker tasks.

Construction process – A process aiming to realise and test a system that is regarded as a (pos-
sibly artificial) artifact that is not yet in operation.

Installation process – A process aiming to make a system operational, i.e. to implement the use
of the system by its prospective users.

We claim that these four processes are key to system development in general.

When integrating these processes into a unified process, a first, and naive, way of representing
the resulting overall development process, would lead to the situation as shown in Figure 10.1. In
the situation depicted, it is presumed that some operational system exists, and that there is a need
to change/improve/extend this system. By means of an definition process, the requirements of
this desired system change can be ascertained. Using these requirements as a starting point, a
new system can be designed, leading to a system design. Based on this design a new system may
be constructed, which, after completion, may then be installed as part of the operational system.
.

This representation of the development process is, however, naive in two important ways:

143

144 CHAPTER 10. MODELS IN SYSTEM ENGINEERING

Design

C
on

st
ru

ct
io

n

Installation

System
design

System

Operational

system

Constructed

system

D
ef

in
iti

on

definition

Figure 10.1: System development

• It suggests a linear flow of activities.

• It does not distinguish between system domains, conceptions of systems and system de-
scriptions.

The arrows in Figure 10.1 should indeed not be interpreted as putting a requirement on the start
of the processes, but rather of the finalisation of them. In other words, the processes may quite
well run in parallel, however, the definition process should be finalised before the definition
process can be finalised, etc. There are actually three major flavours of development approaches
that may be used [FV99]:

Linear approach – Step by step execution of a (part of a) development process, where a consec-
utive step is not executed until the preceding step is finished.

Incremental approach – A (part of a) development process is executed on a sub-system by sub-
system basis, using some well-defined division of a system into sub-systems.

Evolutionary approach – A (part of a) development process is executed completely in several
iterations, leading to several consecutive versions of the set of deliverables.

These flavours may actually be mixed/matched for different parts/stages of the development
process. For example, the following recipe may be used for the execution of a project:

Do linearly:

1. Do evolutionary:

• Definition
• Design

2. Do incrementally for all top-level component systems:

Do linearly:
(a) Construction
(b) Installation

10.2. SYSTEM ENGINEERING COMMUNITY 145

In chapter ??, where we will focus on a way of controlling for system engineering, we will discuss
these options in more detail. In the next chapter, where we will discuss system requirements, we
will also see how, in general, it is nearly impossible to first elicit all relevant requirements before
starting design.

With regards to the distinction between system domain, conceptions of systems and system de-
scriptions, a more refined view of figure 10.1 is given in figure ??. Both the operational system
(needing a change) and the constructed system (providing the actual change) are parts of the
universe, i.e. that what we perceive to be ‘the real world’. In other words, both the constructed
system and the operational system from figure 10.1 actually refer to system domains in the uni-
verse. The system requirements, as well as the system design, are really system descriptions.

Design

C
on

st
ru

ct
io

n

Installation

System
design requirements

System

Operational

system

Constructed

system

Description

Conception

D
ef

in
iti

on

Universe

Figure 10.2: System engineering – refined view

Note: Requirements are models in the minds of viewers. They also have their descriptions.

10.2 System engineering community

In system engineering, models are primarily used as a means of communication between the
actors involved in the engineering process. Given our focus on communication, it is important to
identify the actors that can play a role in the communication that takes place during the system
development process. These actors are likely to have some stake with regards to the system
being developed. Examples of such actors are: problem owners, prospective actors in the future
system (such as the future ‘users’ of the system), domain experts, sponsors, architects, engineers,
business analysts, etc.

These actors, however, are not the only ‘objects’ playing an important role in system develop-
ment. Another important class of are the many different documents, models, forms, etc., that
represent bits and pieces of knowledge pertaining to the system that is being developed. This
entire group of objects, and the different roles they can play, is what we shall refer to as a system
engineering community:

146 CHAPTER 10. MODELS IN SYSTEM ENGINEERING

System engineering community – A group of objects, such as actors and representations, which
are involved in a system engineering process.

(We will clarify below why we regard documents as being part of the community).

The actors in a system development community will (typically as a consequence of their stakes)
have some specific interests with regards to the system being developed. This interest implies
a sub-interest with regards to (the contents of) the the system descriptions that are communi-
cated within the community. This interest, in line with [IEE00], is referred to as the concern of
stakeholders:

Concern – An interest of a stakeholder, resulting from the stakeholder goals, and the role played
by some system. This usually pertains to the system’s development, its operation or any
other aspects that are critical or otherwise important to one or more stakeholders.

Actors in a system development community who play an instrumental role will typically not
have a concern with regards to the system being developed; they are neutral with regards to
stakes and concerns. Some example of concerns are:

• The current situation with regard to the computerized support of a business process.

• The requirements of a specific stakeholder with regard to the desired situation.

• The improvements, which a new system may bring, to a pre-existing situation in relation
to the costs of acquiring the system.

• The potential impact of a new system on the activities of a prospective user.

• The potential impact of a new system on the work of the system administrators that are to
maintain the new system.

10.2.1 Stakeholders and their concerns

During the development of a system, different people may have different interests with regards
to the system. Collectively, we will refer to these people as stakeholders:

Stakeholder – A party (a system viewer) with a specific interest pertaining to a system’s devel-
opment, its operation or any other aspects that are critical or otherwise important.

Examples are: Users, operators, owners, architects, engineers, testers, project managers,
business management, ...

The interests of a stakeholder with respect to some system to be developed, originate from some
deeper motivation: stakeholder goals:

Stakeholder goal – The end toward which effort is directed by a stakeholder, in which the sys-
tem (of which the stakeholder is indeed a stakeholder) plays a role.

This may pertain to strategic, tactical or operational end. The role of the system may range
from passive to active. For example, a financial controller’s goal with regards to a fu-
ture/changed system may be to control system engineering costs, while the goal of users
of the system may be to get their job done more efficiently.

The specific interests of a stakeholder are, in line with [IEE00], referred to as stakeholder concern:

Stakeholder concern – An interest of a stakeholder, resulting from the stakeholder’s goal, and
the role played by some system.

This usually pertains to the system’s engineering, its operation or any other aspects that are
critical or otherwise important to one or more stakeholders.

10.3. INFORMATION SYSTEM ENGINEERING AS A WICKED PROBLEM 147

Usually we will abbreviate “stakeholder concern” to “concerns”. Each of these stakeholders are
obviously system viewers, viewing the system with specific interests; their concerns.

A system (to be developed) is aimed to be beneficial for some group of stakeholders. This benefit
is referred to as the system mission:

System mission – A role, to the benefit of stakeholder goals, for which the system is intended.

This leads to the situation as depicted in figure 10.3. A stakeholder will typically have some
operational goal in which the system will/should/may play a role. Due to this potential role, the
stakeholder is bound to have some concerns with regards to a pre-existing system or a system to
be developed. Facing these concerns we find the system mission, in other words, that what the
system aims to be for its stakeholders.

Goal

(Operational)
System

Concern

Mission

"I want to ..., where the
system should do/be ... !" "Will it do/be ... ?"

"It will intend to do/be ... !"

Figure 10.3: Meeting stakeholder concerns

10.3 Information system engineering as a wicked problem

Traditioneel wordt de ontwikkeling van informatiesystemen uitgevoerd middels projecten. Het
ontwikkelen van informatiesystemen in het digitale tijdperk brengt, zoals ik al eerder heb beargu-
menteerd, diverse nieuwe uitdagingen met zich mee. We kunnen ons hierbij afvragen in hoeverre
een traditionele manier van denken in termen van projecten hierbij nog van toepassing is.

Elke projectleider zal beweren dat een project goede uitgangspunten en einddoelen dient te
hebben die helder afgebakend en stabiel zijn. Echter, als direct voortvloeisel van de geponeerde
uitdagingen verwevenheid, pluriformiteit, ongrijpbaarheid en veranderlijkheid, heeft de ontwikke-
ling van informatiesystemen in het digitale tijdperk te maken met een grote mate van vaagheid,
onstabiliteit en onzekerheid ten aanzien van juist deze uitgangspunten en einddoelen. Dit kan
nogal wat gevolgen hebben voor ontwikkelprojecten. Laten we dit daarom eens nader analy-
seren.

Informatiesysteemontwikkeling kan gezien worden als het oplossen van een “probleem”. Als
een bestaande situatie niet voldoet aan de systeemeisen, dan is het probleem dat opgelost moet
worden: “Zorg dat er een systeem komt dat wél aan de eisen voldoet”.

10.3.1 Wicked problems

In het algemeen bestaan er problemen in soorten en maten. Een relevant onderscheid dat hierbij
gemaakt kan worden is het onderscheid tussen zogenaamde “gemene” en “tamme” problemen.
In het Engels worden deze typen van problemen respectievelijk “wicked problems” en “tame
problems” genoemd. Een gemeen probleem laat zich typisch kenmerken door eigenschappen
zoals de volgende:

148 CHAPTER 10. MODELS IN SYSTEM ENGINEERING

• Je begrijpt een gemeen probleem pas goed als je er een oplossing voor hebt bedacht. Elke
mogelijke oplossing brengt nieuwe aspecten van het probleem aan het licht, aspecten die
verdere aanpassing van de oplossing vereisen.

• Gemene problemen hebben geen stopcriterium. Er is geen eenduidige en stabiele prob-
leemdefinitie te geven. Als gevolg hiervan is het is niet duidelijk wanneer het probleem
echt is opgelost.

• Oplossingen voor gemene problemen zijn niet simpelweg goed of fout. In plaats daarvan
zijn ze “beter”, “slechter” of “goed genoeg”. Voor gemene problemen is het moeilijk om op
een objectieve wijze de kwaliteit van een oplossing te beoordelen.

• Elke oplossing van een gemeen probleem krijgt slechts één kans. Elke realistische poging
heeft direct consequenties. Je kunt niet eerst een realistisch prototype van de Betuwelijn
bouwen om te zien of het allemaal wel zal werken in de praktijk. Hierbij komt meteen
de in gemene problemen ingebouwde patstelling naar voren. Je kunt het probleem niet
echt verkennen zonder oplossingen te proberen, maar elke oplossing die je probeert heeft
onvoorziene bijeffecten die het probleem direct of indirect verder beı̈nvloeden.

Deze vier criteria zijn niet alle criteria voor gemene problemen, maar het zijn naar mijn mening
wel de meest onderscheidende. Een tam probleem laat zich typisch kenmerken door eigenschap-
pen zoals:

• Het probleem heeft een vooraf goed gedefinieerde en stabiele probleemdefinitie.

• Het heeft een duidelijk stopcriterium om te bepalen of een goede oplossing is gevonden.

• Er is een oplossing die op objectieve wijze beoordeeld kan worden op zijn correctheid.

• Het probleem heeft oplossingen die makkelijk, zonder ongewenste consequenties, uitgeprobeerd
kunnen worden.

Deze typen van problemen zijn bedoeld als extremen. Een probleem kan best een “beetje gemeen”
of “enigszins tam” zijn. Overigens zegt het gemeen of tam zijn van een probleem niets over de
moeilijkheidsgraad van het probleem zelf. Het bewijzen van Fermat’s laatste stelling was vol-
gens deze definitie weliswaar een tam probleem, maar men heeft er jaren over gedaan om een
oplossing te vinden.

Hoe zit het nu met het ontwikkelen van informatiesystemen? Komen we daar tamme of gemene
problemen tegen? Mijn stelling is dat het ontwikkelen van informatiesystemen in het digitale
tijdperk tendeert naar een gemeen probleem. Uitgaande van de uitdagingen voor informatiesys-
teemontwikkeling in het digitale tijdperk zullen veel ontwikkelprojecten al snel voldoen aan de
criteria voor gemene problemen. Laat we de belangrijkste criteria wat nader bekijken.

Het eerste criterium betrof het feit dat een probleem pas echt begrepen kan worden als er een
eerste oplossing voor is bedacht. Dit criterium sluit direct aan bij de uitdagingen verweven-
heid en ongrijpbaarheid. Terwijl men een informatiesysteem ontwikkelt, zal men nieuwe be-
langhebbenden kunnen tegenkomen, en zullen belanghebbenden door het concreter worden van
het nieuwe systeem steeds beter gaan inzien wat hun feitelijke belangen zijn.

Het tweede criterium betrof het ontbreken van een goed stopcriterium. Bij het ontwikkelen van
informatiesystemen ontstaat er een soort natuurlijke drang om te gaan schuiven met de eisen ten
aanzien van het nieuwe informatiesysteem. Ten dele zal dit het gevolg zijn van veranderingen
die plaatsvinden in de socio-economische context gedurende de ontwikkeling van het systeem.
De wereld staat niet stil. Er zijn echter ook redenen dichter bij huis te vinden. Het ontwikkelen
van een informatiesysteem zal vrijwel altijd de directe context van het systeem beı̈nvloeden. Im-
mers, om een ontwikkelproject überhaupt op te starten moet er in eerste instantie een concrete
behoefte zijn om iets te veranderen aan een reeds bestaande situatie. Er moet een “knelpunt”
zijn dat als ernstig genoeg wordt ervaren, om iemand er toe te brengen de moeite te nemen een
ontwikkelproject op te zetten en te betalen. Het wegnemen van dat “knelpunt” zal ongetwijfeld
het gedrag van de context beı̈nvloeden. Immers, de context van het systeem heeft moeten leren

10.3. INFORMATION SYSTEM ENGINEERING AS A WICKED PROBLEM 149

leven met beperkingen. Zodra die beperkingen zijn weggenomen, zal dat ongetwijfeld leiden
tot ander gedrag van de context. Een verandering die vrijwel zeker nieuwe veranderingswensen
met zich meebrengt, omdat er ergens anders een nieuw knelpunt zal opduiken. Nu kunnen we
vervolgens hard roepen “ja maar dat nieuwe knelpunt is niet het originele probleem”, maar dat
verandert niets aan het feit dat de definitie van het probleem is veranderd, en dat het dus maar de
vraag is of we uiteindelijk het goede probleem hebben opgelost. Wat is het goede stopcriterium?

Een concreet voorbeeld van dit fenomeen is het oplossen van fileproblemen. Wanneer we bij een
systeem van snelwegen op een bepaalde plek de wegen verbreden om op die plek de files op te
lossen, dan zullen er vrijwel zeker op andere plekken nieuwe files ontstaan. Aan de ene kant
zullen auto’s op voormalige knelpunten sneller kunnen doorstromen, en daardoor ergens anders
nieuwe files veroorzaken. Aan de andere kant, en dat is het gemene, zal de vermindering van
de files waarschijnlijk veroorzaken dat ineens meer mensen tijdens de spitsuren van hun auto
gebruik wensen te maken. Vooraf is dit gedrag moeilijk voorspelbaar. Een directe informati-
etechnologische tegenhanger van de filesituatie is het automatiseren van productieprocessen.
Wanneer we knelpunten in productieprocessen oplossen door deze te automatiseren, kunnen er
ergens anders weer nieuwe knelpunten ontstaan. Soms zijn deze knelpunten voorspelbaar, maar
vaak ook niet.

Het derde criterium voor gemene problemen had betrekking op het feit dat oplossingen niet
simpelweg goed of fout zijn. Wanneer is een informatiesysteem goed? Als het conform de speci-
ficaties werkt? Maar wat als het systeem, om dat niveau van correctheid te bereiken, te laat wordt
opgeleverd? Is een op tijd opgeleverd systeem met een aantal fouten in niet al te cruciale delen
van het systeem, niet “beter” dan een systeem dat een maand later wordt opgeleverd zonder
fouten? Stel dat het gaat om een informatiesysteem dat noodzakelijk is voor de introductie van
een nieuw product op de markt. Een maand eerder met het nieuwe product op de markt komen
dan de concurrentie kan wel eens van doorslaggevend belang zijn. Hoe erg zijn die overgebleven
fouten dan nog?

Daarnaast blijft het, zie ook de vorige twee criteria, moeilijk om te komen tot een kwantitatieve
specificatie van wat eigenlijk het goede informatiesysteem is. Als mens zijn we uitermate adaptief
ingesteld. Zelfs als een systeem niet precies doet wat we er van verwachten, kunnen we er nog
steeds erg nuttig gebruik van maken. Is dat systeem dan “slecht”? Het kan beter. Maar dat kan
het bijna altijd. Wanneer is goed goed genoeg?

Volgens het vierde criterium zou een oplossing van een gemeen probleem slechts één kans hebben
om zich te bewijzen. Dit criterium zal niet altijd van toepassing zijn bij het ontwikkelen van in-
formatiesystemen. Als het te ontwikkelen informatiesysteem klein genoeg van omvang is, zou
men zich kunnen veroorloven om te experimenteren met alternatieve oplossingen. Echter, bij
grootschalige informatiesystemen, zoals de OV chipkaart, elektronische belastingaangifte, het be-
talingsverkeer, etcetera, is er slechts beperkt ruimte om op realistische schaal te experimenteren.
Na bijvoorbeeld een mislukte poging tot het introduceren van een OV chipkaart, moet er voor een
volgende poging rekening worden gehouden met eventuele “overblijfselen” van deze eerdere
poging. Het oorspronkelijke probleem bestaat daarom ook niet meer als zodanig. Je hebt maar
één kans gehad om het originele probleem op te lossen.

Tenslotte moet nog opgemerkt worden dat gemeenheid een eigenschap van het probleem zelf
is. Maar dat is nog niet het hele verhaal. Naast het probleem zelf, hebben we namelijk ook nog
te maken met een context waarin het probleem opgelost moet worden. Twee van de genoemde
uitdagingen voor de Informatiekunde hebben meer betrekking op de context van het probleem
dan op het probleem zelf. Het gaat hierbij om de pluriformiteit van de belanghebbenden en de
veranderlijkheid van de socio-economische en technologische context. Die twee factoren dra-
gen in veel gevallen nog eens extra bij aan de gemeenheid. We mogen concluderen dat infor-
matiesysteemontwikkeling in het digitale tijdperk tendeert een gemeen probleem te zijn, waarbij
de context van het probleem de gemeenheid eerder zal verergeren dan verminderen.

150 CHAPTER 10. MODELS IN SYSTEM ENGINEERING

10.3.2 Traditionele informatiesysteemontwikkeling

Hoe wordt bij het ontwikkelen van informatiesystemen traditioneel omgegaan met gemeenheid?
Informatiesysteemontwikkeling kan opgedeeld worden in een aantal fasen. Nu zijn er verschil-
lende manieren om deze indeling te maken, maar grofweg kunnen we stellen dat er vier belan-
grijke fasen zijn te onderkennen: definiëren, ontwerpen, construeren en implementeren. Bij het
definiëren staan drie vragen centraal: wat moet het systeem doen, waarom moet het dit doen,
en hoe goed moet het dit doen. Deze fase leidt tot de probleemdefinitie. Tijdens de ontwerpfase
zijn de centrale vragen: hoe moet het systeem er uit zien om te voldoen aan de eisen zoals die
opgesteld zijn in de definitiefase, en waarmee kan dit gerealiseerd worden. Na de ontwerpfase
volgt de constructiefase. In deze fase worden alle benodigde onderdelen van het informatiesys-
teem bijeengebracht, en wordt het eindresultaat samengesteld. Het kan hierbij gaan om hard-
ware, software, handleidingen, etcetera. Wat volgt, in de implementatiefase, is de daadwerkeli-
jke in gebruik name van het eindresultaat door de opdrachtgevers. Na de implementatie volgt
doorgaans het beheren van het systeem. Zoals ik echter eerder heb aangegeven, richt ik me in
mijn onderzoek specifiek op systeemontwikkeling.

Er zijn verschillende strategieën om de vier genoemde fasen te doorlopen. Een lineaire strate-
gie loopt, zoals de naam al suggereert, voor het gehele systeem stap voor stap alle fasen door.
Dit wordt ook wel eens een waterval aanpak genoemd, omdat we als het ware van de ene fase
naar de andere fase stromen. Een eerste variatie hierop is de incrementele strategie, waarbij de
verschillende fasen per deelsysteem doorlopen worden. Deze strategie gaat er wel van uit dat
we een zinnige opdeling van het systeem hebben kunnen maken in deelsystemen. Een derde
variant is de iteratieve strategie. Hierbij wordt door veelvuldig op en neer springen tussen de
verschillende fases een voldoende goed eindresultaat toegewerkt.

Wat al deze aanpakken gemeen hebben is dat ze uitgaan van wat ik zou willen noemen het “pro-
jectdenken”. Men neemt als vertrekpunt de aanname dat men, idealiter, in staat is om heldere
uitgangspunten en einddoelen te formuleren. Startende vanuit het projectdenken zou je het liefst
willen zien dat je te maken hebt met situaties waarin je een nette, goed gestructureerde, lineaire
aanpak kunt gebruiken. Omdat de praktijk weerbarstiger is dan dat, moest het projectdenken
opgerekt worden. Dit heeft geleid tot de meer iteratieve strategieën. We kunnen echter stellen
dat zelfs wanneer een iteratieve strategie gebruikt wordt, dit toch een ontkenning blijft van het
gemene karakter van de problemen die men oplost. Men blijft immers het projectdenken, dat
vraagt om heldere uitgangspunten en einddoelen, als kader gebruiken.

10.3.3 Evenwichtsdenken

We kunnen ons afvragen of we er niet veel beter aan doen om in plaats van het projectdenken een
ander startpunt te kiezen, waarbij ik overigens niet wil zeggen dat projecten afgeschaft moeten
worden. Projecten zijn zeker nodig, ze bieden immers een goede manier om stabiele en behap-
bare brokken werk te verzetten. Ze zouden echter ingebed moeten worden in een groter geheel
dat niet persé uitgaat van stabiele uitgangspunten en einddoelen. Het is overigens interessant
om te zien hoe grootschalige ontwikkelprojecten nogal eens de neiging hebben om instituten te
worden. Wat begon als project wordt op een zeker moment bijna een staande organisatie op
zichzelf. Het feitelijke werk hierbinnen wordt weer uitgevoerd middels kleinere projecten. Als
tegenbeweging wordt ook wel gesproken over microprojecten, waarbij het gaat om het initiëren
van vele kleine projecten, in plaats van één onbestuurbare kolos .

We kunnen informatiesysteemontwikkeling wellicht het beste zien als een continu evolution-
air proces, met als doel het bewaren van evenwicht tussen drie polen: definitie, ontwerp en de
operationele situatie. De definitiepool richt zich op het wat, waarom en hoe goed, terwijl de
ontwerppool zich richt op het hoe en waarmee. De operationele pool betreft de actuele infor-
matievoorziening, waarbij het overigens best mogelijk is dat er in een actuele situatie nog geen
gebruik gemaakt wordt van een (gecomputeriseerd) informatiesysteem.

10.3. INFORMATION SYSTEM ENGINEERING AS A WICKED PROBLEM 151

�������
������	
����

�	���	�

���	�	�	�

�
��
���
�����	���	��

����	���	�

Figure 10.4: Evenwicht in informatiesysteemontwikkeling

Zoals in Figure 10.4 is geı̈llustreerd spannen de drie polen (metaforisch gezien) samen een span-
ningsveld op. De drie polen zijn onderling verbonden middels een drietal krachten; drie elastiek-
jes. Het elastiekje tussen de definitiepool en de operationele pool heeft betrekking op de vraag
in hoeverre de operationele situatie voldoet aan de gestelde de definitie. Het elastiekje tussen de
definitiepool en de ontwerppool richt zich op de vraag of het ontwerp een concretisering is van
de definitie; een goede vertaling van het wat naar het hoe. Tenslotte richt het elastiekje tussen de
ontwerppool en de operationele pool zich op de vraag of de operationele situatie een goede real-
isatie is van het ontwerp. Het evenwichtsmodel in Figure 10.4 is van toepassing op alle soorten
informatiesysteemontwikkeling, dus zowel bij nieuwbouw, correctie, uitbouw als renovatie.

Het evenwicht bewaren

Het evenwichtsmodel zegt nog niets over de eventuele processen die het krachtenveld kunnen
beı̈nvloeden. Idealiter is er een volledige balans tussen de drie polen. Bij een onbalans ontstaat
er een behoefte aan verandering. Mits we een dergelijke verandering scherp genoeg kunnen for-
muleren in termen van uitgangspunten en einddoelen, en de verandering klein genoeg is qua
omvang en te verwachten doorlooptijd, kan er een project opgestart worden om deze verander-
ing daadwerkelijk te verwezenlijken.

In elk van de drie verbindingen kan er sprake zijn van een onbalans. Zo kan het zijn dat de be-
hoeften van de belanghebbenden niet voldoende afgedekt worden door de operationele situatie.
In zo’n geval kan de balans hersteld worden door de operationele situatie aan te passen, en/of
door de behoeften bij te stellen. Dat laatste klinkt misschien raar, maar u zou zich een situatie
kunnen voorstellen waarin de diverse belanghebbenden er onrealistische wensen op nahouden,
die bijvoorbeeld met de huidige stand der technologie niet praktisch realiseerbaar zijn, terwijl
de verschillende belanghebbenden elkaar misschien ook nog eens tegenspreken. Het kan in een
dergelijke situatie heel effectief zijn om een project op te starten dat er voor moet zorgen dat de
belanghebbenden in gaan zien wat realistische en haalbare wensen zijn, gelet op de stand der

152 CHAPTER 10. MODELS IN SYSTEM ENGINEERING

technologie, de eventuele kosten van verbeteringen en de belangen van andere belanghebben-
den.

Wanneer de definitie en het ontwerp met elkaar in onbalans zijn, moet óf het ontwerp geactu-
aliseerd worden, óf moeten wederom de behoeften van de belanghebbenden bijgesteld worden.
Een onbalans tussen realisatie en ontwerp kan er op duiden dat de operationele situatie nog
verder geactualiseerd moet worden. Het kan er echter ook op duiden dat het ontwerp achter-
loopt op de operationele situatie. In de praktijk komt men dit laatste nogal eens tegen als er
veranderingen aan een systeem zijn aangebracht zonder dat het ontwerp hierop is aangepast.

Elke actie die ondernomen moet worden om de balans weer te herstellen kan in potentie uitgevo-
erd worden middels een project. De uitgangspunten en einddoelen van een dergelijk project
kunnen uitgedrukt worden in termen van de mate waarin de balans verbeterd moet worden.
Dit klinkt nog vaag. Het zal in de toekomst exacter gemaakt moeten worden: exacte vaagheid!
De uitdaging is om zo exact mogelijk uit te kunnen uitdrukken wat het is om in balans te zijn.
Met andere woorden, we moeten er voor zorgen dat er meetinstrumenten komen om, voor elk
van de elastiekjes uit het evenwichtsmodel, precies vast te stellen wat de mate van balans in een
bepaalde situatie is.

Het evenwicht toetsen

Om in staat te zijn vast te stellen in welke mate een operationele situatie daadwerkelijk een real-
isatie is van het ontwerp, zijn instrumenten en methoden nodig om te testen of een operationele
situatie zich gedraagt conform het ontwerp. De Informatica beschikt hier reeds over een uit-
gebreid instrumentarium voor het testen van software- en hardwareonderdelen van een infor-
matiesysteem . Daarnaast bieden methoden zoals Total Quality Management aanknopingspun-
ten om te toetsen in hoeverre het menselijke deel van een informatiesysteem zich conform het
ontwerp gedraagt. Een belangrijke voorwaarde is wel dat de talen die gebruikt worden om het
informatiesysteem te ontwerpen een goed gedefinieerde semantiek hebben; ze dienen een exacte
basis te hebben. We moeten immers wel precies weten waar we op willen testen/toetsen.

Bepalen in welke mate een ontwerp een concretisering is van de definitie, en of een operationele
situatie voldoet aan de gestelde definitie, is uitdagender dan het op het eerste gezicht lijkt.
Allereerst zijn er specificatietalen nodig om de definitie eenduidig te kunnen vastleggen. Ide-
aliter kunnen we alle soorten kwaliteiten, dus zowel de functionele als niet-functionele, waaraan
het systeem zou moeten voldoen in deze talen uitdrukken. Vervolgens kunnen we dan instru-
menten en methoden ontwikkelen om te controleren of de operationele situatie, of het ontwerp
hiervan, voldoet aan de specificatie. Hier zal overigens niet altijd een simpel ja/nee antwoord
mogelijk zijn.

De benodigde specificatietalen kunnen we zeker ontwikkelen. Echter, de aanname dat we de
definitie eenduidig kunnen vastleggen is wat naef. Waar moet die eenduidige definitie vandaan
komen? Er zijn twee factoren die het verkrijgen hiervan nogal bemoeilijken. Ten eerste zit de
definitie van het systeem in eerste instantie in de hoofden van de belanghebbenden verstopt. En
om de zaak nog erger te maken, zullen die belanghebbenden zich vaak niet eens precies bewust
zijn van hun specifieke wensen en eisen. De ongrijpbaarheid van informatiesystemen speelt ons
hierbij ook nog eens flink parten. We worden gedwongen om een onderscheid te maken tussen
een deel van de definitie dat reeds expliciet is gemaakt, dus op papier staat, en een deel dat
impliciet is gebleven. Zodra een belanghebbende zich bewust wordt van een aspect van zijn of
haar belangen, en dit kan verwoorden, kunnen we het toevoegen aan het expliciete deel van de
definitie. Pas dan zijn we in staat om middels ons instrumentarium te toetsen of de bestaande
situatie, of een ontwerp daarvan, hieraan voldoet. Toetsen of een ontwerp of een bestaande sit-
uatie voldoet aan het impliciet gebleven deel van de definitie is uiteraard niet zomaar mogelijk.
Wel kunnen methoden worden ontwikkeld om, op basis van een ontwerp of een operationele

10.4. VIEWPOINTS FOR SYSTEM DESCRIPTION 153

situatie, belanghebbenden te helpen in het expliciet maken van hun behoeften. De tweede be-
moeilijkende factor bij het vaststellen van een eenduidige definitie vloeit voort uit de plurifor-
miteit van de belanghebbenden en hun belangen. Als gevolg van deze pluriformiteit is de kans
groot dat we te maken hebben met tegenstrijdige wensen ten aanzien van het informatiesys-
teem. Het verkrijgen van een eenduidige definitie vereist dus ook onderhandelingen tussen de
verschillende belanghebbenden en hun belangen.

Het evenwicht sturen

Een voor de hand liggende vervolgvraag is de vraag hoe het evenwicht gestuurd kan worden,
zowel wat betreft de inhoudelijke als de procesmatige sturing. Bij inhoudelijke sturing gaat
het om de uiteindelijke inrichting van het ontwikkelde informatiesysteem, terwijl het bij proces-
matige sturing gaat om de inrichting van de ontwikkelprocessen. In ons onderzoek gaan we er
van uit dat het belangrijk is dat beide vormen van sturen zo bewust mogelijk dienen te gebeuren.
Met bewust doelen we hier op het feit dat beslissingen ten aanzien van de inrichting van het
informatiesysteem en het ontwikkelproces zoveel mogelijk op rationele grondslagen genomen
dienen te worden. Een beslissing om op een bepaalde manier het informatiesysteem in te richten
heeft invloed op de kwaliteitseigenschappen van het resulterende systeem. Gelijkelijk zal een
beslissing om het ontwikkelproces op een bepaalde manier in te richten van invloed zijn op de
kwaliteit van dat proces. In ons onderzoek beschouwen we “bewuste sturing” als een combinatie
tussen de drie volgende ingrediënten:

• De semantiek van beslissingen dient gezien te worden als de impact die ze hebben op de
kwaliteitseigenschappen van het resultaat. Op basis hiervan kan een goede kosten-baten
analyse gemaakt worden ten behoeve van de besluitvorming.

• Inrichtingsbeslissingen dienen zoveel mogelijk expliciet genomen te worden. Bij infor-
matiesysteemontwikkelprojecten worden nogal eens verborgen beslissingen genomen. On-
bewust wordt er gekozen voor een bepaalde technologie, methode of techniek, of wordt er
een motivatie van een project als gegeven beschouwd zonder nadere toetsing.

• Communiceren en onderhandelen tussen de verschillende belanghebbenden over inricht-
ingsbeslissingen is essentieel om tot een goede besluitvorming en concretisering van de
gekozen oplossingsrichtingen te komen.

10.4 Viewpoints for system description

In this section we discuss the notion of viewpoints as basic building blocks in the communication
in a system engineering community. In this context, a viewpoint will typically be positioned as
a vehicle for activities like design, analysis, obtaining commitment, formal decision making, etc. We
regard all of these activities to be communicative in nature.

A viewpoint essentially prescribes the concepts, models, analysis techniques and visualisations
that are to be used in the construction of different views on a system. A view is typically geared
towards a set of stakeholders and related stakeholder concerns. Simply put, a view is what you
see, and a viewpoint is where you are looking from.

In discussing the notion of viewpoint, we will first provide a brief overview of the origin of
viewpoints. This is followed by a more precise definition of viewpoints, and the concept of
viewpoint frameworks.

Consider the design of a new office building. In such a design we can focus on certain locations
within the design. For example, the reception area, or the top floor. Alternatively, we could limit
ourselves to one aspect of the design only. For instance the layout of the power-lines in a new
building, or the highway infrastructure in a city plan. These are all examples of how to obtain

154 CHAPTER 10. MODELS IN SYSTEM ENGINEERING

what essentially are sub-designs. Similarly, sub-designs in a system design can be identified. By
taking, a certain view on the design a sub-design follows.

10.4.1 Origin of viewpoints

The concept of viewpoint is not new. For example, in the mid eighties, Multiview [WAA85] al-
ready introduced the notion of views. In fact, Multiview already identified five viewpoints for
the development of (computerised) information systems: Human Activity System, Information
Modelling, Socio-Technical System, Human-Computer Interface and the Technical System. Dur-
ing the same period in which Multiview was developed, the so-called CRIS Task Group of the
IFIP working group 8.1 developed similar notions, where stakeholder views were reconciled via
appropriate “representations”. Special attention was paid to disagreement about which aspect
(or perspective) was to dominate the system design (viz. “process”, “data” or “behaviour”). As a
precursor to the notion of concern, the CRIS Task Group identified several human roles involved
in information system development, such as executive responsible, development coordinator, business
analyst, business designer. The results of that work can be found in “Information System Methodolo-
gies: A framework for understanding” [OHM+88] and in the proceedings of the CRIS conferences
from 1982–1991 [OSV82, OST83, OSV86, OSV88, VO91].

The use of viewpoints is not limited to the information systems community, it was also intro-
duced by the software engineering community. In the 1990’s, a substantial number of soft-
ware engineering researchers worked on what was phrased as “the multiple perspectives prob-
lem” [FKN+92, KS92, RMB95]. By this term, the authors referred to the problem of how to or-
ganise and guide (software) development in a setting with many actors, using diverse represen-
tation schemes, having diverse domain knowledge, and using different development strategies.
A general framework has been developed in order to address the diverse issues related to this
problem [FKN+92, KS92]. In this framework, a viewpoint combines the notion of actor, role, or
agent in the development process with the idea of a perspective or view which an actor maintains.
A viewpoint is more than a partial specification; in addition, it contains partial knowledge of how
to further develop that partial specification. These early ideas on viewpoint-oriented software en-
gineering have found their way into the IEEE-1471 standard for architectural description [IEE00]
on which we have based our definitions below.

10.4.2 Viewpoints on systems

In the context of system engineering, viewpoints provide a means to focus on particular aspects
of an system description. These aspects are determined by the concerns of the stakeholders with
whom communication takes place. What should and should not be visible from a specific view-
point is therefore entirely dependent on argumentation with respect to a stakeholder’s concerns.
Viewpoints are designed for the purpose of serving as a means of communication in a conversa-
tion about certain aspects of a system. Though viewpoints can be used in strictly uni-directional,
informtive conversations, they can in general also be used in bi-directional classes of conversa-
tions (e.g. immediate respons situations; cooperative modeling). The system engineer informs
stakeholders, and stakeholders give their feedback (critique or consent) on the presented aspects.
What is and what is not shown in a view depends on the scope of the viewpoint and on what
is relevant to the concerns of the stakeholders. Ideally, these are the same; i.e. the viewpoint is
designed with specific concerns of a stakeholder in mind. Relevance to a stakeholders concern,
therefore, is the selection criterion that is used to determine which objects and relations are to
appear in a view.

Below we list some examples of stakeholders and their concerns, which could typically serve as
the basis for the definition/selection of viewpoints:

10.4. VIEWPOINTS FOR SYSTEM DESCRIPTION 155

• Middle-level management: The current situation with regard to the computerised support
of a business process.

• Architect: The requirements of a specific stakeholder with regard to the desired situation.

• Upper-level management: The improvements which a new system may bring to a pre-
existing situation in relation to the costs of acquiring the system.

• End user: The potential impact of a new system on the activities of a prospective user.

• System administrators: The potential impact of a new system on the work of the system
administrators that are to maintain the new system.

• Architect: What are the consequences for the maintainability of a system with respect to
corrective, preventive and adaptive maintenance?

• Upper-level management: How can we ensure our policies are followed in the development
and operation of processes and systems? What is the impact of decisions (on personnel,
finance, ICT, etc.)?

• Operational manager: What new technologies do we need to prepare for? Is there a need
to adapt maintenance processes? What is the impact of changes to existing applications?
How secure are my systems?

• Project manager (of system development project): What are the relevant domains and their
relations, what is the dependence of business processes on the applications to be built?
What is their expected performance?

• System developer: What are the modifications with respect to the current situation that
need to be performed?

In line with IEEE 1471, and based on the detailed definition given in [Pro04], we define a view-
point to be:

Viewpoint – a specification of the conventions for constructing and using views.

This involves:

Way of thinking – articulates the assumptions about the kinds of problem domains, solu-
tions, and modellers involved. This notion is also referred to as the Weltanschauung
[?, ?], philosophy [?].

Way of modeling – identifies the core meta-concepts of the language that may be used to
denote, analyse, visualise and/or animate system descriptions.
This notion is also compatible with the approach on viewpoints as it is taken in the
Reference Model of Open Distributed Processing [ISO98b]:

“In order to represent an ODP system from a particular viewpoint it is necessary to
define a structured set of concepts [the meta-concepts] in terms of which that repre-
sentation (or specification) can be expressed. This set of concepts provides a language
for writing specifications of systems from that viewpoint, and such a specification
constitutes a model of a system in terms of the concepts.”

Way of communication – describes how the abstract concepts from the way of modeling are
communicated to human beings, for example in terms of a textual or a graphical nota-
tion (syntax, style, medium).

Way of working – structures (parts of) the way in which a system is developed. It de-
fines the possible tasks, including sub-tasks, and ordering of tasks, to be performed as
part of the development process. It furthermore provides guidelines and suggestions
(heuristics) on how these tasks should be performed.

Way of supporting – the support that is offered by (possibly automated) tools for the han-
dling (creating, presenting, modifying, etc.) of views.
In general, a way of supporting is supplied in the form of some computerised tool (see
for instance [?]).

156 CHAPTER 10. MODELS IN SYSTEM ENGINEERING

Way of using – identifies heuristics that:
• define situations, classes of stakeholders, and concerns for which the viewpoint is

most suitable,
• provide guidance in tuning the viewpoint to specific situations, classes of stake-

holders, and their concerns.

10.4.3 Viewpoint frameworks

In the context of information system engineering, a score of viewpoint frameworks exists, leaving
designers and systems with the burden of selecting the viewpoints to be used in a specific situa-
tion. Some of these frameworks of viewpoints are: The Zachman framework [Zac87], Kruchten’s
4+1 framework [Kru95], RM-ODP [ISO98b], ArchiMate [JVB+03] and TOGAF [TOG04]. These
frameworks have usually been constructed by their authors in attempt to cover all relevant as-
pects/concerns of the design/architecture of some class of systems. In practice, numerous large
organisations have defined their own frameworks of viewpoints by which they describe their
systems/architectures. We shall discuss two of these framework in more detail below.

The ‘4+1’ view model

In [Kru95], Kruchten introduces a framework of viewpoints (a view model) comprising five view-
points. The use of multiple viewpoints is motivated by the observation that it “allows to address
separately the concerns of the various stakeholders of the architecture: end-user, developers, systems en-
gineers, project managers, etc., and to handle separately the functional and non-functional requirements”.
Kruchten does not explicitly document the motivation for these specific five viewpoints. This
also applies to the version of the framework as it appears in [Kru00, BRJ99].

The goals, stakeholders, concerns, and meta-model of the 4+1 framework can be presented, in
brief, as follows:

Viewpoint: Logical Process Development Physical Scenarios
Goal: Capture the Capture concurrency Describe static Describe mapping Provide a driver

services which and sychronisation organisation of the of software onto to discover key
the system aspects of the design software and its hardware, and its elements in design
should provide development distribution Validation and

illustration
Stakeholders: Architect Architect Architect Architect Architect

End-users System designer Developer System designer End-users
Integrator Manager Developer

Concerns: Functionality Performance Organisation Scalability Understandability
Availability Re-use Performance
Fault tolerance Portability Availability
...

Meta-model: Object-classes Event Module Processor Objects-classes
Associations Message Subsystem Device Events
Inheritance Broadcast Layer Bandwidth Steps
...

Note: in [Kru00, BRJ99], the viewpoints have been re-named; physical viewpoint → deployment
viewpoint, development viewpoint→ implementation viewpoint and scenario viewpoint→ use-
case viewpoint, to better match the terminology of the UML.

The framework proposes modeling concepts (the meta-model) for each of the specific viewpoints.
It does so, however, without explicitly discussing how these modeling concepts contribute to-
wards the goals of the specific viewpoints. One might, for example, wonder whether object-
classes, associations, etc., are the right concepts for communication with end-users about the
services they require from the system. The 4+1 framework is based on experiences in practical
settings by its author. This would make it even more interesting to make explicit the motivations,
in terms of utility, for selecting the different modeling concepts. In [Kru00, BRJ99] this is also not
documented. The viewpoints are merely presented ‘as is’.

QUESTIONS 157

RM-ODP

The Reference Model of Open Distributed Processing (RM-ODP) [ISO98b, ISO96b, ISO96a, ISO98a]
was produced in a joint effort by the international standard bodies ISO and ITU-T in order to
develop a coordinating framework for the standardisation of open distributed processing. The
resulting framework defines five viewpoints: enterprise, information, computation, engineering and
technology. The modeling concepts used in each of these views are based on the object-oriented
paradigm.

The goals, concerns, and associated meta-models of the viewpoints identified by the RM-ODP
can be presented, in brief, as follows:

Viewpoint: Enterprise Information Computational Engineering Technology
Goal: Capture purpose, Capture semantics Express distribution Describe design Describe

scope and of information of the system into of distribution choice of
policies of and processing interacting objects oriented aspects technology
the system performed by the of the system used in the

system system
Concerns: Organisational Information and Distribution of Distribution of Hardware and

requirements and processing system the system, and software choices
structure required Functional mechanisms and Compliancy to

decomposition functions needed other views
Meta-model: Objects Object classes Objects Objects Not stated

Communities Associations Interfaces Channels explicitly
Permissions Process Interaction Node
Obligations ... Activities Capsule
Contract ... Cluster
... ...

The RM-ODP provides a modeling language for each of the viewpoints identified. It furthermore
states:

“Each language [for creating views/models conform a viewpoint] has sufficient expressive
power to specify an ODP function, application or policy from the corresponding viewpoint.”

Again there is no detailed discussion regarding the utility of the concepts underlying each of
these languages, from the perspective of the goals/concerns that are addressed by each of its
viewpoints. Also, the RM-ODP does not explicitly associate viewpoints to a specific class of
stakeholders. This is left implicit in the concerns which the viewpoints aim to address.

In particular in the case of an international standard, it would have been interesting to see explicit
motivations, in terms of utility to the different goals, for the modeling concepts selected in each
of the views.

Questions
1. Why is it important to realise that system development is not necessarily a linear process?

2. Name three different axes along which a high-level design may be ‘refined’ to a more de-
tailed design.

3. Describe, in your own words, the relationships between the concepts of: domain, viewer,
conception, perception and architecture.

4. What is the difference between: an architecture, architectural description, architectural
view, and architectural viewpoint?

5. Why is it important to carefully select relevant system viewpoints when developing sys-
tems?

6. Make a meta-model of the concepts introduced by the IEEE recommended practice for ar-
chitecture [IEE00]. Make sure to include as many constraints as you can deduce from the
text.

158 CHAPTER 10. MODELS IN SYSTEM ENGINEERING

7. Why is it important to acknowledge the fact that different stakeholders‘ will have different
views on a pre-existing or a future system?

8. Make a meta-model of the concepts introduced with respect to systems, domains, viewers,
etc.

9. Identify, for the system description language you have see so-far as part of your studies:

(a) The main concepts of these languages.
(b) Typical interests and viewers for which these languages may be useful.

10. Why should the set of viewpoints that will be used to describe different aspects of a system
that is being developed, be selected carefully.

11. What makes us consider a system description to be an architecture description?

12. What are possible dimensions for refinements of system descriptions?

13. Why is it important to consider responsibilities of system entities and collaborations among
them?

14. Consider a candy vending machine and people purchasing candy from the machine. What
would, in such a domain, be the relevant system entities? What would be there responsi-
bilities and collaborations?

15. Suppose you would design a pocket calculator. What would be the essential system ele-
ments (at a functional level)? Maybe you could do a role-playing game with a group

16. What’s the difference between an information system and a medium system?

17. Consider a bank. Not the one you sit on, but the one you entrust with your money. Pro-
vide a brief discussion of a possible business, work and information view (according to the
Tapscott viewpoints) for such a domain.

Recommended reading

[Rec91] E. Rechtin. Systems architecting: creating and building complex systems. Prentice-Hall
PTR, Upper Saddle River, New Jersey, 1991. ISBN 0138803455

[IEE00] Recommended Practice for Architectural Description of Software Intensive Systems.
Technical Report IEEE P1471-2000, The Architecture Working Group of the Soft-
ware Engineering Committee, Standards Department, IEEE, Piscataway, New Jer-
sey, USA, September 2000. ISBN 0738125180
http://www.ieee.org

[Zac87] J.A. Zachman. A framework for information systems architecture. IBM Systems Jour-
nal, 26(3), 1987.

Optional reading

[FVSV+98] E.D. Falkenberg, A.A. Verrijn-Stuart, K. Voss, W. Hesse, P. Lindgreen, B.E. Nilsson,
J.L.H. Oei, C. Rolland, and R.K. and Stamper, editors. A Framework of Information
Systems Concepts. IFIP WG 8.1 Task Group FRISCO, IFIP, Laxenburg, Austria, EU,
1998. ISBN 3901882014

[FV99] M. Franckson and T.F. Verhoef, editors. Introduction to ISPL. Information Services
Procurement Library. ten Hagen & Stam, Den Haag, The Netherlands, 1999. ISBN
9076304858

http://www.ieee.org

BIBLIOGRAPHY 159

Bibliography

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modelling Language User Guide.
Addison-Wesley, Reading, Massachusetts, USA, 1999. ISBN 0201571684

[FKN+92] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. Viewpoints:
a framework for integrating multiple perspectives in system de-velopment. Interna-
tional Journal on Software Engineering and Knowledge Engineering, Special issue on Trends
and Research Directions in Software Engineering Environments, 2(1):31–58, 1992.

[FV99] M. Franckson and T.F. Verhoef, editors. Introduction to ISPL. Information Services
Procurement Library. ten Hagen & Stam, Den Haag, The Netherlands, 1999. ISBN
9076304858

[FVSV+98] E.D. Falkenberg, A.A. Verrijn-Stuart, K. Voss, W. Hesse, P. Lindgreen, B.E. Nilsson,
J.L.H. Oei, C. Rolland, and R.K. and Stamper, editors. A Framework of Information
Systems Concepts. IFIP WG 8.1 Task Group FRISCO, IFIP, Laxenburg, Austria, EU,
1998. ISBN 3901882014

[IEE00] Recommended Practice for Architectural Description of Software Intensive Systems.
Technical Report IEEE P1471-2000, The Architecture Working Group of the Software
Engineering Committee, Standards Department, IEEE, Piscataway, New Jersey, USA,
September 2000. ISBN 0738125180
http://www.ieee.org

[ISO96a] Information technology – Open Distributed Processing – Reference model: Architecture,
1996. ISO/IEC 10746-3:1996(E).
http://www.iso.org

[ISO96b] Information technology – Open Distributed Processing – Reference model: Foundations,
1996. ISO/IEC 10746-2:1996(E).
http://www.iso.org

[ISO98a] Information technology – Open Distributed Processing – Reference model: Architectural
semantics, 1998. ISO/IEC 10746-4:1998(E).
http://www.iso.org

[ISO98b] Information technology – Open Distributed Processing – Reference model: Overview, 1998.
ISO/IEC 10746-1:1998(E).
http://www.iso.org

[JVB+03] H. Jonkers, G.E. Veldhuijzen van Zanten, R. van Buuren, F. Arbab, F. de Boer, M. Bon-
sangue, H. Bosma, H. ter Doest, L. Groenewegen, J. Guillen Scholten, S.J.B.A. Hop-
penbrouwers, M.-E. Iacob, W. Janssen, M.M. Lankhorst, D. van Leeuwen, H.A. (Erik)
Proper, A. Stam, and L. van der Torre. Towards a Language for Coherent Enterprise
Architecture Descriptions. In M. Steen and B.R. Bryant, editors, 7th IEEE Interna-
tional Enterprise Distributed Object Computing Conference (EDOC 2003), pages 28–39,
Brisbane, Australia, September 2003. IEEE Computer Society Press, Los Alamitos,
California, USA. ISBN 0769519946

[Kru95] P. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42–50, Novem-
ber 1995.

[Kru00] P. Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley, Reading,
Massachusetts, USA, 2nd edition, 2000. ISBN 0201707101

[KS92] G. Kotonya and I. Sommerville. Viewpoints for requirements definition. IEE/BCS
Software Engineering Journal, 7(6):375–387, 1992.

http://www.ieee.org
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org

160 CHAPTER 10. MODELS IN SYSTEM ENGINEERING

[OHM+88] T.W. Olle, J. Hagelstein, I.G. Macdonald, C. Rolland, H.G. Sol, F.J.M. van Assche, and
A.A. Verrijn-Stuart. Information Systems Methodologies: A Framework for Understanding.
Addison-Wesley, Reading, Massachusetts, USA, 1988. ISBN 0201544431

[OST83] T.W. Olle, H.G. Sol, and C.J. Tully, editors. Information Systems Design Methodolo-
gies: A feature analysis, York, England, EU, 1983. North Holland/IFIP WG8.1. ISBN
0444867058

[OSV82] T.W. Olle, H.G. Sol, and A.A. Verrijn-Stuart, editors. Information Systems Design
Methodologies: A Comparative Review. North-Holland/IFIP WG8.1, Amsterdam, The
Netherlands, EU, 1982. ISBN 0444864075

[OSV86] T.W. Olle, H.G. Sol, and A.A. Verrijn-Stuart, editors. Information Systems Design
Methodologies: Improving the practice, Noordwijkerhout, Netherlands, EU, 1986. North
Holland/IFIP WG8.1.

[OSV88] T.W. Olle, H.G. Sol, and A.A. Verrijn-Stuart, editors. Information Systems Design
Methodologies: Computerized assistance during the information systems life cycle. North
Holland/IFIP WG8.1, Malham, England, EU, 1988. ISBN 0444705120

[Pro04] H.A. (Erik) Proper. Da Vinci – Architecture-driven Information Systems Engineering. Ni-
jmegen Institute for Information and Computing Sciences, University of Nijmegen,
Nijmegen, The Netherlands, EU, 2004.

[Rec91] E. Rechtin. Systems architecting: creating and building complex systems. Prentice-Hall
PTR, Upper Saddle River, New Jersey, 1991. ISBN 0138803455

[RMB95] J. Reeves, M. Marashi, and D. Budgen. A software design framework or how to
support real designers. IEE/BCS Software Engineering Journal, 10(4):141–155, 1995.

[TOG04] The Open Group. TOGAF – The Open Group Architectural Framework, 2004.
http://www.togaf.org

[VO91] A.A. Verrijn-Stuart and T.W. Olle, editors. Methods and Associated Tools for the Infor-
mation Systems Life Cycle, Maastricht, Netherlands, EU, 1991. North Holland/IFIP
WG8.1. ISBN 0444820744

[WAA85] A.T. Wood-Harper, L. Antill, and D.E. Avison. Information Systems Definition: The
Multiview Approach. Blackwell Scientific Publications, Oxford, United Kingdom, EU,
1985. ISBN 0632012168

[Zac87] J.A. Zachman. A framework for information systems architecture. IBM Systems Jour-
nal, 26(3), 1987.

http://www.togaf.org

Part IV

Apendixes

161

Appendix A

Mathematical Notations

The mathematical notations used in the DAVINCI series are explained briefly in this appendix.

A.1 Sets

In addition to the set operations: ∪,∩, \,⊆ with their usual meaning, we also define:

A ⊂ B , A ⊆ B ∧A 6= B

A 6⊂ B , ¬A ⊂ B

The power set of a set A, i.e. the set of all subsets of A, is denoted as ℘(A), where:

℘(A) ,
{
B

∣∣ B ⊆ A
}

A.2 Functions

A partial function f from A to B is defined by f : A � B. Formally, it is a relation f ⊆ A × B
such that 〈a, b〉 ∈ f ∧ 〈a, c〉 ∈ f ⇒ b = c. This property makes it possible to write f(a) = b instead
of 〈a, b〉 ∈ f .

A function f is a set of binary tuples. The first and second values of these binary tuples are
identified as:

π1(f) ,
{
a

∣∣ 〈a, b〉 ∈ f
}

π2(f) ,
{
b

∣∣ 〈a, b〉 ∈ f
}

The following abbreviations are used for (partial) functions:

dom(f) , π1(f)
ran(f) , π2(f)
f(a)↓ , a ∈ dom(f)
f(a)↑ , a 6∈ dom(f)

For unary functions, we will write f↓a, and f↑a, instead of f(a)↓, and f(a)↑ respectively. Further,
f1, . . . , fn↓a1, . . . , am is employed as an abbreviation for: ∀1≤i≤n ∀1≤j≤m [fi↓aj].

A total function f from A to B is defined by f : A→B. Formally, f : A � B for which dom(f) = A.

163

164 APPENDIX A. MATHEMATICAL NOTATIONS

A.3 Relations

If R ⊆ X ×X is a relation, then we will use: xR y R z as an abbreviation of: xR y ∧ y R z.

Appendix B

Answers to questions

B.1 Questions from Section 1.4
Version:
04-04-051. What is an information system? Give some examples of an information system.

2. What is information system development? What does ‘architecture-driven’ add to this?

3. What are the consequences of an evolving environment on information systems?

4. Sometimes organisations use the introduction of IT as a way to force changes in organisa-
tions.

Why is this likely to fail?

5. Why is complexity a challenge for information system development?

What will happen if you add evolution to the equation?

6. Why is it important to use an ‘architecture-driven’ approach for the development of systems
that are used by some organisation in achieving its goals?

Which role is played by the environment of the organisation?

What is the role of the possible evolution of the organisation and its environment?

7. What is the essence of architecture in an information systems context?

8. Explain, in your own words, the essence of alignment.

9. Why is it important to optimise the alignment of an information system to its context?

B.2 Questions from Chapter 2
Version:
16-03-051. How are the terms ‘organization’, ‘domain’ and ‘universe’ be related to each other, given

the definitions provided in this textbook?

• Describe this relation in natural language.
• Describe this relation in the formal language given in this chapter.

Answer:
In natural language: The universe is the world under investigation by a viewer. A domain
is a part or aspect of the universe in which the viewer is interested. A domain always has
a direct environment. An organization is positioned in a universe, therefore being also part
of a universe, combining at least one domain. So, here, a universe can be seen as the whole,
containing organizations. Organizations contain domains.

165

166 APPENDIX B. ANSWERS TO QUESTIONS

In formal language: Let U be a universe observed by some viewer v. Let furthermore D be
a domain with direct environment ED (as part of a conception C) as it is observed by v in
U . Then we formally have: U |=d v 〈C : ED : D〉.
The viewer v may see (in the domain D) an organizational system S with environment ES .
In other words: U |=s v 〈C : ES : S〉, where ES ⊆ ED ∪D and O ⊆ D.

2. Proof Corollary 2.2.1 (page 53).

Answer:
Let C |=d v 〈C : E : D〉, then the closedness of E ∪D can be proven as follows:

C |=d v 〈C : E : D〉 V {Axiom S7 and S8 (page 53)}

D and E are closed V {Definition of closedness}

∀r∈LIE [Involved(r) ⊆ E]∧∀r∈LID [Involved(r) ⊆ D] V {Basic set theory}

∀r∈LIE ∪LID [Involved(r) ⊆ E ∨ Involved(r) ⊆ D] V {Basic set theory}

∀r∈LIE ∪D
[Involved(r) ⊆ E ∪D] V {Definition of closedness}

E ∪D is closed �

3. Proof Lemma 2.2.1 (page 54).

Answer:
Let U |=d v 〈C : E : D〉. Suppose P be a maximum connected subset of E, while:

¬∃e∈COP
∃r∈LIC ,d∈COD

[{e, d} = Involved(r)]

In other words, suppose P is not connected to D.

As P is a maximum connected subset of E (and also non-empty), there is no other element
in E to which an element from P is connected to. If P is not connected to D it would mean
that some subset of E is not connected to D, which would contradict Axiom S10. We can
therefore not assume:

¬∃e∈COE
∃r∈LIC ,d∈COD

[{e, d} = Involved(r)]

We should therefore conclude:

∃e∈COE
∃r∈LIC ,d∈COD

[{e, d} = Involved(r)]

4. Not all conceptions of a domain produce models. Why not?

Answer:
Conceptions need to be described in terms of a description. Conceptions are made by view-
ers, but are not made on purpose. If a conception is made on purpose, so if a domain is
purposely abstracted, it is called a model. Therefore, not all conceptions produce models.

5. Give an example of a reactive system, of a responsive system and of an autonomous system
(other examples than the ones already given, of course).

Answer:

• Active System: an example of an active system is the traffic jam information supply
system. These are the LED-signs along highways supplying information about which
of the highways are jammed, where they are jammed and the length of the jam. Drivers
can, based on the supplied information, choose to take a different route than their
initial route. This way, the system actively changes the universe.

167

• Dynamic System: an example of a dynamic system is the Dutch political system. The
system keeps on existing, but it changes due to new laws, the abolishing of old laws,
etcetera.

• Open System: an example of an open system is a ‘smart’ chess computer. Consider a
chess computer with a set of standard possible sets of movements. Each time you make
a move which is unknown to the system, the system remembers the move. After a few
games, the chess computer has ‘learned’ from your input and, as an effect, becomes
harder to beat.

6. From a modeling point of view, organizations can be considered as systems containing a.o.
entities and relations.

• Why is it important to be aware of the aspect of subjectivity when creating models?
• What view does an information system developer have when modeling organizations?
• Why would an information system developer want to start by creating a model of an

organization, instead of directly focusing on modeling an information system?

Answer:

• Models are based on conceptions, which are viewer-bound. Therefore, models are
described from the modelers‘ point of view. These models also include the worldview
of the modeler, and are thus a subjective representation of a domain.

• An information system developer describes a domain from a certain point of view,
namely his own point of view, and with a certain purpose, namely to create a model of
the domain which on which an information system shall/could be based. So, he only
look from one point of view within his own point of view to the domain.

• By creating a model of an organization before creating a model of a possible infor-
mation system which should be deployed in the organization, the developer is forced
to gain knowledge about the organization in which he operates. This should lead to
better insight in several aspects of the organization, like structure, evolution, culture,
etcetera. The use of this knowledge when creating an information system should lead
to a better ‘fitting’ system.

7. Proof Corollary 2.2.2 (page 55).

Answer:
Because of Axiom S12, we already know:

∃u∈COC
∀x∈COC

[u→C x]

But is there only one such u?

Suppose we have u1, u2 ∈ COC such that u1 6= u2 while:

∀x∈COC
[u1→C x ∧ u2→C x]

In other words, both u1 and u2 are tops of the decomposition hierarchy.

This allows us to derive:

u1 6= u2 ∧ ∀x∈COC
[u1→C x ∧ u2→C x] V {Since u1, u2 ∈ COC}

u1→C u2 ∧ u2→C u1 V {u1 6= u2}

u1→C u2 ∧ u2→C u1 V {Transitivity of → }

u1→C u1 �

168 APPENDIX B. ANSWERS TO QUESTIONS

As stipulated by Axiom S11 (page 55), decompositions are acyclic. Therefore, we are noy
allowed to have u1→C u1. We therefore cannot have u1, u2 ∈ COC such that u1 6= u2 while:

∀x∈COC
[u1→C x ∧ u2→C x]

Therefore there can only be one such u.

8. Suppose you are requested by a large organization (a holding company holding some
daughter companies) to create more insight into their own activities by creating some mod-
els of their organization. The focus of this models must, according to the board of directors,
be on their internal information flows, since the organization has the impression that a lot
of business efficiency is lost due to an incompetent set of information systems. Keeping in
mind what is explained in the two previous chapters, give an impression of:

(a) Where would you start modeling?
(b) What would you model?
(c) Why model that?

Answer:

(a) When a model of a very large organization is required, one should start by focusing
on the problem, instead of focusing on a to-be-created model. The first logical step is
gaining some knowledge of the whole of the organization. This can indeed be done
by creating a (holistic) sketch of the complete organization.

(b) When that sketch is made, and if the board agrees on that sketch, the modeler can
start focusing on several aspects concerning information flows. Perhaps an iterative
approach might be useful: expanding a model step by step, keeping the whole of the
organization in mind.

(c) Before an analysis can be made of a problem, or before a problem can be identified or
localized, some research has to be done. A board of directors can have some ideas of
where the problem may lie, but they may be wrong as well. Simply following orders of
some board may then result in the wrong conception of the organization, and thus to
a correct solution for some problem, but not to a solution for their problem. In fact, the
solution then does not ’fit’, or it changes, making it perhaps even more difficult to find.
Therefore, a model of the whole should be made: to gain insight in the organization
and their problem.

9. Proof Corollary 2.3.1 (page 60).

Answer:
Suppose U |=s v S′ ⊂ S, then:

U |=s v S′ ⊂ S V {definition of sub-system}

U |=s v S′ V {definition of abbreviation}

∃C,E [U |=s v 〈C : E : S′〉] V {Axiom S19}

∃C,E [U |=m v 〈C : E : S′〉] V {Axiom S18}

∃C,E

[
U |=d v 〈C : E : S′〉

]
V {Axiom S13}

∃d∈S′∀x∈COS′ [d→S′ x] �

10. Consider a home cinema set.

(a) Describe the systems elements.
(b) Distinguish proper sub-systems.

169

(c) Can you derive typical aspect systems and component systems?

Explain your answers.

Answer:

(a) A home cinema set usually contains of some elements of input (a receiver, a DVD-
player, a VCR, a game-console, a remote control, etcetera), and some elements of out-
put (a television screen, and some speakers). The relations between these elements are
the cables and the radio- or infra-red signals broadcasted by the RC.

(b) possible sub-systems are: the receiver, the dvd-player, the VCR, a game-sonsole, a
remote-control, a television, a set of speakers, the video-stream, the audio-stream, the
input-streams, the output-streams, and the power-supply.

(c) A list of proper component sub-systems is already given in the first item. Each of
these elements can properly function in other settings, and can thus be considered
as component sub-system. When looking at aspect systems, input-systems, output-
systems, video-stream system, audio-stream system and the power-supply. Please
recognize the difference between a speaker and a set of speakers. A speaker can be
identified as a sub-system itself, but since a set of speakers (for example in a Dolby
5.1 setting) has certain properties which individual speakers do not have (surround
sound), a set of speakers can be considered as a sub-system just as well as a single
speaker.

11. Consider a travel agency.

(a) Describe the most important system characteristics and exposition characteristics.
(b) Describe its behavior in terms of internal and external functions.

Answer:

(a) Consider a travel agency as an open active system: it anticipates to a lot of factors
in its environment, like customers, travels offered by airline companies, etcetera. On
the other hand, large travel agencies can promote certain destinations by promotion,
or enforce a quantity rebate at some airline company or hotel. This way they have
influence on the world in which they function.

• system characteristics: The agency is thus considered as an open active system.
• exposition characteristics: The travel agency mainly plays three roles: the cus-

tomer role (buying tickets at hotels and airline agencies), the vendor-role (selling
travels to customers) and the mediator-role (searching the best fitting travel for
each customer)

(b) • Internal functions: examples of internal functions are: the management of the
agency, the administration of the agency, etcetera.

• External functions: examples of external functions are: the number of customers
interested in traveling, the supply of possible travels by hotels and airline compa-
nies, etcetera.

12. Describe why information systems contain databases. Use the descriptions of the terms data,
information and knowledge as described in Chapter 2 in your description.

Answer:
Databases contain loads of data. Data, which is only useful when placed in some context
and when the data is related to each other in some way. This is usually done by queries
built in an information system. The system gains some data from a database and displays it
in context to the user of the system. By placing it in context, the data becomes information.
Due to the information supplied by the system, the view on the world of the systems‘ user
may be changed (or in other words: it may change the knowledge of the user).

170 APPENDIX B. ANSWERS TO QUESTIONS

13. Consider our definition of information intensive organizations.
(a) Give some examples of:

i. Information intensive organizations
ii. Non-information-intensive organizations

(b) How would you describe the distinction between information intensive organizations
and non-information organizations?

Answer:

(a) Some examples:
• An example of an information intensive organization is a bank. Banks work

large amounts of money, mostly computerized money (Internet banking, cash ma-
chines, electronic payment methods, etcetera.), so it is quite necessary that the
bank has well-functioning information systems. Failure may lead to the banks‘
bankrupt.

• An example of a non-information intensive organization is an Amish farm. Since
the Amish refuse to use modern equipment, like information systems, it is very
likely that an Amish farm is a non-information-intensive organization.

(b) The mayor difference between information intensive organizations and non-information
intensive organizations is the importance of the role the information system as a sub-
system of the organization plays. If, in some organization, the information system
becomes more important, then the organization becomes more information intensive.

14. Describe, in your own words, the differences between knowledge, information and data.
Answer:
Data are loose building blocks, for example one term or one fact. They are quite mean-
ingless without any context. They are the smallest units of which information can be con-
structed. Information is data placed in some context, thereby giving it some meaning. This
meaning may have influence on someone‘s knowledge. Knowledge represents someones
view on the world.

15. Proof Corollary 2.5.1 (page 66).
Answer:
Suppose t1 � t2 ∧ t1 � t3 ∧ t2 6= t3, then this would lead to the following contradiction:

t1 � t2 ∧ t1 � t3 ∧ t2 6= t3

V {since < is a complete total order}

t1 � t2 ∧ t1 � t3 ∧ (t2 <t3 ∨ t3 <t2)

V {definition of �}

t1 <t3 ∧ ¬∃s [t1 <s < t2]∧t1 <t3 ∧ ¬∃s [t1 <s < t3]∧(t2 <t3 ∨ t3 <t2)

V {rewrite}

¬∃s [t1 <s < t2]∧¬∃s [t1 <s < t3]∧(t1 <t2 <t3 ∨ t1 <t3 <t2)

V {rewrite}

¬∃s [t1 <s < t2 ∨ t1 <s < t3]∧(t1 <t2 <t3 ∨ t1 <t3 <t2)

V {contradiction}

FALSUM

�

171

Therefore, if t1 � t2∧ t1 � t3 it cannot be that t2 6= t3. In other words, we must have t2 = t3.

16. Proof Corollary 2.5.2 (page 67).

Answer:
We provide the prove of HE(t)(t) ⊆ HC(t). The prove for HE(t)(t) ⊆ HC(t) goes analo-
gously.

Suppose U |=d v 〈HC : HE : HD〉, then:

U |=d v 〈HC : HE : HD〉 V
˘
HE is a function to ℘(HC)

¯
HE(t) ∈ ℘(HC) V {definition of powerset}

HE(t) ⊆ HC V {rewrite}

h ∈ HE(t)⇒h ∈ HC(t) V {h is a function h : TI� EL}{
h(t)

∣∣ h ∈ HE(t)
}
⊆

{
h(t)

∣∣ h ∈ HC

}
V {definition of shorthand H(t)}

HE(t)(t) ⊆ HC(t) �

17. Proof Corollary 2.5.3 (page 67).

Answer:
Let U |=d v 〈HC : HE : HD〉, then:

U |=d v 〈HC : HE : HD〉 V {Axiom S21 (page 67)}

∀t∈TI
[
U |=d v 〈HC(t) : HE(t)(t) : HD(t)(t)〉

]
V {Axiom S6 (page 53)}

∀t∈TI [HE(t)(t)∩HD(t)(t) = ∅] �

18. Proof Lemma 2.5.1 (page 67).

Answer:
Let U |=d v 〈HC : HE : HD〉, while ¬∀t∈TI [HE(t)∩HD(t) = ∅], then:

¬∀t∈TI [HE(t)∩HD(t) = ∅] V {rewrite}

∃t∈TI [HE(t)∩HD(t) 6= ∅] V {rewrite}

∃t∈TI ∃h [h ∈ HE(t)∩HD(t)] V {rewrite}

∃t∈TI ∃h [h ∈ HE(t) ∧ h ∈ HD(t)] V {rewrite}

∃t∈TI ∃h [h(t) ∈ HE(t)(t) ∧ h(t) ∈ HD(t)(t)] V {rewrite}

∃t∈TI ∃e [e ∈ HE(t)(t) ∧ e ∈ HD(t)(t)] V {rewrite}

∃t∈TI [HE(t)(t)∩HD(t) 6= ∅] �

This result would contradict Corollary 2.5.3. In other words, we must have ∀t∈TI [HE(t)∩HD(t) = ∅].

B.3 Questions from Chapter 3
1. Given the situation:

172 APPENDIX B. ANSWERS TO QUESTIONS

A person with name Erik is writing a letter to his loved one, at the desk in a
romantically lit room, on a mid-summer’s day, using a pencil, while the cat is
watching.

Produce a graph consisting of concepts and links depicting this domain.

2. Stel je maakt een ontwerp voor een geldautomaat. Wat zijn voor dat domein de belangrijk-
ste concepten en hun onderlinge links? Hoe werken ze samen?

3. Proof Corollary 3.4.1 (page 75).

Answer:
We will prove FCt = Fact(ROt). The prove of PLt = Player(ROt) goes analogously.

f ∈ Fact(ROt) ≡ {Definition of Fact}

∃r∈ROt [f = Fact(r)] ≡ {Axiom S29}

∃r∈ROt [f = Fact(r) ∧ Fact(r) ∈ FCt] ≡ {Rewrite}

∃r∈ROt [f = Fact(r) ∧ f ∈ FCt] ≡ {Rewrite}

∃r∈ROt [f = Fact(r)]∧f ∈ FCt ≡ {Definition of FC}

f ∈ FC ∧f ∈ FCt ≡ {Definition of FCt}

f ∈ FCt �

4. Proof Corollary 3.5.1 (page 77).

Answer:

x ∈ IN V {Definition of IN}

x ∈
{
x

∣∣ ∃y [xHasType y]
}

V {Rewrite}

∃y [xHasType y] V {Definition of TP}

∃y∈TP [xHasType y] �

Therefore: ∀x∈IN∃y∈TP [xHasType y]

5. Proof Corollary 3.5.2 (page 77).

Answer:
We will prove: P̂L,Player(R̂O), the other proofs are analogously.

p ∈ P̂L ≡
n

Definition of P̂L
o

p ∈ PL∧p ∈ TP ≡ {Definition of PL}

p ∈ Player(RO) ∧ p ∈ TP ≡ {Definition of Player}

∃r∈RO [p = Player(r) ∧ p ∈ TP] ≡ {Rewrite}

∃r∈RO [p = Player(r) ∧ Player(r) ∈ TP] ≡ {Axiom S34}

∃r∈RO [p = Player(r) ∧ r ∈ TP] ≡ {Rewrite}

∃r∈RO∩TP [p = Player(r)] ≡
n

Definition of R̂O
o

∃r∈R̂O [p = Player(r)] ≡ {Definition of Player}

Player(R̂O) �

173

Note: for the Fact versions Axiom S33 should be used rather than Axiom S34.

6. Proof Corollary 3.5.5 (page 79).

Answer:
Let f ∈ F̂C, then:

i ∈ Pop(f) ∧ f ∈ F̂C ≡ {Definition of FC}

∃r [Fact(r) = f ∧ i ∈ Pop(f)] ≡ {Definition of RolesOf}

∃r∈RolesOf(f) [i ∈ Pop(Fact(r))] ≡ {Axioms S37 and S38}

∃r∈RolesOf(f) [i ∈ Fact(Pop(r))] ≡ {Definition of Pop}

i ∈ Fact(Pop(RolesOf(f))) �

7. Proof Corollary 3.5.4 (page 79).

Answer:
Let f ∈ F̌C, then:

x ∈ Types(RolesOf(f)) ≡ {Definition of Types}

x ∈ T̂P ∧ ∃r∈RolesOf(f) [x ∈ Types(r)] ≡ {Rewrite}

x ∈ T̂P ∧ ∃rŘO [x ∈ Types(r) ∧ r ∈ RolesOf(f)] ≡ {Definition of RolesOf}

x ∈ T̂P ∧ ∃r [x ∈ Types(r) ∧ Fact(r) = f] ≡
˘

Since r ∈ ŘO and Axiom S33
¯

x ∈ R̂O ∧ ∃r [x ∈ Types(r) ∧ Fact(r) = f] ≡ {Definitions of Types and Pop}

x ∈ R̂O ∧ ∃r [r ∈ Pop(x) ∧ Fact(r) = f] ≡ {Definitions of Fact}

x ∈ R̂O ∧ f ∈ Fact(Pop(x)) ≡ {Axioms S37 and S38}

x ∈ R̂O ∧ f ∈ Pop(Fact(x)) ≡ {Definition of Types and Pop}

x ∈ R̂O ∧ Fact(x) ∈ Types(f) ≡ {Definition of RolesOf}

x ∈ RolesOf(Types(f)) �

8. Consider the following case:

Een onderneming produceert en verkoopt een tiental soorten gevulde chocolade-
artikelen. De verkoop geschiedt aan grossiers tegen prijzen die voor lange tijd
vast zijn. In verband met achteruitgang in kwaliteit wordt op de verpakking een
uiterste verkoopdatum vermeld. Alle afleveringen geschieden met eigen auto’s.
Voor de produktie van chocolade importeert de inkoopafdeling van de onderne-
ming verschillende soorten cacaobonen uit tropische landen. Daartoe worden
inkoopcontracten afgesloten die de behoefte voor ca. een half jaar dekken. De ca-
caobonenprijs is aan sterke schommelingen onderhevig. De ingekochte partijen
hebben belangrijk uiteenlopende vetgehaltes, hetgeen mede in de inkoopprijs tot
uitdrukking komt.
De cacaobonen ondergaan afzonderlijk per partij in de voorbewerkingsafdeling
enkele machinale bewerkingen, zoals zuiveren, schillen, breken, branden, malen
en walsen.

174 APPENDIX B. ANSWERS TO QUESTIONS

Aan het onstane halffabrikaat worden door de afwerkingsafdeling suiker, smaak-
stoffen en – in verhouding tot het vetgehalte – cacaoboter toegevoegd. Het al-
dus verkregen halffabrikaat is cacaomassa van een bepaalde standaardkwaliteit,
dat in speciaal daartoe geconditioneerde opslagtanks wordt bewaard. De ver-
schillende benodigde vulsels worden ingekocht bij derden. Naar rato van de
ontwikkeling van de verkoop en de gewenste voorraadvorming worden de eind-
produkten gemaakt. Dit geschiedt in één arbeidsgang met behulp van automa-
tische vorm-, vul- en droogmachines.
In de pakafdeling worden de goedkopere soorten gevulde chocolade automatisch
en de duurdere soorten met de hand in sierdozen verpakt, waarna opslag in een
magazijn volgt. Bij alle bewerkingen ontstaan gewichtsverliezen.
In verband met de kwaliteitsachteruitgang kunnen de grossiers de niet tijdig
door hen verkochte artikelen retourneren, mits dit gebeurt binnen 10 dagen na
de uiterste verkoopdatum; meestal geschiedt deze teruglevering via de chauf-
feurs. De teruggenomen artikelen worden vernietigd. Creditering vindt plaats
voor 20 van de door hen betaalde prijs. Verrekening hiervan geschiedt slechts bij
gelijktijdige nieuwe afname.
Elk van de artikelen is voorzien van een of twee cadeaubonnen, afgedrukt op
de verpakking. De waarde van deze bonnen is e 0,10 per stuk. Op de artikelen
met een prijs tot e 5,- komt één, op de overige artikelen (tussen e 5,- en e 11,-)
komen twee bonnen voor. Op deze bonnen kunnen cadeau-artikelen (hand- en
theedoeken e.d.) zonder bijbetaling worden verkregen.
Voorts kunnen op deze bonnen meer duurzame gebruiksgoederen tegen ver-
laagde prijs worden verkregen. Hiervoor wordt elk halfjaar een folder uitgegeven,
waarin per artikel is aangegeven hoeveel bonnen moeten worden ingeleverd en
hoeveel daarnaast moet worden bijbetaald. In het algemeen is het door de afne-
mers bij te betalen bedrag iets lager dan de inkoopprijs voor de fabriek. Veelal
dient de halfjaarlijkse behoefte door de fabrikant in één keer te worden besteld;
latere aanvulling is in het algemeen niet mogelijk.
Op de duurzame gebruiksgoederen wordt veelal garantie of service verleend. Hi-
ervoor is met een gespecialiseerd bedrijf een contract afgesloten waarbij tegen een
eenmalig vast bedrag per apparaat de garantie- en serviceverplichtingen worden
overgedragen

Answer the following questions:

(a) Produce elementary facts for this domain.
(b) Produce an ORM model for this domain.

B.4 Questions from Chapter 4
1. Given the following populations: Pop(Carnivore) = {a, b, c}, Pop(Omnivore) = {d, e} and Pop(Herbivore) =
{f, g}. What are the populations of Animal, Flesh eater and Plant eater?

2. To have electrical power supplied to one’s premises (i.e. building and grounds), an appli-
cation must be lodged with the Electricity Board. The following tables are extracted from
an information system used to record details about any premises for which power has been
requested.

The following abbreviations are used: premises# = premises number, qty = quantity, nr = num-
ber, commercl = commercial. Each premises is identified by its premises#.

The electricity supply requested is exactly one of three kinds: ”new” (new connection
needed), ”modify” (modifications needed to existing connection), or ”old” (reinstall old

175

connection). ”Total amps” is the total electric current measured in Amp units. ”Amps/phase”
is obtained by dividing the current by the number of phases.

premises# city kind of kind of dog on breed qty of supply
premises business premises of dog breed needed

101 Brisbane domestic . yes Terrier 2 new
202 Brisbane commercl car sales no . . modify
303 Ipswich domestic . yes Alsatian 1 old

Poodle 1
404 Redcliffe commercl security yes Alsatian 3 new

Bulldog 2
505 Brisbane domestic . no . . modify
606 Redcliffe commercl bakery no . . old
. .

Further details about new connections or modifications:

load applied for (if known) wiring expected date for
premises# total amps nr phases amps/phase completed? wiring completion
101 200 2 100 no 30-06-03
202 600 3 200 yes .
404 . . . no 01-08-03
505 160 2 80 no 30-06-03
.

The population is significant with respect to mandatory roles. Each premises has at most
two breeds of dog.

Produce a fact-based model for this domain. Use specialization when needed. Include
uniqueness, mandatory role, subset, occurrence frequency and equality constraints, as well as value
type constraints that are relevant. Provide meaningful names.

If a fact type is derived it should be asterisked on the diagram and a derivation rule should
be supplied.

Produce both a flat fact-based model, as well as a version that uses abstraction/decomposition
to split this domain into more comprehensible chunks.

B.5 Questions from Chapter 6
1. Given the situation:

A person with name Erik is writing a letter to his loved one, at the desk in a
romantically lit room, on a mid-summer’s day, using a pencil, while the cat is
watching.

Produce a graph consisting of entities and relationships depicting this domain.

2. Consider the following domain:

Docent Proper voert de vakgegevens van Architectuur en Alignment in in het
management informatiesysteem.

Wat zijn hier de entiteiten en de relaties? Wat zijn de acties, actoren, actanden en predica-
tions.?

3. Stel je maakt een ontwerp voor een geldautomaat. Wat zijn voor dat domein de belangrijk-
ste systeem entiteiten en hun onderlinge relaties? Hoe werken ze samen? Wat zijn hier de
entiteiten en de relaties? Wat zijn de acties, actoren, actanden en predications.?

176 APPENDIX B. ANSWERS TO QUESTIONS

4. Proof Corollary 3.4.1 (page 75).

5. Proof Corollary 3.5.1 (page 77).

6. Consider the case from Question 3.8.

Answer the following questions:

(a) (Re)produce elementary facts for this domain.
(b) What are the actions, actors and actands?

B.6 Questions from Chapter 7
1. Pop-groepen (’bands’) verschijnen en verdwijnen. Ze worden ooit door een of meer per-

sonen opgericht en heffen zich ooit een keer op. In de tussentijd [dus gedurende hun
bestaansperiode] kunnen mensen tot zo’n band toetreden of de band verlaten. Zoals bek-
end spelen bands (muziek)nummers (’songs’) en nemen een vaker gespeelde song meestal
ook op (voor uitgave op CD etc.). Elke song is ooit door een of meer personen gecom-
poneerd en kan daarna door verschillende bands (’life’) gespeeld en/of opgenomen wor-
den (zo is de song ’Dreaming of a white Christmas ..’ in het verleden door heel wat bands
op hun eigen wijze gespeeld..). Elke [aparte] opname van een song door een band wordt
op een bepaalde datum en in een bepaalde studio opgenomen.

Analyseer nu de hierboven beschreven situatie en produceer hier een activity model voor.

2. Consider the domain as discussed in Question 3.8. Produce an activity model for this do-
main.

3. Op een grote, sterk groeiende luchthaven is naast een aantal concurrenten een autoverhu-
urbedrijf gevestigd. Het autoverhuurbedrijf is een zelfstandig opererende onderneming
die werkt op een franchise basis. Dit uit zich in de herkenbare huisstijl en de onlangs
gentroduceerde clubcard waarmee klanten kortingen bij alle aangesloten bedrijven kunnen
krijgen. Inmiddels is er al een groot aantal klanten met een clubcard.

De luchthaven is gevestigd bij een grote metropool, die een constante stroom van zakelijke
bezoekers trekt en in de vakantieperioden een groot aantal toeristen, die worden aangetrokken
door de stad, de stranden in de buurt en de natuurgebieden in het achterland. Deze groepen
vormen de clientèle van het verhuurbedrijf. Zowel de zakelijke reizigers als de toeristen ne-
men in negen van de tien gevallen een retour vlucht vanaf dezelfde luchthaven.

Het bedrijf bestaat uit een ruime verkoopbalie in de aankomsthal van de luchthaven en een
klein kantoortje in de parkeergarage. Verder heeft het bedrijf een nauwe relatie met een
garagebedrijf gevestigd op het terrein van de luchthaven.

Aan de verkoopbalie werkt een tiental verkopers. Zij helpen klanten bij het uitzoeken van
een geschikte auto en sluiten de huurcontracten af. Na afloop van de huurperiode komen
de klanten naar de verkoopbalie om de betaling (alleen met credit card) af te handelen.
Om in aanmerking te kunnen komen voor een huurauto moeten klanten tenminste 25 jaar
oud zijn, minimaal 12 maanden in het bezit van een rijbewijs, kredietwaardig zijn en geen
negatief verzekeringsverleden hebben.

Wanneer een klant een auto wil huren, vraagt de verkoper altijd eerst wat de klant precies
zoekt, waarvoor hij de auto gebruiken, bijvoorbeeld vakantie, verhuizing of zakelijk en
voor welke periode hij de auto wil huren. De verkoper checkt of de klant een clubcard
heeft en adviseert op basis van de klantbehoefte een auto uit een bepaalde tariefgroep.
Hij controleert daarbij ook of er zoń auto in de gewenste periode beschikbaar is. Zo niet,
dan zal hij de klant een ander type auto adviseren, of vragen of de huurperiode eventueel
aangepast moet worden.

Als de klant met het advies accoord gaat, vraagt de verkoper om de adresgegevens van de
klant en de bestuurder(s) en stelt een offerte op. Daarnaast kijkt de verkoper of de klant nog

177

aanvullende verzekeringen wil afsluiten, zoals bijvoorbeeld een afkoop eigen risicio of een
inzittenden verzekering. Dit wordt ook in de offerte opgenomen. Wanneer de klant ingaat
op de offerte, dan maakt de verkoper een huurcontract nadat hij de credietwaardigheid
van de klant heeft gecontroleerd. Tot slot vraagt de verkoper of de klant direct een auto
wil reserveren of dat hij alleen een voorreservering wil doen. Een voorreservering houdt in
dat de klant alleen een reservering voor een bepaalde tariefgroep heeft maar niet voor een
specifieke auto. Als de klant een reservering maakt betekent dat dat hij ook daadwerkelijk
die specifieke auto mee zal krijgen.

Veel klanten maken een telefonische (voor)reservering. Het autoverhuurbedrijf stuurt de
offerte dan op, per post of per fax. De klant heeft nu 10 dagen, na dagtekening, de tijd om
op de offerte in te gaan door deze ondertekend terug te sturen.

Als de klant komt om de auto op de te halen moet hij het huurcontract ondertekenen, en
betalen. Dit gebeurt pas nadat de verkoper heeft gecontroleerd of de klant voldoet aan de
voorwaarden. Daarnaast moet hij ook een borgsom betalen en wordt er een copie van zijn
rijbewijs gemaakt.

Daarna kunnen de klanten in een grote parkeergarage hun auto ophalen en terugbrengen.
Daar worden ze opgevangen door een contractbeheerder, die hen naar de auto brengt en
uitleg geeft over de werking (startonderbreking, lichten, ruitenwissers enz.). Ook wordt
een schadeformulier ingevuld waarop wordt aangegeven wat de bekende schades zijn van
die auto. Na afloop van de huurperiode kan de klant de auto hier weer inleveren.

Als de klant de auto in ontvangst genomen heeft, wordt dit onmiddellijk geregistreerd.
Als de klant de auto heeft terug gebracht wordt deze gecontroleerd op schade, en wordt
gekeken of de klant de auto afgetankt heeft. Vervolgens wordt geregistreerd dat de auto is
terug gebracht en ontvangt de klant de borgsom terug. Een eventuele schade of een niet
volle tank wordt verrekend met de borgsom.

Niet alle adviestrajecten leiden daadwerkelijk tot het verhuren van een auto. Soms in-
formeren klanten alleen en soms gaan ze niet accoord met de offerte. Maar ook het afs-
luiten van een huurcontract is nog geen garantie. Soms blijkt dat de klant niet kan betalen,
maar het kan ook gebeuren dat de klant op het moment van afhalen toch liever een ander
type auto wil. De verkoper zal dan kijken of er nog zo’n auto beschikbaar is en eventueel
het contract aanpassen. Tenslotte gebeurt het ook nog wel eens dat een klant helemaal niet
komt opdagen. In dat geval vervalt de reservering en kan de auto weer aan een ander
worden verhuurd.

Alle offertes en huurcontracten worden bewaard in het verkoopdossier van de klant en 5
jaar in het archief bewaard. In alle gevallen waarbij een reservering uiteindelijk toch niet
doorgaat, wordt er een aantekening gemaakt op het huurcontract. Wat wel jammer is, is
dat het moeilijk is om overzicht te houden van notoir lastige klanten. Immers, de verkoper
moet dan in het archief gaan zoeken of er van deze klant al een dossier bestaat en of er
aantekeningen op de huurcontracten gemaakt zijn.

Analyseer nu het hierboven beschreven domein en produceer hier een activity model voor.

4. Consider the claim handling process with quantative information as depicted in Figure 7.11.
Suppose 100 accidents are reported. Compute the number of iterations needed to finish at
least one claim. When taking percentages of a number of tokens at a specific place, round-
off downward.

B.7 Questions from Chapter 8
1. Given the following populations: Pop(Carnivore) = {a, b, c}, Pop(Omnivore) = {d, e} and Pop(Herbivore) =
{f, g}. What are the populations of Animal, Flesh eater and Plant eater?

178 APPENDIX B. ANSWERS TO QUESTIONS

2. To have electrical power supplied to one’s premises (i.e. building and grounds), an appli-
cation must be lodged with the Electricity Board. The following tables are extracted from
an information system used to record details about any premises for which power has been
requested.

The following abbreviations are used: premises# = premises number, qty = quantity, nr = num-
ber, commercl = commercial. Each premises is identified by its premises#.

The electricity supply requested is exactly one of three kinds: ”new” (new connection
needed), ”modify” (modifications needed to existing connection), or ”old” (reinstall old
connection). ”Total amps” is the total electric current measured in Amp units. ”Amps/phase”
is obtained by dividing the current by the number of phases.

premises# city kind of kind of dog on breed qty of supply
premises business premises of dog breed needed

101 Brisbane domestic . yes Terrier 2 new
202 Brisbane commercl car sales no . . modify
303 Ipswich domestic . yes Alsatian 1 old

Poodle 1
404 Redcliffe commercl security yes Alsatian 3 new

Bulldog 2
505 Brisbane domestic . no . . modify
606 Redcliffe commercl bakery no . . old
. .

Further details about new connections or modifications:

load applied for (if known) wiring expected date for
premises# total amps nr phases amps/phase completed? wiring completion
101 200 2 100 no 30-06-03
202 600 3 200 yes .
404 . . . no 01-08-03
505 160 2 80 no 30-06-03
.

The population is significant with respect to mandatory roles. Each premises has at most
two breeds of dog.

Produce a fact-based model for this domain. Use specialization when needed. Include
uniqueness, mandatory role, subset, occurrence frequency and equality constraints, as well as value
type constraints that are relevant. Provide meaningful names.

If a fact type is derived it should be asterisked on the diagram and a derivation rule should
be supplied.

Produce both a flat fact-based model, as well as a version that uses abstraction/decomposition
to split this domain into more comprehensible chunks.

B.8 Questions from Chapter 10
1. Why is it important to realise that system development is not necessarily a linear process?

2. Name three different axes along which a high-level design may be ‘refined’ to a more de-
tailed design.

3. Describe, in your own words, the relationships between the concepts of: domain, viewer,
conception, perception and architecture.

179

4. What is the difference between: an architecture, architectural description, architectural
view, and architectural viewpoint?

5. Why is it important to carefully select relevant system viewpoints when developing sys-
tems?

6. Make a meta-model of the concepts introduced by the IEEE recommended practice for ar-
chitecture [IEE00]. Make sure to include as many constraints as you can deduce from the
text.

7. Why is it important to acknowledge the fact that different stakeholders‘ will have different
views on a pre-existing or a future system?

8. Make a meta-model of the concepts introduced with respect to systems, domains, viewers,
etc.

9. Identify, for the system description language you have see so-far as part of your studies:

(a) The main concepts of these languages.
(b) Typical interests and viewers for which these languages may be useful.

10. Why should the set of viewpoints that will be used to describe different aspects of a system
that is being developed, be selected carefully.

11. What makes us consider a system description to be an architecture description?

12. What are possible dimensions for refinements of system descriptions?

13. Why is it important to consider responsibilities of system entities and collaborations among
them?

14. Consider a candy vending machine and people purchasing candy from the machine. What
would, in such a domain, be the relevant system entities? What would be there responsi-
bilities and collaborations?

15. Suppose you would design a pocket calculator. What would be the essential system ele-
ments (at a functional level)? Maybe you could do a role-playing game with a group

16. What’s the difference between an information system and a medium system?

17. Consider a bank. Not the one you sit on, but the one you entrust with your money. Pro-
vide a brief discussion of a possible business, work and information view (according to the
Tapscott viewpoints) for such a domain.

180 APPENDIX B. ANSWERS TO QUESTIONS

Bibliography

[Ack71] R.L. Ackoff. Towards a system of system concepts. Management Science, 17, July 1971.

[AH87] S. Abiteboul and R. Hull. IFO: A Formal Semantic Database Model. ACM Transactions
on Database Systems, 12(4):525–565, December 1987.

[AH05] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: yet another workflow lan-
guage. Information Systems, 30(4):245–275, 2005.

[Alt99] S. Alter. A general, yet useful theory of information systems. Communications of the
Association for Information Systems, 1(13), 1999.
http://cais.isworld.org/articles/1-13/default.asp

[Alt02] S. Alter. The work system method for understanding information systems and in-
formation system research. Communications of the Association for Information Systems,
9(9):90–104, 2002.
http://cais.isworld.org/articles/default.asp?vol=9&art=6

[Avi95] D.E. Avison. Information Systems Development: Methodologies, Techniques and Tools.
McGraw-Hill, New York, New York, USA, 2nd edition, 1995. ISBN 0077092333

[BB97] F.C. Berger and P. van Bommel. Augmenting a characterization network with seman-
tical information. Information Processing & Management, 33(4):453–479, 1997.

[BBMP95] G.H.W.M. Bronts, S.J. Brouwer, C.L.J. Martens, and H.A. (Erik) Proper. A Unifying
Object Role Modelling Approach. Information Systems, 20(3):213–235, 1995.

[BCK98] L. Bass, P.C. Clements, and R. Kazman. Software Architecture in Practice. Addison
Wesley, Reading, Massachusetts, USA, 1998. ISBN 0201199300

[BCN92] C. Batini, S. Ceri, and S.B. Navathe. Conceptual Database Design - An Entity-
Relationship Approach. Benjamin Cummings, Redwood City, California, 1992.

[Bem98] T.M.A. Bemelmans. Bestuurlijke Informatiesystemen en Automatisering. Kluwer, De-
venter, The Netherlands, EU, 7th edition, 1998. In Dutch. ISBN 9026727984

[Ber01] L. von Bertalanffy. General Systems Theory – Foundations, Development, Applications.
George Braziller, New York, New York, USA, revised edition, 2001. ISBN 0807604534

[BFW96] P. van Bommel, P.J.M. Frederiks, and Th.P. van der Weide. Object-Oriented Modeling
based on Logbooks. The Computer Journal, 39(9):793–799, 1996.

[BHW91] P. van Bommel, A.H.M. ter Hofstede, and Th.P. van der Weide. Semantics and verifi-
cation of object-role models. Information Systems, 16(5):471–495, October 1991.

[Boa99] B.H. Boar. Practical steps for aligning information technology with business strategies.
Wiley, New York, New York, 1999. ISBN 0471076376

181

http://cais.isworld.org/articles/1-13/default.asp
http://cais.isworld.org/articles/default.asp?vol=9&art=6

182 BIBLIOGRAPHY

[BP88] B.W. Boehm and P.N. Papaccio. Understanding and controlling software costs. IEEE
Transactions of Software Engineering, 14(10):1462–1477, October 1988.

[BPH04] A.I. Bleeker, H.A. (Erik) Proper, and S.J.B.A. Hoppenbrouwers. The role of concept
management in system development – a practical and a theoretical perspective. In
J. Grabis, A. Persson, and J. Stirna, editors, Forum proceedings of the 16th Conference
on Advanced Information Systems 2004 (CAiSE 2004), pages 73–82, Riga, Latvia, EU,
June 2004. Faculty of Computer Science and Information Technology, Riga Technical
University, Riga, Latvia, EU. ISBN 998497670X

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modelling Language User Guide.
Addison-Wesley, Reading, Massachusetts, USA, 1999. ISBN 0201571684

[Bro95] F. Brooks. The Mythical Man-Month; anniversary edition. Addison-Wesley, Reading,
Massachusetts, 1995. ISBN 0201835959

[Bub86] J.A. Bubenko. Information System Methodologies - A Research View. In T.W. Olle,
H.G. Sol, and A.A. Verrijn-Stuart, editors, Information Systems Design Methodologies:
Improving the Practice, pages 289–318. North-Holland/IFIP WG8.1, Amsterdam, The
Netherlands, EU, 1986.

[BW90] P.D. Bruza and Th.P. van der Weide. Assessing the Quality of Hypertext Views. ACM
SIGIR FORUM (Refereed Section), 24(3):6–25, 1990.

[BW91] P.D. Bruza and Th.P. van der Weide. The modelling and retrieval of documents using
index expressions. ACM SIGIR FORUM (Refereed Section), 25(2), 1991.

[BW92a] P. van Bommel and Th.P. van der Weide. Reducing the search space for conceptual
schema transformation. Data & Knowledge Engineering, 8:269–292, 1992.

[BW92b] P.D. Bruza and Th.P. van der Weide. Stratified Hypermedia Structures for Informa-
tion Disclosure. The Computer Journal, 35(3):208–220, 1992.

[Cas00] M. Castells. The Information Age: Economy, Society and Culture. Volume 1 – The Rise
of the Network Society. Blackwell, Oxford, United Kingdom, EU, 2nd edition, 2000.
ISBN 0631221409

[Che76] P.P. Chen. The entity-relationship model: Towards a unified view of data. ACM
Transactions on Database Systems, 1(1):9–36, March 1976.

[Che81] P. Checkland. Systems thinking, systems practice. John Wiley & Sons, New York, New
York, USA, 1981. ISBN 0471279110

[CHP96] L.J. Campbell, T.A. Halpin, and H.A. (Erik) Proper. Conceptual Schemas with Ab-
stractions – Making flat conceptual schemas more comprehensible. Data & Knowledge
Engineering, 20(1):39–85, 1996.

[Coc01] S. Cochran. The rising cost of software complexity. Dr. Dobb’s Journal, April 2001.

[Coh89] B. Cohen. Justification of formal methods for system specification. Software Engineer-
ing Journal, 4(1):26–35, January 1989.

[CP96] P.N. Creasy and H.A. (Erik) Proper. A Generic Model for 3-Dimensional Conceptual
Modelling. Data & Knowledge Engineering, 20(2):119–162, 1996.

[EGH+92] G. Engels, M. Gogolla, U. Hohenstein, K. Hülsmann, P. Löhr-Richter, G. Saake, and
H.-D. Ehrich. Conceptual modelling of database applications using an extended ER
model. Data & Knowledge Engineering, 9(4):157–204, 1992.

BIBLIOGRAPHY 183

[EKW92] D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object-Oriented Systems Analysis –
A model-driven approach. Yourdon Press, Englewood Cliffs, New Jersey, USA, 1992.
ASIN 0136299733

[EN94] R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Benjamin Cummings,
Redwood City, California, 1994. Second Edition.

[EWH85] R. Elmasri, J. Weeldreyer, and A. Hevner. The category concept: An extension to the
entity-relationship model. Data & Knowledge Engineering, 1:75–116, 1985.

[FKN+92] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. Viewpoints:
a framework for integrating multiple perspectives in system de-velopment. Interna-
tional Journal on Software Engineering and Knowledge Engineering, Special issue on Trends
and Research Directions in Software Engineering Environments, 2(1):31–58, 1992.

[Fre97] P.J.M. Frederiks. Object-Oriented Modeling based on Information Grammars. PhD thesis,
University of Nijmegen, Nijmegen, The Netherlands, EU, 1997. ISBN 9090103384

[FV99] M. Franckson and T.F. Verhoef, editors. Introduction to ISPL. Information Services
Procurement Library. ten Hagen & Stam, Den Haag, The Netherlands, 1999. ISBN
9076304858

[FVSV+98] E.D. Falkenberg, A.A. Verrijn-Stuart, K. Voss, W. Hesse, P. Lindgreen, B.E. Nilsson,
J.L.H. Oei, C. Rolland, and R.K. and Stamper, editors. A Framework of Information
Systems Concepts. IFIP WG 8.1 Task Group FRISCO, IFIP, Laxenburg, Austria, EU,
1998. ISBN 3901882014

[FW02] P.J.M. Frederiks and Th.P. van der Weide. Deriving and paraphrasing information
grammars using object-oriented analysis models. Acta Informatica, 38(7):437–88, June
2002.

[FW04a] P.J.M. Frederiks and Th.P. van der Weide. Information modeling: the process and
the required competencies of its participants. Data & Knowledge Engineering, 2004. To
appear in a special issue on the NLDB 2004 conference.

[FW04b] P.J.M. Frederiks and Th.P. van der Weide. Information modeling: the process and the
required competencies of its participants. In F. Meziane and E. Métais, editors, 9th In-
ternational Conference on Applications of Natural Language to Information Systems (NLDB
2004), volume 3136 of Lecture Notes in Computer Science, pages 123–134, Manchester,
United Kingdom, EU, 2004. Springer-Verlag, Berlin, Germany, EU.

[Hal95] T.A. Halpin. Conceptual Schema and Relational Database Design. Prentice-Hall, Sydney,
Australia, 2nd edition, 1995.

[Hal01] T.A. Halpin. Information Modeling and Relational Databases, From Conceptual Analy-
sis to Logical Design. Morgan Kaufman, San Mateo, California, USA, 2001. ISBN
1558606726

[Ham90] M. Hammer. Re-engineering work: don’t automate, obliterate. Harvard Business
Review, 68(4):104–112, April 1990.

[HBP05] S.J.B.A. Hoppenbrouwers, A.I. Bleeker, and H.A. (Erik) Proper. Facing the conceptual
complexities in business domain modeling. Computing Letters, 1(2):59–68, 2005.

[HL89] I. van Horenbeek and J. Lewi. Algebraic specifications in software engineering: an intro-
duction. Springer-Verlag, Berlin, Germany, 1989.

[HM95] J.H. Holland and H. Mimnaugh, editors. Hidden Order : How Adaptation Builds Com-
plexity. Perseus Press, Cambridge, Massachusetts, 1995. ISBN 0201442302

184 BIBLIOGRAPHY

[Hof93] A.H.M. ter Hofstede. Information Modelling in Data Intensive Domains. PhD thesis,
University of Nijmegen, Nijmegen, The Netherlands, 1993.

[Hop03] S.J.B.A. Hoppenbrouwers. Freezing Language; Conceptualisation processes in ICT sup-
ported organisations. PhD thesis, University of Nijmegen, Nijmegen, The Netherlands,
EU, 2003. ISBN 9090173188

[Hor00] T.A. Horan. Digital Places – Building our city of bits. The Urban Land Institute (ULI),
Washington DC, United States of America, 2000. ISBN 0874208459

[HP95] T.A. Halpin and H.A. (Erik) Proper. Subtyping and Polymorphism in Object-Role
Modelling. Data & Knowledge Engineering, 15:251–281, 1995.

[HP98] A.H.M. ter Hofstede and H.A. (Erik) Proper. How to Formalize It? Formalization
Principles for Information Systems Development Methods. Information and Software
Technology, 40(10):519–540, October 1998.

[HPW93] A.H.M. ter Hofstede, H.A. (Erik) Proper, and Th.P. van der Weide. Formal defini-
tion of a conceptual language for the description and manipulation of information
models. Information Systems, 18(7):489–523, October 1993.

[HPW97] A.H.M. ter Hofstede, H.A. (Erik) Proper, and Th.P. van der Weide. Exploit-
ing Fact Verbalisation in Conceptual Information Modelling. Information Systems,
22(6/7):349–385, September 1997.

[HV93] J.C. Henderson and N. Venkatraman. Strategic alignment: Leveraging information
technology for transforming organizations. IBM Systems Journal, 32(1):4–16, 1993.

[HVH97] J.J.A.C. Hoppenbrouwers, B. van der Vos, and S.J.B.A. Hoppenbrouwers. Nl struc-
tures and conceptual modelling: Grammalizing for KISS. Data & Knowledge Engineer-
ing, 23(1):79–92, 1997.

[HW92] A.H.M. ter Hofstede and Th.P. van der Weide. Formalisation of techniques: chop-
ping down the methodology jungle. Information and Software Technology, 34(1):57–65,
January 1992.

[HW93] A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data
modelling. Data & Knowledge Engineering, 10(1):65–100, February 1993.

[HW94] A.H.M. ter Hofstede and Th.P. van der Weide. Fact Orientation in Complex Ob-
ject Role Modelling Techniques. In T.A. Halpin and R. Meersman, editors, Proceed-
ings of the First International Conference on Object-Role Modelling (ORM-1), pages 45–59,
Townsville, Australia, July 1994.

[HW97] A.H.M. ter Hofstede and Th.P. van der Weide. Deriving Identity from Extensionality.
International Journal of Software Engineering and Knowledge Engineering, 8(2):189–221,
June 1997.

[IEE00] Recommended Practice for Architectural Description of Software Intensive Systems.
Technical Report IEEE P1471-2000, The Architecture Working Group of the Software
Engineering Committee, Standards Department, IEEE, Piscataway, New Jersey, USA,
September 2000. ISBN 0738125180
http://www.ieee.org

[Iiv83] J. Iivari. Contributions to the theoretical foundations of systemeering research and
the pioco model. Technical Report 150, University of Oulu, Oulu, Finland, EU, 1983.
ISBN 9514215435

http://www.ieee.org

BIBLIOGRAPHY 185

[ISO96a] Information technology – Open Distributed Processing – Reference model: Architecture,
1996. ISO/IEC 10746-3:1996(E).
http://www.iso.org

[ISO96b] Information technology – Open Distributed Processing – Reference model: Foundations,
1996. ISO/IEC 10746-2:1996(E).
http://www.iso.org

[ISO96c] ISO. Kwaliteit van softwareprodukten. ten Hagen & Stam, Den Haag, The Netherlands,
1996. In Dutch. ISBN 9026724306

[ISO98a] Information technology – Open Distributed Processing – Reference model: Architectural
semantics, 1998. ISO/IEC 10746-4:1998(E).
http://www.iso.org

[ISO98b] Information technology – Open Distributed Processing – Reference model: Overview, 1998.
ISO/IEC 10746-1:1998(E).
http://www.iso.org

[ISO01] Software engineering – Product quality – Part 1: Quality model, 2001. ISO/IEC 9126-
1:2001.
http://www.iso.org

[JLB+04] H. Jonkers, M.M Lankhorst, R. van Buuren, S.J.B.A. Hoppenbrouwers, M. Bon-
sangue, and L. van der Torre. Concepts for Modeling Enterprise Architectures. In-
ternational Journal of Cooperative Information Systems, 13(3):257–288, 2004.

[Jon86] C.B. Jones. Systematic Software Development using VDM. Prentice-Hall, Englewood
Cliffs, New Jersey, 1986.

[JVB+03] H. Jonkers, G.E. Veldhuijzen van Zanten, R. van Buuren, F. Arbab, F. de Boer, M. Bon-
sangue, H. Bosma, H. ter Doest, L. Groenewegen, J. Guillen Scholten, S.J.B.A. Hop-
penbrouwers, M.-E. Iacob, W. Janssen, M.M. Lankhorst, D. van Leeuwen, H.A. (Erik)
Proper, A. Stam, and L. van der Torre. Towards a Language for Coherent Enterprise
Architecture Descriptions. In M. Steen and B.R. Bryant, editors, 7th IEEE Interna-
tional Enterprise Distributed Object Computing Conference (EDOC 2003), pages 28–39,
Brisbane, Australia, September 2003. IEEE Computer Society Press, Los Alamitos,
California, USA. ISBN 0769519946

[Kee91] P.W.G. Keen. Shaping the Future - Business Design Through Information Technology. Har-
vard Business School Press, Boston, Massachusetts, USA, 1991. ISBN 0875842372

[Ken84] F. Kensing. Towards Evaluation of Methods for Property Determination: A Frame-
work and a Critique of the Yourdon-DeMarco Approach. In T.M.A. Bemelmans,
editor, Beyond Productivity: Information Systems Development for Organizational Effec-
tiveness, pages 325–338. North-Holland, Amsterdam, The Netherlands, 1984.

[Koe03] B.I. Koerner. What is smart dust, anyway? Wired, 11(6), June 2003.
http://www.wired.com/wired/archive/11.06/start.html?pg=10

[Kri94] G. Kristen. Object Orientation – The KISS Method, From Information Architecture to
Information System. Addison-Wesley, Reading, Massachusetts, USA, 1994. ISBN
0201422999

[Kru95] P. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42–50, Novem-
ber 1995.

[Kru00] P. Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley, Reading,
Massachusetts, USA, 2nd edition, 2000. ISBN 0201707101

http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.iso.org
http://www.wired.com/wired/archive/11.06/start.html?pg=10

186 BIBLIOGRAPHY

[KS92] G. Kotonya and I. Sommerville. Viewpoints for requirements definition. IEE/BCS
Software Engineering Journal, 7(6):375–387, 1992.

[Lan71] B. Langefors. Editorial notes to: Computer Aided Information Systems Analysis and De-
sign. Studentlitteratur, Lund, Sweden, EU, 1971.

[Lev79] A.Y. Levy. Basic Set Theory. Springer-Verlag, Berlin, Germany, 1979.

[Lin92] P. Lindgreen. A General Framework for Understanding Semantic Structures. In
E.D. Falkenberg, C. Rolland, and E.N. El Sayed, editors, Information System Concepts:
Improving the understanding – Proceedings of the second IFIP WG8.1 working conference
(ISCO-2), Alexandria, Egypt, April 1992. North Holland/IFIP WG8.1, Amsterdam,
The Netherlands, EU. ISBN 0444895078

[Lo05] M.M. Lankhorst and others. Enterprise Architecture at Work: Modelling, Communication
and Analysis. Springer, Berlin, Germany, EU, 2005. ISBN 3540243712

[LS80] B. Lientz and E. Swanson. Software Maintenance Management – a study of the main-
tenance of computer application software in 487 data processing organizations. Addison-
Wesley, Reading, Massachusetts, 1980. ISBN 0201042053

[Mat81] L. Mathiassen. Systemudvikling og Systemudviklings-Metode. PhD thesis, Aarhus Uni-
versity, Aarhus, Denmark, 1981. In Danish.

[McC89] C.L. McClure. CASE is Software Automation. Prentice-Hall, Englewood Cliffs, New
Jersey, 1989. ISBN 0131193309

[Mer03] Meriam-Webster Online, Collegiate Dictionary, 2003.
http://www.webster.com

[MR02] M.W. Maier and R. Rechtin. The Art of System Architecting. CRC Press, Boca Raton,
Florida, 2nd edition, 2002. ISBN 0849304407

[Neg96] N. Negroponte. Being Digital. Vintage Books, New York, New York, 1996. ISBN
0679762906

[NH89] G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational Database Design: a fact
oriented approach. Prentice-Hall, Sydney, Australia, 1989. ASIN 0131672630

[NP90] J. Nosek and P. Palvia. Software maintenance management: Changes in the last
decade. Journal of Software Maintenance, 3(2):157–174, 1990.

[Ode00a] J. Odell. Agents (part 1): Technology and usage. Technical report, Cutter Consortium,
Arlington, Massachusetts, USA, 2000.

[Ode00b] J. Odell. Agents (part 2): Complex systems. Technical report, Cutter Consortium,
Arlington, Massachusetts, USA, 2000.

[OHM+88] T.W. Olle, J. Hagelstein, I.G. Macdonald, C. Rolland, H.G. Sol, F.J.M. van Assche, and
A.A. Verrijn-Stuart. Information Systems Methodologies: A Framework for Understanding.
Addison-Wesley, Reading, Massachusetts, USA, 1988. ISBN 0201544431

[OMG03] OMG. UML 2.0 Superstructure Specification – OMG Draft Adopted Specification.
Technical Report ptc/03-08-02, August 2003.
http://www.omg.org

[OST83] T.W. Olle, H.G. Sol, and C.J. Tully, editors. Information Systems Design Methodolo-
gies: A feature analysis, York, England, EU, 1983. North Holland/IFIP WG8.1. ISBN
0444867058

http://www.webster.com
http://www.omg.org

BIBLIOGRAPHY 187

[OSV82] T.W. Olle, H.G. Sol, and A.A. Verrijn-Stuart, editors. Information Systems Design
Methodologies: A Comparative Review. North-Holland/IFIP WG8.1, Amsterdam, The
Netherlands, EU, 1982. ISBN 0444864075

[OSV86] T.W. Olle, H.G. Sol, and A.A. Verrijn-Stuart, editors. Information Systems Design
Methodologies: Improving the practice, Noordwijkerhout, Netherlands, EU, 1986. North
Holland/IFIP WG8.1.

[OSV88] T.W. Olle, H.G. Sol, and A.A. Verrijn-Stuart, editors. Information Systems Design
Methodologies: Computerized assistance during the information systems life cycle. North
Holland/IFIP WG8.1, Malham, England, EU, 1988. ISBN 0444705120

[PB89] M.M. Parker and R.J. Benson. Enterprisewide information management: State-of-
the-art strategic planning. Journal of Information Systems Management, (Summer):14–
23, 1989.

[PB99] H.A. (Erik) Proper and P.D. Bruza. What is Information Discovery About? Journal of
the American Society for Information Science, 50(9):737–750, July 1999.

[PBH04] H.A. (Erik) Proper, A.I. Bleeker, and S.J.B.A. Hoppenbrouwers. Object-role mod-
elling as a domain modelling approach. In J. Grundspenkis and M. Kirikova, edi-
tors, Proceedings of the Workshop on Evaluating Modeling Methods for Systems Analysis
and Design (EMMSAD’04), held in conjunctiun with the 16th Conference on Advanced
Information Systems 2004 (CAiSE 2004), volume 3, pages 317–328, Riga, Latvia, EU,
June 2004. Faculty of Computer Science and Information Technology, Riga Technical
University, Riga, Latvia, EU. ISBN 9984976718

[PBHJ00] H.A. (Erik) Proper, H. Bosma, S.J.B.A. Hoppenbrouwers, and R.D.T. Janssen. An
Alignment Perspective on Architecture-driven Information Systems Engineering. In
D.B.B. Rijsenbrij, editor, Proceedings of the Second National Architecture Congres, Ams-
terdam, The Netherlands, EU, November 2000.

[Pei69a] C.S. Peirce. Volumes I and II – Principles of Philosophy and Elements of Logic. Collected
Papers of C.S. Peirce. Harvard University Press, Boston, Massachusetts, USA, 1969.
ISBN 0674138007

[Pei69b] C.S. Peirce. Volumes III and IV – Exact Logic and The Simplest Mathematics. Collected
Papers of C.S. Peirce. Harvard University Press, Boston, Massachusetts, USA, 1969.
ISBN 0674138005

[Pei69c] C.S. Peirce. Volumes V and VI – Pragmatism and Pragmaticism and Scientific Metaphysics.
Collected Papers of C.S. Peirce. Harvard University Press, Boston, Massachusetts,
USA, 1969. ISBN 0674138023

[Pei69d] C.S. Peirce. Volumes VII and VIII – Science and Philosophy and Reviews, Correspondence
and Bibliography. Collected Papers of C.S. Peirce. Harvard University Press, Boston,
Massachusetts, USA, 1969. ISBN 0674138031

[PH04] H.A. (Erik) Proper and S.J.B.A. Hoppenbrouwers. Concept evolution in information
system evolution. In J. Gravis, A. Persson, and J. Stirna, editors, Forum proceedings
of the 16th Conference on Advanced Information Systems 2004 (CAiSE 2004), Riga, Latvia,
EU, pages 63–72, Riga, Latvia, EU, June 2004. Faculty of Computer Science and In-
formation Technology, Riga Technical University. ISBN 998497670X

[PPY01] M.P. Papazoglou, H.A. (Erik) Proper, and J. Yang. Landscaping the information space
of large multi-database networks. Data & Knowledge Engineering, 36(3):251–281, 2001.

188 BIBLIOGRAPHY

[Pro94] H.A. (Erik) Proper. A Theory for Conceptual Modelling of Evolving Application Domains.
PhD thesis, University of Nijmegen, Nijmegen, The Netherlands, EU, 1994. ISBN
909006849X

[Pro97] H.A. (Erik) Proper. Data Schema Design as a Schema Evolution Process. Data &
Knowledge Engineering, 22(2):159–189, 1997.

[Pro98] H.A. (Erik) Proper. Da Vinci – Architecture-Driven Business Solutions. Technical
report, Origin, Amsterdam, The Netherlands, EU, Summer 1998.

[Pro01] H.A. (Erik) Proper, editor. ISP for Large-scale Migrations. Information Services Pro-
curement Library. ten Hagen & Stam, Den Haag, The Netherlands, EU, 2001. ISBN
9076304882

[Pro03] H.A. (Erik) Proper. Informatiekunde; Exacte vaagheid. Nijmegen Institute for Informa-
tion and Computing Sciences, University of Nijmegen, Nijmegen, The Netherlands,
EU, November 2003. In Dutch. ISBN 9090172866

[Pro04] H.A. (Erik) Proper. Da Vinci – Architecture-driven Information Systems Engineering. Ni-
jmegen Institute for Information and Computing Sciences, University of Nijmegen,
Nijmegen, The Netherlands, EU, 2004.

[PW94] H.A. (Erik) Proper and Th.P. van der Weide. EVORM - A Conceptual Modelling
Technique for Evolving Application Domains. Data & Knowledge Engineering, 12:313–
359, 1994.

[PW95a] H.A. (Erik) Proper and Th.P. van der Weide. A General Theory for the Evolution of
Application Models. IEEE Transactions on Knowledge and Data Engineering, 7(6):984–
996, December 1995.

[PW95b] H.A. (Erik) Proper and Th.P. van der Weide. Information Disclosure in Evolving
Information Systems: Taking a shot at a moving target. Data & Knowledge Engineering,
15:135–168, 1995.

[Rec91] E. Rechtin. Systems architecting: creating and building complex systems. Prentice-Hall
PTR, Upper Saddle River, New Jersey, 1991. ISBN 0138803455

[RMB95] J. Reeves, M. Marashi, and D. Budgen. A software design framework or how to
support real designers. IEE/BCS Software Engineering Journal, 10(4):141–155, 1995.

[RMD99] V.E. van Reijswoud, J.B.F Mulder, and J.L.G. Dietz. Commucation Action Based Busi-
ness Process and Information Modelling with DEMO. The Information Systems Journal,
9(2):117–138, 1999.

[Rop99] G. Ropohl. Philosophy of socio-technical systems. In Society for Philosophy and Tech-
nology, 4(3), 1999.

[SFG+00] J.J. Sarbo, J.I. Farkas, F.A. Grootjen, P. van Bommel, and Th.P. van der Weide. Mean-
ing Extraction from a Peircean Perspective. International Journal of Computing Antici-
patory Systems, 6:209–227, 2000.

[Sim62] H.A. Simon. The architecture of complexity. In Proceedings of the American Philosophi-
cal Society, volume 106, pages 467–482, 1962.

[Sol83] H.G. Sol. A Feature Analysis of Information Systems Design Methodologies:
Methodological Considerations. In T.W. Olle, H.G. Sol, and C.J. Tully, editors,
Information Systems Design Methodologies: A Feature Analysis, pages 1–7. North-
Holland/IFIP WG8.1, Amsterdam, The Netherlands, EU, 1983. ISBN 0444867058

BIBLIOGRAPHY 189

[Sol88] H.G. Sol. Information Systems Development: A Problem Solving Approach. In Pro-
ceedings of 1988 INTEC Symposium Systems Analysis and Design: A Research Strategy,
Atlanta, Georgia, 1988.

[Spi88] J.M. Spivey. Understanding Z: A Specification Language and its Formal Semantics. Cam-
bridge University Press, Cambridge, United Kingdom, EU, 1988.

[SWS89] P.S. Seligmann, G.M. Wijers, and H.G. Sol. Analyzing the structure of I.S. method-
ologies, an alternative approach. In R. Maes, editor, Proceedings of the First Dutch
Conference on Information Systems, Amersfoort, The Netherlands, EU, 1989.

[Tap96] D. Tapscott. Digital Economy - Promise and peril in the age of networked intelligence.
McGraw-Hill, New York, New York, USA, 1996. ISBN 0070633428

[TC93] D. Tapscott and A. Caston. Paradigm Shift – The New Promise of Information Technology.
McGraw-Hill, New York, New York, USA, 1993. ASIN 0070628572

[TOG04] The Open Group. TOGAF – The Open Group Architectural Framework, 2004.
http://www.togaf.org

[TP91] T.H. Tse and L. Pong. An Examination of Requirements Specification Languages. The
Computer Journal, 34(2):143–152, April 1991.

[Vel92] J. in ’t Veld. Analyse van organisatieproblemen – Een toepassing van denken in systemen
en processen. Stenfert Kroese, Leiden, The Netherlands, EU, 1992. In Dutch. ISBN
9020722816

[Ver93] T.F. Verhoef. Effective Information Modelling Support. PhD thesis, Delft University of
Technology, Delft, The Netherlands, EU, 1993. ISBN 9090061762

[VHP03] G.E. Veldhuijzen van Zanten, S.J.B.A. Hoppenbrouwers, and H.A. (Erik) Proper. Sys-
tem Development as a Rational Communicative Process. In N. Callaos, D. Farsi,
M. Eshagian-Wilner, T. Hanratty, and N. Rish, editors, Proceedings of the 7th World
Multiconference on Systemics, Cybernetics and Informatics, volume XVI, pages 126–130,
Orlando, Florida, USA, July 2003. ISBN 9806560019

[VHP04] G.E. Veldhuijzen van Zanten, S.J.B.A. Hoppenbrouwers, and H.A. (Erik) Proper. Sys-
tem Development as a Rational Communicative Process. Journal of Systemics, Cyber-
netics and Informatics, 2(4), 2004.
http://www.iiisci.org/Journal/sci/pdfs/P492036.pdf

[VO91] A.A. Verrijn-Stuart and T.W. Olle, editors. Methods and Associated Tools for the Infor-
mation Systems Life Cycle, Maastricht, Netherlands, EU, 1991. North Holland/IFIP
WG8.1. ISBN 0444820744

[WAA85] A.T. Wood-Harper, L. Antill, and D.E. Avison. Information Systems Definition: The
Multiview Approach. Blackwell Scientific Publications, Oxford, United Kingdom, EU,
1985. ISBN 0632012168

[WBW00] B.C.M. Wondergem, P. van Bommel, and Th.P. van der Weide. Matching Index Ex-
pressions for Information Retrieval. Information Retrieval Journal, 2(4), 2000. To ap-
pear.

[WBW01] B.C.M. Wondergem, P. van Bommel, and Th.P. van der Weide. Combining Boolean
Logic and Linguistic Structure. Information & Software Technology, (43):53–59, 2001.

http://www.togaf.org
http://www.iiisci.org/Journal/sci/pdfs/P492036.pdf

190 BIBLIOGRAPHY

[WH90] G.M. Wijers and H. Heijes. Automated Support of the Modelling Process: A
view based on experiments with expert information engineers. In B. Steinholz,
A. Sølvberg, and L. Bergman, editors, Proceedings of the Second Nordic Conference
CAiSE’90 on Advanced Information Systems Engineering, volume 436 of Lecture Notes
in Computer Science, pages 88–108, Stockholm, Sweden, EU, 1990. Springer-Verlag,
Berlin, Germany, EU. ISBN 3540526250

[Win90] J.J.V.R. Wintraecken. The NIAM Information Analysis Method: Theory and Practice.
Kluwer, Deventer, The Netherlands, EU, 1990.

[WJK00] M. Wooldridge, N.R. Jennings, and D. Kinny. The gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent Systems,
3(3):285–312, 2000.

[Zac87] J.A. Zachman. A framework for information systems architecture. IBM Systems Jour-
nal, 26(3), 1987.

List of Symbols

U |=s v S′ ⊂a S , U |=s v S′ ⊂ S and (S′ ∩LI) ⊂ S – For viewer v viewing universe U , system
S′ is a aspect system of S

U |=s v S′ ⊂c S , U |=s v S′ ⊂ S and (S′ ∩CO) ⊂ S – For viewer v viewing universe U , system
S′ is a component system of S

CE , ℘(EE) – The set of conception evolutions.

|=c ⊆ UN ×VW ×℘(EL) – A relationship expressing which conception is held by which viewer.
The fact that a viewer v harbours a conception C for universe U is expressed as U |=c v C.

COX , X ∩CO – A subset of the set of concepts.

CO ⊆ EL – The set of elements of a conception that are concepts.

x→C y , x = y ∨ x→C y – A derived relationship providing the decomposition of a com-
posed concept in some viewer’s conception. If x→C y, the concept x in conception C
is decomposed into (possibly amongst others) concept y, or x and y are equal.

→ ⊆ CO×℘(EL)× CO – A derived relationship providing the decomposition of a composed
concept in some viewer’s conception. If x→C y, the concept x in conception C is decom-
posed into (possibly amongst others) concept y.

DC ⊆ LI – Decomposer links.

|=d 〈 : : 〉 ⊆ UN ×VW ×℘(EL)×℘(EL)×℘(EL) – A relationship expressing which concep-
tion of a domain and environment is held by which viewer with a particular interest. The
fact that a viewer v harbours a conception C of domain D with environment E an for
universe U is expressed as U |=d v 〈C : D : E〉.

EE , TI� EL – The set of element evolutions.

EL – The set of elements that may be part of a conception.

From : LI→CO – The source concept of a link.

Involved(r) , {From(r),To(r)} – The set comprising the source and destination of a relation-
ship from a conception.

< ⊆ TI ×TI – A complete and total order over points in time.

LIX , X ∩LI – A subset of the set of links.

LI ⊆ EL – The set of elements of a conception that are links between concepts.

U |=m v M , ∃C,E [U |=m v 〈C : E : M〉] – A relationship expressing which model is held by which
viewer. The fact that a viewer v harbours a model M of part of universe U is expressed as
U |=m v M .

191

192 LIST OF SYMBOLS

|=m 〈 : : 〉 ⊆ UN ×VW ×℘(EL)×℘(EL)×℘(EL) – A relationship expressing which model
and environment or some part of the universe are held by which viewer. The fact that
a viewer v with a conception C harbours a model M with environment E for a part of
universe U is expressed as U |=m v 〈C : M : E〉.

t1 � t2 , t1 <t2 ∧ ¬∃s [t1 <s < t2] – The next point in time. As < is a complete and total order,
there is always a unique next point in time. This allows us to write � t.

U |=s v S′ ⊂ S , U |=s v S, U |=s v S′ and S′ ⊂ S – For viewer v viewing universe U , system S′

is a sub-system of S

U |=s v S , ∃C,E [U |=s v 〈C : E : S〉] – A relationship expressing which system is viewed by which
viewer. The fact that a viewer v views system S in universe U is expressed as U |=s v S.

|=s 〈 : : 〉 ⊆ UN ×VW ×℘(EL)×℘(EL)×℘(EL) – A relationship expressing which system
and environment are viewed in the universe by a viewer. The fact that a viewer v with
conception C views system M with environment E for a part of universe U is expressed
as U |=s v 〈C : S : E〉.

TI – Points of time.

To : LI→CO – The destination concept of a link.

UN – The set of universes.

VW – The set of viewers.

Dictionary

Active system – A special kind of system that is conceived of as begin able to change parts of
the universe.

Activity participation – A system link between a system activity and one of its actor.

Actor – A system element that is conceived of as having some involvement in a system activity.
This involvement is a special kind of system link, referred to as an activity participation.

Alignment – A system S1 is aligned to a system S2 if, and only if, system S1 meets all require-
ments posed by S2 on S1.

This alignment may be strived for at different levels of refinement of a system design.

Architectural description – A system description documenting/describing an architecture.

Architecture – A model of which the system description, the so-called architectural descrip-
tion, is used during system engineering to:

• express the fundamental organization of the system domain in terms of components,
their relationships to each other and to the environment and

• the principles guiding its evolution and design,

and which’s explicit intend is to be used as a means:

• of communication & negotiation among stakeholders,
• to evaluate and compare design alternatives,
• to plan, manage, and execute further system development,
• to verify the compliance of a system implementation’s.

Aspect system – an aspect-system S′ of a system S, is a sub-system, where the set of model
links in S′ is a proper subset of the set of the links in S.

Autonomous system – an open active system (possibly also a responsive system, but not a re-
active system) where at least one expression is an action. A human being and most (if not
all) organizations can be regarded as autonomous systems.

Communication – An exchange of messages, i.e. a sequence of mutual and alternating mes-
sage transfers between at least two human actors, called communication partners, whereby
these messages represent some knowledge and are expressed in languages understood by
all communication partners, and whereby some amount of knowledge about the domain
of communication and about the action context and the goal of the communication is made
present in all communication partners.

Component system – A component-system S′ of a system S, is a sub-system, where the set of
model concepts in S′ is a proper subset of the set of entities in S.

Component – An abbreviation of: component system

Computerized information system – A sub-system of an information system, whereby all ac-
tivities within that sub-system are performed by one or several computer(s).

Conception evolution – The evolution of a conception.

193

194 DICTIONARY

Conception – That what results, in the mind of a viewer, when they interpret a perception of a
domain.

Concept – Any element from a conception that is not a links.

Concern – An interest of a stakeholder, resulting from the stakeholder goals, and the role
played by some system. This usually pertains to the system’s development, its operation
or any other aspects that are critical or otherwise important to one or more stakeholders.

Construction process – A process aiming to realise and test a system that is regarded as a (pos-
sibly artificial) artifact that is not yet in operation.

Data – Any representation in some language. Data is therefore simply a collection of symbols
that may, or may not, have some meaning to some actor.

Decomposer – The link between a composed concept and one of its underlying concepts.

Definition process – A process aiming to identify all requirements that should be met by the
system and the system description.

In literature this process may also be referred to as requirements engineering.

Definition – The description of the requirements that should be met by both the desired infor-
mation system as well as the documents documenting this information system. In literature
this is also referred to as requirements engineering.

With regards to the information system, the resulting descriptions should identify: what
it should do, how well it should do this, and why it should do so. With regards to the
documentation of the information system, the descriptions should identify what should
be documented, how well it should be documented, and why/what-for these documents are
needed.

Deployment – The processes of delevering/implementating an information system to/in its us-
age context. The design of an information system is not enough to arrive at an operational
system. It needs to be implemented-in/delivered-to a usage context.

Description process – The combination of the definition process and design process.

Description – The result of a viewer denoting a conception, using some language to express
themselves.

Design process – A process aiming to design a system conform stated requirements. The result-
ing system design may range from high-level designs, such as an strategy or an architec-
ture, to the detailed level of programming statements or specific worker tasks.

Design – The description of the design of an information system. These descriptions should
identify how an information system will meet the requirements set out in its definition. The
resulting design may (depending on the design goals) range from high-level designs to the
detailed level of programming statements or specific worker tasks.

Domain evolution – The evolution of a domain over time.

Domain – Any ‘part’ or ‘aspect’ of the universe a viewer may have an interest in.

Dynamic system – A special kind of system that is conceived of as undergoing change in the
cause of time.

Element evolution – The evolution over time of an element in the conception of a viewer.

Element version – The version of an element evolution as it holds at some point in time. This
version is an element from a viewer’s conception of a universe.

Element – The elementary parts of a viewer’s conception.

Environment evolution – The evolution of an environment over time.

Environment – The environment of a domain is that part of a viewer’s conception of a universe,
which has a direct link to the domain.

DICTIONARY 195

Goal – An abbreviation of: stakeholder goal

Human actors – An actor which is a single human being, or essentially a set of human-beings,
such as a team.

Information intensive organization – An organization conceived of as an organizational sys-
tem, where the information system sub-system forms an essential part of the organiza-
tional system.

Information system engineering – A system engineering process pertaining to the creation or
change of information systems.

Information system – A sub-system of an organizational system, comprising the conception
of how the communication and information-oriented aspects of an organization are com-
posed and how these operate, thus leading to a description of the (explicit and/or im-
plicit) communication-oriented and information-providing actions and arrangements ex-
isting within the organizational system.

Information technology – To be defined.

Information – The knowledge increment brought about when a human actor receives a mes-
sage. In other words, it is the difference between the conceptions held by a human actor
after interpreting a received message and the conceptions held beforehand.

Installation process – A process aiming to make a system operational, i.e. to implement the use
of the system by its prospective users.

Interest – The specific reason(s) why a viewer observes a domain.

In the case of a system, this this is usually a confluence of the systemic properties of interest
to the system viewer and the aspects of the system that are considered relevant (by the
system viewer to these systemic properties).

Knowledge – A relatively stable, and usually mostly consistent, set of conceptions posessed by
a single (possibly composed) actor.

In more popular terms: “an actor’s picture of the world”.

Link – Any element from a conception that relates two concepts.

Maintenance – An information system which is operational in its usage context, does not remain
operational by itself. Both technical and non-technical elements of the system need active
maintenance to keep the information system operational as is.

Message – Data that is transmitted from one actor (the sender) to another actor (the receiver).

A message may actually be ‘routed’ via several actors before reaching its actual receiver.
For example, when human actor exchange messages, they usually need to make use of
some other actor playing the role of a medium (for example, vibrations in the air, or an
e-mail system).

Model concept – A concept from a conception which is a model.

Model link – A link from a conception which is a model.

Modeling technique – The combination of a way of modeling and a way of communicating.

Modeling – The act of purposely abstracting a model from (what is conceived to be) a part of
the universe.

Model – A purposely abstracted domain (possibly in conjunction with its environment) of some
‘part’ or ‘aspect’ of the universe a viewer may have an interest in.

For practical reasons, a model will typically be consistent and unambiguous with regards
to some underlying semantical domain, such as logic.

Open active system – A system that is an open system as well as an active system.

196 DICTIONARY

Open system – A special kind of dynamic system that is conceived as reacting to external trig-
gers, i.e. there may be changes inside the system due to external causes originating from
the system’s environment.

Organizational system – A special kind of system, being normally active and open, and com-
prising the conception of how an organization is composed and how it operates (i.e. per-
forming specific actions in pursuit of organizational goals, guided by organizational rules
and informed by internal and external communication), where its systemic property are
that it responds to (certain kinds of) changes caused by the system environment and, itself,
causes (certain kinds of) changes in the system environment.

Organization – A group of actors with a purpose, who:

• interact with each other,
• form a network of roles,
• make use of (the services of) other actors.

An organization in itself is an actor as well, and may as such participate in yet another
organizations.

Perception – That what results, in the mind of a viewer, when they observe a domain with their
senses, and forms a specific pattern of visual, auditory or other sensations in their minds.

Quality attribute – A specific class of quality properties.

Quality property – A systemic property, used to describe and asses the quality of a system.

Quality – Is the totality of systemic properties of a system that relate to its ability to satisfy
stated and/or implied needs.

Reactive system – An open active system where each expression of the system is a reaction, and
where each impression immediately causes a reaction.

Requirement – an essential quality property that a system or its system description has to sat-
isfy.

Responsive system – An open active system (possibly also a reactive system) where it holds for
at least one expression that a certain impression or a temporal pattern of impressions is a
necessary, but not a sufficient dynamic condition for its occurrence. The receipt of an order
is a necessary impression to a “sales system”, for the expression “delivery of the ordered
goods”, but it is not a sufficient condition.

Stakeholder concern – An interest of a stakeholder, resulting from the stakeholder’s goal, and
the role played by some system.

This usually pertains to the system’s engineering, its operation or any other aspects that are
critical or otherwise important to one or more stakeholders.

Stakeholder goal – The end toward which effort is directed by a stakeholder, in which the sys-
tem (of which the stakeholder is indeed a stakeholder) plays a role.

This may pertain to strategic, tactical or operational end. The role of the system may range
from passive to active. For example, a financial controller’s goal with regards to a fu-
ture/changed system may be to control system engineering costs, while the goal of users
of the system may be to get their job done more efficiently.

Stakeholder requirement – A requirement posed on a future/changed system by a specific
stakeholder.

These requirements should essentially be refinements of the stakeholder concerns.

Stakeholder – A party (a system viewer) with a specific interest pertaining to a system’s devel-
opment, its operation or any other aspects that are critical or otherwise important.

Examples are: Users, operators, owners, architects, engineers, testers, project managers,
business management, ...

DICTIONARY 197

Sub-system – A sub-system S′ of a system S, is a system where the set of elements in S′ is a
subset of the elements in S.

System activity – A system concept that is conceived of as changing parts of the universe.

System concept – Any element from a system that is a concept.

System description – The description of a system.

System design – To do

System domain – A domain that is conceived to be a system, by some viewer, by the distinction
from its environment, by its coherence, and because of its systemic property.

System element – Any element from a system.

System engineering community – A group of objects, such as actors and representations, which
are involved in a system engineering process.

System engineering – A process aimed at producing a changed system, involving the execution
of four sub-processes: definition, design, construction and installation. Processes that may
be executed sequentially, incrementally, interleaved, or in parallel.

System exposition – a description of all the elements of the system domain where each element
is specified by all its relevant aspects and all the roles it plays, being of importance for the
interest of the viewer. (The system viewer may conceive one and the same thing in the
system domain to play more than one role in the system.)

System link – Any element from a system that is a link.

System mission – A role, to the benefit of stakeholder goals, for which the system is intended.

System requirement – A requirement on a future/changed system. These requirements are
usually an negotiated integration of stakeholder requirements and should essentially be
refinements of the system mission.

System type – A type that determines the potential kinds of systemic properties, elements of
the system domain and roles of the elements in achieving the systemic properties.

System viewer – A viewer of a system domain.

Systemic property – A meaningful relationship that exists between the domain of elements con-
sidered as a whole, the system domain and its environment.

System – A special model of a system domain, whereby all the things contained in that model
are transitively coherent, i.e. all of them are directly or indirectly related to each other and
form a coherent whole.

A system is conceived as having assigned to it, as a whole, a specific characterisation (a
non-empty set of systemic properties) which, in general, cannot be attributed exclusively
to any of its components.

Universe – The ‘world’ under consideration.

Viewer – An actor perceiving and conceiving (part of) a domain.

Way of communicating – describes how the abstract concepts from the way of modeling are
communicated to human beings, for example in terms of a textual or a graphical notation.

The way of communicating essentially forms the bridge between the way of modeling and
the way of working, it matches the abstract concepts of the way of modeling to the prag-
matic needs of the way of working.

Note that it may very well be the case that different modeling techniques are based on the
same way of modeling, yet use different notations.

Way of controlling – The managerial aspects of system development. It includes such aspects
as human resource management, quality and progress control, and evaluation of plans, i.e.
overall project management and governance (see [Ken84, Sol88]).

198 DICTIONARY

Way of modeling – Identifies the core concepts of the language that may be used to denote, anal-
yse, visualise and/or animate system descriptions.

Way of thinking – Articulates the assumptions on the kinds of problem domains, solutions and
modellers. This notion is also referred to as die Weltanschauung [Sol83, WAA85], underlying
perspective [Mat81] or philosophy [Avi95].

Way of working – Structures (parts of) the way in which a system is developed. It defines the
possible tasks, including sub-tasks, and ordering of tasks, to be performed as part of the
development process. It furthermore provides guidelines and suggestions (heuristics) on
how these tasks should be performed.

Author Index

A

Aalst, W.M.P. van der, 120, 122

Abiteboul, S., 99

Ackoff, R.L., 63

Alter, S., 24, 37

Antill, L., 34, 36, 37, 154, 198

Arbab, F., 156

Assche, F.J.M. van, 154

Avison, D.E., 34, 36, 37, 154, 198

B

Bass, L., 30

Batini, C., 97

Bemelmans, T.M.A., 61

Benson, R.J., 32, 38

Berger, F.C., 13

Bertalanffy, L. von, 45, 50

Bleeker, A.I., 105, 107

Boar, B.H., 32, 38

Boehm, B.W., 27

Boer, F. de, 156

Bommel, P. van, 13

Bonsangue, M., 13, 156

Booch, G., 71, 106, 110, 156

Bosma, H., 33, 156

Bronts, G.H.W.M., 13, 87, 97

Brooks, F., 30

Brouwer, S.J., 13, 87, 97

Bruza, P.D., 13

Bubenko, J.A., 34

Budgen, D., 154

Buuren, R. van, 13, 156

C

Campbell, L.J., 13

Castells, M., 19

Caston, A., 21, 28, 32, 38

Ceri, S., 97

Checkland, P., 47

Chen, P.P., 106

Clements, P.C., 30

Cochran, S., 30

Cohen, B., 34

Creasy, P.N., 13, 87, 90

D

Dietz, J.L.G., 71

Doest, H. ter, 156

E

Ehrich, H.-D., 97

Elmasri, R., 97

Embley, D.W., 71, 106, 110

Engels, G., 97

F

Falkenberg, E.D., 11, 22, 23, 38, 45, 46, 48, 54,
57, 58, 60–62, 158

Farkas, J.I., 13

Finkelstein, A., 154

Finkelstein, L., 154

Franckson, M., 22, 25, 38, 144, 158

Frederiks, P.J.M., 13, 106, 110

199

200 AUTHOR INDEX

G

Goedicke, M., 154

Gogolla, M., 97

Groenewegen, L., 156

Grootjen, F.A., 13

Guillen Scholten, J., 156

H

Hülsmann, K., 97

Hagelstein, J., 154

Halpin, T.A., 13, 35, 51, 71, 87, 89, 97, 105, 106,
108, 109

Hammer, M., 29

Heijes, H., 34, 106

Henderson, J.C., 32, 33, 38

Hesse, W., 11, 22, 23, 38, 45, 46, 48, 54, 57, 58,
60–62, 158

Hevner, A., 97

Hofstede, A.H.M. ter, 13, 34, 87, 89, 97, 99, 120,
122

Hohenstein, U., 97

Holland, J.H., 24

Hoppenbrouwers, J.J.A.C., 13

Hoppenbrouwers, S.J.B.A., 13, 33, 105–108, 110,
156

Horan, T.A., 20, 38

Horenbeek, I. van, 34

Hull, R., 99

I

Iacob, M.-E., 156

Iivari, J., 45

ISO, 138, 139

J

Jacobson, I., 71, 106, 110, 156

Janssen, R.D.T., 33

Janssen, W., 156

Jennings, N.R., 24

Jones, C.B., 34

Jonkers, H., 13, 156

K

Kazman, R., 30

Keen, P.W.G., 21, 28, 32, 38

Kensing, F., 35, 197

Kinny, D., 24

Koerner, B.I., 21

Kotonya, G., 154

Kramer, J., 154

Kristen, G., 71, 106, 110

Kruchten, P., 156

Kurtz, B.D., 71, 106, 110

L

Löhr-Richter, P., 97

Langefors, B., 45

Lankhorst, M.M, 13

Lankhorst, M.M., 113, 120, 156

Leeuwen, D. van, 156

Levy, A.Y., 99

Lewi, J., 34

Lientz, B., 27

Lindgreen, P., 11, 22, 23, 38, 45, 46, 48, 54, 57, 58,
60–62, 158

M

Macdonald, I.G., 154

Maier, M.W., 24

Marashi, M., 154

Martens, C.L.J., 13, 87, 97

Mathiassen, L., 34, 198

McClure, C.L., 35

Mimnaugh, H., 24

Mulder, J.B.F, 71

N

Navathe, S.B., 97

AUTHOR INDEX 201

Negroponte, N., 20, 21, 37

Nijssen, G.M., 71, 105, 106, 108

Nilsson, B.E., 11, 22, 23, 38, 45, 46, 48, 54, 57, 58,
60–62, 158

Nosek, J., 27

Nuseibeh, B., 154

O

Odell, J., 24, 37

Oei, J.L.H., 11, 22, 23, 38, 45, 46, 48, 54, 57, 58,
60–62, 158

Olle, T.W., 154

OMG, 125

others, 113, 120

P

Palvia, P., 27

Papaccio, P.N., 27

Papazoglou, M.P., 13

Parker, M.M., 32, 38

Peirce, C.S., 48

Pong, L., 34

Proper, H.A. (Erik), 12, 13, 17, 19, 22, 27, 28, 33,
34, 51, 64, 87, 90, 97, 105–108, 110, 155,
156

R

Rechtin, E., 24, 37, 158

Rechtin, R., 24

Reeves, J., 154

Reijswoud, V.E. van, 71

Rolland, C., 11, 22, 23, 38, 45, 46, 48, 54, 57, 58,
60–62, 154, 158

Ropohl, G., 46, 58

Rumbaugh, J., 71, 106, 110, 156

S

Saake, G., 97

Sarbo, J.J., 13

Seligmann, P.S., 34, 106

Simon, H.A., 59

Sol, H.G., 34, 35, 106, 154, 197, 198

Sommerville, I., 154

Spivey, J.M., 34

Stam, A., 156

Stamper, R.K. and, 11, 22, 23, 38, 45, 46, 48, 54,
57, 58, 60–62, 158

Swanson, E., 27

T

Tapscott, D., 20, 21, 28, 32, 38

Torre, L. van der, 13, 156

Tse, T.H., 34

Tully, C.J., 154

V

Veld, J. in ’t, 61

Veldhuijzen van Zanten, G.E., 13, 106, 110, 156

Venkatraman, N., 32, 33, 38

Verhoef, T.F., 22, 25, 38, 105, 109, 144, 158

Verrijn-Stuart, A.A., 11, 22, 23, 38, 45, 46, 48, 54,
57, 58, 60–62, 154, 158

Vos, B. van der, 13

Voss, K., 11, 22, 23, 38, 45, 46, 48, 54, 57, 58, 60–
62, 158

W

Weeldreyer, J., 97

Weide, Th.P. van der, 13, 28, 34, 87, 89, 97, 99,
106, 110

Wijers, G.M., 34, 106

Wintraecken, J.J.V.R., 71

Wondergem, B.C.M., 13

Wood-Harper, A.T., 34, 36, 37, 154, 198

Woodfield, S.N., 71, 106, 110

Wooldridge, M., 24

Y

Yang, J., 13

Z

Zachman, J.A., 156, 158

202 AUTHOR INDEX

Subject Index

The following conventions are used in this in-
dex:

• A page where a concept is defined: 203.

• A page where a concept is discussed or
mentioned: 203.

• The page in the dictionary where a con-
cept is defined: 203.

A

active system, 62, 62, 64, 113, 193, 195

activity participation, 193, 193

actor, 11, 48, 60, 63, 64, 193, 193–197

alignment, 29, 32, 33, 193

architecting, 12

architectural description, 31, 193, 193

architecture, 25, 31, 33, 143, 193, 193, 194

architecture-driven information system engineer-
ing, 33

architecture-driven-system-engineering, 33

aspect system, 60, 61, 61, 191, 193

autonomous system, 63, 63, 193, 193

C

communication, 11, 64, 64, 193

component, 31, 46, 47, 60, 139, 193, 193

component system, 60, 61, 61, 144, 191, 193, 193

computerized information system, 23, 25, 27,
29–31, 64, 64, 193

concept, 51, 51, 53–55, 57–59, 61, 113, 191, 192,
194, 194, 195, 197

conception, 11, 48, 48, 50, 51, 53–59, 63, 64, 66,
67, 71, 72, 144, 145, 191–193, 194, 194,
195

conception evolution, 66, 67, 191, 193

concern, 33, 146, 146, 147, 194

construction process, 25, 25, 143, 143, 194, 197

D

data, 11, 64, 64, 194, 195

decomposer, 55, 56, 194

definition, 11, 12, 194

definition process, 24, 25, 143, 143, 144, 194, 194,
197

deployment, 12, 12, 194

description, 48, 48, 57, 58, 61, 71, 194, 197

description process, 25, 194

design, 12, 12, 194, 194

design process, 25, 25, 143, 143, 194, 194, 197

domain, 34, 46, 48, 50, 50, 51, 53–60, 62, 66, 67,
191, 194, 194–197

domain evolution, 66, 194

domain modeling, 12

dynamic system, 62, 62, 194, 196

E

efficiency, 139

element, 46–48, 50, 51, 51, 54, 56–62, 64, 66, 191,
194, 194, 195, 197

element evolution, 66, 67, 73, 191, 194, 194

element version, 66, 194

environment, 23, 31, 47, 50, 51, 53, 53, 54, 56–58,
62, 63, 66, 67, 139, 191–193, 194, 194–
197

environment evolution, 66, 194

evolutionary approach, 144

F

functionality, 139

203

204 SUBJECT INDEX

G

goal, 146, 147, 195, 196

H

human actor, 11, 64, 193, 195, 195

I

incremental approach, 144

information, 11, 22, 45, 63, 64, 64, 195

information intensive organization, 64, 195

information system, 22, 23, 23–25, 27, 28, 31, 33,
45, 59, 63, 64, 64, 143, 193, 195, 195

information system engineering, 25, 33, 143, 195

information technology, 27–29, 32, 33, 195

installation process, 25, 25, 143, 143, 195, 197

interest, 48, 50, 54, 56, 61, 146, 147, 191, 194, 195,
195–197

K

knowledge, 11, 11, 63, 64, 193, 195, 195

L

linear approach, 144

link, 45–47, 50, 51, 51, 53, 55, 57–59, 61, 191–194,
195, 195, 197

M

maintainability, 139

maintenance, 12, 12, 195

message, 11, 64, 64, 193, 195, 195

model, 31, 56, 56–58, 191–193, 195, 195, 197

model concept, 57, 61, 193, 195

model element, 57

model link, 57, 61, 193, 195

modeling, 57, 57, 61, 195

modeling technique, 35, 195, 197

O

open active system, 63, 193, 195, 196

open system, 62, 64, 113, 195, 196

organization, 22, 23, 27, 28, 45–48, 56, 60, 62–64,
193, 195, 196, 196

organizational system, 23, 23, 25, 59, 64, 113,
195, 196

P

perception, 48, 48, 194, 196

portability, 139

Q

quality, 138, 139, 139, 196, 196

quality attribute, 139, 139, 196

quality property, 139, 139, 196, 196

R

reactive system, 63, 63, 193, 196, 196

reliability, 139

requirement, 193, 196, 196, 197

responsive system, 63, 63, 193, 196

S

stakeholder, 33, 146, 146, 147, 194, 196, 196

stakeholder concern, 146, 146, 147, 196, 196

stakeholder goal, 146, 146, 147, 194, 195, 196,
197

stakeholder requirement, 196, 197

sub-system, 23, 47, 59, 60, 60–64, 139, 192, 193,
195, 197

system, 23–25, 33, 45–48, 50, 51, 57, 58, 58–64,
72, 138, 139, 143–147, 191–196, 197, 197

system activity, 193, 197

system concept, 58, 197, 197

system description, 24, 31, 35, 58, 143–146, 193,
194, 196, 197, 198

system design, 145, 197

system domain, 31, 58, 58, 60, 61, 144, 145, 193,
197, 197

system element, 58, 193, 197

system engineering, 25, 25, 31, 33, 143, 145, 146,
193, 196, 197

system engineering community, 145, 146, 197

SUBJECT INDEX 205

system exposition, 61, 61, 62, 197

system link, 58, 193, 197

system mission, 147, 147, 197, 197

system requirement, 145, 197

system type, 61, 61, 197

system viewer, 58, 61, 146, 147, 195, 196, 197,
197

systemic property, 23, 47, 48, 58, 58–61, 63, 139,
195, 196, 197, 197

U

universe, 48, 48, 50, 53–58, 62, 64, 66, 145, 191–
195, 197, 197

usability, 139

V

viewer, 47, 48, 48, 50, 51, 53–61, 64, 66, 71, 191,
192, 194–196, 197, 197

W

way of communicating, 34, 35, 195, 197

way of controlling, 35, 36, 145, 197

way of modeling, 35, 35, 195, 197, 198

way of supporting, 35

way of thinking, 34, 36, 198

way of working, 35, 35, 36, 197, 198

206 SUBJECT INDEX

The DAVINCI Lecture Notes Series:

The DAVINCI series of lecture notes is concerned with The Art & Craft of Information
Systems Engineering. On the one hand, this series of lecture notes takes a fundamental
view (craft) on the field information systems engineering. At the same time, it does
so with an open eye to practical experiences (the art) gained from information system
engineering in industry.

Main contributors:

P. (Patrick) van Bommel S.J.B.A. (Stijn) Hoppenbrouwers

H.A. (Erik) Proper Th.P. (Theo) van der Weide

	The DaVinci Series
	Course Description
	Preface
	Introduction
	The digital era
	Enablers of the digital era
	The information systems area
	Information systems
	Information systems as work systems
	Information systems engineering

	Challenges for information system engineering
	Ambient technology
	Pluriformity of stakes
	Intangiable systems
	Evolution is a constant
	Complexity; the gravitational force of software construction

	Architecture-driven information systems engineering
	Architecture
	Alignment
	Architecture-driven information system engineering

	A fundamental approach
	Structuring the domain
	Methodological framework
	Structure of this text-book

	Questions
	Recommended reading
	Optional reading
	Bibliography

	I Domain Modeling
	Work Systems
	Exploring systems
	Observing systems
	Subjectivity
	Observing the universe
	Conceptions
	Model
	System

	Studying systems
	Sub-systems
	Describing systems
	Open-active systems

	Information system
	Knowledge, information and data

	Dealing with evolution of conceptions
	Conclusion
	Questions
	Bibliography

	Basic Object-Role Modeling
	Natural language grounding of modeling
	The logbook heuristic
	Verbalizing conceptions
	Elementary facts
	From instances to types
	Standard constraints
	Temporal ordering
	Questions
	Bibliography

	Advanced Object-Role Modeling
	Subtyping
	Overlap of populations
	Abstraction
	Set types
	Multi-set types
	Sequence types
	Schema types
	Questions
	Bibliography

	The Act of Modelling
	What to model?
	The modeling challenge
	Goal-bounded and communication-driven
	Aspects of a method
	The process of modeling

	Ambition levels for modeling
	Meeting the challenge
	Modeling a singular domain

	II Systems Modeling
	Natural-Language Foundations of Information-Systems Modeling
	Classes of roles
	Activity types
	Questions
	Bibliography

	Activity Modeling
	Introduction
	Basic modeling language
	Composed activities
	Petri-net based semantics
	Quantative semantics
	Mapping to UML 2.0 activity diagrams
	Modeling approach
	Identify key use cases
	Describe key use cases
	Compose initial model
	Detail model
	Re-examine models
	Identify phases of activity

	Questions
	Bibliography

	Resource Modeling
	Actor modeling
	Actand modeling
	Questions

	Service modeling
	Service
	Modeling services
	Quality of service
	Information systems as event-driven machines
	Bibliography

	III Model-driven System Engineering
	Models in System Engineering
	Systems engineering
	System engineering community
	Stakeholders and their concerns

	Information system engineering as a wicked problem
	Wicked problems
	Traditionele informatiesysteemontwikkeling
	Evenwichtsdenken

	Viewpoints for system description
	Origin of viewpoints
	Viewpoints on systems
	Viewpoint frameworks

	Questions
	Recommended reading
	Optional reading
	Bibliography

	IV Apendixes
	Mathematical Notations
	Sets
	Functions
	Relations

	Answers to questions
	Questions from Section 1.4
	Questions from Chapter 2
	Questions from Chapter 3
	Questions from Chapter 4
	Questions from Chapter 6
	Questions from Chapter 7
	Questions from Chapter 8
	Questions from Chapter 10

	Bibliography
	List of Symbols
	Dictionary
	Author Index
	Subject Index

