
Implementing a Software Prototype for Enterprise
Architecture Rationalization: Lessons Learned

Georgios Plataniotis
Public Research Centre Henri Tudor,

Luxembourg, Luxembourg

Radboud University Nijmegen,

Nijmegen, the Netherlands

EE-Team, Luxembourg, Luxembourg

georgios.plataniotis@tudor.lu

Sybren de Kinderen
University of Luxembourg, Luxembourg,

Luxembourg

EE-Team, Luxembourg, Luxembourg

sybren.dekinderen@uni.lu

Henderik A. Proper
Public Research Centre Henri Tudor,

Luxembourg, Luxembourg

Radboud University Nijmegen,

Nijmegen, the Netherlands

EE-Team, Luxembourg, Luxembourg

erik.proper@tudor.lu

Abstract—Enterprise Architecture (EA) modeling languages
describe an enterprise architecture holistically. Therefore, they
show an enterprises business products and services, and how
these are realized by IT infrastructure and applications. However,
EA modeling languages lack the capability of capturing rational-
ization information behind these models in terms of selection
criteria, alternatives etc.

Our earlier work proposes the EA Anamnesis approach for
enterprise architecture rationalization. Its major contribution is
a formal metamodel and a corresponding concrete syntax to
interrelate business and IT decisions and in turn complement
EA models with design rationale information. Yet, up to now the
EA Anamnesis approach lacks software tool support.

In this paper we discuss the lessons learned during the
implementation of our metamodel into a software prototype.
Furthermore, we provide a reflection of our aim to develop a
tool by rapid prototyping, whereby practitioner feedback enables
concurrent maturation of the software tool and metamodel and
the idea of presenting a tool to foster acceptance and practical
uptake of EA Anamnesis.

Keywords—Enterprise Architecture, Design Rationale, Design
Decisions, Prototype implementation

I. INTRODUCTION

As architects create blueprints for (re-)designing buildings,
enterprise architects use EA modeling languages for (re-)
designing organizations [1]. By taking a holistic view on an
organization EA modeling languages support organizational
(re-)design, such as by static impact of change analyses [1].
Prominent examples of EA languages are the Open Group
standard ArchiMate [2], and the recent OMG standard Uni-
fied Profile for DoDAF/MODAF (UPDM) [3], an UML pro-
file for describing enterprise architecture in accordance with
DoDAF/MODAF 1.

Yet, EA modeling languages describe the EA designs, but
not the reasoning behind those designs. Critical information
such as the design decisions behind the resulting models are
often left implicit. This also stands for the recent motivation

The Enterprise Engineering Team (EE-Team) is a collaboration between
Public Research Centre Henri Tudor, Radboud University and HAN University
of Applied Sciences (www.ee-team.eu)

1DoDAF and MODAF are frameworks for designing and managing an
enterprise architecture, hence thy are not modeling languages

extension of the EA modeling language ArchiMate [2]. While
the motivation extension allows for expressing stakeholder
intentions, it lacks well-established decision making concepts
such as selection criteria, the used decision making strategy
and more.

Experience from the field of software architecture shows
that leaving design rationales implicit leads to “Architectural
Knowledge vaporization” (cf. [4]). This means that, without
design rationale, design criteria and reasons that lead to a
specific design are not clear. Also, alternatives that were
considered during the design process are not captured.

Among others, a lack of transparency regarding design
decisions can cause design integrity issues when architects
want to maintain or change the current design [5]. This means
that due to a lack of the insight of the rationale, new designs are
constructed in an adhoc manner, without taking into considera-
tion constraints implied by past design decisions. Furthermore,
a survey on EA rationalization amongst EA practitioners [6]
suggests the relevance of architectural rationalization for mo-
tivating design decisions, and for architectural maintenance.
However, the same survey shows that practitioners often forego
the use of a structured template/approach when rationalizing
an architecture. Instead, they capture decision characteristics
in an ad hoc manner, and do so largely in plain text.

Our earlier work [7], [8], [9] proposes the EA Anamnesis
approach for rationalizing EA designs. EA Anamnesis derives
from the ancient greek word ανáμνησις (/ænæm"ni:sIs/),
which denotes memory and repair of forgetfulness. EA Anam-
nesis captures design decisions made in the context of enter-
prise transformations and makes explicit their important char-
acteristics, such as decision criteria, decision making strategies
etc. Furthermore, the EA Anamnesis metamodel makes explicit
how different design decisions are interrelated and how these
decisions are linked to EA artifacts, thus allowing for a bridge
between languages for EA design (prominently ArchiMate)
and the corresponding design rationale.

Thus far, EA Anamnesis lacks software tool support. EA
Anamnesis consists of a formal metamodel only supplemented
by a way of using it. Yet, such a tool support is relevant (1) to
provide for a computational assessment of EA Anamnesis. This
means that we should provide evidence that the metamodel
and corresponding concrete syntax (see Sect. III-B) can indeed

2014 IEEE 18th International Enterprise Distributed Object Computing Conference Workshops and Demonstrations

978-1-4799-5467-4/14 $31.00 © 2014 IEEE

DOI 10.1109/EDOCW.2014.15

41

2014 IEEE 18th International Enterprise Distributed Object Computing Conference Workshops and Demonstrations

978-1-4799-5467-4/14 $31.00 © 2014 IEEE

DOI 10.1109/EDOCW.2014.15

41

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on April 23,2021 at 08:48:16 UTC from IEEE Xplore. Restrictions apply.

be implemented in a software tool. (2) to foster the practical
uptake of a modeling language. As discussed by [10], amongst
others, practical uptake of a modeling language is partially
dependent on the modeling support provided in terms of
software tools. (3) to process practitioner feedback for further
tool development. Here, the idea is that the software tool is
showcased as a proof-of-concept, so practitioners can react
to the presented tooling support in terms of, for example,
usefulness of EA Anamnesis concepts, and missing concepts
and/or functionality.

As a response, this paper discusses the lessons learned
during the implementation of our approach into a software
prototype. More specifically, we focus our discussion on the
rapid application development approach we followed for the
realization of the software prototype and how this methodology
helped us to further improve our metamodel by means of
metamodel modifications and OCL constrains. For an elaborate
discussion of the implemented metamodel see [7], [8], [9].

This paper is structured as follows: Section II introduces
the metamodel of the EA Anamnesis approach. Section III
discusses tool functionality, implementation aims, and illus-
trates its use. Section IV discussed lessons learned. Section V
concludes.

II. THE EA ANAMNESIS APPROACH

In this section we introduce an insurance case study and
we subsequently use it to briefly present the concepts of our
integrated EA Anamnesis metamodel. The case study and
the description of the concepts are accompanied by Figure 4
which depicts how these concepts are related. For a detailed
description of the concepts please refer to [7], [8].

A. Case study

ArchiSurance is an insurance company that sells car in-
surance products using a direct-to-customer sales model. It
does so to reduce its operations and product costs. Although
disintermediation reduces operational costs, it also increases
the risk of adverse risk profiles [11] and incomplete or
faulty risk profiles of customers. These adverse profiles lead
insurance companies to calculate unsuitable premiums or, even
worse, to wrongfully issue insurances to customers. As a result,
ArchiSurance decides to use intermediaries to sell its insurance
products. After all, compiling accurate risk profiles is part of
the core business of an intermediary [11].

In our scenario, an external architect called John was hired
by ArchiSurance to help guide the change to an intermediary
sales model. John uses ArchiMate to capture the impacts that
selling insurance via an intermediary has in terms of business
processes, IT infrastructure and more.

The resulting ArchiMate model is depicted in Figure 1.
The initial ArchiMate model (before the transformation) is left
out because of space limitations. Please refer to our previous
work [8] for this EA model. We see for example how a (new)
business process “customer profile registration”, owned by the
insurance broker (ownership being indicated by a line between
the broker and the business process), is supported by the IT
applications “customer administration service intermediary”
and “customer administration service ArchiSurance”.

Fig. 1. ArchiSurance intermediary EA model

For illustration purposes we will focus on the translation
of the new business process “Customer profile registration” to
EA artifacts in the application layer.

Figure 2 presents the EA Anamnesis metamodel as dis-
cussed in [7], [8]. With this metamodel we allow for (1) con-
textualizing the decision making process of a single decision in
terms of cross cutting/intertwining decision relationships, and
(2) a comparison of decision outcomes to the original decision
making process.

B. The EA Anamnesis metamodel

John, uses our framework to capture EA Decisions, namely
design decisions that are made in the context of an Enterprise
Architecture change. The new business process “customer
profile registration” has to be supported by an appropriate EA
artifact (application) in the application layer of the Enterprise.
This creates a new EA Issue that should be addressed with an
appropriate EA design decision.

John starts a decision making process and defines the
criteria that the new application should satisfy. He considers
“usability”, “interoperability” and “scalability” as the most
important criteria. Based on these criteria and their values he
identifies four alternatives to choose from: three alternative
Commercial Off-The-Shelf (COTS) applications and one al-
ternative to upgrade the existing application in house. John is
also informed about a budget limitation for the acquisition of
new IT Systems. On the one hand he is aware of the quality
characteristics of his alternatives, and on the other hand he
has to compromise with the budget limitation. John uses EA
Anamnesis to capture the strategy rationale of his decision
making process based on this constraint.

EA Anamnesis also interrelates EA decisions and their
consequences across the enterprise. Using translation re-
lationships, John captures the origin of the EA decision

4242

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on April 23,2021 at 08:48:16 UTC from IEEE Xplore. Restrictions apply.

1

Compensatory

Non
compensatory

1

1

 Strategy
rationale

1

Conjuctive

Disjunctive

1..*

Weight

Decision-Making
Strategy

traces to

1 1

...

1

Weighted additive

...

Equal weight

is made by

has

1..*
ju

st
ifi

es

is
considered in

Value

Criterion
1

1

has

1

Alternative

State

Executed

Rejected

Substitution

Relationship

Translation

Decomposition

EA Decision

EA Issue

Observed
impact

EA Artifact

Layer

Business

Application

has

1..*

1..*

hascauses

10..*

1..*

1

results
in

1

1..*

infuen
ces

1..*

1
creates

1

1

Is
member

of
Is

member
of

1..*

1

1

Technology

Fig. 2. EA Anamnesis integrated metamodel

“Acquisition of COTS application B” (D10) which lies in the
EA issue “Find an appropriate application to interface with
the intermediary” (IS05), that is linked to the EA artifact
“Customer administration application”. On the other hand, a
decomposition relationship captures how EA Decisions are
decomposed in more detailed design decisions. The design
decision for a specific application user interface is related
to the EA decision “Acquisition of COTS application B”
(D10). Finally, John captures possible observed impacts of
his implemented EA Decisions, as well as newer EA Decisions
that were made to address these observed impacts through the
substitution relationship.

III. PROTOTYPE IMPLEMENTATION

This section discusses our prototype development and
development aims (in Sect. III-A). Furthermore, in Sect. III-B
we briefly illustrate tool usage with the aid of the Archisurance
case from Sect. II.

A. Prototype development and aims

Software tool functionality. We implemented the EA Anam-
nesis metamodel and the corresponding visualization in a soft-
ware tool. This tool conforms exactly to our metamodel. No
elements have been added, modified, or removed. Our software
tool allows architects to rationalize architectures through a
Graphical User Interface, in accordance with the EA Anam-
nesis metamodel. Furthermore, the software tool can export
instantiations of the EA Anamnesis metamodel to a machine-
interpretable, XML-based, output. In so doing, our software
tool allows architects to rationalize architectures through an
accessible interface and export it for further processing, hiding
at the same time the technicalities of the EA Anamnesis
metamodel.

Objectives and development environment. We have three
key aims for developing tool support: (1) to provide for a

computational assessment of EA Anamnesis. Here, we aim
at testing to what extent the metamodel and corresponding
concrete syntax (see Sect. III-B) can indeed be implemented
in a software tool. Furthermore, the computational assessment
forces one to be specific about the metamodel, thus possibly
leading to metamodel changes. (2) to showcase (rudimentary)
software tool support to practitioners as a means to demon-
strate implementability of EA Anamnesis. We consider this
relevant since tool support fosters the practical uptake of a
modeling language [10]. (3) to process practitioner feedback
for further tool development, during upcoming practical val-
idation. Here, we aim at showing the tool as a proof-of-
concept during case studies, so that practitioners can react to
the presented tool support in terms of, for example, usefulness
of EA Anamnesis concepts, and missing concepts and/or func-
tionality. Subsequently, practitioner feedback can be processed
concurrently in the metamodel and software tool.

Following objectives (1) and (3) a key requirement is the
ability to develop our software tool by rapid prototyping, so
that practitioner feedback and metamodel amendments can
be processed without the need for extensive coding. The
Microsoft Visual Studio 2013 DSL environment, which we
used for tool development, allows for such rapid prototyping.
It generates a model editor from a specified EA Anamnesis
metamodel and corresponding concrete syntax. No further
coding is required.

Figure 3 presents a sample of the development environment
during tool development. On the left, we can see the do-
main properties of the concept of EA Decision (Name:String,
State:String), and the relation of EA decision with other
concepts of our approach, including relevant cardinalities
(Observed Impact, EA issue, etcetera). Furthermore, Figure 3
shows how we relate the metamodel concepts presented on the
left to a visualization thereof on the right. For example, the
relation EADecisionReferencesTargets - which denotes substi-

4343

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on April 23,2021 at 08:48:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Prototype development

tution - is visualized by the shape Substitution Relationship.

The source files of our prototype implementation as
well as the instantiation presented in the next section can
de downloaded from: http://www.plataniotis.eu/research/ea-
Anamnesis-prototype.zip 2.

Obviously, in the long run we aim at coding a well-
structured mature tool to replace our “quick-and-dirty” proto-
type. However, for our current aims the prototype is sufficient.

B. Illustrative tooling scenario

Using the Archisurance scenario from Sect. II we now illus-
trate how our prototype implementation helps with analyzing
EA design rationales.

At this point we should mention that we focus on illustrat-
ing how the prototype supports the EA Anamnesis approach in
terms of a visual, computational representation of the design
rationale. For an extensive illustration of EA Anamnesis,
see [8].

Recall from Sect. II that John, Archisurance’s enterprise
architect, used ArchiMate for modeling the to-be architecture
of Archisurance. In addition, he used the EA Anamnesis tool
to capture the rationale behind the to-be EA design.

Figure 4 presents the graphical instantiation of our meta-
model derived from our prototype tool and provides the
rationalization of the EA design of Figure 1.

For the sake of example, we concentrate on the properties
and different relationships of EA decision “Acquisition of
COTS application B” (D05). Table I summarizes the rational-
ization information provided by our approach for EA decision
“Acquisition of COTS application B” (D05). Note that the table
is presented for the sake of clarity: at this point we lack a
visualization of the strings accompanying the various decision
elements. For example for D05 we lack a tooltip “Acquisition
of COTS application B”.

Returning to our scenario, we consider two translation
relationships visualized by the tool: (1) between “have fitting
application interface” (IS01) and “Customer administration

2Requires a (trial) version of Visual Studio.

TABLE I. EA DECISION 05 SUMMARY

Title: Acquisition of COTS application B

EA issue: EA Issue 02: Current version of customer administration ap-
plication isn’t capable to support maintenance and customers
administration of intermediaries application service

Decision Maker: John

Layer: Application

Relationships: D02: introduce application service A
D06: introduce interface similar to the old one

Alternatives: COTS application A
Upgrade existing application

Criteria: usability, interoperability

Observed Impact: Observed Impact 01: Reduced performance of customer
registration service business process

intermediary application service A” (D02), and (2) “find an ap-
propriate application to interface with the intermediary” (IS02)
and between “Acquisition of COTS application B” (D05).
These translation relationships reflect how the requirements
for a new business process were translated by John to concrete
decisions in the application layer.

Furthermore, the tool visualizes the decision making pro-
cess for the decision “Acquisition of COTS application B”
(D05) as well as the rejected alternatives. As we can see “Ac-
quisition of COTS application B” (D05) was selected among
the alternatives “Upgrade app” (D03) and “COTS app A”
(D04) because of its highest score (w=49) during the evaluation
process. For the evaluation of the alternatives a Weighted ad-
ditive (WADD) decision making strategy was used to account
for the difference in importance score between “usability”
(Wusability = 2) and “interoperability” (Winteroperability = 5).

Furthermore, the tool represents the observed impact “De-
graded user experience in the application use” (0I1) of EA
Decision “Acquisition of COTS application B” (D05). We
can now observe that users of the customer administration
application experienced difficulties to use the new application
system. Thus, we see that the EA Decision “Acquisition of
COTS application B” (D05) had a negative observed impact on
the business process “Customer profile registration”. Moreover,
we can observe that the observed impact “Degraded user
experience in the application use” (0I1) triggered a new issue
“Find proper user interface (UI)” (IS03). In order to address the
application layer issue “Find proper user interface (UI)” (IS03)
John made a new Decision “user interface similar to the old
one” (D06) in the application layer which is visualized by a
translation relationship. EA Decision “user interface similar to
the old one” (D06) substitutes Decision “Acquisition of COTS
application B” (D05). This is represented by a substitution
relationship.

The visualization of Figure 4 assists enterprise architects
(1) to better structure and justify their decisions during
the design process and (2) to analyze existing enterprise
architecture designs.

IV. LESSONS LEARNED

This subsection presents lessons learned during imple-
mentation of our approach into a prototype. Particularly, we
show how these lessons impact our EA Anamnesis metamodel
(Figure 2).

4444

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on April 23,2021 at 08:48:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Prototype tool visualization

Lesson 1: EA Anamnesis currently cannot relate one
decision making strategy, and its corresponding weights
and criteria to multiple decisions. We attach decision making
strategies to executed decisions, so that one can observe
how a decision has been taken. However, in doing so each
decision has a separate decision making strategy. This leads
to redundancy. Whereas the same decision making strategy
should be attached to both alternatives and executed decisions,
for each decision we now have duplicates of the same strategy
and criteria. The metamodel should be modified so that the
decision making strategy information should be captured once
and applied to each of the participating decisions. Figure 5a
depicts the modification of the metamodel regarding this issue.

Lesson 2: A substitution relationship is a special rela-
tionship type that relates one or more EA Decisions. One of
the key ideas of EA Anamnesis is to have different relationship
types, so that decision elements that cut across various perspec-
tives of the enterprise (business, application, IT infrastructure)
can be related to each other in different ways [8]. Currently
such relationship types always exist between an “EA decision”
and an “EA issue”. This is in line with most of our purposes,
except for one specific relationship type: Substitution. This
is because, with substitution, we want to indicate that one
decision substitutes for another. While implementing the tool,
we could not represent this. Thus, the metamodel should be
modified to allow direct substitution relationships between EA
Decisions. Figure 5b depicts the required modification of the
metamodel.

Lesson 3: A relationship type between executed Deci-
sion1 and Issue1 determines how EA Issue1 is related with
an executed Decision2. According to the metamodel, in order

to create a translation/decomposition relationship between two
EA Decisions, we have to create two separate relationships of
this type: one for EADecision-EAIssue and one for EAIssue-
EADecision.

However, the relationship EAIssue1-EADecision2 should
be automatically determined by the relationship EADecision1-
EAIssue1. For example: if a translation relation exists between
executed EADecision1 and EAIssue1, this automatically im-
plies that a translation relation exists between EAIssue1 and
executed EADecision2.

Similarly an alternative relationship can be also automat-
ically determined by the rejected state of an EA Decision.
For example: if EADecision3 has a rejected state and is
related with EAIssue1, the relationship between EADecision3
and EAIssue1 should automatically be set to “alternative”. To
address these issues, we introduce bi-directional relationships
in our metamodel and complement them with Constraint
Rules defined in Object Constraint Language (OCL). These
constraints are presented in Figure 6.

�������	�
�

	�	������	

�����	�
���������
��������

�	������� ���������	�
���������
��������

�	������� �

�������	�
���	������
�
������
�	��

�

!�"#�� �"$��

�������	�
� �������	�
�

Fig. 5. Modifications of the EA Anamnesis metamodel for lesson 1 (a) and
lesson 2 (b).

4545

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on April 23,2021 at 08:48:16 UTC from IEEE Xplore. Restrictions apply.

��������	
�������
���

� �����������!��������������������������

��������	
�������
������������������������������������"�������

� �����������!�������������������"�������

��������	
�������
����������#���������������$�%����&�

� �����������!���������������
����������

$�������#�

	
������
	
����������������

	
�������������!��

	
�����������
������

	
��������������!��
	
�������

�

%���

	
������

����

	
�������

$�������#�

!�"#��

�"$��

Fig. 6. Modifications of the EA Anamnesis metamodel for lesson 3 - OCL
rules

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented the lessons learned during the
implementation of our approach into a software prototype.
These lessons, which were derived during the rapid prototype
implementation, helped us to improve our metamodel in terms
of modifications and OCL constraints and enabled us to con-
currently mature the metamodel and software tool during an
upcoming evaluation of EA anamnesis with EA practitioners.

For future research, we aim to provide procedural deci-
sional guidance for using our approach by taking inspiration
from Decision Support Systems (DSS) literature. Although
we feel that this paper has taken a good first step towards
capturing, representing and using a rationale, we deem further
guidance especially necessary to scale up our approach for
use in real-life domains, where many decisions are taken.
Regarding this, a good starting point is Silver et al [12], that
introduces a typology of different types of DSS and their
respective characteristics. For example: a DSS that provides
support during (ex-ante) decision making has different char-
acteristics than a DSS that (ex-post) reflects upon already
captured information. This typology forms useful input for
further structuring procedural guidance.

Last but not least, one of our major challenges is to
investigate the return of capturing effort for our approach.
Our design rationale assists architects to better understand
existing EA designs, but the effort of capturing this information
might be a dissuasive factor. To address this issue our research
will focus on ways to decrease the capturing effort. One way

of doing this is by evaluating the actual practical usefulness
of the concepts of the decision making strategy viewpoint.
For example we capture the strategy rationale for selecting a
decision making strategy, but whether the effort for capturing
this outweighs the received benefits remains to be seen.

ACKNOWLEDGMENTS.

This work has been partially sponsored by the Fonds
National de la Recherche Luxembourg (www.fnr.lu), via
the PEARL programme.

REFERENCES

[1] M. Lankhorst and et al., Enterprise Architecture at Work: Modelling,
Communication and Analysis, 3rd ed. Springer Publishing Company,
Incorporated, 2013.

[2] The Open Group, ArchiMate 2.0 Specification. Van Haren Publishing,
2012.

[3] OMG, Unified Profile for DoDAF and MoDAF (UPDM), version 2.1,
Object Management Group Std., Rev. 2.1, August 2013.

[4] A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” in Software Architecture, 2005. WICSA 2005. 5th
Working IEEE/IFIP Conference on. IEEE, 2005, pp. 109–120.

[5] A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model
for design traceability and reasoning,” Journal of Systems and
Software, vol. 80, no. 6, pp. 918 – 934, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121206002287

[6] G. Plataniotis, S. de Kinderen, D. van der Linden, D. Greefhorst, and
H. A. Proper, “An empirical evaluation of design decision concepts in
enterprise architecture,” in Proceedings of the 6th IFIP WG 8.1 working
conference on the Practice of Enterprise Modeling (PoEM 2013), 2013.

[7] G. Plataniotis, S. de Kinderen, and H. A. Proper, “Capturing
decision making strategies in enterprise architecture – a viewpoint,”
in Enterprise, Business-Process and Information Systems Modeling,
ser. Lecture Notes in Business Information Processing, S. Nurcan,
H. Proper, P. Soffer, J. Krogstie, R. Schmidt, T. Halpin, and I. Bider,
Eds. Springer Berlin Heidelberg, 2013, vol. 147, pp. 339–353.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-38484-4 24

[8] G. Plataniotis, S. d. Kinderen, and H. A. Proper, “Relating decisions in
enterprise architecture using decision design graphs,” in Proceedings of
the 17th IEEE International Enterprise Distributed Object Computing
Conference (EDOC), 2013.

[9] G. Plataniotis, S. de Kinderen, and H. A. Proper, “Ea anamnesis:
An approach for decision making analysis in enterprise architecture,”
International Journal of Information System Modeling and Design
(IJISMD), to appear.

[10] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What
industry needs from architectural languages: A survey,” Software Engi-
neering, IEEE Transactions on, vol. 39, no. 6, pp. 869–891, 2013.

[11] J. Cummins and N. Doherty, “The economics of insurance interme-
diaries,” Journal of Risk and Insurance, vol. 73, no. 3, pp. 359–396,
2006.

[12] M. S. Silver, “Decisional guidance for computer-based decision sup-
port,” MIS Quarterly, pp. 105–122, 1991.

4646

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on April 23,2021 at 08:48:16 UTC from IEEE Xplore. Restrictions apply.

