Relating Decisions in Enterprise Architecture using
Decision Design Graphs

Georgios Plataniotis
Public Research Centre Henri Tudor,
Luxembourg, Luxembourg
Radboud University Nijmegen,
Nijmegen, the Netherlands
EE-Team, Luxembourg, Luxembourg
georgios.plataniotis @tudor.lu

Abstract—Enterprise Architecture (EA) modeling languages,
such as ArchiMate, describe an enterprise holistically. In doing so,
they show an enterprise’s business products and services, and how
these are realized by IT infrastructure and applications. However,
EA modeling languages lack the capability to capture design
rationales for decisions that lead to specific architectural designs.
In our previous work we presented the EA Anamnesis approach
for capturing decision details behind EA models. In doing so, we
focused on capturing individual architectural decisions (in terms
of alternatives, decision criteria, et cetera).

In this paper we present an approach for relating architec-
tural decisions. Using decision design graphs, we make explicit
how decisions from different enterprise domains (Business, Ap-
plication, Technology) relate to each other. For example, how
decisions taken on a business level affect IT decisions and vice
versa. Our approach is inspired by well-known mechanisms for
capturing architectural rationales in software architecture.

Specifically we contribute: (1) a decision relationship meta-
model for enterprise architecture, with a focus on recording the
impact of decisions (2) the notion of a Decision Design Graph for
enterprise architecture, a visual representation of this metamodel,
and (3) an illustrative example illustrating the potential usefulness
of capturing decision relationships.

Keywords—Enterprise Architecture, Decision relationships, De-
sign Rationale, Decision Capturing, Decision Design Graph

I. INTRODUCTION

Enterprise Architecture (EA) languages, such as the Open
Group Standard ArchiMate [1], are recognized for connecting
an organization’s IT infrastructure and applications to the
business processes they support and the products/services that
are in turn realized by the business processes [2], [3]. The
resulting holistic perspective on an enterprise helps clarify the
business advantages of IT, analyze cost structures and more [4].

However, while Enterprise Architecture modeling lan-
guages allow for modeling an enterprise holistically, the design
decisions behind the resulting models are often left implicit.
As we point out in [5], software architecture literature shows
that leaving design rationales implicit leads to ‘Architectural
Knowledge vaporization’ (cf. [6]). This means that, without

The Enterprise Engineering Team (EE-Team) is a collaboration between
Public Research Centre Henri Tudor, Radboud University and HAN University
of Applied Sciences (www.ee-team.eu)

Sybren de Kinderen
Public Research Centre Henri Tudor,
Luxembourg, Luxembourg
EE-Team, Luxembourg, Luxembourg
sybren.dekinderen @tudor.lu

Henderik A. Proper
Public Research Centre Henri Tudor,
Luxembourg, Luxembourg
Radboud University Nijmegen,
Nijmegen, the Netherlands
EE-Team, Luxembourg, Luxembourg
erik.proper @tudor.lu

a design rationale, design criteria and reasons that lead to
a specific design are not clear. Also, alternatives that were
considered during the design process are not captured.

Such a lack of design transparency implies that new designs
are constructed in an ad hoc manner, without taking into
consideration constraints implied by past design decisions [7].
Moreover one loses track of lessons learned in terms of
anticipated and, importantly, unanticipated consequences of
design decisions [8].

The need for explicit architectural rationalization is fur-
ther compounded by a survey amongst software architects
on recording design rationales [9]. Here a large majority of
architects (85,1%) underline the importance of architectural
rationalization. Another interesting finding of this survey was
that architects declared that after some time they frequently
forget their own decisions. Furthermore, anecdotal evidence
from six exploratory interviews we conducted with senior
enterprise architects suggests that Architects are often external
consultants. Without architectural rationalization, namely, a
new architect has to search through architectural designs and
unstructured information of requirements to understand and
analyze the architecture.

In our earlier work [10], [5] we introduce an approach
for the rationalization of enterprise architectures by capturing
EA design decision details, and the EA decision making
process. We refer to this approach as EA Anamnesis, from
the ancient greek work avduvnois (/enem'nisis/), which
denotes memory and repair of forgetfulness. The metamodel
is grounded in Decision Representation Language (DRL) [11]
applications in software architecture. Moreover, it is based on
well-established decision making literature [12], [13], [14],
[15], [16]. For now, the EA Anamnesis approach is focused on
individual decisions, capturing for each characteristics such as
the issue leading up the decision, the considered alternatives,
decision-making criteria, et cetera.

In this paper we extend the EA Anamnesis approach with
a metamodel for capturing relationships between decisions.
This metamodel enables the capturing and visualization of
the impact of decisions across the enterprise. We consider
this as a useful extension because decisions rarely exist in
isolation [17], [18], [7]. Rather, decisions are often cross
cutting and intertwined [6]: a decision made on a business

level can have (un-)anticipated consequences on an IT-level
and vice versa.

In particular, our contribution is threefold. First, we con-
tribute a metamodel for capturing decision relationships. Here,
the focus is on the ex-post capturing of decision impacts.
Second, we provide a visualization of the decision relation-
ship metamodel in terms of Decision Design Graphs. Both
the metamodel and Decision Design Graph are grounded in
well-established software engineering approaches for capturing
decision relationships [17], [18], [7]. Third, with an illustra-
tive scenario, we contribute an illustration of the potential
usefulness of considering decision relationships in enterprise
architecture.

Note that existing rationalization approaches from software
architecture, such as [17], [18], [7], do not consider business
issues, such as decisions related to business processes. Further-
more, while the EA language ArchiMate 2.0 [1], [19] has a mo-
tivational layer, it lacks concepts important for rationalization
such as considered alternatives, decision criteria et cetera. As
such, ArchiMate 2.0 is not a suitable language for architectural
rationalization.

In section II, we introduce our metamodel and a fictitious
insurance case that is used for illustration. Subsequently, sec-
tion III introduces Decision Design Graphs (which are based
on our metamodel), and presents a scenario that illustrates the
usefulness of considering decision relationships. Finally, sec-
tions IV and V discuss related work and present conclusions,
respectively.

II. EA DECISIONS RELATIONSHIPS

In this section we introduce an insurance case study (sec-
tion II-A), and subsequently use it to illustrate our EA decision
relationships metamodel (section II-B). Note that the insurance
case study is fictitious yet realistic. This is because it is based
on the running case study used to illustrate the ArchiMate
specification [1], which in turn is based on a real insurance
company.

A. Case study: ArchiSurance

ArchiSurance is an insurance company that sells car insur-
ance products using a direct-to-customer sales model. It does
so to reduce its operations and product costs.

Figure 1 presents the partial (Business and Application
layers) ArchiSurance direct-to-customer sales model, modeled
with the EA modeling language ArchiMate. Two business ser-
vices support the sales model of ArchiSurance: “Car insurance
registration service” and “Car insurance service”. ArchiMate
helps us to understand the dependencies between different
perspectives on an enterprise. For example, in Figure 1 we see
that the business service “Car insurance registration service”
is realized by a business process “Register customer profile”.
In turn, we also see that this business process is supported by
the application service “Customer administration service”.

Although disintermediation reduces operational costs it
also increases the risk of adverse risk profiles [20], incomplete
or faulty risk profiles of customers. These adverse profiles lead
insurance companies to calculate unsuitable premiums or, even
worse, to wrongfully issue insurances to customers.

As a response, ArchiSurance decides to use intermediaries
to sell its insurance products. After all, compiling accurate risk
profiles is part of the core business of an intermediary [20].

In our scenario, an external architect called John was hired
by ArchiSurance to help guide the change to an intermediary
sales model.

Scenario:

John uses ArchiMate to capture the impacts that selling in-
surance via an intermediary has in terms of business processes,
IT infrastructure and more. For illustration purposes we will
focus on the translation of the new business process “Customer
profile registration” to EA artifacts in the application layer. The
resulting ArchiMate model is depicted in Figure 2.

Here we see for example how a (new) business process
“customer profile registration”, owned by the insurance broker
(ownership being indicated by a line between the broker and
the business process), is supported by the IT applications
“customer administration service intermediary” and “customer
administration service ArchiSurance”.

B. EA decision relationships metamodel

In this section we present the EA decision relationship
metamodel, presented in Figure 3. The concepts of this meta-
model are grounded in established literature for capturing
design rationale in software architectures [17], [18], [7], [21].
We apply the concepts in the area of enterprise architecture
instead.

The metamodel focuses on (1) representing the different
relationships of captured EA decisions, (2) grouping EA deci-
sions according to the enterprise layer and artifacts they belong
to and (3) representing the observed impact of these decisions
on the enterprise architecture. Note that the examples here are

Roles and actors E

Customer £ Insurance <O Archinsurance § Insurant O
—1 applicant —
2 V.l |
External business services M
Car insurance Car insurance
registration service
service
Ay
T
Business processes ! E !
contractlng Q
Reglster Eligibility Emmme
customer check monthly
proflle customer fee
f
External application fervices |
Customer Risk
administration assessment
sefvice sefvice

X
Application :nmpo‘nent! and services E]
i]

risk assessment
application

customer
administration
application

Fig. 1. ArchiSurance direct-to-customer EA model

Roles and actors

Insurance <<
applicant

Insurant =]

Customer ¢ Inswrance <= Archinsurance §
braker

\ P T

External business services T" /

T —
Customer /" Carinsuranc
registration service
service I

i

Business processes 1

1
Create customized insurance Q Contracting ﬂ
package
Customer (J[1] Eligibiliy = Estimate
prafile check manthly
registration) customer fee
Training expenses [=
External application senvices ‘
Customer Custamer Risk
administration seivice m administiation service assesument
nteymediary - archinsurance service
Expenses customer | A AN
application
Application components and services ‘ i
I

Customer Custamer Risk assessment
administration administration application

Fig. 2. ArchiSurance intermediary EA model

related in the decision decision design graph from Figure 4,
an instrument that we detail further in the next section.

EA decision:

An EA decision shows decisions that are made and
captured in the context of an Enterprise transformation [8].

Example: John makes the EA decision ‘make customer
profile registration via intermediary’.

Business

Technology -~ is member of

I

Layer

! A

is member of 1
1. < has

1 < _influences

EA Artifact

State

A resultsin

1. 1

Observed
impact

0.1 causesp- 0."

Translation

1.0 1

creates
Decomposition [——

1.7

<_has 1
B creates 0.

Alternative > Relationship EA Issue

Substitution

Fig. 3. EA decisions relationship metamodel

EA issue:

Similar to the concept of an issue from [18], an EA issue
represents the architectural design problem that enterprise
architects have to address during the Enterprise transformation
process.

Example: The EA issue ‘create an appropriate application
service to support new business process’ resulting from the
EA decision ‘introduce a new business process for customer
profile registration’.

EA artifact:

An EA artifact (similar to concept of an architecture
element [7]) is either the direct result produced from a set
of executed EA decisions, or a representation of this result.
For now, we use an EA artifact to refer to architectural
representations. Specifically, we use it as a bridging concept
towards the EA modeling language ArchiMate, whereby an
EA artifact allows us to link EA decisions to concepts from
ArchiMate.

Example: The EA artifact ‘Customer administration
application’ in the ArchiMate model in Figure 2 is linked
to, amongst others, the EA decision ‘acquisition of COTS
application B”’ and EA decisions “Application interface type
1”7 and “Application interface type 2.

Layer:

In line with the ArchiMate language [1] an enterprise
is specified in three layers: Business, Application and Tech-
nology. Using these three layers, we express an enterprise
holistically, showing not only applications and physical IT in-
frastructure (expressed through the application and technology
layers), but also how an enterprise’s IT impacts/is impacted by
an enterprise’s products and services and its business strategy
and processes.

Example: The EA decision 01 ‘make customer profile
registration via intermediary’ (Figure 4) is a member of the
business layer of Archisurance.

State:

An EA decision can be in an executed or rejected state [21].
In an executed state an EA decision has already been made and
executed. A rejected decision, on the other hand, is a decision
that was considered as an alternative during the decision
making process but was rejected because another decision was
more appropriate.

Example: John had to address EA issue 05 ‘find an
appropriate application to interface with the intermediary’.
‘Acquisition of COTS application B’(DI10) is the executed
decision, whereas decisions ‘COTS application A’(DOS)
and ‘upgrade existing application (inhouse)’ (D09) are the
rejected (alternative) decisions.

Relationship:

The role of relationship concepts is to make the different
types of relationships between EA decisions explicit. Based
on ontologies for software architecture design decisions [17],
[21], we define four types of relationships:

e Translation relationship:

Translation relationships illustrate relationships
between decisions/EA issues that belong on
different layers/EA artifacts. During the enterprise
transformation process architects translate the
requirements that new EA artifacts impose (EA issue)
to decisions that will support these requirements by
means of another EA artifact [22].

Example: The EA decision ‘make customer profile
registration via intermediary’ translates to the
issue ‘find an appropriate application service’.
Subsequently this issue translates to a second EA
decision ‘introduce application service A’.

e Decomposition relationship:
The Decomposition relationship is in line with

‘Comprises (Is Made of, Decomposes into)’
of Kruchten’s ontology [21]. Decomposition
relationships signify how generic EA decisions

decompose into more detailed design decisions.

Example: The EA decision ‘acquisition of COTS
application B’ has a decomposition relationship with
EA decision ‘Application interface type 1’.

e Alternative relationship:
This relationship type [21] illustrates the EA decisions
that were rejected (alternatives) in order to address a
specific EA issue.

Example: Rejected EA decisions ‘COTS application
A’(DO08) and ‘Upgrade existing application (inhouse)’
(D09) have an alternative relationship with EA issue
05 ‘find an appropriate application to interface with
the intermediary’. This signifies that these decisions
were the alternatives for this issue.

e Substitution relationship: A substitution relationship
explicates how one EA decision replaces another EA
decision. An EA decision can be replaced when it
creates a negative impact in the enterprise architecture.

Example: The EA decision ‘Application interface 1’
has a negative observed impact on the business pro-
cess ‘Customer profile registration’. This is because it
leads users to make mistakes, as we will see with the
concept ‘observed impact’. As such, it is replaced by
the EA decision ‘Application interface 2.

Observed impact:

The observed impact concept signifies an unanticipated
consequence of an already made decision to an EA artifact.
This is opposed anticipated consequences, as indicated by

relationships such as translation or decomposition. Observed
impacts can be positive or negative.

In current everyday practice, architects model anticipated
consequences using what-if-scenarios [4]. Unfortunately, not
every possible impact of made EA decisions can be predicted.
This is especially true for enterprise architecture, where one
considers impacts across the enterprise rather than in one
specific (e.g. technical) part. The falsiability of EA decisions is
challenged in the a-posteriori analysis of the architecture [8].
Some of the consequences of EA decisions are revealed during
the implementation phase, or during the maintenance of the
existing architecture design. These unanticipated consequences
are captured exactly by the concept of an observed impact.

For us the main usefulness of capturing observed impacts
is that they can be used by architects to avoid decisions with
negative consequences in future designs of the architecture.

Causes, Creates relationships for Observed impact:

EA decisions cause one or more observed impacts.
Furthermore, these observed impacts create new EA issues.

Example: The EA decision ‘Application interface type 1”
(D11) has an observed impact ‘degraded user experience in
the application use’.

III. VISUALIZING EA DECISION RELATIONSHIPS

In this section we introduce our decision relationships visu-
alization in terms of Decision Design Graphs (in section III-A).
Subsequently, in section III-B, we illustrate the potential
usefulness of the graph with the ArchiSurance scenario from
section II-A.

A. Decision Design Graphs

As stated Decision Design Graphs complement our previ-
ously introduced EA Anamnesis approach to consider relation-
ships between decisions.

We consider EA Anamnesis useful for capturing individual
decisions. However, the information captured with EA Anam-
nesis provides only a taxonomy of textual information per
decision. Consider, for example, the EA Anamnesis rational-
ization of the EA decision “Acquisition of COTS application
B”, of our running insurance case. Here we see that, for one,
the EA issue field in Table I only provides an explanation of
the problem in a textual format. It lacks explication of the
relationships of this decision with other decisions, the issues
caused by a decision, or the observed impacts of a decision.

To remedy this, we capture EA decision relationships
with our metamodel and subsequently visualize them with a
Decision Design Graph (DDG).

DDGs are used in software architecture to visualize archi-
tectural rationalization [23], but we use them for rationalization
of enterprise architecture decisions.

B. Using Decision Design Graphs to capture EA decisions
relationships

Using our ArchiSurance scenario, we now show how DDGs
extend the EA Anamnesis approach by making explicit the
relationships of Enterprise architecture issues, decisions and
their observed impacts. In accordance with the focus on
decision relationships and decision consequences we do not
elaborate on other decision details such as selection criteria
and factors that affect the decisions making process, see our
previous work [5], [10].

Scenario. Our external architect John has coordinated the
transformation into the intermediary sales model depicted in
Figure 2. He translated the requirements imposed by the
introduction of an insurance broker into concrete EA artifacts.
For the implementation of these EA artifacts a number of
EA decisions was made. John, in parallel with ArchiMate
modeling language, has used our approach to capture the rela-
tionships of decisions and their impacts across the enterprise.

Figure 4 depicts the DDG of EA decisions and their
relationships, captured by John during the enterprise transfor-
mation of ArchiSurance.

Let us assume that a newly hired Enterprise Architect,
Bob, wants to understand the Enterprise Architecture of the
organization by using EA Anamnesis, taking into consideration
also EA decision relationships. For the sake of example, we
concentrate on a snapshot of 13 EA decisions. Using the DDG
(Figure 4) in addition to the EA Anamnesis table, Bob can
understand now understand the following.

Using translation relationships, Bob can understand the
origin of the EA decision “Acquisition of COTS application
B” (D10), which is linked to the EA artifact “Customer
administration application”. Note that the link between EA
decision and EA artifact is formalized through the metamodel
relation (EA decision) ‘results in’(EA artifact) in Figure 3.

First, Bob finds a relationship between the EA decision
“Acquisition of COTS application B” (DI10) and the EA
issue “Find an appropriate application to interface with the
intermediary”(IS05). Furthermore he finds that the issue “Find
an appropriate application to interface with the intermediary”
(IS05) has a translation relationship with “Introduce applica-
tion service A” (D06).

Subsequently, using translation relationships, Bob can
trace “Introduce application service A” (D06) to “Make cus-
tomer profile registration via intermediary” (DO01), via the EA

TABLE 1. EA DECISION 10 DETAILS
Title: Acquisition of COTS application B
EA issue: EA Issue 05: Current version of customer administration ap-
plication isn’t capable to support maintenance and customers
administration of intermediaries application service
Decision Maker: John
Layer: Application

Alternatives: COTS application A

Upgrade existing application (inhouse)

Scalability: Application is ready to support new application
services

Customized reports capability, interoperability, scalability,
cost

Observed Impact O1: Reduced performance of customer
registration service business process

Rationale:

Criteria:

Observed Impact:

issue “‘Create an appropriate application service to support
new business process” (IS03) (see Figure 4).

During the ex-post analysis of the EA design, the captured
relationships of translations of EA decisions can create a
chain. This chain is useful for the traceability of the decision
making process across the enterprise. In particular, it allows
for tracing technical decisions to business decisions and vice
versa. EA stakeholders of different layers of the enterprise
(for ArchiMate, the layers are Business, Application and
Technology) can identify the set of EA decisions that comprise
an architectural artifact. Also, translation relationships can
identify how these decisions affect decisions in other layers
of the enterprise.

After translation analysis, Bob can inspect alternative
relationships between the EA issue “Finding an appropriate
application” (IS05) on the one hand, and EA decisions “COTS
application A” (D08) and “Upgrade existing application (in-
house)” (D09) on the other hand. Here, the alternative rela-
tionship signifies that DO8 and D09 were alternative decisions
for issue “finding an appropriate application”.

Note here that the EA Anamnesis approach provide ra-
tionalization information about the selection of individual
EA decisions over alternatives. For example: Table I details
the rationalization for selecting D10. This is detailed further
in [10].

Next, let us assume that Bob wants to examine how EA
decision 10 “Acquisition of COTS application B” was decom-
posed to a set of specific EA decisions. The decomposition
relationship between EA decision 10 “Acquisition of COTS
application B” and decision 11 “Application interface type 1”
signifies that EA decision 11 is a sub decision of EA decision
10.

Next, Bob wants to determine which decisions constitute
the implementation of a specific EA artifact. EA decisions,
enclosed by the dashed circle line, comprise a specific EA
artifact. For the EA artifact “Customer administration ap-
plication” EA decisions “Acquisition of COTS application
B”(D10), “Application interface type 1”(DI11) and “Applica-
tion interface type 2”7 (D13) were executed.

Next Bob inspects the observed impacts, the unexpected
consequences of a decision. Consider the business process
“Customer profile registration” (in the ArchiMate model in
Figure 2, and as an EA artifact in Figure 4). For this
business process, decisions have been taken such as the top
level decision 01 “Make customer profile registration via
intermediary”, leading to the issue 03 “‘Create an appropriate
application service to support new business process” (See
scenario so far). As a result of these decisions, the users of
this business process had to use the application “Customer
administration application” with a new application interface.
This new interface is implied by the decision “Application
interface type 1”(D11), a sub decision of “Acquisition of COTS
application B” (D10).

Using the concept of an Observed impact, Bob can now
observe that users of “Customer administration application”
had difficulties using this new application interface. This is
signified by the observed impact 01 “Degraded user experience
in the application use” (Oll in Figure 4). As such, Bob finds

T T e Legend
T Customer profile registration Tl EA translation
- Business process Ny decision — relationship
- ~
4 ~ d it
< " EA lecomposiion
K ' “. issue aal relaionship
\
{ 1S01 Lo D02] | o |
| PR BT EAocbserved __.____ - altemative
i S I Impact relationship
\ Y v ..
\\ b |S|32 [r - . %
/ -
;” "\%@ LT _— observed
. . N o ~ {) Impact relationship
e N S -
\- ‘,"’ N EA substitution)
= N -7 N artifact boundary Impact relationship
e e e) "\
N \ .
O \ Business Layer

~ Customer administration intermedia ry\““ ~.
application service ~

; Application Layer

—_— — -
— : -

- Customer administration ™~ -
-~ @ application
- .. ~
-
: “11S06 |y, N

Fig. 4. EA decisions relationships visualization

that EA decision 11 “Application interface 1” had a negative
observed impact on the business process “Customer profile
registration”.

Next Bob sees that the observed impact “Degraded user
experience in the application use” leads to the EA issue 07
“have fitting application interface”. In turn, he notices that
there are two possible decisions for this problem (1) “Training
of users on the new application” (EA decision 12) and (2)
“replace of existing application interface with an interface
similar to the old one” (EA decision 13). Finally, Bob notices
that his predecessor John decided for the second option (the
executed EA decision 13) “Application interface type 2”7 and
rejected the first one (the rejected EA decision 12).

The role of the observed impact relationship is to capture
unanticipated consequences of decisions. By examining ob-
served impacts, architects become aware of possible impacts
that arise from EA decisions.

Finally, Bob can inspect the substitution relationship. In
see Figure 4, we see a relation between EA decision 13 “Ap-
plication interface type 2” and EA decision 11 “Application
interface type 1”. This signifies that decision 13 was executed
and that it replaced decision 11 that caused the problem.

As a final part of our scenario, we now skip two years

Doa

ahead in time to illustrate how the captured decisions can aid
in decision making.

Two years later: Archisurance achieved its strategic goal
with the addition of intermediaries. Customer profiles are
better calculated by intermediaries. Archisurance management
decides to adopt the same strategy for the remainder of its
insurance products. Bob is called to translate this strategic
goal in an appropriate enterprise architecture design. He uses
ArchiMate to design the “to be” architecture. Our approach
helps Bob to identify similar EA issues faced by his predeces-
sor John, and the decisions taken as a response. By searching
for similar EA issues from the past, Bob can identify what
kind of decisions were taken to address issues. Moreover, he
can observe expected and unexpected outcomes. If the outcome
is successful, Bob can reuse some of these good practices. If
the outcome is negative, Bob can avoid these decisions or
anticipate on problems he may face. For example, if Bob has
to decide for an appropriate Application interface (similar to
EA issue 06), our approach advises Bob of the possibility
of a problem in the new business process. Bob can apply
EA decision 13 “Application interface type 27, which is the
interface that user are familiar with, without again repeating
the decision with the negative outcome. Alternatively he can
inform management of this potential problem. A training of
future users can be organized before the new application

interface is in place.

IV. RELATED WORK

Several design rationale approaches have been developed
for the domain of software architecture. Two main cate-
gories of approaches exist: template based and model based.
Template based approaches, such as [18], [24], capture in
textual format important details of Architectural Decisions
like Rationale, Issue, Implications et cetera. Although template
based approaches provide useful information about decisions,
this information is unstructured.

Model based approaches [6], [7], [17], on the other hand,
provide information similar to template based approaches but
use dedicated decision models. These models not only provide
important attributes for each decision, but also a means to
relate these decisions with software architecture artifacts and
other decisions. By using a structured information format for
decisions and relationship information, these models provide
a better architectural overview of software systems by repre-
senting the impact of these decisions to the architecture.

However, Software Architecture is only a subset of Enter-
prise Architecture [25], first and foremost because Software
Architecture deals less with business issues.

In parallel with rationalization techniques, there are other
approaches for representing decision relationships. Ran and
Kuusela [26] proposed the representation of relationships
between design decisions in the form of Design Decision
Trees. Kruchten [21] extends this approach by incorporating
additional relationship types between decisions. Our approach
complements model based approaches for Software Architec-
ture by providing attributes specific for EA decisions as well
as more specific dependency and relationship types between
EA decisions.

Related to the impact analysis of our approach, there are
root causes analysis (RCA) techniques [27] that aim at identi-
fing the root causes of a problem. By identifying problems and
their symptoms, reappearance of problems can be prevented.
However these techniques do not take into consideration how
the decision maker came to a certain decision by examining
different alternatives, criteria et cetera. Furthermore, RCA
techniques lack a formal metamodel, and lack a link to
enterprise architecture.

Finally, goal modeling techniques can be used to model
the motivations for designs [28]. While goal modeling tech-
niques usually have more expressivity for motivations than the
motivational layer of ArchiMate 2.0, they are not focused on
decision rationalization. As such, goal modeling techniques
do not express rationalization concepts such as issues and
alternatives.

V. CONCLUSION

In this paper we introduced a metamodel and corresponding
visualization for capturing relationships between Enterprise
Architecture decisions. This metamodel is an extension for
the EA Anamnesis approach, our previous work. With this
extension, we allow for capturing decision relationship depen-
dencies, showing what (un)anticipated consequences decisions

have across the enterprise. For example: how a business level
decision impacts an IT level decisions and vice versa.

In this paper, we only provide a metamodel that ex-post
captures the decision that has been made. However, to actu-
ally make the decision, different stakeholders with different
individual rationales and stakes, from business as well as
IT, have to coordinate to collaboratively come to the final
architectural decision graph. How to collaboratively create
a design decision graph, taking into consideration individual
concerns is for now part of future work. As a starting point,
we will look at literature on Group Decision Support Systems
and Multi-Criteria Decision Analysis theories to further extend
our research in Design Rationalization and Communication of
Enterprise Architecture during the design process.

Last but not least, one of our major challenges is to
investigate the return of capturing effort for our approach. Our
design rationale assists architects to better understand existing
EA designs, but the effort of capturing this information might
be a dissuasive factor. To address this issue our research will
focus on ways to decrease the capturing effort. One way of
doing this is by evaluating the actual practical usefulness of
the concepts of our approach.

ACKNOWLEDGMENTS.

This work has been partially sponsored by the Fonds
National de la Recherche Luxembourg (www.fnr.lu), via
the PEARL programme.

REFERENCES

[1] The Open Group, ArchiMate 2.0 Specification. Van Haren Publishing,
2012.

[2] M. Op’t Land, E. Proper, M. Waage, J. Cloo, and C. Steghuis, Enterprise
architecture: creating value by informed governance. Springer, 2008.

[3] J. Hoogervorst, “Enterprise architecture: Enabling integration, agility
and change,” International Journal of Cooperative Information Systems,
vol. 13, no. 03, pp. 213-233, 2004.

[4] M. Lankhorst, Enterprise architecture at work: Modelling, communica-
tion and analysis. Springer, 2009.

[S] G. Plataniotis, S. de Kinderen, and H. A. Proper, “Capturing decision
making strategies in enterprise architecture - a viewpoint,” in EMMSAD
2013 (Exploring Modelling Methods for Systems Analysis and Design),
to appear, 2013.

[6] A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” in Software Architecture, 2005. WICSA 2005. 5th
Working IEEE/IFIP Conference on. IEEE, 2005, pp. 109-120.

[71 A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model
for design traceability and reasoning,” Journal of Systems and
Software, vol. 80, no. 6, pp. 918 — 934, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121206002287

[8] H. Proper and M. Op t Land, “Lines in the water,” in Practice-
Driven Research on Enterprise Transformation, ser. Lecture Notes in
Business Information Processing, F. Harmsen, E. Proper, F. Schalkwijk,
J. Barjis, and S. Overbeek, Eds. Springer Berlin Heidelberg, 2010,
vol. 69, pp. 193-216. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-16770-6_9

[91 A. Tang, M. A. Babar, I. Gorton, and J. Han, “A survey of
architecture design rationale,” Journal of Systems and Software,
vol. 79, no. 12, pp. 1792 — 1804, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121206001415

[10] G. Plataniotis, S. de Kinderen, and H. A. Proper, “Ea anamnesis:
towards an approach for enterprise architecture rationalization,” in
Proceedings of the 2012 workshop on Domain-specific modeling, ser.
DSM ’12. New York, NY, USA: ACM, 2012, pp. 27-32. [Online].
Available: http://doi.acm.org/10.1145/2420918.2420927

[11]

(12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

J. Lee, “Extending the potts and bruns model for recording design ratio-
nale,” in Software Engineering, 1991. Proceedings., 13th International
Conference on. 1EEE, 1991, pp. 114-125.

H. Einhorn, “The use of nonlinear, noncompensatory models in decision
making.” Psychological bulletin, vol. 73, no. 3, p. 221, 1970.

J. Payne, “Task complexity and contingent processing in decision
making: An information search and protocol analysis,” Organizational
behavior and human performance, vol. 16, no. 2, pp. 366-387, 1976.

O. Svenson, “Process descriptions of decision making,” Organizational
behavior and human performance, vol. 23, no. 1, pp. 86-112, 1979.
B. Alenljung and A. Persson, “Portraying the practice of decision-
making in requirements engineering: a case of large scale bespoke
development,” Requirements engineering, vol. 13, no. 4, pp. 257-279,
2008.

J. Orasanu and T. Connolly, “The reinvention of decision making.” 1993.

P. Kruchten, “An ontology of architectural design decisions in software
intensive systems,” in 2nd Groningen Workshop on Software Variability,
2004, pp. 54-61.

J. Tyree and A. Akerman, “Architecture decisions: Demystifying archi-
tecture,” Software, IEEE, vol. 22, no. 2, pp. 19-27, 2005.

C. Azevedo, J. Almeida, M. Van Sinderen, D. Quartel, and G. Guiz-
zardi, “An ontology-based semantics for the motivation extension to
archimate,” in Enterprise Distributed Object Computing Conference
(EDOC), 2011 15th IEEE International, 2011, pp. 25-34.

J. Cummins and N. Doherty, “The economics of insurance interme-
diaries,” Journal of Risk and Insurance, vol. 73, no. 3, pp. 359-396,
2006.

P. Kruchten, P. Lago, and H. Vliet, “Building up and reasoning about

[22]

(23]

[24]

[25]

[26]

[27]

[28]

architectural knowledge,” in Quality of Software Architectures, ser.
Lecture Notes in Computer Science, C. Hofmeister, I. Crnkovic, and
R. Reussner, Eds. Springer Berlin Heidelberg, 2006, vol. 4214, pp.
43-58.

M. Op’t Land and H. Proper, “Impact of principles on enterprise
engineering,” ECIS 2007 Proceedings, 2007.

O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and N. Schuster,
“Managing architectural decision models with dependency relations,
integrity constraints, and production rules,” Journal of Systems and
Software, vol. 82, no. 8, pp. 1249 — 1267, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121209000181

J. Savolainen, “Tools for design rationale documentation in the develop-
ment of a product family,” in Position Paper Proceedings of 1st Working
IFIP Conference on Software Architecture, San Antonio, Texas, 1999.

C. Coggins and J. Speigel, “The methodology for business transfor-
mation v1.5: A practical approach to segment architecture,” Journal of
Enterprise Architecture, 2007.

A. Ran and J. Kuusela, “Design decision trees,” in Proceedings of the
8th International Workshop on Software Specification and Design, ser.
IWSSD °96. Washington, DC, USA: IEEE Computer Society, 1996.
[Online]. Available: http://dl.acm.org/citation.cfm?id=857204.858278

A. Gwiazda, “Quality tools in a process of technical project man-
agement,” Journal of Achievements in Materials and Manufacturing
Engineering, vol. 18, no. 1-2, pp. 439-442, 2006.

J. Horkoff and E. Yu, “Comparison and evaluation of goal-oriented satis-

faction analysis techniques,” Requirements Engineering, pp. 1-24, 2012.
[Online]. Available: http://dx.doi.org/10.1007/s00766-011-0143-y

