
A note on Schema Equivalence

A.H.M. ter Hofstede and H.A. Proper and Th.P. van der Weide
E.Proper@acm.org

PUBLISHED AS:

A.H.M. ter Hofstede, H.A. Proper, and
Th.P. van der Weide. A Note on Schema
Equivalence. Technical Report 92-30,
Department of Information Systems,
University of Nijmegen, Nijmegen, The
Netherlands, EU, 1992.

Abstract

In this paper we introduce some terminology for
comparing the expressiveness of conceptual data
modelling techniques, such as ER, NIAM, and PM,
that are finitely bounded by their underlying do-
mains. Next we consider schema equivalence and
discuss the effects of the sizes of the underlying
domains. This leads to the introduction of the con-
cept of finite equivalence. We give some examples
of finite equivalence and inequivalence in the con-
text of PM.

1 Schema Equivalence

When modelling a Universe of Discourse ([ISO87]),
it is generally assumed that we can recognise sta-
ble states in this Universe of Discourse, and that
there are a number of actions that result in a change
of state (state transitions). This is called the state-
transition model. Furthermore we assume that the
Universe of Discourse has a unique starting state.

In mathematical terms, a Universe of Discourse
U◦D consists of a set S of states, a binary relation
τ over states, and an initial state s0 ∈ S :

U◦D = 〈S, τ , s0〉

The purpose of the modelling process is to con-
struct a formal description, (a specification) Σ of
U◦D, in terms of some underlying formalism. This
specification will have a componentS(Σ) that spec-
ifies S , a component τ (Σ) that specifies τ , and a
state s0(Σ) that is designated as the initial state
s0.

The main requirement for specification Σ is that it
behaves like U◦D. This can be shown by a (par-
tial) function h, relating the states from S(Σ) to
the (real) states S from U◦D such that h shows
this similarity. Such a function is called a (partial)
homomorphism. If each state of U◦D is captured
by the function h, we call Σ a correct specification
with respect to U◦D. In that case, the function h

should be surjective, and is called an epimorphism
(see also [Bor78]).'

&
$
%

U◦D

'

&

$

%
Σ

ss0(Σ)

ss0

sx s y-

sh(x) s h(y)-6
6 6

h h h

Figure 1: A correct specification

Definition 1.1 We call h a partial homomorphism
between Σ and U◦D if

Page 1

1. h is a (partial) function h : S(Σ) → S

2. transitions commute under h:

∀
s,t∈S(Σ)

[

〈s, t〉 ∈ τ (Σ) ⇔ 〈h(s), h(t)〉 ∈ τ
]

3. h maps the initial state of the specification
onto the initial state of U◦D:

h(s0(Σ)) = s0

If h is surjective, we call h an epimorphism be-
tween Σ and U◦D.

We call an algebraA (partially) homomorphic with
algebraB, if there exists a (partial) homomorphism
from A into B. If schema Σ is a description of
A, then we will also call Σ (partially) homomor-
pic with B. The notion of epimorpism is extended
analogously.

In the context of information systems, the term in-
ternal schema is generally used for a correct spec-
ification. Note that in a correct specification Σ, a
state of U◦D may have more than one correspond-
ing state in S(Σ). In that case we have a redundant
representation for the states of U◦D. Redundant
representations are useful as they provide oppor-
tunities for improvement of efficiency.

The disadvantage of a redundant representation is
that we do not have a description of U◦D that is
free of implementation (representation) details. A
description can only be implementation indepen-
dent if each state has a unique representant. Such
a description is called a conceptual schema in the
context of information systems. This is the case if
the function h that relates Σ to U◦D is bijective.

The expressiveness of a formal method M is in-
troduced as the set of “U◦D”’s it can model. This
can be described by:

{

〈S(Σ), τ (Σ), s0(Σ)〉
∣

∣ Σ ∈ L(M)
}

If we restrict ourselves in this definition to τ (Σ) =
∅, we get the so-called base expressiveness of method
M. The base expressiveness usually is the crite-
rion that is used intuitively when comparing dif-
ferent methods.

From the above definition of conceptual schema,
the following definition of schema equivalence can
be derived.

Definition 1.2 Two specifications Σ and Σ′ are
equivalent, Σ∼= Σ′, if there exists a homomorphism
h from Σ onto Σ′ such that h is a bijection.

2 Schema Equivalence in PM

In this section we consider the base expressive-
ness of the PM ([BHW91]), and focus at schema
equivalence in that context. PM is a conceptual
data modelling technique surving as a common
base for ER ([Che76]) and NIAM ([NH89]).

Let Σ be a PM schema, with underlying label type
set L, then this schema specifies the following set
of states:

S(Σ) =
{

p | IsPopL(Σ, p)
}

A population p is a function assigning a set of
instances to each object type in schema Σ. The
IsPopL predicate determines whether p is a proper
population. The population of label values is re-
stricted to values of some domain D. We will
show that the base expressiveness strongly depends
on the actual choice of D. In this restricted sense
the resulting state space of schema Σ is:

SD(Σ) =
{

p
∣

∣ IsPopL(Σ, p) ∧ ∀
x∈L [p(x) ⊆ D]

}

Using this definition we introduce the notion of
domain equivalence.

Definition 2.1 Two PM schemas Σ and Σ′ are do-
main equivalent over domain D, Σ∼=D Σ′, if:

SD(Σ)∼=SD(Σ′)

A first result is:

Lemma 2.1 Let Σ and Σ′ be PM schemas (with-
out enumeration constraints), then:

D countably infinite ⇒ Σ∼=D Σ′

Proof: We will only give a brief outline of this
proof. The important step is to prove that
the number of populations in a schema with
a countable domain is countable itself (as-
suming finite populations). This however, is
true because every population can be coded
as a finite string by ordering the object types
in the schema at hand and listing their pop-
ulations sequentially, according to this or-
dering, separated by special separator sym-
bols. Each such finite string can uniquely
be translated to a finite bitstring, which can
be considered as a natural number in binary
representation.

Note that enumeration constraints invalidate
the property as they enforce a limited use of
label values.

Page 2

2

�
�

�
�N

p

Figure 2: The most simple universal schema

We conclude that the expressiveness of PM in the
context of a countably infinite domain is very low,
as all schemata are equivalent in that case. Note
that, in the context of countably infinite domains,
this property holds for most other data models as
well. Each schema thus can be considered as a
universal schema, as it is expressive enough to
“simulate” any other schema. The analogon of a
universal schema in the algorithmic world is the
universal Turing machine (see for example [CAB+72]).
The most simple universal schema is shown in fig-
ure 2. The role of the unary fact type is to ex-
clude all elements from N that do not correspond
to a valid population of the simulated schema. Al-
though all schemata are equivalent in their expres-
sive power, one schema might be much more con-
venient for this purpose than an other. The ap-
propriateness is measured by the complexity of
the operations that correspond with the associated
transition relation τ . In this paper we will not con-
sider this complexity.

We restrict ourselves to a finite domain for label
values. As a direct consequence, schema Σ has a
finite state space. We introduce the notion of finite
equivalence:

Definition 2.2 Two PM schemas Σ and Σ′ are fi-
nite equivalent, Σ∼=f Σ′, if for all D and D’:

D∼=D′ ∧ |D| < ∞ ⇒ SD(Σ)∼=SD′(Σ′)

Finite equivalence can be proven by the construc-
tion of a bijection between the two state spaces of
the schemas.

Example 2.1 The schemas Σ and Σ′ from figure 3,
are finite equivalent.

Proof: The basic idea is to define a translation
from instances from Σ to instances from Σ′

such that we have a bijection between S(Σ)
andS(Σ′). This is achieved by relating iden-
tical instances of object types A, B and C

in both schemas and instances {p : a, q : b}

in Pop(f) and {r : {p : a, q : b} , s : c} in
Pop(g) to one instance {t : a, u : b, v : c}
in Pop(h).

Note the importance of the total role (the
black dot) on predicator r in this transfor-
mation. Its semantics is:

x ∈ Pop(f) ⇒ ∃y∈Pop(g) [y(r) = x]

Therefore, the total role makes it unneces-
sary to consider instances of fact type f that
do not contribute in fact type g. For a gen-
eral definition of the semantics of constraints
in NIAM schemas, refer to [BHW91].

2

Finite inequivalence can be proven by showing
that the state spaces of the underlying schemas are
not equal in size.

Example 2.2 If we omit the total role from schema
Σ in figure 3, the schemas are not finite equivalent.

Proof: Let a, b and c be the population size of
A, B and C respectively. The number of
populations of fact type f amounts to:

ab
∑

i=0

(

ab

i

)

= 2ab

Now suppose f is populated with i tuples,
then for g we can have 2ic different pop-
ulations. The number of populations of Σ
therefore amounts to:

ab
∑

i=0

(

ab

i

)

2ic =

n
∑

i=0

(

ab

i

)

(2c)i

= (1 + 2c)ab

On the other hand, the number of popula-
tions of Σ′ equals 2abc = (2c)ab.

2

Example 2.3 In figure 4, another example of fi-
nite equivalence is shown.

Proof: The main observation is that instances oc-
curring in predicator p of schema Σ are to
be mapped onto identical instances in the
population of fact type g in schema Σ′. In-
stances of object types A and B in both schemas
are again related via an identical mapping.
Instances in fact type f in schema Σ are re-
lated to identical instances in fact type h in
schema Σ′.

Page 3

�
�

�
�A

�
�

�
�B

�
�

�
�C

p qr
r

s

g

Σ

�� ��
f

∼=f

�
�

�
�A

�
�

�
�B�

�
�
�C

Σ′

h
t v

u

Figure 3: Example of finite equivalence

�
�

�
�A

fp q
�
�

�
�B

Σ

∼=f

Σ′

�
�

�
�A

r

g�
�

�
�r

hs t
�
�

�
�B

Figure 4: Another example of finite equivalence

2

Example 2.4 In figure 5 two schemas are depicted,
which are not finite equivalent.

Proof: It is not hard to see that the number of
populations in Σ with |Pop(A)| = a and
|Pop(B)| = b is (2b)a, while the number of
populations in Σ′ with the same restriction
is (2b − 1)a.

2

3 An upper bound for populata-
bility

A data modelling technique is called finitely bounded
by its underlying domains, if each schema from
that technique allows for a finite number of popu-
lations, in case of a finite domain of label values.

Definition 3.1 The populatability of a schema Σ
is:

mD(Σ) =
∥

∥SD(Σ)
∥

∥

As each schema can be populated by the empty
population ([BHW91]), an immediate consequence
is:

Lemma 3.1

‖D‖ = 0 ⇒ ∀Σ∈L(M)

[

mD(Σ) = 1
]

Definition 3.2 MethodM is called finitely bounded
by its underlying domains D if:

‖D‖ < ∞ ⇒ ∀Σ∈L(M)

[

mD(Σ) < ∞
]

In this section we derive an upper bound on the
populatability of a schema. In order to simplify
the derivation, we restrict ourselves to fact schemata,
i.e., schemata Σ without entity types (i.e., E(Σ) =
∅).

Lemma 3.2

∀Σ∃Σ′ [Σ ≡ Σ′ ∧ E(Σ′) = ∅]

Proof: Replace each entity type by a fact type,
corresponding to its identification. If the
identification of entity type x consists of the
convolution of k path expressions (i.e., mult(x) =
k, see [HPW93]), then this replacement leads
to the introduction of a k-ary fact type. The
resulting schema is denoted as de(Σ). Then
obviously Σ ≡ de(Σ) and E(de(Σ)) = ∅.

2

The number p(de(Σ)) of predicators of schema
de(Σ) is found by:

Page 4

�
�

�
�A

fp q
�
�

�
�B

Σ

∼=f6

Σ′

�
�

�
�A r fp q

�
�

�
�B

Figure 5: Example of finite inequivalence

Lemma 3.3

p(de(Σ)) = p(Σ) +
∑

x∈E(Σ)

mult(x)

Proof: Obvious!

2

.

�
�

�
�(L)

#
#

#
#

#
q1

c
c

c
c

c
qp

Figure 6: Best populatable schemata

Next we introduce a series {Np}p≥0 of schemata
(see figure 6), consisting of a single p-ary fact type
over some label type L. These schemata are the
best populatable schemata among schemata with
the same number of predicators.

Theorem 3.1

‖D‖ > 1 ⇒ ∀Σ

[

m(Σ) ≤ m(N
p(de(Σ)))

]

Proof: First we remark m(Σ) = m(de(Σ)). Next
we use the fact that a schema becomes bet-
ter populatable by undeeper nesting of (at
least) binary fact types. This is shown in
lemma 3.4. Furthermore, merging fact types
improves populatability (see lemma 3.6). By
repeatedtly applying these steps, schema N

p(de(Σ))
will result.

2

Lemma 3.4 Consider the schemata Σ1, Σ2 and
Σ3 from figure 7, then:

‖D‖ > 1 ⇒ m(Σ1) ≤ m(Σ2) ≤ m(Σ3)

n m(Σ1) m(Σ2) m(Σ1)
0 1 1 1
1 3 3 2
2 21 81 256
3 567 19683 134217728
4 67689 43046721 1.845E+19

Table 1: Growth of populatability

Proof: Let ‖D‖ = n, then:

m(Σ1) =
n

∑

i=0

(

n

i

) i
∑

j=0

(

i

j

)

2(j2)

≤
n

∑

i=0

(

n

i

) i
∑

j=0

(

i2

j2

)

2(j2)

≤
n

∑

i=0

(

n

i

) i2
∑

j=0

(

i2

j

)

2j = m(Σ2)

m(Σ2) =

n
∑

i=0

(

n

i

) i2
∑

j=0

(

i2

j

)

2j

=

n
∑

i=0

(

n

i

)

3(i2)

m(Σ3) =
n

∑

i=0

(

n

i

)

2(i3)

The result follows from the observation:

n > 1 ⇒ 2(n3) > 3(n2)

2

The populatability of schemata {Np}p≥0 grows
extremely fast.

Lemma 3.5

m(Np) =

n
∑

i=0

(

n

i

)

2(ip)

Lemma 3.6

m(Np) ∗ m(Nq) ≤ m(Np+q)

Page 5

n :

„

n

i

«

�
�

�
�i

i :

„

i

j

«

�
�

�
�j

�
�

�
�2(j2)

Σ1

n :

„

n

i

«

�
�

�
�i

i2 :

„

i2

j

«

�
�

�
�j

�
�

�
�2j

Σ2

n :

„

n

i

«

�
�

�
�i

�
�

�
�2(i3)

Σ3

Figure 7: Transformation steps

From theorem 3.1 we conclude that ER, NIAM
and PM are finitely bounded by their underlying
domains.

References

[BHW91] P. van Bommel, A.H.M. ter Hofstede,
and Th.P. van der Weide. Semantics
and verification of object-role mod-
els. Information Systems, 16(5):471–
495, October 1991.

[Bor78] S.A. Borkin. Data Model Equiv-
alence. In Proceedings of the
Fourth International Conference on
Very Large Data Bases, pages 526–
534, 1978.

[CAB+72] J.N. Crossley, C.J.
Ash, C.J. Brickhill, J.C. Stillwell, and
N.H. Williams. What is mathemati-
cal logic? Oxford University Press,
Oxford, United Kingdom, 1972.

[Che76] P.P. Chen. The entity-relationship
model: Towards a unified view of
data. ACM Transactions on Database
Systems, 1(1):9–36, March 1976.

[HPW93] A.H.M. ter Hofstede, H.A. Proper,
and Th.P. van der Weide. Formal def-
inition of a conceptual language for
the description and manipulation of

information models. Information Sys-
tems, 18(7):489–523, October 1993.

[ISO87] Information processing systems –
Concepts and Terminology for the
Conceptual Schema and the Informa-
tion Base, 1987. ISO/TR 9007:1987.
http://www.iso.org

[NH89] G.M. Nijssen and T.A. Halpin. Con-
ceptual Schema and Relational
Database Design: a fact oriented ap-
proach. Prentice-Hall, Sydney, Aus-
tralia, 1989. ASIN 0131672630

Page 6

