

Agile Service Development

Combining Adaptive Methods and Flexible Solutions

Marc Lankhorst (ed.)

Novay
PO Box 589
7500 AN Enschede
The Netherlands
marc.lankhorst@novay.nl
+31 53 4850456

mailto:marc.lankhorst@novay.nl�

Foreword

Business Stakeholder: “We have a vastly different economic environment. One
that is more volatile, more uncertain, more complex, and simply structurally dif-
ferent. The complexity our organization must master over the next five years is off
the charts. Today’s complexity foreshadows an even more complex future. The in-
flexibility of our current application landscape and system development hinders
our ability to be agile. We need help. Describe how you or your organization can
help us navigate this mess, be more agile?”

Consultant, Architect or Software Engineer: “That’s very interesting, can you de-
scribe what has been done to date to address these issues if anything? An assess-
ment of your current system development state may be warranted to pinpoint next
steps and chart a course of action.”

C-Level Business Stakeholder: “Frankly, we are disillusioned with assessments as
we have done a number of them over the years. We have implemented the recom-
mendations from several of these assessments. However, looking back we find our
systems still lack the necessary flexibility and agility we require. We continue to
successfully apply agile development approaches; yet, we would not describe our-
selves as agile. Nor would we describe the systems we created with such ap-
proaches as agile. In fact, we would describe them as just the opposite. Such sys-
tems built with agile approaches hinder our business and have become legacy
systems. They are difficult to reconfigure and adapt to our changing business
needs. We want to know how to build agile systems that are easy to change in the
future, based on requirements we cannot articulate today. How can you help?”

Consultant, Architect or Software Engineer: “We’ll have to spend some time to-
gether figuring out what you need and how we should proceed, we recommend a
workshop as a next step.”

Conversations like this occur all the time. Ever found yourself in such a conversa-
tion? Did you stumble or have that awkward moment and then suggest assess-
ments, workshops, and reviews as the next step? The kind of problem being pre-
sented is as old as software engineering. The problem is the ever-elusive goal of
achieving agility, where dealing with uncertainty, volatility, complexity; that is
change, is a part of your business strategy. This conversation illustrates the ‘ele-
phant in the room.’ Everyone wants agility, everyone knows agility matters but no
one is prepared to define what is agility, how is it measured, how it creates busi-
ness outcomes, how it influences innovation, or how an organization makes its
system development agile and creates agile systems. This book provides one stop
shopping in defining and achieving agility in areas of business, process and sys-
tem agility. This book substantially contributes to the state of practice in systems

ii

development where agility is a desired attribute of business processes, architec-
ture, organizational dexterity and building adaptable applications.

Agility comes with a cost and as a result not all aspects of an organization, its
business operations, processes, systems or people may need to be agile. Herein
lies the rub, how do you know which aspects of the business should be more ag-
ile? Agility is not binary; it lies on a continuum and stakeholders must understand
the business drivers for agility and chart a course accordingly for enterprise agility
where both agile practices and agile systems are necessary. The authors make this
point abundantly clear and provide a blueprint for charting a path where agility
becomes an outcome and attribute of system development.

The approach described in this book focuses on the notion of a service, where a
service is a piece of functionality that offers value to its environments, its constit-
uents, that is, its customers, citizens or society. Instead of solely looking at agility
in the context of system development or software development, agility is ap-
proached in a broader context. For example, instead of just trying to create appli-
cations faster, it is equally important to provide for system agility by creating sys-
tems that are easy to reconfigure, adapt and change as the environment demands,
as business demands. Instead of making business processes more efficient it is just
as important to make them more effective, where achieving business process agili-
ty is tightly coupled to system agility. Instead of talking about agility as a goal or
platitude in c-level conversations, business agility is when managing change is
something organizations do as part of implementing their business strategy. If you
struggled with providing a crisp answer to anyone asking the questions in the ear-
lier conversation this book is a must read.

Our industry is faced with a myriad of challenges and what can be described as
‘wicked problems’: problems that are difficult to solve because of incomplete,
conflicting or changing requirements, often too difficult to even recognize. Add
interdependencies, cost and effort and the problem just gets more wicked. Agility
is such a wicked problem. The authors illustrate three kinds of agility that can be
found in an agile enterprise: business, process and system agility. These three
types of agility reinforce each other and establish the foundation for the agile en-
terprise. The content herein provides illustrative and prescriptive guidance for un-
derstanding how to approach achieving agility in the context of service develop-
ment and building agile systems or applications.

Architecture, patterns, models, and all of the best practices in system develop-
ment contribute to agile service development and building agile applications.
Looking at ways of working that are focused in rapid delivery of business out-
comes, working with all necessary stakeholders and an ever changing and volatile
business landscape is discussed. Taking a holistic approach is required for agility
to become a key ability of an enterprise. Such an approach requires services, busi-
ness processes, workforce, and applications that can easily adapt to a less predict-
able, multi-faceted, interconnected, more volatile, and the new economic envi-
ronment of the 21st century.

iii

Companies are challenged to close the complexity gap and use complexity to
their advantage. Embracing ambiguity, continually tweaking, piloting radical in-
novations, will be the earmarks of successful 21st century enterprises. Borrowing
from the success of others and leveraging best practices, tried and true approaches
will be necessary. Software engineers, architects, business architects and business
stakeholders seeking to make agility a key ability of their enterprise will find this
book invaluable. Agile enterprise engineering has arrived and this book is a pri-
mer.

Kerrie Holley
IBM Fellow and CTO Global Business Services, Application Innovation Services
San Francisco, CA, USA
27 December 2011

Preface

Economies around the globe have evolved to become largely service economies.
Consumers no longer just want a printer or a car. They rather ask for a printing
service or a mobility service. Many types of services are provided (initiated and/or
delivered) by way of the Internet. As a result, services-oriented organizations in-
creasingly exploit new devices, technologies and infrastructures.

Despite its importance, the level of professionalism in developing services can-
not match the level of expertise in product development. Business cases, user stud-
ies, design alternatives and actual development are not really linked, and infor-
mation and knowledge is lost en route. Especially in the case of IT-based services,
initial requirements are underspecified, leading to change requests in the process,
with higher cost, longer time to market, and increased risk of disappointing cus-
tomers. While this shift towards a service economy happened, organizations have
also seen their pace of change accelerate steadily.

Enterprises must deal with this and adapt their way of working to increase their
capabilities in anticipating and responding to such developments. Agility is the
ability to deal easily with such changing requirements and environments. Agile
ways of working embrace change as a positive force and harnesses it for the or-
ganization's competitive advantage.

In this book, we address the interplay of three different sources of agility for
service development:

• Business agility: using change as an essential part of your enterprise strategy,
outmaneuvering competitors with shorter time-to-market, smarter partnering
strategies, lower development costs and higher customer satisfaction.

• Process agility: using agile practices for design and development, focused on
people, rapid value delivery and responsiveness to change.

• System agility: having organizational and technical systems that are easy to re-
configure, adapt and extend when the need arises.

These different types of agility reinforce each other: if an enterprise’s infrastruc-
ture, applications or business processes are more flexible, an iterative and incre-
mental development process can more quickly and easily add value, and strategy
execution is facilitated. Thus, these three kinds of agility are the foundation for the
agile enterprise.

Our Innovations

With this book, we aim to contribute to the state of practice and the scientific
background of agility in service development. The main innovations and contribu-

vi

tions we present here are the following. First of all, the current and desired agility
of an enterprise should be regarded from the perspective of its business drivers.
Why do you want to be agile? An analysis of common business drivers is the start-
ing point for our approach.

To facilitate enterprise agility, we need both agile practices and agile systems.
We do not only address the 'traditional' notion of agility, i.e., agile development
processes, but we also focus on the realization of agile systems.

Moreover, an agile process should in itself be adaptable. To this end, we de-
scribe a method engineering approach with agile practices as method fragments,
which are selected based on business drivers, goals and situational factors, and as-
sembled to create an agile way of working.

To achieve agility in service systems, we focus on the role of architectures that
promote agility by using declarative, rule-based, and executable models instead of
software code. In particular, our attention goes to the integration of different as-
pect models to provide a coherent, holistic approach to on service development,
starting from high-level business goals and requirements, via the design of the
business operations, and down to the actual implementation and execution.

Another architectural aspect is the use of architecture and design patterns. The
use of patterns is a common technique for sharing generic solutions to common
design problems. As such, patterns already contribute to agility of the develop-
ment process. Moreover, patterns can be used to provide specific contributions to
different aspects of system agility. We have categorized a large collection of pat-
terns to this end, in order to support design decisions that require such agility.

Models also serve other purposes in our approach. In particular, (views on) the-
se models are a means for facilitating communication between the various stake-
holders in service development, and hence of fostering mutual understanding, co-
herence and consistency within the enterprise. This strong focus on
communication between all those involved in agile service development (archi-
tects, developers, customers, users, managers, ...) is also an important aspect of
this book.

Finally, our agile model-driven approach focuses on uncertainty reduction via
an incremental and iterative evolution of the entire collection of artefacts that con-
stitute a service, as opposed to daisy-chaining these artefacts in classical waterfall
fashion, from requirements specification, via functional and technical design to
implementation, testing and deployment.

Audience

This book is targeted at two audiences. On the one hand, it is intended for agile
and architecture practitioners, esp. those who are looking for more agile ways of
working in designing and building business services, and those who are interested
in extending and improving their agile methods by using models and model-based

vii

architectures. On the other hand, it is aimed at students of (enterprise) architecture
and software or service development courses, both in computer science and in
business administration.

Overview of the Book

The structure of this book is as follows. Chap. 1 provides an introduction to the
subject of services and service development. It outlines what we mean by ‘service’
and it explains why service-based enterprises in particular need to be agile. More-
over, it argues why we need an agile engineering approach to service develop-
ment.

Chap. 2, is the place to start if you want to know more about what agility
means and what its role in enterprises is. We first look at commonly used agile
methods and then go deeper into the definition and foundation of agility, its rela-
tions with organization strategy, social and operational aspects, ways of working
and the various structures of the enterprise. Most importantly, we look at various
business drivers for agility: why does an enterprise want to be agile, and in which
aspects do these different drivers require agility? This chapter also introduces
AgiSurance, our fictitious but realistic company that is used as a running example
throughout the book.

In Chap. 3, we go deeper into the agility of the enterprise’s structures such as
business processes and software applications. We describe how the use of archi-
tecture can help you to improve agility: on the one hand, it helps to explicitly de-
sign agile systems; on the other hand, it helps an organization to keep a balance
between stability and change.

Building on this use of architecture, in Chap. 4 we describe the use of models
for the development and operation of various aspects of the enterprise. Models can
play a crucial role in managing the coherence between the different aspects of ser-
vice design, and in facilitating and accelerating changes. To this end, we propose a
comprehensive framework and method for service modelling that takes all the as-
pects of services into consideration. Use of a coherent set of models enables a
shorter path between requirements and execution by feeding models directly to
run-time execution engines, fast validation at the model level, support for commu-
nication with stakeholders, and the integration of different aspects, domains and
expertises to promote consistency across the enterprise.

The use of patterns – general solutions for common design problems – is an
important practice in the architecture and software development communities.
This is the topic of Chap. 5. Specific patterns may help to improve the agility in
various aspects of the enterprise. We therefore examine several pattern collections
and explore their contributions to agility.

The next main question is: how do we create all these models, architectures and
other artefacts needed in service development? In Chap. 6, we go deeper into the

viii

agile ways of working that are focused on rapidly delivering business value, in
close contact with all relevant stakeholders, and open to changing requirements
and circumstances. In particular, our focus is on the construction and adaptation of
agile ways of working that uses various practices as building blocks and aims to fit
the particular needs and circumstances of an organization, programme or project.

Because of the highly iterative and interactive character of agile development
processes, the role of stakeholders is even more important than in traditional pro-
cesses. In agile projects, stakeholders are continuously involved. Moreover, in our
field of service development, the set of stakeholders is even larger than in software
development. This requires particular attention to stakeholder communication,
which is the topic of Chap. 7. The prominent role of models in our approach is a
basis for various communication guidelines and instruments.

Finally, in Chap. 8 we describe how the various parts of our agile service de-
velopment approach can be combined and how the relevant capabilities of the en-
terprise may develop. The core premise of our approach is that you need agility in
both your way of working and in your organizational and technical systems. This
chapter provides a development path for both of these. To this end, we outline a
capability model that positions the elements of our approach in a series of stages
or levels, based on commonly known capability maturity models. In conclusion,
we give our outlook on this field of agile and architectural, model-based service
development and engineering.

Acknowledgements

This book results from the Agile Service Development project
(http://asd.novay.nl), a collaborative research initiative focused on methods, tech-
niques and tools for the agile development of business services. We want to thank
all organizations involved in the project consortium: Be Informed, BiZZdesign,
CRP Henri Tudor, Everest, HU University of Applied Sciences Utrecht, IBM,
Novay, O&i, PGGM, RuleManagement Group, Radboud University Nijmegen,
TNO, Twente University, Utrecht University, and Voogd & Voogd.

The project was part of the programme Service Innovation & ICT of the Dutch
Ministry of Economic Affairs, Agriculture and Innovation. Some of the authors
where partially supported by the FNR (Fonds National de la Recherche Luxem-
bourg) funded ASINE PEARL Programme.

We would like to thank our fellow project members for all the inspiring discus-
sions and feedback: Hanri Batavier, Marcel Brouwer, Wiel Bruls, Hugo ter Doest,
Jeroen van Grondelle, Arian Jacobs, Philip de Lang, Richard Lugtigheid, Wouter
Prinsen, Dick Quartel, Eelco Rombouts, and Sjaak Spiegels.

We are also grateful to the editors of the Enterprise Engineering series in which
this book appears for their valuable comments on our book proposal, giving us a
better insight in the contribution and position of our work in a larger context.

ix

Author Affiliations

In order of appearance:
Marc M. Lankhorst:

Novay, Enschede, The Netherlands.
Wil P.M. Janssen:

Novay, Enschede, The Netherlands.
H.A. (Erik) Proper:

CRP Henri Tudor, Luxembourg, Luxembourg and Radboud University Nijme-
gen, Nijmegen, The Netherlands.

Maarten W.A. Steen:
Novay, Enschede, The Netherlands.

Martijn M. Zoet:
University of Applied Sciences Utrecht and Utrecht University, Utrecht, The
Netherlands.

Wolfgang A. Molnar:
CRP Henri Tudor, Luxembourg, Luxembourg.

Maria-Eugenia Iacob:
University of Twente, Enschede, The Netherlands.

Henk Jonkers:
BiZZdesign, Enschede, The Netherlands.

Wilco Engelsman:
BiZZdesign, Enschede, The Netherlands.

Johan Versendaal:
Utrecht University and University of Applied Sciences Utrecht, Utrecht, The
Netherlands.

Leon G.J. Debije:
O&i, Utrecht, The Netherlands.

Khaled Gaaloul:
CRP Henri Tudor, Luxembourg.

Ad Schrier:
TNO, Enschede, The Netherlands.

A.W. (Lex) Heerink:
Novay, Enschede, The Netherlands.

Stijn J.B.A. Hoppenbrouwers:
Radboud University Nijmegen, Nijmegen, The Netherlands.

Wim van Stokkum:
Everest, ’s-Hertogenbosch, The Netherlands.

Ilona Wilmont:
Radboud University Nijmegen, Nijmegen, The Netherlands.

Dirk J.T. van der Linden:
CRP Henri Tudor, Luxembourg, Luxembourg.

x

Chintan Amrit:
University of Twente, Enschede, The Netherlands.

Maarten Joosen:
Everest,’s-Hertogenbosch, The Netherlands.

Table of Contents

1 Introducing Agile Service Development .. 1
1.1 Introduction .. 1
1.2 Services and Service Thinking ... 3
1.3 Agile Enterprise Engineering ... 10
1.4 Towards an Engineering Approach to Agile Service Development 13

2 Agility ... 17
2.1 Introduction .. 17
2.2 Common Agile Methods .. 19
2.3 Operationalizing Agility .. 21
2.4 Business Drivers for Agility .. 29

3 Agile Architecture ... 41
3.1 Introduction .. 41
3.2 Architecture to Manage Agility ... 44
3.3 Architecture Processes in an Agile Context ... 53

4 Service Modelling .. 59
4.1 Introduction .. 59
4.2 The Role of Models in Agile Service Development 60
4.3 Adoption Levels of Modelling ... 63
4.4 The ASD Framework ... 65
4.5 The ASD Conceptual Model .. 72
4.6 Model Integration... 90
4.7 Requirements for Tool Support .. 93

5 Patterns for Agility .. 95
5.1 Introduction .. 95
5.2 Conceptual Model .. 97
5.3 Pattern Classification ... 98
5.4 Pattern Catalogue ... 101
5.5 Example: Multichannel Management Patterns 103
5.6 Patterns at Work ... 108

6 An Agile Way of Working .. 111
6.1 Introduction .. 111
6.2 A Situational Approach to an Agile Way of Working 113
6.3 Practices, Goals and Stakeholders ... 114
6.4 Constructing A Situational Way of Working 122

xii

6.5 Step 1: Identify Situational Factors, Goals and Practices 124
6.6 Step 2: Select Agile Practices .. 129
6.7 Step 3: Combine Practices ... 130
6.8 Step 4: Execute the Way of Working... 139
6.9 Step 5: Reflect on the Way of Working ... 139

7 Stakeholder Communication .. 141
7.1 Introduction .. 141
7.2 Communication Situations ... 146
7.3 Communication Setups .. 152
7.4 Communication Needs and Capabilities of Stakeholders 158
7.5 Model Visualization Guidelines... 165
7.6 Communication Practices .. 170

8 Adopting Agile Service Development .. 177
8.1 Barriers to Agility .. 177
8.2 Scaling Up Agile Processes ... 180
8.3 A Capability Model for Agile Service Development 181
8.4 Concluding Remarks .. 188

References .. 191

Index ... 199

1 Introducing Agile Service Development

M.M. Lankhorst, W.P.M. Janssen, H.A. Proper, M.W.A. Steen

This chapter introduces the topic of our book: Agile service development. It de-
scribes the economic importance of services, defines the service concept and
shows how it may provide a handle on several management issues. Furthermore, it
introduces the notion of agility, applied at organizations, at their service develop-
ment processes, and at the services themselves. Finally, this chapter positions our
work in the context of enterprise engineering and explains what its core contribu-
tions are.

1.1 Introduction

Economies around the globe have evolved to become service economies. This is in
particular the case for Europe and the USA, but emerging markets are expanding
in this direction as well. Service sectors are responsible for about 73% of the GDP
in Europe (CIA 2011), 55% in India and 43% in China. As the Europe 2020 Strat-
egy (European Commission 2010) makes clear, Europe’s future wealth and well-
being of its citizens depend on how effectively its businesses can innovate and re-
spond to changing markets, technologies and consumer preferences. We therefore
need a better understanding of how innovation is changing and how the traditional
divide between manufacturing and services is blurring.

Organizations (including companies, government agencies, et cetera) that were
traditionally production-oriented are now also adopting new service-focused busi-
ness models. Consumers no longer just want a printer or a car. They rather ask for
a printing service or a mobility service. Many types of services are provided (initi-
ated and/or delivered) through the Internet. As a result, services-oriented organiza-
tions increasingly exploit new devices, technologies and infrastructures, such as
smartphones, tablets or interactive televisions, to improve their customers' experi-
ences. Innovation is no longer the preserve of research and development laborato-
ries but has become more of a distributed, cultural phenomenon, where the pro-
cesses for developing new goods and services, channels to market and revenue
models are evolving in response to new technical opportunities, increased custom-
er engagement in innovation, and changing organizational structures.

2

Despite its importance, the level of professionalism in developing services can-
not match the level of expertise in product development. Business cases, user stud-
ies, design alternatives and actual development are not really linked, and infor-
mation and knowledge is lost en route. Especially in the case of IT-based services,
initial requirements are underspecified, leading to change requests in the process,
with higher cost, longer time to market, and increased risk of disappointing cus-
tomers. While this shift towards a service economy happened, organizations have
also seen their pace of change accelerate steadily. This correlates with the increas-
ing speed of development in IT, exemplified by Moore's law and the rapid rise of
the Internet and mobile Internet, which in turn have driven customer demands and
expectations. Organizations need to deal with this and adapt their way of working
to increase their capabilities in anticipating and responding to such developments.
Agility is the ability to deal easily with such changing requirements and environ-
ments. Agile ways of working embrace change as a positive force and harnesses it
for the organization's competitive advantage.

At the same time, many organizations find themselves bogged down by a lega-
cy of large, inert, complex systems and business processes. Often, traditional
'waterfall' development processes have been used to create these systems. These
systems, and their development processes, cannot cope with the speed of change
required by the modern day environment of the organization. Moreover, tradition-
al software development projects have a dismally low success rate, due to both
poor project planning and poor execution. The often quoted Chaos reports
(Standish Group 2010) are a well-known source of this observation, but there are
many more indicators. For example, there is a strong correlation between project
size and failure rate (Verhoef 2002). In general, we struggle to successfully man-
age large IT projects and ensure they finish on time and within budget.

So-called agile methods for software development, such as Scrum and Extreme
Programming, have become very popular in the software engineering community;
according to a recent study by Forrester, 35% of the organizations surveyed al-
ready have mature agile methods in place and 33% were implementing agile (For-
rester 2009). This popularity is not only because these methods feel less of a strait-
jacket to engineers but also because they are of help in realizing software systems
that are better aligned with business and user needs, with a smaller risk of cost and
time overruns.

Another way of managing large scale IT-related projects and programmes is
through the use of architecture (Zachman 1987, The Open Group 2011). This used
to be the domain of IT experts only, but nowadays includes the design of an enter-
prise as a whole. This is for example reflected by a definition of enterprise archi-
tecture as submitted to a survey of The Open Group by the Enterprise Architecture
Research Forum (2010): ‘The continuous practice of describing the essential ele-
ments of a socio-technical organization, their relationships to each other and to
the environment, in order to understand complexity and manage change.’ Empiri-
cal support for the business value of architecture has also been shown, for example
in the work of Slot (2010).

3

Given the observation that agile methods and enterprise architecture both can
contribute to effective agility, it seems logical that agile methods and architecture
should be combined. Until now, however, this has been a somewhat awkward
marriage. Many agile practitioners tend to see architecture as ‘Big Design Up
Front’, a big no-no in agile development. However, as we will describe later, agile
and architectural approaches can be combined in a fruitful manner.

1.2 Services and Service Thinking

As we have outlined in the introduction of this chapter, service sectors have be-
come a mainstay of the economy. But the service concept also serves an important
purpose in business and IT management. This encompasses different aspects,
ranging from determining the strategic orientation of the organization and its IT,
to management and control of delivery and operations. Furthermore, the infor-
mation systems landscape itself, especially of large, information-intensive organi-
zations, has become a complex field that combines all kinds of concepts, para-
digms, building blocks, and instruments. How can we get a grip on this
multifaceted landscape?

It is impossible to manage all these different elements individually. Some of
these are too fine-grained, such as business rules or events; some are too IT-
centric, such as business objects or components; some are too large and serve too
many purposes to manage them as a single functional element, such as complete
business applications like ERP systems; and some of these, such as business pro-
cesses, are too business-specific to provide a management handle on more generic
IT functionality. We need a concept that is in between these other notions and cap-
tures the essence of what an organization does or means for its surroundings: ser-
vice.

In short, a service is a piece of functionality that offers value to its environ-
ment. By concentrating on service development, we focus on the value that organ-
izations provide to their environment (customers, citizens, society). Of course,
these services are realized by all kinds of business processes, software applications
and technical infrastructure. However, these are subordinate to the services they
deliver. Traditionally, agile methods are strongly focused on software develop-
ment; here, we take a much broader scope, applying agile principles and practices
to more than just software.

Using the notion of service as core concept in guiding the development of or-
ganizations, both for business and for IT design, has several advantages. First, ser-
vices provide a clean separation of the ‘what’ and ‘how’. A service provides a
clear interface to its functionality, without disclosing how this functionality is real-
ized internally. As such, a service is self-contained and has a clear purpose and
function from the perspective of its environment. Its internal behaviour, on the
other hand, represents what is required to realize this functionality. For the ‘con-

4

sumers’ or users of a service, the internal behaviour of a system or organization is
usually irrelevant: they are only interested in the functionality and quality that will
be provided.

In this way, services also facilitate interoperability, minimizing the necessary
shared understanding: a service description and a protocol of collaboration and
negotiation are the primary requirements for shared understanding between a pro-
vider and user of some service. Therefore, services may be used by parties differ-
ent from the ones originally conceived, or used by invoking processes at various
aggregation levels.

This also points to the second advantage of the service notion: a service is in-
dependently useful and therefore has a manageable level of granularity. Since it
delivers a concrete business contribution, it is the subject of service-level agree-
ments, its performance can be monitored separately, it can be combined with other
services to provide new functionality, while its delivery can be bought from and
sold to other organizations.

Finally, the service concept provides a potential bridge between business and
IT vocabulary. In business terms, ‘service’ signifies what the organization does for
its customers; more recently, IT has started to use the word ‘service’ for concrete,
independent units of business functionality delivered via a software interface.
Both uses of the word are based on the concrete contribution to the environment
and the relatively self-contained character of a service.

This is of course not really new. Organizations have long been thinking in
terms of the services provided to customers, and internal business processes are
designed to provide these services. Software engineers think in terms of functional
interfaces, information hiding and encapsulation. Service thinking, however, can
also be applied to, for example, internal business processes and software applica-
tions, rendering them into ‘service networks’: services become the core building
block of the entire information ecosystem.

Service orientation also stimulates new ways of thinking. Traditionally, appli-
cations are considered to support a specific business process, which in turn realiz-
es a specific business service. Service orientation also allows us to adopt a bottom-
up strategy, where the business processes are just a mechanism of instantiating
and commercially exploiting the lower-level services in a collective offering to the
outside world. In this view, the most valuable assets are the capabilities to execute
the lower-level services, and the business processes are merely a means of exploi-
tation.

Hence, by concentrating on agile development of business and software ser-
vices, we focus on the value that organizations provide to their environment. Of
course, these services are realized by all kinds of business processes, software ap-
plications and technical infrastructure. However, these are subordinate to the ser-
vices they deliver. Traditionally, agile methods are strongly focused on software
development; here, we take a much broader scope, applying agile principles and
practices to more than just software.

5

1.2.1 Service Definitions and Properties

Let us be more clear about what we mean by the elusive notion of ‘service’. The
service concept is widely used in economics, business science, innovation, busi-
ness process engineering, and IT. However, the concept is used in several ways
across these fields. An extensive number of interpretations from the literature has
been reviewed by Quartel et al. (2007). They list the following types of definition
for the term ‘service’:

• Value creation. In economics and business science, a service is seen as the non-
material equivalent of a good, creating value for the service consumer, for ex-
ample by (Quinn et al. 1987).

• Exchange. Many definitions focus on the exchange between the provider and
consumer of a service, such as the definitions of Spohrer et al. (2007) and
Papazoglou and Heuvel (2007).

• Capability. Often the service concept is defined as an abstract resource that rep-
resents some capability, for example by the W3C (2004) and the OASIS SOA
Reference Architecture (OASIS 2006, OASIS 2011).

• Application. Web services, but also services in general, are commonly seen as
applications (pieces of software) that can be accessed over the Web, for exam-
ple in (W3C 2004).

• Observable behaviour. In data communication, a service is traditionally defined
as the observable, or external, behaviour of a system, for example by Vissers et
al. (1986).

• Operation. In object-oriented and component-based software design, each op-
eration or method defined on an object or component is usually seen as a ser-
vice of that object or component.

• Feature. In the telecommunications domain the term service is used to refer to
a feature that can be provided on top of the basic telephony service, such as call
forwarding, call back when busy and calling line identification.

Generalizing the definitions listed above, Quartel et al. (2007) identify four defin-
ing characteristics of services:

• Services involve interaction. A service involves one or more interactions be-
tween a service user and some system that provides the service, also called ser-
vice provider or service system.

• Services provide value. The execution of a service provides some value to the
user and the provider. In case of IT services, this value may only involve ‘in-
tangible benefits’, such as the change in possession of goods and money. For
services in general, the value may also involve ‘tangible things’, such as the ac-
tual exchange of parcels using a parcel delivery service.

• Services define units of composition. Services are units of composition. Busi-
ness processes and supporting applications are composed from services, which

6

define smaller business process or application pieces that may be reused when
chosen properly.

• Services are a broad spectrum concept. The service concept is meant to be
applied at successive abstraction levels along a broad spectrum of the design
process, i.e., from specification to implementation.

1.2.2 Our Definition of Service

The definitions and characteristics above lead us to our own definition of service,
which aims to be both concise and generally applicable to different kinds of ser-
vices.

A service is a unit of functionality that a system exposes to its environment,
while hiding internal operations, which provides a certain value (monetary
or otherwise).

This definition, reused from the ArchiMate 2.0 standard (The Open Group 2012),
is generic enough to encompass most of the business-oriented definitions above. It
focuses on the functionality and value inherent in a service and stresses that a ser-
vice should hide its internal operations, i.e., its users should perceive it as an inte-
grated whole that can be used on its own. The definition does not specifically
speak about a ‘consumer’ or ‘provider’ of a service, unlike some of the definitions
reviewed above. Although a service must of course be provided and consumed, we
do not wish to limit ourselves a priori to an implied one-on-one relation between a
provider and a consumer, since services may be used and produced by more com-
plex groups, networks or other structures of actors. Furthermore, the same service
may be offered by different parties, and we do not want to suggest that the service
is tied to a specific provider. Hence, our definition simply speaks of a service es-
tablishing value to its environment.

A service represents only the ‘externally visible’ behaviour of a ‘service sys-
tem’ (see below), as it is experienced by the users of the service. A service should
not be confused with the interface or channel at which clients can obtain that ser-
vice; for example, an organization may offer the same information service via its
website, call centre, or front desk. Also, a service offer need not be targeted at a
pre-existing, specific demand; it may also be used to create such a demand: ‘if
you build it, they will come’, as the famous movie quote from Field of Dreams put
it. Hence, the value established by a service may only become clear after it has
been created and used.

We can distinguish different types of services:

• A business service is a service that is provided by an organization to its envi-
ronment, or by an organizational unit to the organization.

7

• An application service is a service that is provided by a software component to
its environment (both users and other software components).

• An infrastructure service is a service that is provided by some infrastructure el-
ement (e.g. a hardware device) to its environment.

These services may be viewed as ordered in layers that support each other: busi-
ness services may be delivered in part or completely by way of software and infra-
structure services. All these services are realized by service systems, which in turn
may rely upon other services.

A service system is a value-coproduction configuration of people, technolo-
gy, other internal and external service systems, and shared information (such
as language, processes, metrics, prices, policies, and laws).

This recursive definition, taken from (Spohrer et al. 2007), highlights the fact that
service systems have an internal structure and may be part of an external service
network. A single application may be a service system, realizing a specific soft-
ware service; individuals and organizations are service systems, and at the extreme
end of the spectrum, so are entire nations and economies.

Even though we define the general concept of service as a self-contained unit
of functionality that establishes a meaningful value to its environment, it some-
times is necessary to be more specific about the fact whether we refer to a service
consumer or producer, or to a service request or offering, or to a service delivery
as a whole. In particular the following concepts are useful:

Service delivery: The combination of a service offering, execution and com-
pletion as conducted by the service producer.

Service consumption: The combination of a service request to a service pro-
ducer, and the associated acceptance of its completion.

These concepts also resonate well with the generic transaction pattern as for in-
stance described by Dietz (2006) and with the definition of service as suggested
by Albani, et al. (2009) and elaborated by Terlouw (2011).

1.2.3 Service Development as a Wicked Problem

The development of new services is likely to take place in situations where tech-
nology platforms evolve rapidly, introducing several technological uncertainties,
while at the same time several stakeholders with conflicting stakes are involved.
This confronts service designers with major challenges. To add more spice to the
challenges, it may not even be clear what the business model will be for a new

8

service. Competitors struggle with the same challenges and potential benefits,
hence doing nothing is not an option.

As Hevner et al. pointed out, this type of design problems is ‘wicked’, i.e., no
optimal solution can be found in reasonable time (Hevner et al. 2004, p. 89):

Given the wicked nature of many information system design problems, however, it may
not be possible to determine, let alone explicitly describe, the relevant means, ends, or
laws. Even when it is possible to do so, the sheer size and complexity of the solution
space will often render the problem computationally infeasible [...] In such situations, the
search is for satisfactory solutions, i.e., satisficing (Simon 1996), without explicitly
specifying all possible solutions. The design task involves the creation, utilization, and
assessment of heuristic search strategies. That is, constructing an artifact that ‘works’ well
for the specified class of problems.

The concept of ‘wicked problem’ was first coined by Rittel and Webber (1973).
They characterize this wickedness as follows:

1. You don’t understand the problem until you have developed a solution.
2. Solutions to wicked problems are not right or wrong.
3. Every wicked problem is essentially unique and novel.
4. Wicked problems have no stopping rule.
5. Every solution to a wicked problem is a one-shot operation.
6. Wicked problems have no given alternative solutions.

Jeff Conklin (2005) complements the notion of wickedness with the concept of
social complexity, stating that:

Social complexity means that a project team works in a social network, a network of
controllers and influencers including individual stakeholders, other project teams, and
other organizations. These relationships, whether they are with direct stakeholders or
those more peripherally involved, must be included in the project. For it is not whether the
project team comes up with the right answer, but whose buy-in they have that really
matters. To put it more starkly, without being included in the thinking and decision-
making process, members of the social network may seek to undermine or even sabotage
the project if their needs are not considered. Social complexity can be can be understood
and used effectively, but it can be ignored only at great peril.

Social complexity exacerbates a problem’s wickedness. In terms of Conklin:
‘Fragmentation = wickedness × social complexity’. For such wicked and socially
complex problems, top-down, waterfall-style design approaches fail. This requires
us to look for different ways of thinking and working.

Moreover, as Ciborra (1992) argued, ‘bricolage’, emergence and local improvi-
sation, instead of central control and top-down design, may lead to strategic ad-
vantages: the bottom-up evolution of socio-technical systems will lead to some-
thing that is deeply rooted in an enterprise’s organizational culture, and hence
much more difficult to imitate by others. Such bottom-up tinkering may also lead
to much quicker responses to a changing environment than a highly structured and
formalized design process; this speed itself may be a strategic advantage over
competitors, and as we have argued before, the increasing speed of change in the
environment requires organizations to be ever more responsive.

9

A similar line of reasoning is followed in the design thinking approach, as in-
troduced by Rowe (1987) and made popular by Brown and Kelley at the design
company IDEO (Brown, 2009). Design thinking emphasizes the role of iterative
design and strong user involvement to tackle the social complexity of many design
problems. Iterative design here involves early prototyping and user feedback, not
only for objects to be designed, but also for services. Design thinking is not so
much process oriented. But distinguishes three overlapping design spaces: inspira-
tion, ideation and implementation. In these spaces desirability, viability and feasi-
bility of a service or product are balanced.

1.2.4 The Need for Agility

Wickedness and social complexity are not only a challenge to service develop-
ment. They are, for example, a challenge to software development as well. In the
context of software development processes this has, over the last decade, given
rise to the notion of ‘agility’, with popular software development methods such as
Extreme Programming and Scrum, and with the well-known Agile Manifesto
(Beck et al. 2001) as a kickstarter. Agile methods, with short iterations, close cus-
tomer contact, continuous adaptation, self-organization and cross-functional
teams, have been adopted by an increasing number of organizations.

In battling wickedness and social complexity in the context of service devel-
opment, we look at agility as a means to deal with the complexity and dynamicity.
However, the traditional agile approaches only concern the agility within the de-
velopment process. The object of that development, a service system, comprising
both IT and business elements, should itself also be flexible and adaptable, to ac-
commodate future changes. This is where we see an important role for architec-
ture: designing service systems in such a way that they are flexible in the areas
that may undergo rapid changes, and on the other hand offer a stable infrastructure
for these services. This may seem paradoxical: agility and flexibility often arise
from the use of a set of standardized ‘building blocks’ and interfaces. Lego is a
good example: you can build almost anything from these standardized blocks with
their fixed studs. Agile architectures also consist of stable elements that are easily
configured and combined. We therefore address different kinds of agility:

Business agility: using change as an essential part of your enterprise strate-
gy, outmaneuvering competitors with shorter time-to-market, smarter part-
nering strategies, lower development costs and higher customer satisfaction.

Process agility: using agile practices for design and development, focused
on people, rapid value delivery and responsiveness to change.

System agility: having organizational and technical systems that are easy to
reconfigure, adapt and extend when the need arises.

10

These different types of agility reinforce each other: if an enterprise’s infrastruc-
ture, applications or business processes are more flexible, an iterative and incre-
mental development process can more quickly and easily add value, and strategy
execution is facilitated. Thus, these three kinds of agility are the foundation for the
agile enterprise.

The core of all three kinds is that uncertainty is given an explicit and prominent
place. Whereas traditional management, design processes and architectures plan
for fixed goals and situations, agile methods and systems are aware of the uncer-
tainties of their environment and know that they are aiming at a moving and often
ill-defined target. Later on in this book, we will see how we give this uncertainty
an explicit place in our way of working and in the artefacts we design.

The notion of agile systems also leads us to define agile services, based on our
previous definition of the service notion:

An agile service is a service (i.e., a self-contained unit of functionality that
establishes a meaningful value to its environment) that has the ability to ac-
commodate expected or unexpected changes rapidly.

The definitions of business, application, and infrastructure services can be aug-
mented likewise.

An integrated approach for agile methods, architectures and services, based on
sound engineering principles, is not yet available. Some organizations have practi-
cal experiences with elements of such a new way of working; others have only just
embarked on such a trajectory or first want to gain more insight in its potential
benefits and pitfalls. This book aims to fulfill that need.

1.3 Agile Enterprise Engineering

Management science and organizational science have long aimed to take a sci-
ence-based approach to the design and evolution of enterprises. However, the
complexities of modern day society where organizations, business, and IT ‘fuse’
to a complex whole, require a powerful instrument that enables effective and evi-
dence-based decision making. In our view, now more than ever there is an evident
need to complement the existing social sciences based views on the development
of organizations with a model-oriented perspective on the design of enterprises,
inherited from the engineering sciences. This will allow the creation of an evi-
dence-based approach to the design, and associated decision making, of the com-
plex, and open, socio-technical systems modern day enterprises are. Such a model-
oriented and evidence-based approach will enable senior management to make
better founded decisions, based on actual insight.

The core idea is to provide a model-based stream as part of change efforts, en-
abling evidence-based decision making on the future direction of the enterprise.

11

Models provide a good way of understanding where an enterprise is ‘at’, where it
is currently moving ‘towards’, analyse the desirability of these, and articulate
where it should ideally be moving ‘towards’.

Complementing the development of organizations with a model-based engi-
neering perspective, is comparable to the evolution of other engineering disci-
plines in the past, such as mechanical engineering, electrical engineering, or civil
engineering. Initially, the intuition and experience of a craftsman was leading, but
increasingly, this expertise was objectified and founded on scientific knowledge.
Nowadays, all mature engineering disciplines are firmly rooted in the use of for-
mal, mathematical models for predicting the various properties of their design arti-
facts in order to make the right decisions. The increased use of formalized busi-
ness models, architecture models, risk assessment models, or valuation models
also clearly points towards the increased use of a model-based approach to the de-
sign of enterprises.

Another development indicates the same process of maturation: the increased
use of standards, not just on a technological level, but also in methods and tech-
niques. IT management uses well-established frameworks such as COBIT (ITGI
2009), ITIL (ITIL 2011), and ASL (Pols & Backer 2007). Similarly, the increased
popularity of architecture standards such as The Open Group Architecture Frame-
work (TOGAF) (The Open Group 2011) and ArchiMate (The Open Group 2012)
also demonstrates this maturation in the realm of enterprise architecture.

The Oxford English Dictionary (OED 2009) defines engineering as ‘the branch
of science and technology concerned with the design, building, and use of engines,
machines, and structures.’ This definition, especially the ‘structures’ part, also ap-
plies to (the structural parts of) enterprises and enterprise networks. Designing and
operating business models, organizational hierarchies, work processes, infor-
mation systems, and other parts of the various structures of enterprises, can be
done with an engineering approach.

1.3.1 Limits to an Engineering Approach

While adding an engineering approach to the development of organizations makes
sense, we should at the same time also recognize its limits. As already suggested
above, we see an engineering approach as being complementary to existing ap-
proaches originating from management science and organizational science.

It would be a mistake to think that the use of formalized models and methods
means that the design of organizations and their information systems becomes a
deterministic exercise: drawing up plans and then faithfully executing them. The
traditional engineering mindset presumes that there is a predefined problem wor-
thy of a solution; however, in social and socio-technical systems such as the ser-
vice systems we consider here, problems and solutions co-evolve in a closely con-
nected way. The social stream in change is crucial in ensuring that the models of

12

the enterprise’s design are indeed aligned what is actually established in the real
social-technical system that makes up the enterprise. We should avoid using a
‘blueprinting-only’ (in terms of the change management ‘colours’ of De Caluwé
and Vermaak (2008)) style of change management, i.e., not approaching organiza-
tional problems with a top-down blueprinting approach, while ignoring the softer,
social and political aspects of organizations. A classical engineering approach to
social systems may invite such a way of working, but social issues, for example
cultural differences between partners in a merger, cannot be ‘engineered’ in a top-
down, command-and-control like fashion. Furthermore, the rapidly changing envi-
ronment of enterprises necessitates a flexible response, which cannot be provided
by classical engineering methods only, as .An enterprise is first and foremost a so-
cial construct.

1.3.2 The Enterprise Engineering Manifesto

Taking an engineering approach to the design of enterprises is also one of the key
points made by the Enterprise Engineering (EE) Manifesto (Dietz 2011). We re-
gard this Manifesto as a laudable attempt to formulate the goal of evolving the de-
velopment of enterprises into a proper engineering discipline. While we support
the goals of the Manifesto, our discussions above on the agile and socio-technical
aspects of the development enterprises do suggest several improvements.

While the manifesto justifiably focuses on enterprises as being essentially so-
cial-technical systems, its current wording suggests a rather traditional and linear
view on the development of enterprises. Its first postulate states: ‘In order to per-
form optimally and to implement changes successfully, enterprises must operate
as a unified and integrated whole. Unity and integration can only be achieved
through deliberate enterprise development (comprising design, engineering, and
implementation) and governance.’ This postulate presupposes that there is one op-
timum to strive for. However, different stakeholders are more than likely to differ
in what they consider to be optimal; just take the different perspectives of a cus-
tomer, shareholder or employee, for example. Agile methods explicitly take this
multi-stakeholder view. They are aware of the wickedness and social complexity
of the design problem at hand and try to find solutions that are sufficiently good
from these different perspectives, instead of striving for an optimum, thus apply-
ing a satisficing approach (Simon 1996).

Nevertheless, in this context service development, with many different stake-
holders and an uncertain and changeable environment, some level of guidance and
control may be needed to keep local optimization and variation within bounds and
to balance the needs of the various stakeholders. The Manifesto rightly emphasiz-
es the role of architecture as an important instrument to provide such guidance.
Architecture can serve a prominent role in explicitly designing for uncertainty: not

13

by rigidly planning for a predetermined future, but by providing mechanisms for
adaptation in those places where future changes may be expected.

In conclusion, we think that the Enterprise Engineering paradigm provides an
important step forward in the design and operation of organizations. Once again,
however, it would be a mistake to think that the use of formalized models and
methods means that the design of organizations and their information systems be-
comes a deterministic exercise: drawing up plans and then faithfully executing
them. The traditional engineering mindset presumes that there is a predefined
problem worthy of a solution; however, in social and socio-technical systems such
as the service systems we consider here, problems and solutions co-evolve in a
closely connected way. To address this complex and evolving web of relations and
perspectives, we think that important lessons can be learned from the iterative and
interactive ways of working of the agile movement. An Agile Enterprise Engineer-
ing Manifesto may therefore be in order.

1.4 Towards an Engineering Approach to Agile Service
Development

A new perspective on service design processes is needed, providing development
teams with the means to tailor their way of working to specific circumstances and
deal with multiple stakeholder perspectives, bottom-up innovation and co-
evolution of different service aspects. This book aims to provide steps in this di-
rection. We advocate that agile development processes are much better suited to
accommodate these needs than classical linear, top-down design processes, in
which individual aspects are often developed separately and sequentially. The it-
erative character of agile processes, with a focus on people and interactions, close
contact with customers and cross-functional teams that tackle different aspects of
development at the same time, is a much better fit with the complex and multidi-
mensional nature of service development.

Development processes should also be explicitly focused on observing changes
in their environment and acting upon these. As we have argued before, the speed
of change that organizations have to deal with keeps increasing, and processes
must be responsive and even predictive in character to accommodate these chang-
es. These properties should be designed into the development processes, which
should be treated as systems in their own right. Such a systemic approach also re-
quires the use of development processes that are self-aware, i.e., that use mecha-
nisms and practices to observe their own performance and if necessary, change
their own operation accordingly. This use of reflection is a common characteristic
of agile methods. Scrum, for example, uses the ‘sprint retrospective’ meeting in
which after each iteration, the way of working of the team is evaluated and
adapted. In fact, this closed-loop, adaptive character is perhaps the most important

14

factor in the success of agile processes compared to the traditional open-loop, lin-
ear type of development.

This adaptive character of development processes does not mean that change
knows no bounds. The complex nature of service design necessitates the use of
sound engineering principles and techniques. External dependencies, technologi-
cal complexity, regulatory compliance, risk management and other factors all re-
quire an approach of bounded or controlled variation. Architecture is a core disci-
pline to provide such managed variation. It specifies the high-level, strategic or
otherwise important principles and decisions that together span the design space,
like a vector space in algebra.

Another important use of architecture is to explicitly design mechanisms in the
operational processes and systems that support change. Not only should develop-
ment processes be agile and adaptive, but the results they create should also be
flexible and amenable to change. Various kinds of architecture and design models,
ranging from domain, requirements and architecture models to detailed artefacts
describing the inner workings of business processes and IT systems, play an im-
portant role in both controlling complexity and fostering change. Such models
make business knowledge visible across the enterprise, which promotes coherence
and consistency across the enterprise.

Moreover, a flexible infrastructure that can be configured with such models, in-
stead of laboriously writing software code, may greatly enhance the agility of the
organization and its systems for those specific aspects of agility that are captured
by these models. Models can be changed more easily than code, and the effects of
changes may be evaluated at the model level before processes and systems are
changed, thus avoiding costly errors and re-implementations.

In agile development, the role of these models is not the same as in traditional
design processes, however, where specialists each work on their own aspect mod-
els and then hand them over to the next person in the design chain. Rather, differ-
ent models need to be evolved iteratively and in parallel, while guarding their mu-
tual coherence and consistency. This is illustrated in Fig. 1.

This way of working with models has at least three important advantages:

1. Developing these models and other artefacts concurrently within a cross-
functional team and in close cooperation with business stakeholders helps
aligning the results with each other;

2. Using models and model-based views to discuss aspects of the service helps in
aligning the result with stakeholder expectations in a very early stage, avoiding
costly rework later;

3. Similarly, errors and misinterpretations can be detected early, by verification
and testing at the model level, thus improving the quality and lowering the
costs of the resulting services.

15

Waterfall Agile
Fig. 1. Waterfall vs. agile process.

Next to this, the obvious advantages of iterative processes apply, such as early de-
livery of value and the possibility of changing course when circumstances change.

Our approach is different in another aspect as well: Whereas traditional devel-
opment processes try to reduce uncertainty as early as possible, for example by
having an extensive requirements engineering phase before starting the design,
then writing complete functional specifications, technical designs, et cetera. we
only reduce uncertainty when it is needed, but no sooner. And at that time we use
information from sources that may offer certainty from all directions, not just the
'flow of the waterfall'. This information may for example come from decisions al-
ready taken on the business network of the service, models that have been worked
out further, available building blocks, interface standards, available infrastructure
elements, processes that are fixed because of regulatory compliance, and more. In
this way, the collection of artefacts that jointly constitute the entire service, from
abstract models of the value network to specific infrastructural components and
detailed work instructions for employees, evolves as a whole, gradually and itera-
tively converging on the final result.

This approach requires that various models of service aspects can inform each
other. To this end, we have defined a framework and set of basic concepts to
which these models are mapped to capture their relationships. This will be dis-
cussed in Chap. 4 of this book.

2 Agility

M.M. Lankhorst, M.M. Zoet, W.P.M. Janssen, W.A. Molnar

In this chapter, we elaborate on the concept of agility. Where does this notion
come from, what does it mean and how can it be applied? We look at the defini-
tion and foundation of agility, its relations with enterprise strategy, social and op-
erational aspects, and commonly used agile methods. Specifically, the chapter de-
scribes how agility is related to the field of service development and how agile
systems and agile processes together provide the foundation for agile organiza-
tions. Attention is paid to the assessment of an organization’s agility, focusing on
strategic drivers and the barriers to change that determine its current and desired
agility.

2.1 Introduction

The agile movement in software development has received much attention over
the last two decades. Light-weight, iterative methods have gradually taken over
much of the software development community; in 2009, some 35% of organiza-
tions already had mature agile methods in place and another third were imple-
menting them, according to Forrester (2009). On the one hand these methods pro-
vide better results than linear, waterfall-like methods in many types of projects,
and on the other hand they provide a more stimulating work environment for de-
velopers. Since the 1990s, evidence has been mounting that agile ways of work-
ing, using short iterations and close customer contact, have a higher success rate
than traditional methods for software development, at least for many types of
software projects.

Already in the 1980’s, with methods like James Martin’s Rapid Application
Development (Martin 1991), the focus in software development started to shift
towards iterative and interactive approaches. In the 1990’s, the three most im-
portant agile methods arose: Extreme Programming (Beck 1999), DSDM (Staple-
ton 1997) and Scrum (Schwaber and Beedle 2002). In 2001, representatives from
these and other agile methods joined forces and wrote the Manifesto for Agile De-
velopment (Beck et al. 2001) that describes the common ground of these methods
in a simple set of statements and principles:

18

Manifesto for Agile Development
We are uncovering better ways of developing software by doing it and help-
ing others do it. Through this work we have come to value:
‒ Individuals and interactions over processes and tools
‒ Working software over comprehensive documentation
‒ Customer collaboration over contract negotiation
‒ Responding to change over following a plan
That is, while there is value in the items on the right, we value the items on
the left more.

Although the origins of this manifesto are within the software engineering com-
munity, its principles are widely applicable to any kind of development in a dy-
namic environment. Moreover, the notion of agility has other and older roots. The
Iacocca Institute (1991) introduced the term ‘agility’ in an effort to define a new
paradigm for enterprise strategy, which the authors called agile manufacturing. In-
deed, agility is a paradigm shift, not only in day-to-day development practice but
as the core of an organization’s strategy. As is the case in software development,
the focus in agile manufacturing is on responding quickly to customer needs and
market changes while still controlling costs and quality.

A useful definition of agility consistent with the above is given by Qumer &
Henderson-Sellers (2008):

Agility is a persistent behaviour or ability of an entity that exhibits flexibility
to accommodate expected or unexpected changes rapidly, follows the short-
est time span, and uses economical, simple, and quality instruments in a dy-
namic environment.

Of course, many different aspects of an organization are subject to this notion of
agility, ranging from the organizational culture and competencies of the workforce
to the modifiability of the technical infrastructure. In this book, we are concerned
with the development of enterprise services and their supporting IT services and
systems; this limits our scope. In particular, we focus on organizational and tech-
nological aspects and the associated practices, methods, models and tools that
provide agility in these aspects.

Agile approaches have also gained the attention of the academic community,
who have investigated their foundations and effects from a scientific point of
view. The rigour and volume of research into the effects of agile methods still
needs improvement (Dybå and Dingsøyr 2008). However, recent studies provide
theoretical and empirical evidence for the effectiveness of agile methods; see for
example the extensive overview and research by Lee and Xia (2010).

19

2.2 Common Agile Methods

There are many agile methods in particular for software development. This book
is not the place to provide an in-depth comparison of these; for such a comparison,
see (Abrahamsson et al. 2003) and (Qumer and Henderson-Sellers 2008). Never-
theless, we want to provide an overview of some of the most common methods
and in particular of the ideas, principles and approaches they all share.

Perhaps the first software development method to use the ‘agile’ moniker is
Extreme Programming (XP) (Beck 1999). The two focal points of XP are custom-
er satisfaction and teamwork. The focus on customer satisfaction is stressed by
having an iterative work process that delivers valuable working solutions early
and often; in this process, the customer is required to be continuously available,
e.g., to decide on functionality and priorities. Teamwork is stressed by having the
team self-organize: developers, customers and managers are equal partners in the
team and are collectively responsible for its success. XP also has specific practices
to foster quality and teamwork. For example, test-driven design, where test code is
written first and functionality later, is one such practice. Another is pair program-
ming, in which two developers share a workstation and together develop code,
thereby increasing product quality and improving knowledge transfer between
team members. A third is that the team measures their ‘velocity’, the amount of
work that is getting done, in order to improve the forecasts for coming iterations.

Another, more structured agile method is the Dynamic Systems Development
Method (DSDM) (Stapleton 1997, DSDM Consortium 2008). Like XP, DSDM is
an iterative and incremental approach, originally based on Martin’s Rapid Appli-
cation Development (Martin 1991). DSDM was designed as an iterative method
that would fit with management and process frameworks such as Prince2 and ISO
9000. It is based on eight principles:

1. Focus on the business need;
2. Deliver on time;
3. Collaborate;
4. Never compromise quality;
5. Build incrementally from firm foundations;
6. Develop iteratively;
7. Communicate continuously and clearly;
8. Demonstrate control.

DSDM takes a phased and iterative approach. This starts with a pre-project phase
and a feasibility study, then continues with foundations, exploration & engineering
and deployment phases, and ends with a post-project phase. Within each phase,
results are delivered iteratively and incrementally, based on a MoSCoW (Must,
Should, Could, Won’t have) prioritization of requirements by the stakeholders.
This phased approach is similar to that of the Unified Process (Kendall 2002),
with its Inception, Elaboration, Construction, and Transition phases.

20

DSDM pays explicit attention to measuring progress, ensuring quality, and mit-
igating project risks. It also provides quite an extensive definition of roles, from
project manager to business ambassador and from workshop facilitator to solution
tester. Most other agile methods defer a large part of the responsibility for defining
and assigning roles to the self-organizing, collaborative team. Among agile meth-
ods, DSDM is considered relatively heavyweight.

Possibly the most popular agile method nowadays is Scrum (Schwaber and
Beedle 2002). The name ‘Scrum’ derives from rugby, and is also used for the dai-
ly standup meeting of all the team members, one of the important practices of the
method. Scrum is a relatively lightweight framework that identifies only three
roles:

1. The Scrum Master, who maintains the processes and removes impediments;
2. The Product Owner, who represents all stakeholders and decides on features

and priorities;
3. The Team, a cross-functional, self-organizing group who do the actual analysis,

design, implementation, testing and deployment.

Crucially, Scrum does not have a project manager, with command-and-control au-
thority over the team. The Scrum Master is a facilitator, but the Team are respon-
sible for how they organize their work; planning is a collaborative effort between
Team and Product Owner, based on the priorities set by the latter and the effort
needed as estimated by the former.

Scrum’s timeboxes are called ‘sprints’ and typically take two to four weeks.
Each sprint should deliver a working product increment, however minimal in
functionality. Scrum works with a ‘product backlog’, a list of desired features
(‘user stories’) owned by the Product Owner, from which a ‘sprint backlog’, the
work items for the current sprint, is taken. No new requirements may be added
during a sprint; this keeps the team focused, but is criticized by some as not being
agile enough.

Scrum identifies four basic types of meetings. The aforementioned daily
standup or scrum; the sprint planning meeting, to decide upon the sprint backlog;
the sprint review meeting, where the results from a sprint are reviewed; and the
sprint retrospective, where the team reflects on what went well and what could be
improved for the next sprint.

The latter is very interesting, because this provides an explicit learning cycle,
which is perhaps one of the main success factors of agile methods. Due to the
closed-loop character of these methods, teams both learn from and improve their
own work as well as create results that are better aligned with the changeable and
often underspecified needs of stakeholders.

If we look at these and other agile methods, we can observe at least the follow-
ing commonalities:

1. Cross-functional, empowered teams with a strong focus on team communica-
tion;

21

2. Close interaction with stakeholders, who are constantly kept in the loop and
play an active role in prioritizing requirements and reviewing (intermediate) re-
sults;

3. The use of iteration cycles and time boxes, in which partial but working results
are delivered early and often, in order to continuously add value for these
stakeholders;

4. Incremental development, where these results are shaped gradually and the di-
rection can be changed if new circumstances or stakeholders’ needs arise;

5. Continuous integration and testing, to ensure high-quality results;
6. A closed-loop learning cycle, where the team measures its velocity and perfor-

mance, reflects upon its way of working and adapts this if needed.

These attributes of agile methods are not confined to software development. In
fact, methods like Scrum are increasingly used in other contexts. As an example,
the research project from which this book is a result, also adopted agile working
practices.

Agile methods are usable in many different circumstances. Service develop-
ment has an even broader scope than software development, requires more disci-
plines and stakeholders to be involved, and has to deal with an even more change-
able environment. For this complex discipline, we think that agile methods, with
their focus on iterative and incremental development, cross-functional teams, and
close stakeholder involvement, are ideally suited. But these adaptive ways of
working alone are not enough for an organization to achieve true agility. In the
next chapter, we will describe in more detail how well-chosen architectures can
help to build flexible systems that contribute to agile enterprises.

2.3 Operationalizing Agility

In the context of information technology, the notion of agility is mostly associated
with software development processes, as outlined in the previous section. But we
should also pay attention to the products of that development process. True agility
of an organization also requires that the workforce, services, business processes,
systems, infrastructure and other elements that make up the enterprise can easily
adapt to changing circumstances. Hence, we recognize three main sources or pro-
viders of enterprise agility, which fit within the previous definition and conceptual
model of agility:

• Business agility: using change as an essential part of your business strategy.
True enterprise agility starts at the top of the organization. Management is fo-
cused on rapidly recognition of changes in the environment, speed in respond-
ing and value delivery. It recognizes the value of agility and strategically uses
shorter time-to-market, smarter partnering strategies, lower development costs
and higher customer satisfaction to stay ahead of the competition.

22

• Process agility: organizations and processes focused on people, value delivery
and responsiveness to change. They have an iterative, incremental way of
working, involving all relevant stakeholders and span the entire service deliv-
ery chain, from infrastructure and software to business processes and value
propositions. Also, they are adaptable to changing circumstances: if the goals
of the organization, the environment of the system, or the situation of the pro-
ject change, you can change the development process accordingly. Further-
more, if the current process does not achieve the envisaged goals, this can also
be a reason to change that process.

• System agility: systems (both technical and organizational) that are easy to
change. Business knowledge should be made visible, accessible and adaptable,
instead of hidden in software applications or administrative handbooks. This
requires new architectures, in which business knowledge is described and en-
acted using models, for example for business processes or business rules. This
makes this knowledge accessible to business experts and other stakeholders,
reduces the effort in system changes, and facilitates offline simulation and test-
ing to forecast the effects of changes.

These different types of agility reinforce each other: if an enterprise’s infrastruc-
ture or business processes are more flexible, an iterative and incremental devel-
opment process can more quickly and easily add value. Together, they result in
agile enterprises: nimble organizations that strategically use change to their ad-
vantage, outmaneuvering competitors with shorter time-to-market, smarter part-
nering strategies, lower development costs and higher customer satisfaction.

Sherehiy, Karwowski and Layer (2007) provide a broad overview of the as-
pects and concepts that play a role in enterprise agility. In their extensive literature
review, the core characteristics they identify are flexibility, responsiveness, culture
of change, speed, integration & low complexity, high quality & customized prod-
ucts, and mobilization of core competences. These core characteristics should be
reflected in the strategy, organization and workforce of the enterprise. For each of
these, they provide a further subdivision of the important characteristics. For ex-
ample, an agile organization exhibits such attributes as decentralized knowledge
and control, few formalized rules and procedures, fluid role definitions, informal
and personal coordination, employee empowerment and cross-functional teams.

In a study on agile manufacturing organizations, Sharifi and Zhang (1999) de-
fine a conceptual model of agility that fits with the above definition of agility and
is also applicable to our context. Fig. 2 summarizes this model. On the left hand,
we see the drivers for agility, i.e., the reasons why an organization has to become
(more) agile. In the middle, we see agile capabilities, i.e., how agile the organiza-
tion actually is, decomposed in a set of four aspects that align with the definition
above. On the right, we see the providers or sources of agility, i.e., the practices,
methods and tools for establishing or improving agility in the organization, its
technology and people, and the innovations it produces.

23

Agility
drivers

Agility
capabilities

Agility
providers

Need to
become agile

Strategic intent
to become agile

Agility strategy

Practices

Methods

Tools

Organization

Technology

People

Innovation

Responsiveness

Competency

Flexibility

Speed

Fig. 2. Conceptual model of agility (Sharifi & Zhang 1999).

The focus on change as the driving factor means that agility is not a state to strive
for or obtain, since the increased uncertainty and unpredictability in the business
environment means that the way in which enterprises respond to their environment
needs to be adaptive itself. Rather, agility is an attitude of embracing change as an
opportunity and to harness it for the organization’s competitive advantage.

2.3.1 Business Agility

Agility has become a key ability of enterprises. The pace at which customers de-
mand changes, laws and regulations affecting services and processes are intro-
duced, and competitors can copy services leads to tremendous pressure. Pressure
to change, adopt, scale up or reduce cost. So in many organizations, being agile is
as crucial as being able to innovate. Nowadays, innovation and agility are both
crucial competences for a sustainable business, albeit that they are often tackled
separately. Innovation does not require agility, but agility can greatly leverage in-
novation capabilities.

Agility does not come for free; you often need to make a considerable effort to
create flexible organizations and IT systems, from renovating or replacing legacy
systems to perhaps even changing the organizational culture. Hence, organizations
need to choose where to focus their efforts in becoming more agile. Every organi-
zation needs to think strategically about where it needs agility as a core compe-
tence, and to develop its processes and structures accordingly. Only then the time
to market of new or changing services can match or exceed the expectations of
customers.

24

There is a strong connection between the IT competences of an enterprise, the
options this creates, the agility resulting from these options, and the competitive
actions the enterprise can take. And all of these crucially depend on entrepreneuri-
al alertness: strategic and systemic insight used to profit from opportunities when
they arise.

Also important for most enterprises is cost reduction, or more generally, a
change in cost and revenue structure. In recent years, public and private service
organizations have been confronted with the largest budget cuts in decades. These
cuts are often so severe that they require these organizations to rethink their entire
business model. An interesting example of a sector that has had to reinvent itself,
and will continue to have to do so, is publishing. Under pressure of the wide avail-
ability of free content, they have been frantically searching for new business mod-
els and new services, even moving into cross-selling of wine through Web shops.
Also, sharing services and information between newspapers has become a necessi-
ty. The struggle over free or ‘freemium’ business models is still going on.

Focusing on customers and costs may come at a price: reduced intrinsic inno-
vation capabilities. An organization needs to be able to innovate constantly and
therefore needs skills to collaborate with external partners as well as combine op-
erational excellence with new product development. The latter requires a so-called
ambidextrous organization (O’Reilly 2004). This means that an organization
should take care to invest in the right portfolio of projects, serving a combination
of short term goals and longer term objectives, leading to a mixed set of compe-
tences in the organization. It should be agile inits portfolio of services, and not on-
ly in the way it can deliver or produce services.

The outcomes of these efforts are inherently difficult to predict. Moreover, agil-
ity cannot be discussed from the perspective of a single organization alone. Many
aspects of agility require taking the network of collaborating organizations, or
sometimes even competitors, into account. This implies that agility transcends the
individual enterprise. Popular informal approaches such as the Business Model
Canvas (Osterwalder and Pigneur 2009) illustrate this, using concepts such a key
partners, revenue models and customer segments. We look this issue in more de-
tail when we elaborate on the business drivers for agility in Sect. 2.4.

Example: AgiSurance, a medium-sized insurance company
To illustrate our approach, we will use a common case throughout this book.
This case describes AgiSurance, a fictitious but realistic medium-sized in-
surance company; the content and scenarios of the case are based on our
own experience with similar companies.
AgiSurance is the result of a recent merger of three previously independent
insurance companies:
• Home & Away, specializing in homeowner’s insurance and travel;
• PRO-FIT, specializing in car insurance;
• LegallyYours, specializing in legal expense insurance.

25

The company now consists of three divisions with the same names and
headquarters as their independent predecessors. AgiSurance was formed to
take advantage of numerous synergies between the three organizations.
While the three pre-merger companies sold different types of insurance, they
had similar business models. All three sold direct to consumers and small
businesses through the web, e-mail, telephone and postal mail channels.
Each had loyal customer bases and strong reputations for integrity, value,
service and financial stability.
They realized that only a larger, combined company could simultaneously
control its costs, maintain its customer satisfaction, invest in new technology
and take advantage of emerging markets with high growth potential. In par-
ticular, AgiSurance’s strategy is to become the product leader in specialist
insurances for niche markets. Such niches often demand rapid response to
sudden market demand and require the combination of different insurance
components from multiple product divisions. By combining and configuring
modular elements of different insurance types, AgiSurance wants to be fast
and efficient in delivering such niche products.
For example, recent mishaps at pop festivals have generated a market de-
mand from festival attendees for insurance packages that comprise elements
from cancellation, travel, sports, and accident insurance. Policy elements in-
clude, for example, the right to get a refund in case of bad weather or chang-
es to the festival line-up, property insurance for damages incurred while
crowd-surfing, etc. This insurance product is sold via a marketing and sales
strategy targeted at students, exploiting social media channels and
smartphone apps. Cooperation with festival organizers and ticket resellers is
an essential element in the business model. Similar ‘event insurance’ prod-
ucts are targeted at companies, to insure their employees during company
social events and trips; although the products themselves are comparable,
the business model, channels and partners are radically different here.

2.3.2 Process Agility

Core capabilities of agile organizations are responsiveness, speed, competency
and flexibility (Sharifi and Zhang 1999). As applied to development processes for
services, we think that the following quality attributes of such a process are im-
portant:

1. The responsiveness to business needs. By being in close and continuous contact
with users and other stakeholders, agile processes are better attuned to their
needs than waterfall-like ways of working, and hence are more effective at de-
livering value. Note that seemingly technical qualities such as the extensibility
or scalability of a system are in the end also based on a business need.

26

2. The speed of delivering business value through working results, i.e., the re-
sponse time to new requirements. Agile processes deliver early and often, in an
iterative fashion, and ‘always’ have partial but working results available.

3. The competency of the organization, i.e., delivering optimal results, in terms of
both quantity and quality, with limited resources. Agile processes work with
fixed budgets and resources, but optimize the business-relevant results that can
be delivered within these bounds.

4. The flexibility of the process, i.e., its adaptability to changing circumstances,
learning experiences of team members, etc. Agility not only manifests itself in
the services that are developed and the way in which the process is able to deal
with, e.g., changing requirements, but also in the working process itself, e.g.,
scaling it up for a growing project. This should be able to adapt to different cir-
cumstances and double loop learning should be employed to improve the pro-
cess based on previous experience.

5. The sustainability of the way of working, e.g., whether it can be applied in the
long run without resulting in demotivated employees or strained customer rela-
tionships. Agile processes focus on a steady workload for team members in-
stead of demanding peak performance just before a deadline. This issue is not
addressed by Sharifi and Zhang, but important nonetheless.

The qualities listed above are external process properties. They are related to the
principles of the Agile Manifesto. There are other, internal aspects that contribute
to these qualities. Many agile practices aim to capture such contributing aspects.
In Chap. 6, we will go deeper into these practices and their contribution to agility.

Agility in development processes requires an appropriate organizational foun-
dation, which supports agile ways of working. This may be achieved through ap-
propriate authorities, rules, coordination guidelines, structure and human resources
management (HRM) practices. For example, decentralized knowledge and control
may support agile processes better than a central command and control authority.
Particularly, HRM is supported by the principles of the Agile Manifesto (build
projects around motivated individuals, give them the environment and support
they need and trust them to get the job done).

In classical organizations, there is often a strong distinction between the stand-
ing organization and the change or project organization. Larger changes are de-
fined and designed ‘off-line’, in projects, and once they are ready, they are de-
ployed in the standing organization. In agile organizations, however, this
distinction is less clear. Short iterations and direct feedback from practice make
the interplay between standing and change organization much tighter. Moreover,
the delay induced by a strong separation of these is also unwanted from an agility
perspective; agile organizations should be able to handle larger changes without
the need for separate projects, in order to provide a fast response to drivers from
the environment.

As described previously, another common characteristic of agile processes is
their use of feedback loops and learning. In classical waterfall processes, you de-

27

fine your requirements in detail at the start of a project and only use a feed-
forward approach in realizing these. In agile processes, however, the partial results
are continuously evaluated with users and other stakeholders, and their response is
used in refining these results and prioritizing the next work items. This is the first
feedback loop of agility. Moreover, agile processes reflect on themselves and use
double-loop learning to improve the process based upon past experience. This
constitutes the second feedback loop of agility. These feedback loops require sup-
port by an agile workforce. Participants of teams with agile processes need to be
proactive, adaptive and resilient.

Cockburn and Highsmith (2001) focus on this people factor. They state that a
principal idea in agile environments is that the team can be more effective in re-
sponding to change if it can improve the distribution of information between peo-
ple. For example, the agile team works to place people physically closer, replace
documents with face-to-face communication and whiteboards, and involve user
experts in the team. In addition, agility requires responsive people and organiza-
tions, so that they can focus on the talents and skills of individuals and cast pro-
cesses to specific people and teams, not the other way around. Agile processes are
intended to take advantage of each individual’s and each team’s particular skills.
Therefore, we should select, tailor and adapt every process to the individuals in a
particular team. This attention to people and their talent, skills and knowledge is a
key element of social and organizational aspects of agility (Cockburn and
Highsmith 2001).

Misra, Kumar and Kumar (2009) identified some important success factors in
adopting agile software development practices: customer-centric issues (satisfac-
tion, collaboration, and commitment), decision time, corporate culture, personal
characteristics, societal culture, and training and learning. Customer-centric issues
are important, because the whole idea of agility is trying to satisfy the customers.
Therefore, this requires that the customers are dedicated to the project and they
participate in agile development projects. Decision time is critical to reduce the
requirements and partition the whole time into short periods, which leads to higher
efficiency of the decision making process. Another important success factor in
adopting agile practices is corporate culture, as noted by, e.g., Lindvall et al.
(2002) and Bossavit (2002). For example, organizations with a welcoming culture
of dynamic communication and trusting people may adopt agility easier.

Furthermore, personal characteristics have a significant impact in adopting ag-
ile practices. Various characteristics are considered as important for agility and
Lindvall et al. list some of those attributes, such as having honesty, a collaborative
attitude, a sense of responsibility, readiness to learn and work with other people.
An additional influence in adopting agile practices is the societal culture, since the
culture of the society in which the organization operates is critical. Besides cultur-
al attributes, training and learning readiness also influence the adoption of agile
practices. Lindvall et al. (2002) state that the emphasis on continuous learning in
agile projects needs to be supported by the social aspects of an organization.

28

2.3.3 System Agility

The various qualities of a system or service can be expressed in many forms and
attributes. Some of these attributes provide a contribution to the agility of the sys-
tem, and may help us in operationalizing what this elusive notion of agility really
means. In the IT domain, there is a well-known set of such ‘non-functional’ or
quality attributes, the so-called ‘-ilities’ described by the ISO/IEC 9126 standard
for software product quality (ISO/IEC 1991; now part of the ISO/IEC 25000:2005
standard). This defines six main qualities: functionality, usability, efficiency, reli-
ability, maintainability and portability, each decomposed in a number of sub-
qualities. Although these are properties pertaining to aspects of software quality,
they also extend beyond the realm of software development to the general kind of
systems that provide services as defined in this book. The Extended ISO model
(Zeist and Hendriks 1996) adds a number of relevant aspects and also provides
various indicators that can be used to measure these qualities.

Based on this, we have defined the agility of systems to consist of the following
five aspects, each comprising the relevant and related -ilities from these standards:

1. The ease of making changes to a system: customizability (by users), adaptabil-
ity (by system management), analysability (by designers) and changeability (by
developers), and also scalability (e.g. to accommodate higher volumes). Of
course, the ease of adapting or changing a system is a core element of agility.

2. The ease of rapidly deploying changes: learnability, installability, testability,
manageability. Particularly important in iterative development, where a system
and its parts have to be tested, installed and used many times over.

3. The ease of minimizing and dealing with effects of changes: Stability, fault tol-
erance, recoverability. If something goes wrong during a change, the effects
should be minimal an easily corrected, to minimize disruption of and risk to the
day-to-day operations. The more and the more often a system changes, the
more important this becomes.

4. The ease of integrating a system with its environment: interoperability and con-
formance to standards. These make it easier to use the system in its environ-
ment and connect it to other systems.

5. The ease of decoupling a system from its environment: replaceability and reus-
ability. How dependent is the environment on the particularities of the system,
and how dependent are the system and its components on their particular envi-
ronment? The more independence between system and environment, the more
agile the organization who owns it becomes.

These five aspects may serve as guidelines in the development of agile systems.
Later on in this book, we will see how we pay attention to these aspects in devel-
oping agile services and architectures. Of course, other qualities than those men-
tioned above are also important in service development, as agility is not the only
design concern. Furthermore, the -ilities listed above are external system proper-
ties. Other, internal properties contribute to these. A prominent example is modu-

29

larity. Modularity is a way of achieving some of the above-mentioned -ilities, in
particular maintainability and portability (analyzability, changeability, adaptabil-
ity). So it is an important design principle, but it is not a system quality like the
ISO 9126 -ilities. Like other good (and related) design principles, e.g. high cohe-
sion, low coupling, and separation of concerns, modularity only pays off indirectly
because it positively influences some of these -ilities, but it has no direct return for
users or customers. As such, it is never an end-user requirement, whereas the -
ilities are.

Specifically for software-based systems, more detailed agility assessments can
be applied, by examining their design and code. Lagerström et al. (2009) have de-
veloped a method for maintainability analysis based on architecture models and
Bayesian statistics, based on a large number of real-life cases. The Software Im-
provement Group uses a method for determining the maintainability of software
products using automated source code analysis (Heitlager, Kuipers & Visser,
2007). They derive qualitative scores for the maintainability sub-characteristics as
defined in the ISO/IEC 9126 quality model by calculating several properties of the
software, such as unit size and complexity, fan-in and fan-out, duplication and
modularization, and mapping them to the quality characteristics of analysability,
changeability, stability and testability. Similar properties could be calculated for
other aspects such as portability, and for other domains such as business process-
es. Furthermore, the online version of the Extended ISO model (Zeist and
Hendriks 1996; http://complexitymap.com/quint2/) describes a number of concrete
metrics for measuring the -ilities mentioned above. However, many of these
measures only assess aspects of quality (or agility) after the fact. One measure of
changeability, for example, is ‘modification effort per unit volume’. Such
measures do not provide guidance in achieving agility in newly built systems or
services, and need to be supplemented by predictive, forward-looking assess-
ments.

2.4 Business Drivers for Agility

We have seen that agility can have many forms and aspects, and organizations
may be agile in many different areas of operation. Whether it is useful or neces-
sary to be agile in a specific domain, depends on the one hand on the organiza-
tion’s environment, and in particular on the events and changes in this context, and
on the other hand on the organization’s strategy. For example, an insurance com-
pany that has an operational excellence strategy may aim for low cost and high ef-
ficiency by standardizing processes and IT platforms. If this company lives in an
environment that demands frequent changes to its service parameters (e.g. insur-
ance coverage, premium calculations, legal compliance, etc.), this may require an
IT platform that can be (re)configured rapidly and inexpensively, but does not
need to differentiate between customer types. If the organization has a customer

30

intimacy strategy, differences in customer segment (their expectations, their value
to the company, etc.) may instead be the driving factor for agility, requiring fre-
quent changes to, e.g., channels and customer interaction based on these differ-
ences.

As explained by Sharifi and Zhang (1999), a method for becoming more agile
could comprise the following steps:

1. determining the agility drivers of the organization, i.e., which changes in the
environment affect the organization;

2. assessing how agile the organization needs to be;
3. determining its current agility;
4. analyzing the gap between current and desired agility;
5. defining a course of action to close this gap by using the right agile practices to

improve the organization’s agility capabilities.

To assist organizations in assessing their current and desired agility, we must first
address the business drivers for agility. To this end, we have developed an analy-
sis instrument, which is described in Chap. 6. Based on our practical experiences
with this instrument, we have observed the following common business drivers for
agility:

1. Product/service dynamics: introducing new services, phasing out services, or
changing service parameters, rules or other aspects, as a response to market
demands or new opportunities;

2. Revenue dynamics: coping with changes in pricing strategies and other aspects
that influence your revenue stream;

3. Volume dynamics: dealing with changes in demand and supply, requiring e.g.
resource scaling;

4. Channel flexibility: changing the use of different channels to deliver services,
add new channels, drop expensive ones, move to new technologies;

5. Supply chain flexibility: involving different partners in realizing or delivering
your services;

6. Continuous compliance: complying with applicable rules and regulations;
7. Technology adoption: applying new technology to lower costs or gain an ad-

vantage over competitors.

Example: AgiSurance business drivers
Quickly setting up such insurance products in cooperation with relevant
partners and using the right channels requires a great deal of agility. The
main business drivers for agility in case of AgiSurance are product & ser-
vice dynamics, to deal with the specifics of these niche products; volume
dynamics, to cope with sudden changes in demand; and channel flexibility,
to use the right channels and partners to target these niche markets.

31

Next, we need to relate the business drivers to the specific parts of the organiza-
tion where flexibility is required to accommodate such changes. This provides a
basis for determining the needs for agility. Below, we will describe these drivers
in more detail.

Secondly, we need to investigate the effects of such changes and possible barri-
ers for accommodating them, addressing various aspects of the enterprise, its
business processes and its IT systems. This results in an assessment of the enter-
prise’s current agility. Combining the desired agility with these barriers provides
us with insight into the ‘hotspots’ of an organization: where is flexibility needed,
but lacking? This is where our attention should be focused.

2.4.1 Describing Agility Drivers

The drivers mentioned in the previous section touch upon many aspects of the en-
terprise, its context and partners. In order to get a better understanding of the driv-
ers and their contact points we will use a visualizations or models, as commonly
used in many techniques. The concepts needed to do so can be found in modelling
techniques such as ArchiMate (The Open Group 2012; Lankhorst et al. 2009),
STOF (Bouwman, Haaker, de Vos 2008), service science thinking (Spohrer et al.
2007; Salvendy and Karwowski, 2010) and the Business Model Canvas
(Osterwalder and Pigneur, 2009). We give an informal description of these tech-
niques here; a full formalization is beyond the goals of this section, but can be
found in the literature mentioned above.

Fig. 3. Service network.

As can already be derived from the brief characterization of the seven drivers
mentioned above, many of the drivers touch upon more than a single enterprise. In
most cases, customers play an important role. Also, partners or competitors are
relevant actors in the discussion. We therefore take as a demarcation of the object
of analysis the networked enterprise, or service system networks: networks of
connected service systems that have one or more associated value propositions:
specific packages of benefits and solutions that a service system intends to offer

32

and deliver to others (Fig. 3). Banks together with other financial service providers
and customers form a service network, as do retailers with their suppliers.
Service networks are similar to value systems as used by Porter (1995). The con-
cept is closely related to that of business models, defined as a blueprint of the way
a (network of) organization(s) creates and delivers value for itself and its users
through services or products. The business model therefore also refers to the inter-
nal structure and behaviour of the service system or network.

As described in Chap. 1, a service system is a dynamic configuration of re-
sources that can create and deliver services while balancing risk taking and value
co-creation. A service system is associated with an actor, such as a bank or an in-
surance company. So an actor delivers value through services. Services are deliv-
ered to other actors in the system though channels, such as intermediaries, inter-
net, mail, phones, call centers etc. An actor has a certain intention or goal related
to the service. Think of goals such as maximized customer satisfaction or yearly
price reduction. A service can be formalized under a contract. The service system
can be subject to regulation, such as Basel II and III, Solvency II, etc.

In order to describe the internal ways of working of the service system, we typ-
ically talk in terms of resources (people, stock, knowledge, systems), business
functions (sales, customer relationship management, channel management, data
warehousing, …) and their relations. All elements in the system can have require-
ments associated with them.

A legend with the concepts we use to describe the agility drivers can be found
in Table 1 below.

Table 1. Service network concepts.

Concept Representation Concept Representation

Actor / Stake-
holder

AgiSurance

Channel Apps

Business function
Channel

management

Contract SLA supply

Goal

Regulation
Solvency II

Service /
collaboration Se

ll
bo

ok

Buybook

Flow /
relation

Resource

Requirement Flexible demand

33

2.4.2 Product & Service Dynamics

The first possible driver for agility is product/service dynamics, that is, dynamics
in the portfolio of products or services delivered to the customers. Agility is driven
by factors occurring during the introduction of new services, phasing out services
and consumer-driven changes to services. We defined a business service as a co-
herent piece of functionality which is offered to the environment. The enterprise
must therefore allow for flexible changes regarding its business services. Since
business services are delivered by means of business functions and processes,
which in turn are supported by application services, structural agility also needs to
be realized within these applications. However, products and services vary from
organization to organization.

 Consequently, the characteristics that require agility also differ per organiza-
tion. Therefore, before improving the agility of the enterprise’s various structures,
one has to determine which characteristics or aspects need to be agile. For exam-
ple, suppose an insurance company offers insurance policies to its customers, and
wants to be able to introduce new policies in a fast and flexible way, in immediate
response to events in the world (such as the financial crisis leading to a demand
for conservative mortgages). The rights and obligations associated with such a
policy deliver value to its customers. When adjusting the policy, nine out of ten
times the associated business rules are altered, but the business processes, e.g., for
handling new applicants and or for claims processing, remain stable. Therefore,
the business service, business functions and application functions must allow for
flexible rule elicitation, design, deployment and change, but the business process-
es may largely be fixed and do not require significant agility.

Service Provider

Customer
characteristics

Customer
segment

Service
characteristics

Customer
segment

Customer
segment

Service
management

Fig. 4. Service dynamics

34

This is illustrated in the figure above. The service provider can deliver a set of
services to different customer segments. Services should be loosely coupled to the
business functions used to deliver them. Service management is needed to manage
the flexibility and to monitor service characteristics and customer demand.

2.4.3 Revenue Dynamics

Revenue dynamics means that an organization has the ability to cope with changes
in pricing strategies and other aspects that influence their revenue stream. Car nav-
igation manufacturer TomTom and many similar high-tech firms are good exam-
ples. TomTom has to be able to reduce the price of a product and associated ser-
vices every year or even every quarter (in addition to providing new added value).
This has a strong impact on the way it produces and delivers the product. Cost re-
duction is pushed through every part of the service delivery system or service
network. Since suppliers are an external part of the service delivery system they
will experience the same revenue dynamics.

CustomerService Provider

Supplier

Supplier

Supplier

Supplier

Yearly price
Reduction x%

Yearly price
Reduction y%

Yearly price
Reduction z%

Fig. 5. Revenue dynamics.

The high-tech example is illustrated above. The goal of a yearly price reduction
does not only affect the internal business functions and resources used, but also
disperses to the supply chain. Each and every actor in the network is faced with
the customer characteristics in a certain way.

An example of revenue dynamics in two directions (upward as well as down-
ward pricing) concerns television advertisements: the thirty-second spot. Prices
depend on the date and time of the commercial, as well as the specific TV shows

35

preceding and following the advertisement. In some advanced systems it is even
possible to dynamically negotiate broadcast times based on the actual number of
viewers. The advertisements are fed in real-time based on the bids of the compa-
nies advertising. This obviously has strong consequences for customer-service in-
teraction, the underlying business functions as well as the technologies supporting
live feeds.

2.4.4 Volume Dynamics

For many services, demand can change over time, sometimes even drastically.
Take, for example, the tax administration. Services supporting people to hand in
their tax declaration have to be dimensioned for the peak times of delivery, the last
few days before the deadline. The consequences thereof are severe. Not only are
systems over-dimensioned on average, but also supporting services such as the
help desk or tax advisory services are completely geared towards those last few
weeks before the deadline. A combination of temporary personnel and private
cloud services might be of help here, but perhaps a complete rethink of the tax
declaration system is in order, such as the concept of the ‘shared information posi-
tion’ that the Dutch tax administration is contemplating, in which there is a no
longer a need for a separate tax declaration at one point in time.

CustomerService Provider

Volume characteristics

Sourcingpartners

Flexible supply

Re
so

ur
ce

m

an
ag

em
en

t

Fig. 6. Volume dynamics handled through resource flexibility.

Insurances companies also face this problem. In case of natural catastrophes, such
as storm and hail, the number of claims sharply rises. The nature of the claims (for
example, broken windows or leaking rooftops) does not allow to postpone claim
handling. Moreover, postponing claims might lead to customers switching to an-
other insurance company. This type of dynamics touches upon the key resources

36

and processes of an organization. It might provide a good reason to outsource cer-
tain functions to dedicated, scalable, service providers, as is also the case with call
centers, as illustrated below. Resource management becomes a key aspect in the
performance of the service provider.

An alternative way of dealing with volume dynamics is through service diversi-
fication. Think, for example, of Amazon.com. Webshops have a highly irregular
pattern of service use, both over the day as well as over the year (holiday season).
If Amazon.com would have to dimension its infrastructure to the peaks in demand
only, this would be very costly. In order to mitigate this, Amazon.com introduced
other services based on its computing and storage competences, which have a very
different pattern of use. Managing the portfolio of services and its combined char-
acteristics becomes a key competence in this case, as shown in Fig. 7.

Primary
CustomerService Provider

Volume characteristics

Alternative
customer
segment

Volume characteristics

Flexible
demand

Se
rv

ic
e

m
an

ag
em

en
t

Fig. 7. Mitigating volume dynamics through diversification.

2.4.5 Channel Flexibility

If a company is dependent on a single channel, this can be a serious vulnerability
in the business model. Customers might change the channel if they perceive it to
be independent of the service. Take, for example, insurance companies. Some of
them rely on direct marketing as the main strategy, others rely on intermediaries to
sell their products. And in the case of direct marketing, the change from mail to
Internet is a profound one as well. A company that can strategically switch, in-
clude or phase out channels, definitely has a competitive advantage.

Adding or removing channels can have unanticipated consequences. An inter-
esting example thereof is the introduction of mobile apps for banking in the Neth-
erlands by Rabobank. The apps are highly successful and are valued by the cus-
tomers, a cost-effective channel for the bank. A more detailed analysis, however,

37

shows that that internet banking is an important channel for cross selling, whereas
cross selling via an app is difficult or impossible. From a revenue perspective,
therefore, adding the apps channel poses serious challenges.

Customer
characteristics

Service Provider

Customer
segment

Channel
characteristics

Customer
segment

Customer
segment

Channel
management

Fig. 8. Channel flexibility pattern.

So for channel flexibility the channel and the business services should be loosely
coupled. This implies that the characteristics of the channels have to be clear and
should not constrain the services too much. Business services should be easy to
combine to match these potential challenges. A person handling your needs at an
insurance intermediary can handle a large variety of services bundled in that point
of interaction, whereas digital channels are often much more discriminating.

2.4.6 Supply Chain Flexibility

Most of the agility drivers mentioned until now are customer-facing. However, be-
ing able to adapt the supply chain to different demands, ideas and conditions also
is an important driver for agility. What would have happened if your supplier of
high-tech components was based in Japan only, after the tsunami? For that reason,
many production companies use second sourcing strategies, also to constrain the
power that suppliers have over their organization. Companies like Cisco and Nike
are renowned for their supply chain flexibility, but it is a capability that many
more companies have. Take, for example, Healthy People, a company making
healthy fruit juices based on ‘super fruits’. They are very keen on managing their
suppliers, both from the quality perspective and to be able to quickly respond to
the taste of consumers.

Another example of supply chain flexibility is Voogd & Voogd, a fully author-
ized Dutch insurance intermediary. On top of their role as an intermediary, they

38

introduced Voogd & Voogd labeled insurance products, implemented through the
insurances they can sell as an intermediary. This allows them to match the demand
they see in the market of insurances to the supply of the different insurance com-
panies in terms of price, coverage, and conditions.

Realizing supply chain flexibility is not as easy as defining it. It requires a high
degree of standardization of business functions that supply chain partners realize,
and requires additional supply chain management services. The pattern below il-
lustrates this.

Service Provider

Key supplier

Second tier
supplier

Second source
supplier

Supplier

SLA supplySLA supply

SLA supply

SLA
management

Contracting

Contracting

Contracting

ContractingContracting

Fig. 9. Supply chain flexibility.

Supply chain flexibility is often associated with standardization of IT to support
supply chain integration. More importantly, however, the capabilities for contract-
ing and SLA management of the service provider are a prerequisite to handle this
type of dynamics.

2.4.7 Continuous Compliance

Continuous compliance means being able to stay conformant to changing laws and
regulations. Compliance demands can affect multiple aspects, for example the or-
ganization structure, the coordination of tasks, timing, accuracy, completeness and
authorization of data, and the presentation of services. Furthermore, when laws
and regulations change over time the emphasis on specific aspects may change.
Hence an organization needs fundamental agility in every aspect of the business to
be able to absorb the changes demanded by compliance. Since this is impossible,
organizations have to make choices.

39

Service Provider

Key supplier

Second source
supplier

Supplier

Customer
segment

Customer
segment

Customer
segment

Supply
characteristics

Function
characteristics

Service
characteristics

Service
characteristics

Regulation Regulation
characteristics

Regulation
characteristics

Regulation
characteristicscharacteristics

Fig. 10. Compliance dynamics.

These choices must be based on the effects regulation had over the past years and
on the types of changes expected in the coming years. For example, Basel’s cus-
tomer due diligence and anti-money laundering guidance focuses on the coordina-
tion of tasks and the timing, accuracy and completeness of data. The Dutch ‘Wet
op het financieel toezicht’ (Dutch law governing financial institutions) also affects
the presentation of information to consumers. The fundamental agility therefore
must be aligned with the specific demands of the regulations with which the or-
ganization must comply.

2.4.8 Technology Adoption

Adoption of technology is another driver for business agility. This adoption can be
approached from two different fundamental situations: an (external) customer per-
spective and a supplier/internal customer perspective. From an (external) customer
perspective, an organization can be forced to adopt new technology because its
client base has adopted it. Take for example banks that support multiple operating
systems for mobile phones to deliver the business function of banking. Adopting
new technologies in the context of existing systems, services, channels and re-
sources of course requires these to be flexible enough to accommodate new devel-
opments. In particular, this concerns the various client-facing aspects and elements
of the enterprise.

The second viewpoint is the supplier/internal customer perspective. Here, the
organization allows for new technology when it improves its (internal) service de-
livery system. To provide this kind of agility, infrastructural services need to be

40

highly decoupled from the application functions, so that the technology may be
changed without unwanted effects on the supported application landscape.

Many well-known examples exist of technologies that inhibit this type of agili-
ty. The introduction of large scale ERP systems like SAP, or CRM services such
as Siebel, usually leads to a long-term dependence on these technologies. They
provide a strong case for operational excellence, but this excellence comes at the
price of strongly reduced internal flexibility. This rigidness, however, does not
need to conflict with drivers such as channel flexibility or volume dynamics.

3 Agile Architecture

M.M. Lankhorst, H.A. Proper

In this chapter, we will elaborate on the use of architecture in relation to agility.
We start by clarifying what we mean by ‘architecture’ and ‘enterprise architec-
ture’, since these notions are used in various ways within our field. Next, we ex-
plain what the roles of architecture can be: on the one hand, it can be used explic-
itly to design agile systems; on the other hand, it helps an organization to control
agility and to keep a balance between stability and change. Finally, we outline
how architecture processes fit within an agile context.

3.1 Introduction

The general opinion is that to manage the complexity of any large organization or
system, you need architecture. But what exactly does ‘architecture’ mean? Even in
building and construction, the term is ambiguous. It can denote the art and science
of designing the built environment, a certain design style, as in ‘gothic architec-
ture’, or it can refer to the design itself. The earliest use of the term ‘architecture’
in an IT context dates back to Amdahl, Blaauw and Brooks (1964), who define ar-
chitecture (of the IBM S/360 mainframe system) as ‘the conceptual structure and
functional behavior as distinct from the organization of the data flow and controls,
the logical design, and the physical implementation’.

Some say that, in the context of information systems, the term ‘architecture’
should be reserved solely to refer to a set of principles and constraints that should
be applied to the design space. For instance, Dietz (2006) defines architecture as a
‘normative restriction of design freedom’, expressed in the form of principles gov-
erning the function and construction of systems. Most other definitions of archi-
tecture, however, refer to these structures themselves and not merely to the princi-
ples and constraints.

Many more definitions of enterprise, information and IT architecture have been
proposed; for an overview, see e.g. Op ‘t Land et al. (2009) and Greefhorst &
Proper (2011). The definition provided by TOGAF actually provides a dualistic
view. The first one focused on the description of a system, and the second one on
the structure and principles (The Open Group 2011):

42

1. A formal description of a system, or a detailed plan of the system at component
level, to guide its implementation.

2. The structure of components, their inter-relationships, and the principles and
guidelines governing their design and evolution over time.

Greefhorst and Proper (2011) also suggest to use a dualistic perspective on archi-
tecture by distinguishing design principles and design instructions. The design
principles provide a declarative means to provide normative restrictions of design
freedom, while design instructions (by way of e.g. ArchiMate models) provide a
more imperative way to provide restrictions of design freedom.

Fehskens (2008) fields valid criticism at many of these definitions, for example
that they are very IT-centric. He suggests to define architecture as: ‘Those proper-
ties of an enterprise, its mission, and their environment, that are necessary and suf-
ficient for the enterprise to be fit for purpose for its mission in that environment,
so as to ensure continuous alignment of the enterprise’s assets and capabilities
with its mission and strategy.’ Although this definition includes the goal or use of
architectures – something missing from many other definitions – it runs the risk of
encompassing ‘everything’ that is important in an enterprise. In our view, it is es-
sential to focus on properties of the structure of an enterprise, as they can be de-
signed, making it sensible to talk about their architecture in the first place.

In this book we do not provide our own definition of architecture. Rather, we
will simply use the most commonly used definition from the ISO/IEC/IEEE FDIS
42010 standard (ISO/IEC/IEEE 2011):

Architecture: fundamental concepts or properties of a system in its environ-
ment embodied in its elements, relationships, and in the principles of its de-
sign and evolution.

Although this definition also has its flaws, it is the most accepted in the architec-
ture community. It is a refinement of the IEEE 1471 definition (IEEE Computer
Society 2000), which itself was the result of an intense debate in the community
but has now been used for over a decade. For example, the second definition of
TOGAF has also been derived from this definition, and it is also used in the
ArchiMate community (Lankhorst et al. 2009; The Open Group 2012).

Importantly, this definition also takes the perspective that an architecture is
primarily a conception of a system, i.e., a mental construct. The standard therefore
also distinguishes between architectures and architecture descriptions. Further-
more, the definition addresses a system in its environment; an architecture cannot
be understood without looking at the system’s context. Finally, it comprises fun-
damental concepts or properties; an architecture is not just the structure of physi-
cal components that make up a system, but remains invariant for different imple-
mentations. The focus on fundamental concepts or properties is made more
specific by Fehskens’ definition when he refers to ‘The properties … necessary
and sufficient for the enterprise to be fit for purpose for its mission in that envi-

43

ronment’. The ISO/IEC/IEEE definition also accommodates both the notion of a
system’s structure and the general underlying principles.

An architecture helps you to get an integrated view of a system that you are de-
signing or studying. We can apply this notion of architecture at different abstrac-
tion or aggregation levels. We may talk about the architecture of a piece of soft-
ware, an information system, an organization, an enterprise and even a network of
enterprises. The ISO/IEC/IEEE standard takes no position on the question, ‘What
is a system?’ Users of the standard are free to employ any system theory they
choose. For example, ‘system’ could mean a software application, a subsystem, a
service, a product line, a system of systems or an enterprise. Systems can be man-
made or natural.

It should be clear that these notions of architecture and system do not prescribe
any particular order or procedure in their design or development. Any system has
an architecture, even if it was not consciously designed. In the creation of a system
or service, sometimes the architecture will come first, but in many cases, the archi-
tecture, design, implementation and usage will co-evolve. This is particularly im-
portant when we want to combine architectural thinking and agile methods: Archi-
tecture does not equate to ‘Big Design Up-Front’, the agile movement’s bugbear.
This is where the overused comparison with architecture in building and construc-
tion fails: there, fully detailed plans and designs are needed before construction
starts, because change during construction of a building is too difficult and costly.
But in business and IT, changes to the artefacts are often easier.

Moreover, in this context the notion of architecture is used at different levels of
granularity or scope and with different time scales: from the strategic, large-scale
and longer-term ‘zoning plan’ level, which is (or should be) more principles-
based, to the blueprint level of design for individual systems and services, which
is more dominated by models. The ‘Big Design Up-Front’ problems that the agile
movement aims to avoid, mainly arise when detailed models and blueprints are
used at a wrong level of scale and scope. Regretfully, in practice it happens al too
often that architects lose themselves in too detailed and specific ‘designs’, rather
than focusing on those properties that are necessary and sufficient for the enter-
prise to be fit for purpose.

In this book, we focus on software-intensive socio-technical systems, which are
a combination of business, organization and people aspects and the information
systems and technology supporting these. Important in this respect is the notion of
enterprise architecture (EA), where an enterprise is defined as ‘the highest level
(typically) of description of an organization and typically covers all missions and
functions. An enterprise will often span multiple organizations.’ (The Open Group
2011).

Fehskens (2008) observes how the interpretation of enterprise architecture has
changed from enterprise-wide IT architecture to the architecture of the enterprise,
and sees four kinds of use of the term:

• As a discipline or practice: ‘I took a course on enterprise architecture.’

44

• As a process: ‘Enterprise architecture enables business transformation.’
• As applied to a class of things: ‘Every business should have an enterprise archi-

tecture.’
• As applied to a specific instance of a thing: ‘We used TOGAF as the basis for

our enterprise architecture.’

Given the previous definition of ‘architecture’ as being concerned with fundamen-
tal properties of a system, enterprise architecture is first and foremost concerned
with the backbone of the enterprise: those fundamental design decisions that influ-
ence the essence of its operations, facilitate agility, and control risk, and are de-
termined by its business strategy and needs (see also Chap. 2). Thus, enterprise ar-
chitecture serves several important purposes in IT management:

• It offers a holistic view on the enterprise, creating insight in the various de-
pendencies between and within business and IT, facilitating management deci-
sions by clarifying their effects;

• Based on this holistic view, it provides a backbone for coherent operation and
alignment between business and IT;

• It provides a backbone for compliance with rules and regulations, both internal-
ly defined and externally required;

• It provides a backbone for the integration of an enterprise with its environment;
• It gives explicit variation points where change may be expected and accommo-

dated.

Later in this chapter, we will describe in more detail how (enterprise) architecture
activities can be embedded within agile organizations and projects.

In Chap. 1, we already introduced the prominent role of services in our ap-
proach and elsewhere. Modern enterprise architecture methods use services as a
pivotal concept in bringing together various business, information and infrastruc-
ture aspects and domains. A prime example is the ArchiMate modelling standard
for EA (The Open Group 2012; Lankhorst et al. 2009), also used elsewhere in this
book. Service-oriented architecture (SOA) has become a prominent architectural
style, not just in a technical sense (e.g. with Web services), but also as a way of
structuring the business models, processes and organization of an enterprise.

3.2 Architecture to Manage Agility

To some it may seem that architecture is something static, confining everything
within its rules and boundaries, and hampering agility and innovation. Many pro-
ponents of agile methods are opposed to the use of architecture, categorically clas-
sifying it as ‘Big Design Up-Front’ (BDUF). They argue that stakeholders cannot
know what they really need and the problem will change anyway before the pro-
ject is completed, so you cannot provide any useful designs up-front. Indeed, in

45

many cases stakeholders cannot formulate their requirements up-front and suffer
from the IKIWISI syndrome (‘I’ll know it when I see it’). Moreover, the changing
business environment makes stable requirements an illusion to begin with.
However, this is a misconception about the role of architecture. A well-defined ar-
chitecture helps you in positioning new developments within the context of the ex-
isting processes, IT systems, and other assets of an organization, and in identifying
necessary changes. Thus, good architectural practice helps an organization inno-
vate and change by providing both stability and flexibility. The insights provided
by an enterprise architecture are needed on the one hand in determining the needs
and priorities for change from a business perspective, and on the other hand in as-
sessing how the organization may benefit from technological and business innova-
tions.

This also goes back to the distinction between process and system agility, as
described in Chap. 2. To achieve a truly agile organization, we should not only use
responsive, iterative and interactive processes, but also create organizational and
technical systems that can easily be adapted to changing circumstances and re-
quirements. In a competitive environment, an organization should focus its energy
on being agile in those change options that differentiate it from its competitors or
help it keep up with the market. Change in other aspects is simply a waste of time
and energy, since it will not make the organization compete more effectively. Ar-
chitecture provides the backbone for making such decisions; it forms the stable
core of the enterprise and provides the variation points for agility.

Moreover, agility is not the only concern of an enterprise. Many trade-offs have
to be made, of cost-efficiency versus flexibility, versus reliability, versus other
‘-ilities’. A well-designed architecture helps in making such trade-offs, analysing
different change scenarios with respect to these different properties, and in as-
sessing their impact across the enterprise.

Thus, architecture serves several important roles in fostering agility: First, it
gives designers and developers the insight in a system and its environment they
need for making changes. Second, it provides a way of designing organization-
level agility, for example by employing specific architecture principles, defining
standardized interfaces, creating reusable building blocks and using infrastructures
that speed up development. Third, it helps in focusing design effort on those
points of variability or uncertainty that are important from a business perspective:
where do we expect future changes to occur, and how can we facilitate these?

The latter points are illustrated by Fig. 11. Simply put, a well-designed archi-
tecture and infrastructure is an up-front investment (‘A’ in the figure) that makes
later changes easier, faster and cheaper (the coefficient ‘b’ in the graph is smaller
than ‘c’). Classical agile development states that you should avoid big design up-
front, because you cannot know all. But when you do know which parts of your
organizational and technical landscape can provide a stable infrastructure on
which enterprise agility is founded, designing those parts up-front is certainly
smart.

46

cost

time

A+b∙t

c∙t

Fig. 11. Up-front investment vs. fully agile development.

3.2.1 Agility Aspects

When considering an enterprise, there are two important capabilities that we might
architect, directly related to the different kinds of agility we identified in Chap. 2:

1. The execution system, i.e., the ‘things’ needed for ‘business as usual’. Most ar-
chitecture approaches implicitly focus on this capability, and this is where the
notion of system agility is focused.

2. The innovation system, i.e., the capability to innovate or change. This ranges
from social processes, to the system development process supported by meth-
ods and tools. This is targeted by the notion of process agility.

In an agile context (or agile part of the enterprise), we see that these two systems
blend together: the critical design focus should shift from having an efficient exe-
cution capability to developing an effective combination of the execution and in-
novation systems. Designing the execution system in such a way that it lends itself
to quick changes within giving boundaries and ambitions is a prerequisite for the
innovation capability to be effective. We will address the innovation system in
Chap. 6; here, we focus on the requirements on the execution system in an agile
context.

In Chap. 2, we have outlined the five aspects making up a system’s agility:
making changes, deploying these changes, dealing with their effects, integrating a
system with its environment and decoupling it from this environment (to be reused
elsewhere). Many well-established architecture principles have been identified
that positively influence the quality attributes comprising these agility aspects; for
a broad overview of such principles, see (Greefhorst and Proper 2011, App. A).

Making changes The first aspect of system agility is the ease of making changes.
This can be decomposed in customizability by the system’s users, adaptability by

47

system management, analyzability by designers and changeability by developers.
These are properties that have to be built in explicitly. In particular analyzability
and changeability critically depend on a clear structure, i.e., the architecture of the
system. Important and long-established architecture principles apply here, each re-
lated to the modularity of the system under concern:

• Separation of concerns: using layering and modularization to concentrate func-
tionality in specific places and ensure that changes remain as local as possible;

• Low coupling and high cohesion: a low number of relations between subsys-
tems and a high internal cohesion of each subsystem facilitate analysis and un-
derstanding, avoid changes propagating throughout the system, and hence
greatly enhance the agility of a system;

• Encapsulation: if a system has clear interfaces and prevents the environment to
depend on its internal implementation, this implementation can be changed
without affecting that environment.

An important aspect related to the modularity of the system is the structure of the
team. As Conway’s law states, ‘organizations which design systems [...] are con-
strained to produce designs which are copies of the communication structures of
these organizations’ (Conway 1968). In order for two system elements to be con-
nected correctly, the designers and implementers of each element must communi-
cate with each other. If a larger system or service development project requires
multiple subteams, the team structure should therefore follow the high-level archi-
tecture of the system (and certainly not the other way around).

Deploying changes To deploy a system easily and quickly, qualities such as
learnability, installability, testability and manageability need to be addressed. This
is particularly important in iterative development processes, where a system and
its parts have to be tested, installed and used many times over.

In agile development, testing occurs early and often, and not just at the end of
development. Test-driven design is an important agile practice and easily testable
systems are therefore important in facilitating such an agile process.

Management (including maintenance) which takes a large effort compared to
the actual usage time is nonproductive. If changes to a system require a large
management effort, this has a negative impact on agility.

Dealing with the effects of changes In agile development, systems are changed
often and these changes may not always work out well. If something goes wrong
during a change, the effects should be minimal an easily corrected, to minimize
disruption of and risk to the day-to-day operations. The more often a system
changes, the more important this becomes. To this end, the architecture of the sys-
tem should include facilities for e.g. redundancy and recovery.

Systems that are fault-tolerant and can recover quickly and independently after
a failure occurs can be tested and used more easily in uncertain or changing condi-
tions.
and in circumstances that have not been predicted at its time of design. Further-

48

more, systems that have been designed with mechanisms to cope with possible
bugs and errors can be deployed more easily in a ‘half-finished’ state, allowing for
rapid testing in practice and short development cycles, thus promoting agility.

Integrating For a system, whether technical or organizational, to be put in place
rapidly, it must be easy to connect it to its environment. This requires attention to
interoperability and conformance to applicable standards. A system that is highly
interoperable is easily connected to other systems. This makes it easier to use it in
new or changing environments, hence enhancing the agility of the system and of
the organization of which this system is a part.

To some, use of standards may seem limiting to agility, since you cannot freely
choose your own solution to a design problem. However, the use of standardized
and greatly facilitates the rapid development of new solutions from existing build-
ing blocks. Lego is a good example: you can build almost anything from these
fixed blocks. Hence agile architectures consist of interoperable elements that are
easily configured and combined. A useful architectural principle in this regard is
design by contract (Meyer 1991), where precise and verifiable specifications of a
service are used, for example with preconditions, postconditions and invariants.

Decoupling If you want to change a part of some system, ideally this change does
not influence or depend upon any other parts. The more depedencies you have to
deal with, the more difficult, risky and time-consuming a change will be. There-
fore, a low level of coupling between system elements is an important property of
agile systems.

Moreover, an important way of achieving development speed and simplicity is
reuse. Reusing system elements requires that they have been designed in such a
way that they can easily be decoupled from their environment, and conversely,
that the environment does not depend unduly on specific implementation aspects
of these elements. If a system or system element is easily replaceable, the organi-
zation using it is more agile, since it can respond more quickly when the need for
replacement arises because of changing circumstances.

Building new systems from reusable components is an important way of im-
proving agility. The Lego example above serves to illustrate this: because stand-
ardized, reusable building blocks are available, new systems can be built quickly
and with a relatively low effort. Choosing the right elements that need to be reusa-
ble (but are themselves stable) is therefore highly important.

Designing a component for independence and reuse requires information on the
potential contexts in which that component may be used in the future. A solid ar-
chitecture backbone is indispensable to provide such a context. This does not
mean that the architecture prescribes the design of each system element; merely
that it clearly specifies the boundaries of these elements, i.e., the context, princi-
ples, standards and interfaces in which they must fit.

49

3.2.2 Operating Models

As we have stated before, flexibility does not come for free, and there are other
concerns to be addressed as well. It should be an explicit choice where you want
to be agile as an enterprise, and which aspects can be standardized or otherwise
fixed. A clear set of business goals and drivers (see also Chap. 2) is essential in
making such a choice.

Explicit strategic guidance is given by the operating models of Ross, Weil and
Robertson (2006). As they show with numerous case studies, successful enterpris-
es employ an operating model with clear choices on the levels of integration and
standardization of business processes across the enterprise:

• Diversification: different business units are allowed to have their own business
processes. Data is not integrated across the enterprise. Example: diversified
conglomerates that operate in different markets, with different products.

• Replication: business processes are standardized and replicated across the or-
ganization, but data is local and not integrated. Example: business units in sep-
arate countries, serving different customers but using the same centrally de-
fined business processes. Example: a fast food chain replicating its way of
working through all its local branches.

• Coordination: data is shared and business processes are integrated across the
enterprise, but not standardized. Example: a bank serving its clients by sharing
customer and product data across the enterprise, but with local branches and
advisers having autonomy in tailoring processes to their clients.

• Unification: global integration and standardization across the enterprise. Exam-
ple: the integrated operations and supply chain of a chemicals manufacturing
company.

In those operating models that prescribe standardized processes or data integra-
tion, project-level agility is bounded by these organization-level choices: a project
may not be allowed to define its own business processes or data models, but must
comply with company-wide standards. At the organization level, however, this
may actually enhance agility: because the organization is explicit about its opera-
tional choices, timely decision making is facilitated and the type of response to
changes in the environment may be known beforehand. Moreover, use of stand-
ardized processes or systems may help in quickly developing solutions to new re-
quirements, as we have argued above.

In addition to the operating model, they provide a stage model of the architec-
tural development of organizations:

1. Business Silos: every individual business unit has its own IT and does local op-
timization.

2. Standardized Technology: a common set of infrastructure services is provided
centrally and efficiently.

50

3. Optimized Core: data and process standardization, as appropriate for the chosen
operating model, are provided through shared business applications (e.g. ERP
or CRM systems).

4. Business Modularity: loosely coupled IT-enabled business process components
are managed and reused, preserving global standards and enabling local differ-
ences at the same time.

5. Dynamic Venturing: rapidly reconfigurable, self-contained modules are merged
seamlessly and dynamically with those of business partners.

The level at which you can achieve agility is related to these stages. Organizations
that are at the first stage can only do local optimization, which precludes a coher-
ent agile response at the organization level if, for example, changing market de-
mands or regulatory pressure require this. At stages 2 and 3, the standardization
and optimization at the technology level facilitate a global response, but within the
bounds of the current business- and organization-level structures. At stages 4 and
5, the business itself becomes adaptable, reconfigurable and fluidly integrated with
a dynamic environment.

3.2.3 Standardization and Variation

You might think that standardization is bad for agility. Standardizing in the wrong
way can indeed be very detrimental, but you can also use standardized functions to
enhance the agility of an enterprise’s execution system.

Register ValuateAccept PayCar

Register ValuateAccept PayHealth

Register ValuateAccept PayLife

Lengthwise standardization

Cr
os

sw
ise

 va
ria

tio
n

Fig. 12. Standardization vs. variation.

Importantly, you have to differentiate between ‘lengthwise’ and ‘crosswise’ stand-
ardization and variation (Govers & Südmeier 2011), as depicted in Fig. 12.
Lengthwise standardization means standardizing the steps that are taken over the
length of a certain type of process, across different products, services or customer
segments. Lengthwise standardization can be good for agility. If all processes
have the same series of steps, you can possibly reuse some steps in implementing

51

a new stream. For example, if AgiSurance starts selling an extreme sports insur-
ance, it may perhaps reuse parts of the registration steps from its property insur-
ance products, parts of the valuation from health insurance, et cetera. Thus,
lengthwise standardization provides you with a stable architectural backbone for
variation across the standardized parts.
Crosswise standardization means using the same implementation of a process step
across these different streams (Fig. 13). This may harm your agility, however. By
conflating all specific cases into a single process step – let alone a single IT ser-
vice – such a step will often become unmanageable spaghetti. The result is much
too big and complicated, and because it is based on knowledge from many differ-
ent domains (in the example of AgiSurance, different types of insurance products),
nobody has the combined expertise to really understand it. Moreover, everything
becomes dependent on everything else; in the example, if a specific type of insur-
ance requires a different kind of valuation, the decision tree for all types of insur-
ance may be impacted.

Register

Car

Health

Life

Lengthwise standardization

Cr
os

sw
ise

 st
an

da
rd

iza
tio

n

Accept Valuate Pay

Fig. 13. Crosswise standardization.

Finally, change dynamics are often different for various types of products or cus-
tomer segments. Take the example of travel insurance versus health insurance: in
the Netherlands, the changes in health insurance are largely dictated by govern-
ment regulation and have a yearly rhythm, where changes to processes and sys-
tems must be implemented within a limited time frame before January 1; for travel
insurance, insurers may largely decide on their own when and what to change.

You should therefore factor out these types of decisions and not standardize
them across different product types. This is one way of promoting the ‘decou-
pling’ aspect of system agility described in Sect. 2.3.3. You might do this by de-
fining separate processes or services for each product or, perhaps even better, by
treating decisions separately. In Chap. 4, we will show how decision models can
be combined with process models to achieve this separation of concerns.

This view on standardization goes against the common wisdom on ERP im-
plementations, where you often see crosswise standardization as well. This is one
of the important causes for the lack of agility of many ERP implementations
(Govers 2003).

52

In applying the operating models described in the previous section, you should
also keep this in mind. In particular the Business Modularity and Dynamic Ven-
turing stages highly depend on this type of structure and variability. The danger of
over-standardizing at the Optimized Core stage should be avoided.

Example: AgiSurance claim handling process
Our example company AgiSurance has decided that each insurance claim
has to go through four steps: registration of the claim, acceptance (e.g. check
for completeness), valuation (to assess the amount to be paid), and payment.
If AgiSurance would use crosswise standardization, it would use a single
Valuate step, for example, which has to incorporate knowledge of all the dif-
ferent insurance products that the company sells, and uses large and compli-
cated decision trees (or other means) to compute the valuation results in in-
dividual cases. This would not be a good idea.

3.2.4 Model-Based Development

Another important architectural approach that can provide more system agility is
the use of models and model-driven tools to facilitate the development and change
process. This improves both the innovation and the execution capabilities of the
enterprise, because it shortens the path from ‘business idea’ to ‘business execu-
tion’ and it improves the business insight in the operational reality as well.

Importantly, we do not want to force IT-oriented models onto business stake-
holders, but rather advocate the use of domain-specific concepts and languages to
capture and communicate relevant business knowledge. These models can then be
targeted to suitable IT infrastructure, either by transforming them to technology-
oriented models or software code, or even by directly interpreting and executing
these models. Such a model-based architecture facilitates the rapid development
and deployment of new business services.

In Chap. 4, we will describe this model-based development approach in much
more detail. If we compare such an approach to writing software code in lan-
guages like Java, PHP, C or Cobol, we see that much of this code is only intended
as scaffolding to deliver the required functionality, but does not add business val-
ue itself. Writing code is also more error-prone, simply because there are more
opportunities and places for mistakes. Moreover, a lot of the same code is written
over and over again, compounding these problems even further.

Thus, model-based approaches can be both faster and more efficient in devel-
oping services. They are not without their own challenges, however. The up-front
investment needed may be considerable, and a clear business case is needed to
show when this will pay off, as we have already argued in Sect. 3.2 (see also Fig.
11). These approaches may also require extensive retraining of employees, both at

53

the business and the IT side of you organization. In Chaps. 4 and 8, we will go
deeper into these challenges and ways to overcome them.

Example: AgiSurance’s future model-based architecture
In insurances, the parameters of individual policies change quite often. In its
IT infrastructure, AgiSurance has therefore chosen to move towards a busi-
ness rule engine solution, which should support the latter type of changes
and provide a high level of flexibility. In Fig. 14, we see an abstracted view
of AgiSurance’s vision on its future IT landscape, in which several engines
for the interpretation of models play a central role.

Information
management

Database

Information
modelsM

od
el

s
Ex

ec
ut

io
n

Product
management

Rule
engine

Business
rules

Process
management

BPM
suite

Process
models

User
interface

Browser

Interaction
rules

Case
management

Work
procedures



Fig. 14. AgiSurance's model-based architecture vision.

3.3 Architecture Processes in an Agile Context

To create a truly agile enterprise, you should design both your systems and your
development processes with change in mind. This also holds for architecture
products and processes. Thus, architecture should focus on the backbone of the en-
terprise and on guarding its essence. Moreover, architecture is invaluable in help-
ing to take risky or high-impact design decisions.

An architecture will itself evolve over time. Architectural artefacts will there-
fore only have a temporary status. Architectures change because the environment
changes and new technological opportunities arise, and because of new insights as
to what is essential to the business. A good architecture process ensures that the
various artefacts remain relevant and up-to-date, and avoids unnecessary waste.

3.3.1 A Risk-Driven Approach

Next to the organization’s own strategy and maturity level, there are other im-
portant reasons for managing and controlling agility. In particular risk manage-

54

ment and compliance with external laws and regulations may limit the freedom of
organizations. Risk management policies may imply that the costs and effects of
changes are thoroughly investigated before a solution or change may be developed
and deployed. In an agile process, the available resources and the delivery sched-
ule are usually fixed, but the functionality is flexible and delivered in order of the
priorities given by business stakeholders. Laws and regulations are not so flexible;
they must be fully implemented at the date set by lawmakers or regulatory bodies,
so the schedule and requirements are fixed.

Next to the operational and financial risks addressed by laws, regulations, and
company policies, there is also the risk in the development process: taking wrong
design decisions may be very costly. A common adage for architecture in an agile
context is that it should be ‘just in time, just enough’ (e.g. Wagter et al. 2005).
You should defer committing to a design choice until you absolutely need to,
thereby increasing flexibility and raising your chances of success. The question
then becomes: when do you need to take which architectural decisions? In particu-
lar, this concerns high-risk decisions, i.e., those that are both difficult and have a
potentially high impact.

Taking a decision too early is dangerous, because you may need to do a lot of
rework if that decision turns out to be wrong. Although some agile proponents say
that it is easy to refactor your software (see the next section), it may not always be
possible to easily turn back on an earlier decision. The aforementioned database
structure may be an example of such a decision. Other examples are the use of ex-
isting infrastructure, performance or quality criteria, or the extensibility of your
data model. Sometimes it may therefore be smart to have an analysis phase before
starting an agile, iterative project. In that phase, you investigate the important
risks, technical and otherwise, and you define the essence of the architecture. You
can then use this as a project start architecture for the agile project, giving it suffi-
cient guidance to avoid these risks.

There is also a lurking danger that the team starts with the simple stuff and
postpones more difficult requirements and design decisions. For example, a Dutch
social security institution saw its development of a new information system for a
complicated new law fail, because (among other causes) it started with implement-
ing the ‘happy flow’, tacked on some more difficult cases as exceptions to this
flow, added the even more difficult cases, and so on, until the business process de-
signs they used as the foundation for system development became completely un-
manageable. This is a common hazard of incremental development processes. In
prioritizing requirements, the common ‘80-20’ rule (‘let’s focus on the 80% most
common cases’) is dangerous: perhaps these first 80% are easy to cover, but the
20% difficult cases may require a costly redesign of your solution.

A good heuristic in this respect is to take a risk-driven approach, where you
address the most critical risks early in the project life cycle. If the necessary input
for making a risky decision is not available yet, further analysis and investigation
is needed. Perhaps you can build a so-called ‘spike solution’, a common technique
in XP, to try out aspects of a design in more detail. If this is not possible and a de-

55

cision is too risky to take right now, you should postpone it until the necessary in-
put is available and the risk of making a wrong choice is low.

3.3.2 Refactoring and Technical Debt

A very important technique to cope with changing architectures and designs in in-
cremental development is refactoring. In software development, this is defined as
a ‘disciplined technique for restructuring an existing body of code, altering its in-
ternal structure without changing its external behavior’ (Fowler 1999). By apply-
ing specific semantics-preserving transformations, you can change software code
(or other designs, e.g. business processes, data models, business rules or even
hardware designs) to accommodate new requirements, without altering its behav-
iour for existing cases. Before something is refactored, a solid suite of tests is cre-
ated to ensure that the refactored result performs the same as the original.

Refactoring serves two main purposes: it improves maintainability and it in-
creases extensibility. You should continuously improve the architecture, designs,
models and code. If they start to ‘smell’, for example if new requirements seem
progressively hard to implement, if the models are difficult to understand or ex-
plain, or if implementations nearly duplicate other code, it may already be too late.

In the previous example, if the social security institution had realized that their
processes were gradually turning into a mess, it would have refactored them. For
example, they could have separated the decision-making rules on client benefits
from the generic workflow processes, keeping the latter stable and managing the
complexity of the social security laws separately and explicitly.

Unfortunately, not every piece of design or implementation is amenable to re-
factoring. For example, if the architecture incorporates a legacy system or em-
ploys a commercial-off-the-shelf component, these may be fixed and unchangea-
ble. Decisions on the use of such fixed elements are hence high-risk, and should
be investigated early and thoroughly, as explained in the previous section.

Closely related is the role of architecture in avoiding what is sometimes called
‘design debt’ or ‘technical debt’. Often, you need to take a temporary shortcut in
your design, leading to an increase in complexity or a decrease in quality that you
should resolve at some time in the future. Cunningham first drew the comparison
between complexity and debt in a 1992 experience report (Cunningham 1992):

Shipping first time code is like going into debt. A little debt speeds development so long
as it is paid back promptly with a rewrite... The danger occurs when the debt is not repaid.
Every minute spent on not-quite-right code counts as interest on that debt. Entire
engineering organizations can be brought to a stand-still under the debt load of an
unconsolidated implementation, object-oriented or otherwise.

Architecture is an important instrument to avoid that this debt gets out of hand. By
explicitly providing the boundaries of the design space, it helps in providing a

56

‘debt ceiling’. Temporarily, projects may be absolved from adhering to the archi-
tecture, but eventually their results must be brought back into the fold.

This is an important practice of the Dynamic Architecture (DyA) method
(Wagter et al. 2005), for example, which has an explicitly controlled process for
development without architecture. This process includes a management letter that
stipulates how this deviation from the architecture is going to be resolved, for ex-
ample by limiting the lifetime of the project result and/or starting development of
a long-term solution in parallel.

3.3.3 An Agile Architecture Process

The process of enterprise architecting as described by Op ’t Land et al. (2009)
consists of three main activities:

1. Create: shaping the design of the desired situation, to address the goals and
purposes as formulated by the enterprise, in cooperation with relevant stake-
holders and within applicable constraints of time and resources.

2. Apply: using the architecture as a steering instrument to guide the development
and evolution of the enterprise.

3. Maintain: keeping the architecture up to date and relevant, by monitoring the
enterprise and its environment and responding accordingly.

This EA process may seem a bit linear and at odds with the interactive and itera-
tive way of working in an agile environment. You may get the impression that the
architects first do all the thinking, and then an agile team is only needed for im-
plementing their ideas. However, this is not how things operate in an agile organi-
zation. These architecture activities are not strictly ordered, nor do they always
precede the more detailed design and implementation activities. Rather, these
three streams should run continuously and in parallel with development, keeping
the architecture relevant and up-to-date at all times and interacting closely with the
various development teams.

However, these are merely the architecture activities. How can we combine
these with all the other work going on in an agile organization and its development
processes for services? First of all, agile and other iterative projects do not assume
the enterprise architecture as a given. In a changeable context, the architecture
cannot be too detailed for the distant future, and must be amenable to adaptation if
the need arises. This makes the aforementioned maintenance activities crucial in
an agile context, and a constant awareness of the drivers for change is essential.
The cycle between creation, use and maintenance of the architecture is also rela-
tively short; enterprise architectures should not be detailed five-year plans, but
provide the general direction in which an organization wants to move.

Second, each individual project will have its own activities for creating, apply-
ing and maintaining (parts of) the enterprise architecture, and of course for their

57

own project-level architectures. It is a good agile practice that architecture largely
emerges from projects, and is not just invented from the top down. Only those as-
pects that really need to be decided at an enterprise-wide level (see also Sect. 3.2),
should be given to the project at the start, for example in the form of a Project
Start Architecture (Wagter et al. 2005). Conversely, the project-level architectures
are an important source of information for the enterprise architecture.

This also holds for organizing the architecture work. An agile team is largely
self-sufficient in its choice of methods and tools. However, for architecture prod-
ucts to be reusable in other contexts, a certain standardization of their contents will
be needed, for example in the use of models and description languages. Moreover,
if parts of the system’s infrastructure rely on a specific model-based approach (see
also Chap. 4), then this constrains the architecture as well. Individual projects will
also uncover their own best practices for architectural (and other) work, and shar-
ing these with other teams requires some level of organization beyond the project
scale. In Chap. 6, we will go deeper into the various scales and cycles at which an
agile way of working operates.

4 Service Modelling

M.W.A. Steen, M.E. Iacob, M.M. Lankhorst, H. Jonkers, M. Zoet, W. Engelsman,
J. Versendaal, H.A. Proper, L. Debije, K. Gaaloul

The development of enterprise services involves making design decisions at dif-
ferent levels, ranging from strategic to infrastructural choices, and concerning
many different aspects, ranging from customer interaction to information registra-
tion concerns. In order to support an agile development process with short itera-
tions through each of these levels and aspect, we need to manage the inherent
complexity and support rapid feedback on the impact of design decisions across
the various aspects of service development. The use of models can help to manage
the coherence among the different aspects in service design, and in facilitating and
accelerating changes. Therefore, we propose a comprehensive framework and
method for service modelling and model integration as an important ingredient of
an agile service development methodology. This method is aimed at providing a
shorter path between requirements and execution through the use of models to
feed run-time execution engines, fast validation at the model level, support for
communication with stakeholders, integration of different aspects, domains and
fields of expertise, and consistency across the enterprise.

4.1 Introduction

Enterprise services are provided by a complex socio-technical system – the service
system – comprising both human and technological resources. These resources
need to be instructed on what to do, when and how, in order to deliver the required
service. Service development is the entire process of designing, implementing,
maintaining and adapting services. The development of enterprise services in-
volves making design decisions at different levels, ranging from strategic to infra-
structural choices, and concerning many different aspects, ranging from customer
interaction to information registration concerns. Think of information to be man-
aged, partners to involve, channels to be used and processes to execute in order to
deliver the overall service. In addition, the distinction between business and IT
services is blurring, with the ongoing shift from people-delivered, possibly IT-
supported services to IT-delivered, possibly people-supported services.

60

Service providers need to address the question of how to align their business
operations and information technology to market demands, legal and regulatory
requirements, and business strategy. There are many stakeholders involved, each
with their own interests and concerns. In addition, services have to fit with the
needs of customers, the organizational context and the technological infrastruc-
ture. Marketeers will be interested in targeted market segments, channels and pro-
posed customer value; business operations managers in the impact on business
processes; IT managers in the impact on applications and technology infrastruc-
ture; line of business managers in the division of roles and responsibilities; partner
managers in the involvement of key partners; and so on, and so forth.

Next to the many aspects that need to be addressed when developing services,
the other main challenge of service organizations is to deal with change (also see
Chap. 2). They are continuously confronted with changes, such as changing mar-
ket conditions, changing legislation, technological changes, changing volumes,
changing partnerships, and the introduction of new channels. Therefore, we advo-
cate an agile way of working, which is detailed further in Chap. 6. However, in
order to support such an agile development process with short iterations through
each of the design levels and aspect, we need to manage the inherent complexity
and support rapid feedback on the impact of design decisions across the various
aspects of service development.

It is simply not possible to be agile in such a complex endeavour without the
use of suitable and coherent abstractions. In this chapter, we therefore propose a
comprehensive framework for service development that takes the various aspects
of services into consideration. This framework can serve as a map for plotting and
relating the various concerns of stakeholders. The approach for composing a way
of working as outlined in Chap. 6 can then be used to plan a route through this
service development landscape. In particular, we can on the one hand position the
various development artefacts within this framework, and on the other hand use
these to select and combine relevant agile practices (see in particular Sect. 6.7.2).

The framework is complemented with a method for integrating the different as-
pects. In this way, we obtain an integrated, model-based, agile approach to service
development. This method enables a shorter path between requirements and exe-
cution, through the use of models to feed run-time execution engines, fast valida-
tion at the model level, support for communication with stakeholders, integration
of different aspects, domains, expertises, and consistency across the enterprise.

4.2 The Role of Models in Agile Service Development

As we explained in Chap. 1, we strive for an agile engineering approach to service
development. Most mature engineering disciplines are firmly rooted in the use of
formal, mathematical models for predicting the various properties of their design

61

artefacts, in order to make the right decisions. In this context, we use the following
definition of a model:

A model is a purposely abstracted and unambiguous conception of a domain.

This definition is taken from (Lankhorst et al. 2009), and is originally based on
(Falkenberg et al. 1998). In this definition, a ‘domain’ is any subset of a concep-
tion of the universe – i.e., the service world we are talking about – that is viewed
as being some ‘part’ or ‘aspect’ of the universe. For complex worlds, such as the
world of enterprise services, many different domains or abstractions can be envi-
sioned, ranging from the financial and economic structure of the service network,
via the individual organizations involved and their business processes and func-
tions, to the IT implementations and infrastructures.

Models in general serve many purposes. By means of their abstraction from de-
tails, they help us focus on the essence, a specific purpose. This way, they provide
us with more insight into a situation. This insight might be needed towards an in-
forming purpose, analysis, decision making, etcetera. This is the descriptive use of
models.

Models may also be used prescriptively, to provide guidance towards the exe-
cution of work. This could for example concern design activities or operational
work processes. Because of the unambiguous nature of models, the guidance they
provide is often clearer and more explicit than when natural language or simple
pictures are used. In particular when formalized rules or processes must be fol-
lowed, using models may help avoid miscommunication or differences in interpre-
tation, and thus are a great help in project communication.

In Chap. 2, we outlined the various attributes of agility, both of agile processes
and of agile systems. The use of models contributes to the realization of many of
these agility aspects. Models help us in clearly establishing and prioritizing re-
quirements, and in achieving Traceability between business goals, requirements
and design models, which is important to ensure that our designs really fit the
needs of the business. Models also help in estimating the effort needed for a spe-
cific requirement, for example because they give insight in the size of the func-
tionality needed or in the complexity of a system’s interactions. This aids in priori-
tizing requirements, and improves the competency of the service development
team in delivering on its promises.

Assuming that models are easier to create and maintain that software code, the
use of models may help to accelerate and shorten the path between requirements
and execution. If we automatically convert models to implementations, or even
better, if we have an infrastructure that can directly interpret and execute these
models, we can build and change services with less software coding or even no
coding at all. Considering that various kinds of ‘engines’, for example for business
process or business rule execution, are becoming increasingly popular because of
this. Thus, making changes becomes much easier and the development process is
accelerated. The figure below illustrates this.

62

Execution
Engine

Requirements

Executable
Models

Outcome/
Behaviour

Programming
PlatformCode

Shortcut!

Long way around

Fig. 15. Agility through model execution. ; when models are executable, one can take a shortcut
and obtain faster feedback on design decisions.

Furthermore, models may serve as an important means for communication with
business stakeholders (also see Chap. 7). These stakeholders can be more closely
involved in designing or changing a service, or in some cases they may even be
able to make changes themselves. In particular when the infrastructure is built us-
ing engines like those mentioned above, some types of changes may be made di-
rectly by end-users, such as changing business rules or workflows. Thus, using
models may improve stakeholder involvement, increase responsiveness to busi-
ness needs, and speed up the development process.

Models also facilitate the deployment of a change, by shortening the develop-
ment, testing, acceptance and production process. Since less coding is involved,
the development process takes less effort. But you can also use models to validate
or verify a service design offline, for example, by means of simulation and model-
based analysis techniques. You can detect errors at an earlier stage, when they are
usually cheaper to fix, and you can predict behaviour, for example resource con-
sumption under heavy usage.

The usage of models that show the dependencies between different service as-
pects, also helps you in assessing the effects of changes, for example by seeing
how they propagate through the models. This ensures consistency and avoids un-
expected and unwanted side-effects.

Finally, models may facilitate the integration and reuse of services. If you have
model-based descriptions of service interfaces, finding and integrating these ser-
vices is easier and can sometimes even be automated. Service composition and
bundling, offering new combinations of existing services, is also facilitated if you
can already check at the model level whether these services are compatible.

Importantly, and as discussed in Chap 6, we do not advocate ‘big design up-
front’ of the entire service landscape. Rather, the modelling efforts themselves
should be iterative and should follow good practices for agile modelling, as for
example provided by Ambler (2002) and others. But as we already outlined in

63

Chap. 3, an investment in a model-based architecture may well pay off in a much
quicker and cheaper development afterwards. Some design up-front is therefore
required.

4.3 Adoption Levels of Modelling

Although the use of models in service development clearly has advantages in
terms of agility, coherence, consistency and quality, there are also costs involved.
Modelling requires effort, skills, and specialized tools. And scenarios in which
models are directly executed, require an infrastructure consisting of appropriate
execution engines. Unfortunately, the benefits of modelling can usually only be
obtained after these investments in infrastructure, tools, education and human re-
sources have been made. Therefore, a model-driven approach should only be
adopted when the benefits outweigh the costs. Below, we describe a number of
adoption levels for the use of models, each with their own set of benefits and
costs. This can help organizations to choose the right level of adoption.

Table 2. Adoption of modelling.

Level of model adoption Benefits Costs

1. no models none none
2. informal models improved communication low
3. isolated formal models unambiguous specification,

analysis support
know-how and tools for specific
technique(s)

4a. horizontally integrated
formal models

cross-aspect impact of change
analysis, consistency across do-
mains, reuse

integrated tool-suite for modelling
or model integration support, cross
domain modelling expertise

4b. vertically integrated for-
mal models

traceability to requirements, im-
pact of change analysis, forward
and backward engineering sup-
port, e.g. code generation

dedicated tool-chain and target
platform, model transformation
expertise

5. integrated formal models Combined benefits of 3 and 4. integration of tools and infrastruc-
ture components, combined exper-
tise and know-how from 3 and 4.

Level 1 – no models – speaks for itself. If no models are used in the development
process, there are obviously also no benefits and no costs for making models. Be
aware, however, that overall development costs may increase, because there are
limited means to manage the inherent complexity of service design.

At level 2 – informal models – service developers enjoy improved communica-
tion, while the modelling costs are still low. An ‘informal’ model has no formally

64

defined syntax or semantics. Examples include Visio diagrams and PowerPoint
drawings.

At level 3 – isolated formal models – proper modelling tools are employed to
model some aspects of the service design. We use ‘isolated’ here as opposite of
‘integrated’, meaning that multiple models may be used, but without being formal-
ly related to one another. The minimum requirement for a model to be ‘formal’ is
that its syntax conforms to a metamodel. Examples include, BPMN process mod-
els and UML class diagrams. The advantage of formal models over informal mod-
els is that they are unambiguous and amenable to formal analysis, such that they
can be used to predict properties of the service before it is implemented. Obvious-
ly, this level requires know-how and dedicated tools for the selected modelling
techniques.

At the highest adoption level, 5 – integrated formal models – it is assumed that
models are used at most abstraction levels and across most of the aspects of the
service design. Moreover, these models are all assumed to be views on one, usual-
ly left implicit, integrated underlying model of the service. This level demands a
lot in terms of skills, tools and infrastructure. Therefore, it may not be appropriate
for every organization. There are two possible routes to achieve level 5: horizontal
integration first (4a) and vertical integration first (4b). The desired benefits and the
priorities of the organization determine which route is most appropriate and to
what extent the other path is followed.

At level 4a – horizontally integrated formal models – service developers can
reuse elements from one aspect model in another, check and enforce consistency
across the aspects and perform cross-aspect impact-of-change analyses. Models
are ‘horizontally’ integrated when they are at the same level of abstraction, but
possibly addressing different aspects, and consistently referring to each other’s el-
ements. This level of integration requires an integrated tool-suite for modelling or
another form of model integration support and cross-domain modelling expertise.
In Sect. 4.7, we detail further the specific requirements this scenario places on
tools support.

At level 4b – vertically integrated formal models – service developers can trace
design and implementation artefacts back to the requirements that motivate their
existence, analyse the impact of changes in requirements or designs on the lower
abstraction levels, and make use of automated support for forward and backward
engineering, such as code generation. Models are ‘vertically’ integrated when they
are at different levels of abstraction, addressing the same aspects, and have rela-
tionships defined between semantically conformant elements. This level of inte-
gration requires a dedicated tool-chain and target platform as well as model trans-
formation expertise.

65

4.4 The ASD Framework

In this section, we present a model-based framework for agile service develop-
ment. We focus in particular on identifying the kinds of abstractions that are re-
quired to support an integral and coherent service development process. In devel-
oping this framework, our aim was not to develop “yet another” framework, but
rather to combine the features of relevant existing frameworks that are relevant to
(agile) system development.

Of course, we are not the first to propose a framework for enterprise service
development. One of the best-known and oldest frameworks for the describing the
design space of enterprises is the Zachman Framework for Enterprise Architecture
(Sowa & Zachman 1992). It was first introduced in 1987 as the ‘Framework for
Information Systems Architecture’ (Zachman 1987). The Zachman framework is a
logical structure for classifying and organizing the elements and aspects of an en-
terprise (its ontology) that are significant to the management of the enterprise as
well as to the development of the enterprise’s systems. In its most simple form the
Zachman framework depicts the concepts on the intersections between the roles in
the design process, in particular the planner, owner, designer, and builder; and the
product abstractions: that is, what (data) it is made of, how (function) it works and
where (network) the components are located with respect to one another. Three
additional columns of models depict who does what work, when do things happen,
and why are various choices made?

A more recent framework with a strong impact on international standardization
is the framework embedded in the ArchiMate language (The Open Group 2012;
Lankhorst et al. 2009). The core of the ArchiMate language distinguishes between
the structural or static aspect and the behavioural or dynamic aspect of enterprises.
The structural aspect is further subdivided into active structural elements (the
business actors, application components and devices that display actual behaviour,
i.e., the ‘subjects’ of activity), and passive structural elements, i.e., the objects on
which behaviour is performed.

In addition, ArchiMate makes a distinction between an external view and an in-
ternal view on systems. The service concept represents a unit of essential func-
tionality that a system exposes to its environment. For the external users, only this
external functionality, together with non-functional aspects such as the quality of
service, costs, etc., are relevant. Services are accessible through interfaces, which
constitute the external view on the structural aspect.

Finally, ArchiMate distinguishes three layers: The Business layer offers prod-
ucts and services to external customers, which are realized in the organization by
business processes (performed by business actors or roles); the Application layer
supports the business layer with application services which are realized by (soft-
ware) application components; the Technology layer offers infrastructural services
(e.g., processing, storage and communication services) needed to run applications,
realized by computer and communication devices and system software.

66

There are many more framework and reference architectures with some rele-
vance to service development. Standardization organizations, including OASIS,
The Open Group, W3C and OMG, have produced various standards and whitepa-
pers containing guidance for developing service oriented solutions, see (The Open
Group 2009b) for an overview. However, these generally are of a technical nature
and pay less attention to the business, organizational, decision and interaction as-
pects of enterprise service development. Most methodologies and development
tools also boast their own world views. TOGAF, for example, has its own Content
Framework, which categorizes architecture artefacts according to the TOGAF de-
velopment phases (The Open Group 2011). The Design and Engineering Method-
ology for Organizations (DEMO) takes a language-action perspective and looks at
organizations at an ontological, an infological and a datalogical level, and further
distinguishes the construction, process, state, and action aspects (Dietz 2006).

While each of these frameworks has its merits, none of them covered all the as-
pects and perspectives that we encountered in agile service development. Never-
theless, they are complementary and contain many useful concepts that we can re-
use in service development. We therefore saw the need to combine those features
of the existing frameworks that are relevant to agile service development, into a
framework that is comprehensive and specific to agile service development.

4.4.1 Service Aspects

Our framework aims to support agility and flexibility in realizing service require-
ments, while managing the inherent complexity. A good practice for achieving
such flexibility is ‘separation of concerns’. Following Zachman, our framework is
structured along two axes: service aspects and abstraction levels. By dealing with
each aspect separately before dealing with the bigger picture, we can maintain a
grip on the complexity and avoid that design concerns get mixed up. This supports
agility by providing a single point of definition and change for each aspect. A
well-known example of this principle from web application development is the
use of the so-called three-tier architecture, separating presentation, business logic
and data. A similar subdivision applies to service development, where we need to
address the interaction with customers, the provided functionality and the infor-
mation being managed.

However, the functionality or business logic of enterprise services is usually
not so easily captured. Other principles help us to divide this aspect further. Ser-
vice-oriented architecture (Erl 2009) and structured analysis and design techniques
(Marca and McGowan 1987) suggest us to separate, decompose and encapsulate
groups of coherent functionalities into reusable building blocks, providing again
services to their environment, resulting in a hierarchy of functional building
blocks. Workflow thinking has taught us to separate activities or tasks to be exe-
cuted from the (human or system) actors executing them. Business process man-
agement (BPM) (Brocke and Rosemann 2010) thinking suggests to separate the

67

coordination of such functional building blocks. And a final good practice is to
‘separate the know from the flow’, i.e., do not mix decision logic with coordina-
tion logic. Fig. 16 shows the six resulting service aspects and loosely relates them
to the ArchiMate and Zachman frameworks.

In
te

ra
ct

io
n

S
tru

ct
ur

e

Fu
nc

tio
n

C
oo

rd
in

at
io

n

D
ec

is
io

n

P
ro

du
ct

Presentation DataBusiness Logic

Active Structure Behaviour Passive Structure

Who

ArchiMate:

Zachman: Where How When What

3-tier pattern:
Fig. 16. The framework’s aspects and their relationship to other frameworks.

Interaction

The Interaction aspect is concerned with the way in which the enterprise interacts
with its environment. It includes the enterprise’s collaboration with its various
partners and how its clients interact with the business services it provides. These
services may be delivered through an online channel, but traditional, human-
centric services, delivered e.g., via the telephone or over the counter, are also part
of this. Hence, the interaction between user and service may involve graphical us-
er interfaces, online forms, etc., but also the classical person-to-person interaction
and service.

Structure

The Structure aspect concerns the way in which the enterprise organizes its human
and technological resources. This includes the organizational structure, comprising
the definition and allocation of roles, responsibilities, authorizations, reporting
lines, etc., but also the information system structures, i.e., the technical and appli-
cation architectures.

Function

In the Function aspect, we address the individual elements of business and appli-
cation functionality that, orchestrated and coordinated together, deliver the actual
substance of a service. This comprises both the (manual) tasks of employees and
the (automated) service logic of applications. Individual functions (and the ser-
vices they deliver) are coordinated via the Coordination aspect, they use and pro-
duce information from the Information aspect, and they employ rules and calcula-
tions from the Decision aspect.

68

Coordination

The Coordination aspect focuses on the various dependencies between the activi-
ties needed to deliver services. This includes, for example, the specification and
(possibly automated) orchestration of business processes, workflow support, etc. It
comprises both the coordination within an individual organization and the coordi-
nation of activities with other organizations, which may be users of the service or
partners in delivering it.

 Decision

The Decision aspect captures the logic of reasoning used in the service domain, to
reach decisions, i.e., how decisions are (to be) made. For example, in the domain
of insurance policies or banking products, this pertains to decisions based on cal-
culations, and other (logical) derivations. Part of this logic may take the form of
executable specifications, such as decision tables or executable business rules;
other elements are typically used by people, both in delivering the service and in
defining, checking and enforcing an organization’s ‘rules of conduct’. However,
the logic specified here should not include coordination, interaction or organiza-
tion logic, which belong to the other aspects.

Product

Finally, the Product aspect is concerned with the things that the service produces
and consumes, and the way in which these products are registered and managed.
Products can refer both to tangible business objects, such as cars and pizza's, but
also to intangible information items, such as insurance claims and pizza orders.

4.4.2 Abstraction Levels

Each of the service aspects can be considered at different abstraction levels (Fig.
17). We distinguish between the specification space and the human and technical
infrastructure on which specifications are realized and deployed. The specification
space can be divided further into a requirements level, a design level and an im-
plementation level. These abstraction levels are detailed further below.

69

Requirements

Design

Implementation

Infrastructure

Why

What

How

Who

M
od

el
s

an
d

S
pe

ci
fic

at
io

ns

People &
Technology

Fig. 17. The framework’s abstraction levels.

Requirements level

The Requirements level deals with the motivation and rationale behind the service,
i.e., its ‘why’, and comprises the service requirements from the business perspec-
tive. This level not only contains specifications of the requirements on the specific
service under development, but also includes specifications of the context in
which the service is to operate. Therefore, at this abstraction level, we recognize
the need for at least two types of models: a context model and a requirements
model.

Design level

The Design level contains the ‘what’ of the service: the interactions, processes,
functions, rules and objects that are needed to realize the service. Designs are typ-
ically denoted in the form of some kind of model. Models, being formalized ab-
stractions of reality that cover specific aspects of that reality and abstract from the
rest, are a precise way of specifying services. The use of models as executable
specifications is especially valuable from the perspective of agility. Because mod-
els can be checked in various ways before they are implemented, risks of changes
can be managed and their effects can be predicted (within limits) before imple-
mentation. Furthermore, if implementing a change in the IT domain merely
amounts to changing some models, an organization may react much more quickly
to changing requirements than for example when large-scale software changes are
needed.

Implementation level

The Implementation level describes the ‘how’, i.e., how the service will be im-
plemented, in terms of both the people and the technology involved. Ideally, this
level can be skipped, i.e., if the design models are directly executable on the infra-
structure. However, more often than not this is not realistic, which makes it neces-
sary to also look into the implementation artefacts.

70

Infrastructure level

Finally, we have the Infrastructure level. This is where the rubber meets the road:
the people and technology actually delivering the service. One the one hand we
find here people with suitable capabilities who deliver services through physical
channels. To be able to deliver these services, they execute tasks, coordinate activ-
ities, manage other people, and enforce that rules are obeyed. One the other hand,
there is the IT infrastructure which delivers services through online channels and
comprises both generic hard- and software infrastructure and specific applications
on top of that, such as DBMSs, BPMSs, rule engines, and web and application
servers.

4.4.3 Overview and Use of the Framework

Putting all of the abstraction levels and aspects together results in the framework
shown in Fig. 18.

Context and Goals

Interactions

Interface

Channels

Roles

Actors

Resources

Functions

Tasks

Executors

Processes

Orchestra-
tion

Orchestra-
tors

Knowledge

Executable
Rules

Enforcers

Products

Objects

Stores

In
te

ra
ct

io
n

Requirements

Fu
nc

tio
n

C
oo

rd
in

at
io

n

D
ec

is
io

n

P
ro

du
ct

Design

Implementation

Infrastructure

S
tru

ct
ur

e

Fig. 18. Framework overview.

The framework illustrates that enterprise services are realized through combina-
tions of business functions, processes, IT and more, all of which should be devel-
oped jointly. Of course, the framework is no more than that, a frame of reference.
It does not specify a way of working and there is no requirement to fill each cell of
the model individually. Rather, it provides a way to position and relate the various

71

design artefacts, where individual artefacts may cover more than one cell. For ex-
ample, in the infrastructure layer, people (human resources) will often fill multiple
positions at the same time, e.g., being both ‘manager’ and ‘coordinator’. Similarly,
the more advanced IT systems, such as for case management, business process
management or business rule management, cover multiple levels and aspects.
Conversely, some cells may remain empty for a specific service. For example, if
no significant coordination with others is required, business process specifications
may be superfluous.

Service organizations can use the framework to plot the models and abstrac-
tions they are already using in their service development process and highlight
white spots that they currently do not cover. To give an idea on what to put where,
we return to the AgiSurance case study introduced in Chap. 2.

4.4.4 Modelling AgiSurance

While AgiSurance offers many different insurance products, each with their own
unique properties and rules, they also share some characteristics. For each product
there has to be an acceptance process and a claim handling function. In order to
cope with the regularly changing product offering, AgiSurance wants to establish
an agile service architecture, allowing easy configuration of new insurance prod-
ucts on a stable infrastructure. In the following, we focus on the redevelopment of
the claim handling service. Currently, claims are received on paper and handled
manually – a costly and error-prone process. Due to increased sales, AgiSurance
expects a sharp rise in claims. Therefore, they want to optimize and partly auto-
mate the claim handling. The idea is to develop generic business and IT functions,
and processes for handling insurance claims, that are fed with specific rules for
decision making and interaction for each product.

In section 3.2.4, AgiSurance had already decided for a flexible, model-driven
infrastructure, consisting of a database management system (DBMS), a business
rule management system (BRMS) and a business process management system
(BPMS). However, because of the relatively simple and stable processes for claim
handling, they now decide not to use the BPMS, but to implement the processes
directly onto a standard application server.

AgiSurance first constructs a context model and a product model, based on an
analysis of contracts, policies and insurance legislation. The context model is
complemented with a business requirements model to define the stakeholders,
their goals and the requirements on the claim handling service. The organizational
structure and the division of tasks and responsibilities does not really change, so
these models can be copied from the corporate business architecture, defining or-
ganizational units, roles, functions and high-level processes, and the handbook
with guidelines and procedures for employees. Next, the context and product
models are detailed further into a rule model and an information model. The rule
model will be executed directly on a rule engine; the information model is auto-

72

matically transformed into a database schema. In parallel, a user interface model
and a service model are devised. The service model lays the foundations for the
application code and the process model. The user interface model is used to gener-
ate the web pages for the claim handling service.

Fig. 19 plots the identified models and infrastructure elements on the ASD
Framework. Here we can see that all the service aspects are covered to some ex-
tent, and that detailed implementation level models can be traced back to higher
level requirements models. Design artefacts can also be related horizontally, such
as the service, rule and information models, signifying that they refer to each oth-
er. Several models cover more than one aspect and/or level. The product model,
for example, floats between the requirements and design layers, and covers parts
of the information, decision and process aspects. By plotting the models on the
framework, AgiSurance can identify where specifications are missing and where
they should put their effort in verifying the consistency between models.

Business requirements model

Process
model

Rule
model

DB
schema

Web
server
Web

server Application serverApplication server BRMSBRMS

PeoplePeople

Organization Handbook

Business Architecture

Web
pages

DBMSDBMS

PaperPaper

Product model

Service model
UI

model

Context model

Info
model

App
code

Fig. 19. Positioning AgiSurance models on the ASD Framework.

4.5 The ASD Conceptual Model

In this section, we describe the concepts underlying the various service aspects
and their relationships. This gives body to the ASD Framework and is a first step
towards integrating different models and specifications. The conceptual model is
structured along the dimensions of the ASD Framework (see Sect. 4.4.3). First we
describe the concepts pertaining to the Requirements level. At this level models
are increasingly used to formalize service requirements and to use them to relate
design artefacts to organizational goals. Service requirements, in turn, depend on a
conceptualization of the business domain, the context in which the service is to

73

operate. Therefore, we introduce two modelling domains at this level: Context and
Requirements. Second, we define concepts for each of the six design and imple-
mentation aspects. Each aspect constitutes a modelling domain. Finally, we define
the relationships between the defined modelling domains.

The metamodels for each of the modelling domains were constructed by ana-
lysing a number of relevant and popular modelling techniques for the given do-
mains. In a sense, we attempted to extract the best practices in conceptual model-
ling from a large number of existing techniques. Table 2 lists the modelling
techniques that were analysed for each of the modelling domains. Each technique
defines its own set of modelling concepts. Concepts that we encountered more
than once (also those which could be considered synonymous) or which represent
a key abstraction for the given domain, we selected as key concepts for that mod-
elling domain.

Table 3. Relevant modelling techniques for each of the modelling domains.

Modelling domain Modelling techniques
Context ERD, ORM, OWL, SBVR, UML Class diagram
Requirements ArchiMate Motivation extension, i*, KAOS
Interaction ConcurTaskTrees, Diamodl, UML Use Case diagram, UsiXML
Structure ArchiMate, BPMN, DEMO, e3value, UML
Function ArchiMate, DEM, DFD, e3value, IDEF0, SoaML
Coordination ArchiMate, BPMN, DEMO, UML Activity diagram
Decision Decision tables, DMN, ECA rules, SBVR
Product ERD, ORM, UML Class diagram

4.5.1 The Context Domain

A context model is a conceptual model of the domain in which an enterprise con-
ducts its business and in which the service(s) under development should operate. It
describes the vocabulary and key concepts of the business domain, as well as their
properties and relationships. Usually, the context or domain model is only associ-
ated with a structural view of the business domain, but it can equally well contain
dynamic views describing the main business activities and their constraints and
dependencies. A context model is often complemented with the constraints that
govern the integrity of the model. Sometimes the context model is referred to as
knowledge model, because it defines the basic facts and rules of the business do-
main. Thus it is more than a list of dictionary-style definitions of terms.

The context model can be effectively used to verify and validate the under-
standing of the business domain among various stakeholders. It is especially help-
ful as a communication tool and a focusing point both amongst the different mem-
bers of the business team as well as between the technical and business teams. In

74

addition, the context model forms the basis for defining requirements on the ser-
vice(s) to be developed. Therefore, it is important that a context model itself is in-
dependent from design or implementation considerations.

The importance of context or domain modelling has been highlighted by many
before us. As a consequence, many methods and techniques exist for it. The struc-
ture of a domain is often modelled using object-oriented techniques, such as UML
class diagrams, or the more basic Entity Relationship Diagrams (ERD) (Chen
1976). In case UML (OMG 2011a) is used, domain concepts are represented as
classes, their relationships as associations, and their properties as attributes. Con-
straints can be specified using the Object Constraint Language (OCL) (OMG
2010). However, the UML has been criticized a lot for being incomprehensible by
domain experts that are not software engineers.

There are several alternatives from the data and knowledge representation
community, such as the Web Ontology Language (OWL)) (W3C 2009), Object
Role Modeling (ORM)) (Halpin and Morgan 2008) and the Semantics of Business
Vocabulary and Business Rules standard (SBVR)) (OMG 2008), that take a more
fact-oriented approach to modelling the domain. In these techniques, properties,
relationships and other rules or constraints are all seen as ‘fact types’. Sometimes
these techniques enable automatic reasoning, for example to derive new facts.

By analysing and comparing the modelling techniques mentioned above, we
have derived the following set of key concepts for context modelling:

Concept: an abstraction or generalization of a phenomenon that may occur
in the domain.

Property: an attribute, characteristic, or quality of a Concept. Each Property
has a type specifying the range of values it can take.

Relation: an association between two or more Concepts, each having a par-
ticular Role in the Relation.

Value Type: a range of values that Properties can take.

Role: the position of a Concept or the part played by a Concept in a Rela-
tion.

Constraint: a limitation, restriction or rule controlling the possible instances
of concepts and relations, and values of properties.

The figure below depicts the context modelling metamodel, relating the key con-
cepts defined above.

75

Fig. 20. The context metamodel.

An example context model

In finance, context models are to a large extent defined by the legal ‘space’ in
which the financial institution operates. They need to comply with legislation
based on international directives and standards, such as Solvency II, Basel III, and
IFRS. Within this legal space, or more precisely their interpretation of the legal
space, financial institutions define a product model defining their products and
services.Both legislation and financial products and services are generally defined
in legal documents (laws, contracts, policies). Drawing up a context model then
consists of interpreting these documents, formalizing the definitions and rules con-
tained within them.

Below, we show some of the results of such a context modelling exercise for
AgiSurance, our example insurance company. A UML class diagram is used to
model the domain concepts and their relations.

Fig. 21. Part of the AgiSurance context model in UML.

76

4.5.2 Requirements Modelling

Whereas the context model defines the inherent structures and constraints of the
environment in which the enterprise has to operate, the requirements model cap-
tures the strategic direction and desires of the enterprise itself. A requirements
model describes the motivation for the service(s) under development. It identifies
the stakeholders and their concerns, and defines their goals or objectives.

In addition to clarifying and formally specifying the requirements for a service,
requirements modelling is useful to achieve forward and backward traceability be-
tween objectives and design artefacts. Forward traceability is the ability to analyse
the impact of a change in requirements. For example, when a business objective
changes it becomes possible to analyse which services, and the components realiz-
ing those services, are affected by this change. Backward traceability can be used
to determine the value or raison d’être of a design artefact. Backward traceability
answers questions like: ‘why was this service here? Who was responsible for this
service? What is the added value of this service to the enterprise??’

Within the Goal-Oriented Requirements Engineering literature we can identify
a number of relevant modelling techniques, such as KAOS (Van Lamsweerde
2003) and i* (Yu 1997). Several of these were analysed and compared in the de-
sign of the ArchiMate Motivation extension (Engelsman et al. 2011). KAOS is a
language that refines system goals to concrete requirements. In i*, intentions of
stakeholders (goals, beliefs) and their dependencies are modelled. Intentions are
refined into tasks an actor has to perform to realize them.

Since the ArchiMate Motivation extension (The Open Group 2012) is based on
these earlier techniques, we adopt the most essential concepts from ArchiMate as
key to requirements modelling:

Stakeholder: the role of an individual, team, or organization (or classes
thereof) that represents their interests in, or concerns relative to, the outcome
of the architecture.

Goal: an end state that a stakeholder intends to achieve

Requirement: a statement of need that must be realized by a system.

A number of different links are possible between these constructs. A goal can be
associated with one or more stakeholder. There are two relations available for goal
refinement. First, we have the goal decomposition relation. A decomposition of a
goal is the conjunction of the set of subgoals that constitute the goal, in such a way
that an immeasurable goal is decomposed into goals with measurable indicators,
and a goal with measurable indicators is decomposed in subgoals with
subindicators. The decomposition relation is used to operationalize goals. A goal
influence relation is used to demonstrate that the satisfaction of one goal positively
or negatively influences another goal.

77

A third link is the goal conflict relation. Two goals are conflicting if the satis-
faction of one goal prevents the satisfaction of the other and vice versa. In this
case, both goals are mutually exclusive.

Fig. 22. The requirements metamodel.

Fig. 22 illustrates the underlying metamodel for requirements modelling. The
main idea behind this metamodel is that a stakeholder may have a number of de-
sires or intentions. An intention can be anything, most likely a desired state of the
world. An intention only becomes a goal when a stakeholder is willing to commit
resources to reach that state of the world. The previously discussed relations are
used to refine goals into requirements. A requirement is a concrete goal that can
be assigned to a single actor. A goal is a desired state of the world which is not yet
concrete enough to be assigned to a single actor.

An example requirements model

Fig. 23 shows part of the business requirements model for AgiSurance using the
ArchiMate Motivation extension. It shows three stakeholder roles: the Chief Op-
erating Officer (COO) of AgiSurance, whose main goal is cost reduction; an In-
termediary, whose main goal is to reduce the manual work he has in filing claims
on his customers’ behalf; and a Customer, who wants claims to be processed faster
such that he will receive the insurance money in time to cover the incurred dam-
age. The diagram further shows that the main goals and contributing goals will be
realized by the two requirements ‘Provide on-line claim submission service’ and
‘Automate claim handling’.

COO IntermediaryCustomer

Cost reduction Reduce manual
work

Faster claims
processing

Reduction of
personnel costs

Facilitate self-
service

Automate claim
handling

Provide online
claim submission

service
Fig. 23. A business requirements model for AgiSurance.

78

4.5.3 Interaction Modelling

In the interaction aspect we design and model the way in which the various parts
of the enterprise interact with customers, partners, and each other to deliver the
service. Such interactions can be specified at various levels, ranging from an iden-
tification of collaborations and channels to the detailed design of user interfaces.

Although the scope of interaction design for enterprise services is much broad-
er, involving for example also physical channel design, many insights can be
gained from the more established discipline of user interface engineering for soft-
ware applications. In fact, user interfaces are a kind of service interface. User in-
terface engineering involves human factors engineering, user interface design and
graphics design (Nielsen 1993). For each of those subdisciplines, separate devel-
opers and designers with different competences are needed. Such perspectives and
competences are clearly relevant to service interaction design as well (see also
(Dividino et al. 2009)).

In user interface engineering literature, authors have distinguished multiple
levels of interaction modelling (Nielsen 1993; Aquino et al. 2008; Calvary et al.
2003; Vanderdonckt 2005; Versendaal 1991):

• task level;
• concept level;
• interface level (abstract (user) interface);
• navigation and presentation level (concrete (user) interface);
• the implemented (user) interface

In our framework, the task level is largely covered by the structure and function
aspects, while the concept level is covered by what we call the context model.
What remains are abstractions for modelling the actor-actor, actor-system and sys-
tem-system interactions. Most literature in this area focuses on actor-system inter-
actions, i.e., on how to model human-computer interfaces, e.g., (Vanderdonckt
2005) and (Trætteberg 2009). Actor-actor interactions can be modelled in lan-
guages such as ArchiMate and UML, that both support the Collaboration concept.

Collaboration: a (possibly temporary) configuration of two or more Roles
(see Structure aspect) that cooperate to jointly perform certain collective be-
haviour.

Interface: a point through which a Role offers access to its Services.

Interaction Element: part of a user interface, for example, a window, button,
or checkbox. Also non-visible parts of the interface, such as an input event
and a command, are interaction elements.

Since our aim is to integrate multiple modelling techniques, we have chosen here
for the most abstract definition of the interface concept. It can be used to represent
business interfaces or channels, but also to represent user interfaces (screen dia-

79

logs) and application-to-application interfaces (e.g., WSDL). When we dive deep-
er into the implementation level, we may also need concepts to model page navi-
gation and presentation, such as page, field, command, and page flow.

Fig. 24. The interaction metamodel.

In Fig. 24, we present a metamodel for the key concepts of the interaction aspect
and their most important relationships to concepts from other aspects, i.e., the
Role concept from the Structure aspect and the Service concept from the function
aspect.

4.5.4 Structure Modelling

In the structure aspect we design and model the way in which the enterprise is or-
ganized internally to deliver its services. This involves the definition of the hu-
man, organizational and system actors within the enterprise, as well as the rela-
tionships between them. A simple example of a structure model is the
organizational chart, depicting the hierarchy of organizational units and positions
within an enterprise.

Often, the structural aspects of an organization are covered by models that have
a broader scope. Interaction, process, function, and value models usually include a
partial specification of the structure of the service system. In the Business Process
Modelling Notation (BPMN (OMG 2011c), for example (also see Sect. 0), activi-
ties are assigned to pools and lanes representing organizational units, roles and
role hierarchies. In ArchiMate, the Open Group standard for enterprise architec-
ture modelling (The Open Group 2012), the structure aspect is covered by the stat-
ic structure aspect of ArchiMate. This includes business level concepts, such as
Business Actor and Business Role, but also application and infrastructure level
concepts, such as Application Component, Device and Node.

The structure of a service system can be captured using the following key con-
cepts:

Actor: an entity within the enterprise that can be assigned behaviour and re-
sponsibilities, such as a person, organizational unit or application compo-
nent.

80

Role: an abstract kind of Actor and a collection of responsibilities and poten-
tial behaviours. An Actor can be assigned to a Role, indicating that the Ac-
tor will fulfil all responsibilities and behaviours specified by the Role. An
Actor may be assigned to multiple Roles; and a Role may be assigned to
multiple Actors.

Location: a logical or a physical location relevant to the enterprise (such as
branch office, city, or country).

Actors can be related to each other through composition: one actor can contain
other actors. Other relationships can be imagined, such as reporting, ownership, or
assignment (of a role). In addition, actors can be assigned a location. Fig. 25 illus-
trate the key structure modelling concepts and their relationships.

Fig. 25. The structure metamodel.

An example structure model

AgiSurance’s corporate business architecture consists of three models: the organi-
zation model, the business function architecture model and the high-level business
process architecture model. The organization model specifies the organizational
structure and the hierarchical relationships between departments (see Fig. 26). In
this figure, hierarchy is modelled as containment (nesting).

AgiSurance

Back Office

Front Office

Home
&

Away
Car Legal

Aid

Customer
Relations

HRM

Product
Development

MarketingIntermediary
Relations

Document Processing
Shared Service Centre Finance

Fig. 26. An organizational structure model for AgiSurance in ArchiMate.

81

4.5.5 Function Modelling

In the functional aspect we design and model the activities or functional building
blocks that are required to deliver the service under development. Together with
the coordination aspect, it specifies the behaviour of the service. Where the coor-
dination aspect focuses on the flow (the logical or temporal ordering of activities),
the functional aspect focuses on the decomposition of complex behaviour into
smaller, manageable and reusable functions, and their interconnection through in-
put/output-relationships. Functional decomposition makes it possible to structure
the complexity of organizations and systems. The decomposition gives structure to
the tasks and activities in an orderly manner, independent from the executing
mechanism.

Functional decomposition, as a technique for describing systems as a hierarchy
of functions, is a widely applicable principle. It was first introduced in the area of
information systems engineering as the Structured Analysis and Design Technique
(SADT) (Marca and McGowan 1987), later formalized by the IDEF0 (Integration
Definition for Function Modelling) (IDEF 1981) standard. Data flow diagramming
(DFD) (Stevens et al. 1974) is another technique often used in information system
analysis, which focuses more on the flows of information between functions
(called ‘processes’ in DFD).

The principle of functional decomposition is also present in service-oriented
architectures and business function architectures. Therefore, techniques used to
model these, such as SoaML (OMG 2009) and Dynamic Enterprise Modelling
(DEM) (Es and Post 1996), are also relevant to the functional aspect.

The e3value methodology models a network of enterprises creating, distrib-
uting, and consuming things of economic value (Gordijn and Akkermans 2001).
The e3value technique can be used to model value exchanges between enterprises.
This may result in a business value model, clearly showing the enterprises and fi-
nal customers involved and the flow of valuable objects (goods, services, and
money). Such models can be used to analyse the economic viability of each enter-
prise within a service network.

Central to the functional aspect are the concepts of ‘function’ and ‘flow’.

Function: a coherent unit of behaviour with the purpose of performing
and/or fulfilling one or more missions or objectives, and identified by a verb
or verb phrase that describes what must be accomplished.

Flow: a steady, continuous stream or supply of something. Different types of
flow may be distinguished, such as information, physical, and value flows.

Functions consume and produce flows, respectively their inputs and outputs. Each
function can be decomposed into ‘subfunctions’, thus creating a hierarchy of func-
tions. Functions are executed by ‘mechanisms’, which can be automated systems,
individuals, a group of people or a combination of systems and people. In the

82

metamodel, we model this as an assignment to a role (from the structure aspect).
The execution of a function and its subfunctions takes place under ‘control’ of
something or someone. This can be a workflow, a set of rules or some other kind
of control function that is associated with the function.

Once the functions have been named and defined, we can start to think about
the services they realize. We repeat the definition from Chap 1:

Service: a unit of functionality that a system exposes to its environment,
while hiding internal operations, which provides a certain value (monetary
or otherwise).

The key concepts for the function aspect and their relationships are illustrated in
Fig. 27.

Fig. 27. The function metamodel

An example function model

Fig. 28 shows the business function architecture model for AgiSurance in
ArchiMate. It is an example of a model that is mainly concerned with the func-
tional aspect: it defines the functions, their decomposition, and the information
flows relating them to each other and to external roles.

Customer information

Product information

Insurer

Intermediary
Relations

Contracting

Financial
Handling

Claims
Handling

Claims

Insurance
policies

Customer information

Money

Customer
Relations

Asset
Management

Contracts

Product
information

Customer
information

 Claims

Insurance
information

Insurance
premiums

Claim
payments

Insurance
policies

Claims

Money

Claim
information

Intermediary

Customer

Customer’s
Bank

Fig. 28. A business function model for AgiSurance.

83

4.5.6 Coordination Modelling

In the coordination aspect, we design and model the way in which activities, both
automated and human activities, are coordinated to deliver the service under de-
velopment. It comprises both the coordination of activities within the enterprise
and the coordination of the interaction with other organizations, which may be us-
ers of the service or partners in delivering it. The literature on service coordination
generally distinguishes between a centralized form of coordination, called orches-
tration, and a decentralized, emergent form of coordination, called choreography
(Papazoglou and Heuvel 2007).

Many modelling techniques, both tool-independent and proprietary, are availa-
ble to model activities and their dependencies. The concepts that are used in these
techniques show a lot of overlap, although there are some differences in focus.
Some techniques are limited to modelling the processes of a single system or or-
ganization, while others explicitly address the interactions between parties.

The Business Process Modelling Notation (BPMN) is a standardized business
process notation which is defined and specified by the Object Management Group
(OMG 2011c) and has become the de facto standard for graphical process model-
ling. BPMN process models are composed of flow objects such as routing gate-
ways, events, and activity nodes. Activities, commonly referred to as tasks, repre-
sent items of work performed by software systems or humans. Routing gateways
and events capture the flow of control between activities. The Unified Modeling
Language (UML) offers Activity diagrams, to model the flow of activities within a
process, and Sequence diagrams, to model the detailed interactions between actors
in a specific scenario.

Central in coordination modelling are a set of behaviour elements, that express
the way in which an actor (for example, a system, person, or organization) acts in
relation to its environment. Typically, behaviour elements can be defined at dif-
ferent levels of granularity. We distinguish two levels of behaviour elements:

Process: a grouping of behaviour based on an ordering of activities. It is in-
tended to produce a defined set of (internal or external) products. A process
may be decomposed into more fine-grained (sub)processes.

Activity (or action): an atomic behaviour element, performed by a single role
within a certain time frame at a certain location. It can represent a function
or task (from the function aspect) that is subject to coordination.

Some coordination modelling formalisms explicitly discern collective behaviour
of two or more roles:

Interaction: a common behaviour element, carried out by two or more roles,
in which each role is responsible for its part in the interaction. A transaction
is an interaction that is treated as a unit to satisfy a specific request.

84

In general, a process does not consist of a single sequence of activities. It may
contain, for example, branches (choices) or parallel activities. For this purpose, all
process modelling languages provide several types of gateways:

Gateway: a coordination element that controls the flow of a process, han-
dling the forking, merging and joining of paths within a process.

A process can be influenced by internal or external events, which may for example
trigger a new process instance or interrupt a running process. A process may also
raise events.

Event: something that happens (internally or externally) and triggers a
processs or activity.

Finally, some process modelling formalisms explicitly model states. Behaviour el-
ements then result in transitions between states.

Coordination elements can be related in different ways, depending on the par-
ticular modelling technique that is used. We distinguish two main types of rela-
tionship: triggering and dependency:

Triggering: a relationship that defines the control flow, i.e., an explicit or-
dering of activities within a process.

Dependency: a relationship that defines how the execution of one activity
depends on the completion of other activities or on the availability of certain
product items.

The coordination aspect is closely related to other aspects. Processes or activities
may be assigned to roles from the structure aspect. They may access (cre-
ate/read/write/update) product items, and they may refer to decisions or rules.

Fig. 29. The coordination metamodel.

85

In the graphical notation of most process modelling languages there are ‘place-
holders’ for elements from the other aspects. For example, items or data objects
that can be accessed by behaviour elements, or decision activities that refer to de-
cisions.

An example coordination model

One of the processes within the claim handling function of AgiSurance is the ac-
ceptance process (see Fig. 30). AgiSurance first determines the admissibility of
the claim and then the amount of coverage, upon which an acceptance or rejection
letter is sent.

Fig. 30. A coordination model for AgiSurance’s acceptance function in BPMN.

4.5.7 Decision Modelling

As mentioned before, the Decision aspect captures the logic of reasoning used in
the service domain to reach decisions, i.e., how decisions are (to be) made. In this
aspect we therefore design and model the (business) logic to be used by the ser-
vice under development. A decision is made to determine a conclusion regarding a
specific case, based on domain-specific norms (Breuker and Van de Velde 1994).
We illustrate the process of deriving a conclusion from domain-specific norms by
an example based on the AgiSurance case. Consider, for example, the claim ac-
ceptance process at AgiSurance in which the activity ‘determine claim admissibil-
ity’ is executed. First, data is collected from and about the claim and the incidents
that are reported. Second, this data is compared to predefined norms defined by
AgiSurance. Once the data has been compared, a conclusion is derived.

The decision described is a straightforward operational decision. Other kinds of
decision exist, such as strategic/chaotic or strategic/complex decisions. Examples
of such decisions are crisis management and merger and acquisition decisions.
These kinds of decision are outside the scope of this book; here we focus on oper-
ational patterns and fact-based decisions.

Elaborating on the previous paragraph, we further detail a decision by identify-
ing the key concepts it consists of or to which it is closely related. A decision con-

86

sists of a combination of conditions and conclusions. Both conditions and conclu-
sions are represented by fact types. A fact type is a general classification of a real-
world fact, e.g., age, caring criteria, number of accidents and credit rating. De-
pending on the modelling language used, a specific combination of conclusions
and conditions is allowed.

Currently there are multiple techniques within the professional as well as the
scientific domain to describe decisions and underlying facts. Six of the most
common languages to model decisions are (Zoet and Ravesteyn 2011):

1. if-then sentences;
2. decision tables;
3. decision trees;
4. score cards;
5. event-condition-action rules;
6. event-condition-action-and-alternative rules.

Although the six languages display many similarities, differences exist regarding
the underlying concepts as well as the relationships they allow. Nevertheless, Zoet
and Ravesteyn show how the languages can be translated to each other.

In addition to the actual modelling languages, an important topic currently
emerging is the manageability of decision models. The expert system community
long wrestled with this problem, but according to Arnott and Pervan (2005), this
research is focusing on the wrong application areas and has no connection with
industry anymore. Van Thienen and Snoeck (1993) came to the same conclusion
almost a decade earlier, proposing a first solution based on normalization theory.
Currently, multiple decision management methods are being developed. A man-
agement method that is industry-based is The Decision Model (Halle and Gold-
berg 2009). A method emerging from the scientific community is described in
Zoet and Ravesteyn (2011). We discern the following key concepts for modelling
the decision aspect:

Decision: a conclusion reached after consideration of a number of facts and
the way in which that conclusion is drawn from those facts.

Fact Type: a general classification of a fact.

Rule Set: a group of statements that defines or constrains a specific aspect of
the business.

Rule: a logic statement connecting one or more conclusions to a set of con-
ditions.

Condition: an assertion used as antecedent in a rule.

Conclusion: an assertion used as consequent in a rule.

87

The key decision modelling concepts are closely related to the context modelling
concepts, as we can see in Fig. 31.

Fig. 31. The decision metamodel.

An example decision model

The acceptance process of AgiSurance contains two decision activities: ‘determin
claim admissibility’ and ‘determine coverage’. The first is modelled in Fig. 32 us-
ing the Decision Modelling Notation (DMN) from Von Halle and Goldberg
(2009). It shows that the claims admissibility depends on the customer’s payment
behaviour (has he paid his insurance premium) and the correctness of the data in
the claim form. In reality there will of course be many more conditions for the ac-
ceptability of a claim. The picture only shows the graphical representation of the
decision model. Not visible are the decision tables for each of the fact types.

Fig. 32. Decision model for claim admissibility in the Decision Modelling Notation.

88

4.5.8 Product Modelling

In the product aspect of a service, we design and model the products that are pro-
duced and consumed by the service under development. These can be physical
products, but more often these will be informational products. Every service uses
and manages a certain amount of information. For insurance services this can in-
clude information on customers, sold policies and claims received. The product
modelling concepts are highly interwoven with almost all other modelling con-
cepts. The interaction modelling concepts display the information products and
when modelling decisions the fact type refer to information types.

Product modelling is very similar to context modelling and many of the same
techniques can be used, e.g., ERD, ORM, and UML (also see Sect. 4.5.1). A prod-
uct model is usually more detailed and more concrete than a context model, be-
cause it is the basis for implementation in database and message schemas. There-
fore, we adopt a more restrictive set of concepts close to those of ER diagrams,
with the addition of concepts for modelling physical products:

Product: a thing that is produced or consumed by services. There are two
kinds of product: physical Objects, such as people or cars, and informational
Items, such as orders and claims. Often items are used to represent real-
world objects in an information system. Products can be composed of other
products, their parts.

Entity: a specification of a class of information items. One entity can spe-
cialize another, i.e., inherit the more general entity’s properties.

Attribute: a property belonging to an entity, e.g., its name, age, length, or
amount. Attributes have a type, which defines the values it can take.

Reference: a relationship from one entity to another entity, e.g. a car entity
refers to its owner (a person entity).

Fig. 33. The product metamodel.

89

An example product model

Fig. 34 shows a small part of the AgiSurance information model (the entities, their
attributes and references) pertaining to the handling of insurance claims. Here a
UML class diagram is used to model these information products.

Fig. 34. Fragment of the Product model for AgiSurance.

4.5.9 Integrated Service Metamodel

The analysis of existing modelling techniques above has resulted in the identifica-
tion of the key concepts for each of the modelling domains in the ASD frame-
work. These concepts are summarized in Table 4.

Table 4. Key concepts for each modelling domain.

Modelling domain Key concepts
Context Concept, Property, Relationship, Value Type, Constraint
Requirements Stakeholder, Goal, Requirement
Interaction Collaboration, Interface
Organization Actor, Location, Relationship
Function Function, Flow, Service
Coordination Process, Activity, Interaction, Gateway, Event
Decision Decision, Fact Type, Rule, Rule Set
Product Product, Object, Item, Entity, Attribute, Reference

Most existing modelling techniques cover more than one of the modelling do-
mains. This helped us in identifying relationships between concepts across the
domains. ArchiMate in particular covers many of the identified modelling do-
mains. The ArchiMate core language defines and relates concepts for the interac-
tion, organization, function, coordination and information domains. In version 2.0
(The Open Group 2012), this core is extended with concepts for modelling also
the requirements domain. Other languages, such as BPMN (OMG 2011c) and the
Decision Model Notation, cover a smaller intersection of the ASD conceptual
model, but still identify relationships between their concepts and other languages.
In The Decision Model (Halle and Goldberg 2009) the authors clearly specify how

90

decisions are related to activities in BPMN and how fact types are related to con-
cepts and properties in a context model, or, similarly, to entities and attributes in a
product model. Fig. 35 provides an overview of the metamodel for the ASD con-
ceptual model including these relationships. For readability we have left out those
concepts that do not have relations with concepts from other aspects.

Requirements

Coordination ProductFunctionStructureInteraction Decision

Context
Concept Property

Interface

Collaboration Function

Service

Flow

Process

Activity Decision

FactType

Requirement

Coordination
Element

Role Product

Item

Entity

properties
0..*

concept
0..1

property
0..1

elements

0..*

offers

0..*

interface
0..1

roles
2..*

realizes
0..1

realizes

0..1

assigned_to

0..1

type 0..1

elements

0..*

accesses

0..*

decision
0..1

factType

0..1

responsible_for
0..1

concerns

0..1

type
0..1

entity 0..1
Interaction
Element

Fig. 35. Integrated metamodel.

4.6 Model Integration

The ASD framework is an instrument to divide a service design into smaller set of
more manageable abstractions. However, ‘... having divided to conquer, we must
reunite to rule’ (Jackson, 1990). Therefore, the framework must be complemented
with a method for integrating the different aspects and abstractions. To this end,
we propose to use a metamodel-based approach akin to, for example, the approach
suggested by De Lara, Vangheluwe and Alfonseca, 2004. The basic idea is to re-
late different models via a common, integrated metamodel or ontology, in our case
the ASD conceptual model presented above. The conceptual model defines and re-
lates the key concepts for each of the modelling domains. There is no need to cre-
ate some kind of super metamodel that incorporates all possible concepts for all
possible aspects. It is sufficient to focus on the key concepts, because our objec-
tive is to support consistency checking and traceability, not to do fully semantics-
preserving transformations. We presume the latter to be supported by specific
tools, such as BPM suites and model-driven code generators.

The relations between the concepts from the various modelling domains enable
us to relate actual models used in a service design. We use the following proce-
dure to do so:

91

1. First, we define mappings from the used domain-specific modelling languages
(DSMLs) to the ASD integrated metamodel.

2. Second, we use the defined mappings to translate each of the models to a corre-
sponding ASD model, i.e., a model that conforms to the ASD integrated
metamodel.

3. Third, the resulting models are merged into one integrated model. Model ele-
ments that represent the same real world object or phenomenon are matched
and merged into one model element. For example, when a process model refers
to a particular actor and the organizational model contains an actor with the
same name, then these actors are candidates for being merged. Model merging
can be done in a naïve name-matching manner, possibly augmented with the
help of a thesaurus to match synonyms, but it can also be based on more elabo-
rate semantic matching algorithms. In any case, it is sensible to make this an in-
teractive, user-controlled process.

4. Finally, the integrated model can be used to query for the existence and con-
sistency of relations between elements from different aspect models.

Let us illustrate this procedure using the AgiSurance case study. In Sect. 4.4.4, we
already introduced the various models that AgiSurance made for redeveloping its
claim handling service (see Fig. 19). Subsequently, we showed parts of these
models in Sect. 4.5, when we introduced the conceptual model. Different model-
ling languages were used: ArchiMate and its motivation extension, BPMN, the
Decision Modeling Notation (DMN), and UML. The first step now is to map the
used modelling languages onto the ASD integrated metamodel. These mappings
are summarized in Table 5 below. For the sake of simplicity, we present only
those parts of the mappings that are relevant to the case study.

Table 5. Language mappings.

ASD Concept ArchiMate BPMN DMN UML
Role Business Role Pool/Lane
Function Business Function
Flow Flow-relation
Process Business Process (Sub)Process
Activity Business Activity Activity
Gateway Junction Gateway
Decision Decision
Fact Type Fact Type
Rule Set Rule Family
Concept/Entity (Business) Object Class
Property/Attribute Attribute

A Business Role in ArchiMate, and Pools and Lanes from BPMN are mapped to
the Role concept. Processes, Activities and Gateways also occur in both these lan-

92

guages and are mapped to their corresponding concept from the Coordination as-
pect. The Decision aspect concepts, however, only occur in the Decision Model-
ling Notation in this case study. UML was used for context and product models.

Next, we translate the given ArchiMate, BPMN, Decision and UML models us-
ing these mappings (step 2) and integrate the resulting models (step 3). The inte-
grated model we obtained is illustrated in Fig. 36. We use the UML Object dia-
gram notation, with rectangular boxes representing the model elements. The boxes
are labelled with the name of the element and followed by their type (the name of
the corresponding metamodel concept). Due to space constraints, the figure only
shows an excerpt of the model, highlighting the elements related to the determina-
tion of the admissibility of an insurance claim.

Structure Function Coordination Decision Context

Product

Customer
::Role

Claims handling
::Function

Acceptance
::Process

Claim
::Item

Determine
claim admissibility
::Activity

Claim admissibility
::FactType

Determine
claim admissibility
::Decision

Admissible
::Property

Claim
::Concept

Assessor
::Role

Claims
::Flow

Claim
::Entity

Insurer
::Role

Fig. 36. Part of the integrated model for AgiSurance.

The model should be read as follows: Three roles have been defined in the struc-
ture domain as part of the business function architecture (see Fig. 28): ‘Customer’,
‘Insurer’ and ‘Assessor’. The Assessor role is contained within the Insurer role
(not depicted in Fig. 36). From the business function architecture, we can also de-
rive the following elements in the function domain: a ‘Claims handling’ function,
which is the responsibility of the Insurer role, and a ‘Claims’ flow from the ‘Cus-
tomer’ role to the ‘Claims handling’ function. Within the Coordination domain, a
process called ‘Acceptance’ has been defined which belongs to the Claims han-
dling function. This ‘Acceptance’ process contains an activity ‘Determine claim
admissibility’, which has been assigned to the ‘Assessor’ role. The latter activity
refers to a decision called ‘Determine claim admissibility’ in the Decision domain.
The corresponding ‘Claim admissibility’ fact type refers in turn to the ‘Claim’
concept and its ‘Admissible’ property from the context domain. In the product
domain, we also find a ‘Claim’ entity and a ‘Claim’ information item, which are
associated with the corresponding context model concept.

93

4.7 Requirements for Tool Support

The model integration approach presented in the previous sections of course poses
important requirements to service development tools and operational infrastruc-
tures. As we already described in Sect. 4.3, we can distinguish different levels of
adoption of modelling. Up to level 3, ‘isolated formal models’, no additional func-
tionality is needed beyond what individual modelling tools already offer. For the
two highest levels, however, more is required.

At level 4b, ‘vertically integrated formal models’, it should be possible to relate
models from different abstraction levels. This means that the relations from re-
quirements via design and implementation down to the operational infrastructure,
and vice versa, can be traced, and that models are used to configure individual in-
frastructure elements. An example of this would be the use of a business process
management engine that is configured with BPMN 2.0 (OMG 2011c) models,
which in turn are related to more abstract architecture and requirements models.

This type of functionality is already offered by many integrated tool suites.
However, if the upper-level models are designed in different tools than the lower-
level models and the execution environment, a clear interface between these levels
needs to be established. Existing standards such as XMI (ISO/IEC 2008) can be
used to specify the necessary interchange formats and many modelling tools sup-
port this (although they are often better at importing than at exporting models, for
obvious reasons). Usually, however, this is a unidirectional transformation, down
towards the implementation and infrastructure; if we also want traceability back
up the chain, a feedback mechanism needs to be implemented. Such traceability is
currently offered only by single-vendor, integrated tool solutions.

At level 4a, ‘horizontally integrated formal models’, we want to be able to re-
late and integrate models from different aspects. This helps in ensuring consisten-
cy and coherence between these aspects and allows for various kinds of analyses
of these models, as explained before. This integration implies that we must relate
elements in different models with each other, and hence that we need to ‘address’
such elements.

One approach to this is the use of a single tool environment that ‘owns’ the var-
ious models covering different aspects. This is the approach taken by many busi-
ness- and architecture-oriented modelling solutions, such as Be Informed Studio,
Aquima, BiZZdesign Architect and IBM Rational System Architect.

However, at the lower levels of abstraction, different types of models are often
managed by different tools; for example, process models are tied to BPM suites,
business rule models to BRM tools and engines, class and object models to soft-
ware development environments, et cetera. This implies that these tools need to
talk to each other, or at least to some common environment that links them togeth-
er. In that case, each model element would ideally have a globally unique identifi-
er that any tool can use as a reference, even if that particular element is in a model
managed by a different tool. However, at the moment the only realistic solution is

94

to store these models in a single shared repository, on which these different tools
operate. This is the route taken by most vendors of larger modelling and require-
ments management tool suites.

Unfortunately, such repositories are often not open to third-party tools. Alt-
hough many repositories are based on standards such as EMF (Steinberg et al.
2008) or MOF (OMG 2011b), this is not enough. We also need open, standardized
interfaces and (semantic) standards for relating concepts, based on a clear
metamodel such as the one presented in the previous sections.

To demonstrate the feasibility of this integration approach, we have already
connected different tools in both the horizontal and vertical direction. BPMN
models created with the business process tool BiZZdesigner (from BiZZdesign)
were related with the context and product models from the knowledge modelling
solution of RuleManagement Group, via decision models in the Decision Model-
ling Notation. In the previous section, we already showed part of the integrated
AgiSurance model that was developed in this case study (Fig. 36).

The hardest part, however, may turn out to be the integration between the dif-
ferent elements and platforms at the infrastructure level. The complexity of inte-
grating various components, for example via an enterprise service bus, should not
be underestimated. Not only does this integration require clarity about the func-
tionality and semantics of each of these elements, but it must also conform to var-
ious non-functional requirements. If high or bursty volumes must be processed,
for example, the performance may become a bottleneck. The complexity of such a
landscape may require extensive proofs-of-concept. Models may also be of help
here, for example to perform quantitative analyses or simulations. For more on
such analyses, see e.g. (Lankhorst et al. 2009, Chap. 8).

5 Patterns for Agility

M.E. Iacob, M.M. Lankhorst, A. Schrier

The use of patterns is an important practice in the agile software development
community. There are many sources for patterns. In this chapter we will examine
several pattern collections and explore their potential contribution to system agili-
ty. We illustrate our pattern approach by a detailed examination of our collection
of architecture patterns for multichannel management. The chapter is organized as
follows: after a first part in which we define design patterns and discuss their most
important characteristics, we describe our classification of several collections of
patterns with respect to their contribution to agility. We conclude the chapter with
an example of pattern usage in practice.

5.1 Introduction

Design patterns originate from Christopher Alexander’s architecture work in
building and construction (Alexander 1979), and were adopted by the software
engineering community and many other disciplines. To quote Alexander (Alexan-
der et al. 1977):

As an element in the world, each pattern is a relationship between a certain context, a certain
system of forces which occurs repeatedly in that context, and a certain spatial configuration
which allows these forces to resolve themselves. As an element of language, a pattern is an
instruction, which shows how this spatial configuration can be used, over and over again, to
resolve the given system of forces, wherever the context makes it relevant.

Since the publication of ‘Design Patterns’ by Gamma et al. (1995), patterns are
well known in software architecture as well.

A design pattern is a generally applicable solution to a common design
problem, codified in a standardized form providing a configuration of ele-
ments that together solve the problem.

Similar to architecture patterns in civil engineering, software design patterns can
be used at different levels of granularity, from large scale enterprise-level refer-
ence architectures (analogous to city planning) to small, code-level solutions

96

(comparable to the fitting of a window in a wall). Patterns for a particular domain
can be organized in the form of a pattern language, which is defined as a network
of patterns at different abstraction levels that refer to each other.

The use of design patterns to support design agility is a critical skill of service
developers. For example, studies indicate that significant effort and money is
spent on the modification of information systems after their initial release. Refac-
toring a system (Chap. 2) is not always the answer to new requirements; sound de-
sign is needed to prevent such costs, and it is useful to invest in simple, clear and
extensible designs. Such a strategy is facilitated by the consistent usage of design
patters across the enterprise. This has the following positive effects:

• Since patterns encapsulate best practices with respect to a whole class of prob-
lems, they facilitate the reuse of design knowledge in different contexts.

• Patterns provide service designers with a higher-level language for talking
about their designs, without them having to go into the technical details of the
implementation.

• Patterns facilitate the use of proven design principles and styles, such that the
resulting service design will have a sound foundation.

• Patterns may help to increase business and technology alignment by mapping
business aspects of services onto the software realization of those services.

• Patterns may help exploit the existing information systems infrastructure by
combining software components into new business and application services,
thereby increasing reuse and ultimately enterprise agility.

A pattern names, abstracts, and identifies the key aspects of a common design
structure, such that it can be reused and applied over and over again in creating
new designs. In this chapter we use the following general pattern structure, mainly
based on the structure introduced by Coplien (1996) and consisting of the follow-
ing elements:

• Name: A short descriptive name of the pattern.
• Problem: Which problem does this pattern solve?
• Context: In which circumstances is this pattern useful?
• Forces: Which forces have to be balanced? Which goals and constraints apply?
• Solution: What solution does this pattern offer? What is the structure of the

pattern?
• Rationale: What is the motivation for the chosen solution?
• Consequences: How does the pattern resolve the forces? What are the positive

and negative effects of using the pattern?
• Known uses: How is this pattern used in practice?
• Related patterns: How is this pattern related to other patterns?

97

5.2 Conceptual Model

To review a large and diverse collection of patterns and to establish their possible
contribution to both service design and agility, we needed a conceptualization of
design patterns to help us identify their most important characteristics and struc-
ture them in a uniform way. For this reason we have developed a pattern concep-
tual model (shown in Fig. 37), that has also served as data model for the pattern
catalogue tool we developed. Next we briefly describe this conceptual model.

-name
-problem
-context
-forces
-solution
-rationale
-consequences
-known_usages

Service pattern

-ease of making a change
-ease of rapidly deploying changes
-ease of minimizing and dealing with effects of changes
-ease of integrating the system with its environment
-ease of decoupling the system from its environment

Agility contribution

-name
-specification type
-language type

Specification

-name
-description

Dimension

-name
-description

Classification

-name
-description

Stakeholder role

*

*

*

*

1 *

*

1

1
1

-collection name
-link
-summary description

Background

1 *

-source pattern : Service pattern
-target pattern : Service pattern
-description of the relation

Inter-pattern relation

*

*

Fig. 37. Pattern metamodel.

The central concept is that of service pattern, which is specified in terms of the
template introduced in the previous section. As said before, a service pattern may
also be related to other patterns. Such relations are captured by the concept inter-
pattern relation. A relation links two patterns (a source and a target) and it has a
description.

Since our focus is on agile systems and design, we include the agility contribu-
tion concept in order to be able to specify the effects of each pattern on the differ-
ent aspects of system agility; these aspects have been defined and discussed in
Chap. 3. Also, some of the patterns may have a solution element described in
terms of a model. The specification concept has been introduced to accommodate

98

such models. Finally, we want to provide pattern classifications following several
criteria, which we call dimensions, and according to the stakeholder roles the pat-
tern addresses.

5.3 Pattern Classification

We have defined a set of classification criteria and used these to assess service de-
sign patterns. The selection of these criteria and the evaluation/classification exer-
cise was organized as follows:

1. We set up a workshop with six experts and agreed upon a set of classification
criteria and the possible values associated with each criterion.

2. We first evaluated the discriminatory power and accuracy of our classifica-
tion/evaluation instrument in a pilot test. Thus we asked four experts inde-
pendently to assess one pattern collection, the Enterprise Architecture Patterns
for Multichannel Management. Comparing their results, we discovered that
there was a significant overlap between two dimensions (domain and problem
type) and another one was difficult to assess (abstraction level) since it often
produced inconsistent results (this dimension was particularly sensitive to the
subjective interpretation of the rater). We decided to drop the latter and to
merge the former into one criterion.

3. We then assigned each collection to two raters and asked them to assess it in-
dependently using the consolidated classification instrument. They also had to
compare the results and resolve conflicting classifications.

We considered the following classification criteria (i.e., ‘dimensions’) to evaluate
patterns: Activities, Problem Type, Role and Contribution to Agility. Although the
last one is an evaluation criterion rather than a classification criterion, we consider
it very important as it shows the perceived usefulness of a particular pattern for
system agility. Thus, these criteria reveal essential characteristics for the usage of
the patterns in the context of agile service development and facilitate a fast dis-
covery of suitable patterns in a particular design situation.

5.3.1 Activities

Within the iterations of an agile project, there are many recurring activities, such
as:

• Communicating, e.g. stand-up meetings, stakeholder interaction, requirements
elicitation.

• Strategizing, defining the general, long-term direction of the organization.

99

• Envisioning, identify scope and business goals for the effort and develop a
common, high-level vision on the service.

• Defining requirements, to find out what the stakeholder requirements and other
constraints on the envisaged service are, prioritization.

• Eliciting knowledge, e.g. interviewing experts, analyzing applicable documents,
etc.

• Analyzing, to get clarity in the problem at hand, the implications of require-
ments from different stakeholder groups, coherence between requirements, the
context in which the envisaged service must operate, including external con-
nections, legacy systems, COTS software to be used, etc.

• Organizing, i.e., defining roles and responsibilities, reporting lines etc. within
the service development project.

• Planning, e.g. timeboxing, sprints, migration planning, resource allocation.
• Architecting, to obtain high-level decisions on the solutions structure and its fit

within the context.
• Designing, to flesh out the solution in more detail. Different disciplines will

have their own design steps.
• Realizing, to realize a solution in business processes, business rules, human

tasks, software code, etc.
• Integrating, to combine partial solutions (e.g. from different disciplines like

software development, business process engineering, business rules design).
• Deploying, to address software and hardware deployment, deployment of busi-

ness processes on BPM engines, etc.
• Implementing, to address implementing the deployed solution in the organiza-

tion, including change management etc.
• Measuring, e.g. monitoring project progress with burn-down charts, etc.
• Evaluating, e.g. quality assurance, user experience testing, other forms of test-

ing and validation, to make sure the service performs as required.
• Documenting, writing down relevant aspects of the service, its design, use, etc.
• Managing, to address the operational management, governance and mainte-

nance aspects of the deployed service and all its related artifacts.
• Decommissioning, to phase out or replace the service.
• Learning, explicitly reflecting on and improving your way of working.

Note that these activities are not sequential phases (like in a waterfall process). In
an agile or iterative development process, these are recurring activities that gradu-
ally refine and extend the solution to the problem at hand, while going through the
aforementioned cycles/iterations.

5.3.2 Problem Type

The problem type of a pattern characterizes the typical issues that the pattern ad-
dresses. We focus on the service being designed and not on the agile processes be-

100

ing performed; this is treated elsewhere. Some examples of problem types we en-
countered are:

• Organization (as part of the business system), e.g. ownership, governance,
compliance, roles and responsibilities, reporting.

• Usability, user interaction, e.g. GUI design, navigation paths, customization.
• Communication, e.g. conversation, interaction, message passing.
• Coordination, e.g. workflow, orchestration, event-based.
• Interoperability, e.g. transformation, translation patterns.
• Knowledge representation.
• Data structure.
• Data access, e.g., directly, through gateways.
• Compliance (of systems) with rules and regulations.
• Security
• Scalability & performance
• Reliability & availability
• Transaction

5.3.3 Role

The Role dimension of our pattern framework describes the typical role users of
the patterns may play. Lankhorst et al. (2009, Chap. 7) identify three different
types of roles (called ‘purposes’ there).

1. Designing: Supporting architects and designers in the design process from ini-
tial sketch to detailed design. Typical roles include product and service devel-
opers, enterprise, knowledge and software architects, business process design-
ers, software engineers, interaction designers.

2. Deciding: Assisting managers in the process of decision making by offering in-
sight into cross-domain architecture relations, typically through projections and
intersections of underlying models, but also by means of analytical techniques.
Typical roles involved are CxOs, business line managers, product/service man-
agers, project managers of service development projects.

3. Informing: Helping to inform any stakeholder, in order to achieve understand-
ing, obtain commitment, and convince adversaries. Associated roles include
end users, clients, employees. This is also related to the stakeholders involved.

5.3.4 Contribution to Agility

With this dimension we assess the impact each design pattern may have on the
agility of the designed service or system. For this purpose we use the agility as-
pects from the definition of agile systems as presented in Chap. 2:

101

1. The ease of making a change to a system
2. The ease of rapidly deploying changes
3. The ease of minimizing and dealing with effects of changes
4. The ease of integrating the system with its environment
5. The ease of decoupling the system from its environment.

5.4 Pattern Catalogue

We have built a catalogue of patterns, classifying many different patterns with re-
spect to the aspects from the previous section. The sources of these patterns can be
found in several books and online pattern libraries, listed below. Their selection
was guided by three criteria: comprehensiveness and relevance for service design
and agility. We also used the Agile Service Development framework (Chap. 4) to
direct our search and to check whether these collections together ensure a satisfac-
tory coverage of the relevant aspects and layers.

Design Patterns: These patterns are the classical ‘Gang of Four’ pattern descrip-
tions of Gamma et al. (1995) for good object-oriented software design. Good ob-
ject-oriented software design strives for ease of extension, adaption and re-use of
the designed software. All classical properties of object-oriented design (e.g., ab-
straction, encapsulation, polymorphism, etc.) are there, because of their im-
portance in designing ‘agile software’.

Enterprise Application Architecture Patterns: This is a rich collection of enter-
prise software application design patterns by Fowler (2002).

Enterprise Integration Patterns: Hohpe and Woolf’s book (Hohpe & Woolf
2003) provides a vocabulary and visual notation to describe large-scale integration
solutions across many implementation technologies by means of patterns. The
book concentrates on using asynchronous messaging architectures for loose cou-
pling of independent applications. It explores in detail the advantages and limita-
tions of asynchronous messaging architectures.

Organizational Patterns: These patterns by Coplien and Hall (2004) focus on
software development management. The patterns can be broadly divided into two
categories: process patterns, which govern developmental processes, and organiza-
tional patterns, which deal with organizational structure. Many of the popular ag-
ile development methodologies like Scrum and Extreme Programming borrow
from Organizational Patterns, but, these patterns are not restricted to agile soft-
ware development only.

EAM Patterns: The Enterprise Architecture Management (EAM) pattern cata-
logue from TU Munich (Ernst 2008) contains three main categories of patterns for
EAM: methodology patterns (M-Patterns), which focus on methods for architec-

102

ture (and IT) management, viewpoint patterns (V-Patterns), which address various
ways of depicting architectural information, and information model patterns (I-
Patterns), which concern the storage of architectural information.

Workflow Patterns: This collection (Aalst et al. 2003) is the result of a collabora-
tion between Wil van der Aalst (TUE) and Arthur ter Hofstede (Queensland Uni-
versity of Technology). Its aim is to provide a conceptual basis for process design.
The patterns provide a thorough examination of the various modelling perspec-
tives (control flow, data, resource, and exception handling) that need to be sup-
ported by a workflow or a business process modelling language.

Patterns for e-Business: The e-business patterns from IBM (IBM 2010) are cate-
gorized in sub-classes: Business, Integration, Composite, Application and
Runtime patterns. The business patterns are high level patterns, while the applica-
tion patterns refine these patterns so that they can be implemented in automated
systems. There may be more that one application pattern to automate a business
pattern. A runtime pattern describes the logical architecture required to implement
the application pattern. The integration patterns help to implement a full solution,
integrating individual business patterns. Composite patterns represent commonly
occurring combinations of Business patterns and Integration patterns, and typical-
ly solve major portions of functionality within a solution.

SOA Patterns: Thomas Erl’s book SOA Design Patterns (Erl) gathers 85 individu-
ally documented design patterns for service orientated architectures, covering pat-
terns for the design, implementation, and governance of service inventories, pat-
terns for contract design, security, legacy encapsulation, reliability, scalability, and
a variety of implementation and governance issues, service composition patterns
that address the many aspects associated with combining services into aggregate
distributed solutions, compound patterns (such as Enterprise Service Bus and Or-
chestration) and recommended pattern application sequences that establish foun-
dational processes.

Ontology Design Patterns: The Ontology Design Patterns (ODP 2010) address
the design of knowledge/domain models in the form of ontologies.

User Interface Design Patterns: These UI patterns originate from the Yahoo!
Design Pattern Library (Yahoo 2010). It includes patterns for layout, navigation,
selection, rich interaction and social user interface aspects.

Rule Patterns: This collection is a true pattern language by Graham (2007), con-
cerning business rule management, consisting of two parts. Part I is concerned
with requirements, process and architecture, and Part II with knowledge elicita-
tion, product selection and application development.

Multichannel Management Patterns: This is a catalogue of patterns for multi-
channel management (Lankhorst & Oude Luttighuis 2009): functional structures
for designing organizational and technical solutions that help organizations to

103

manage and align the various information channels they use in communicating
with their customers.

5.5 Example: Multichannel Management Patterns

Due to space constraints, we will present the results from this classification exer-
cise for only one pattern collection. We chose the enterprise architecture patterns
for multichannel management (Lankhorst & Oude Luttighuis 2009), mainly for
the following reasons:

• this collection is small and manageable for illustration purposes;
• the focus is on business services design rather than on software design;
• most patterns in this collection have a clear impact on agility;
• finally, this collection is a result of our previous research.

Since the early nineties, organizations have been using a variety of customer ser-
vice channels. Next to the traditional channels, such as mail, fax, reception desk or
telephone, customers have access to digital channels like websites and e-mail.
These service channels have different characteristics and are used for communica-
tion, interaction, transaction and distribution of products and/or services. Many
organizations, especially in government, struggle with the integration and man-
agement of these service channels. In particular, channel synchronization needs to
be addressed. Channel synchronization and coordination is required as customers
expect information and services to be consistent across channels.

Relevant architecture patterns for multichannel management were collected
from applicable literature and real-life architectures, especially in different gov-
ernmental organizations in the Netherlands, and various existing technological so-
lutions in which useful patterns are apparent. This resulted in the identification of
some thirty patterns, which are explained briefly in the table below.

Many of these patterns are concerned with the synchronization of content,
channels, and/or providers, to ensure a seamless experience for the client. As we
can observe, these patterns have different granularities. Some patterns address lo-
calized, small problems, others higher-level architectural decisions. Like the pat-
tern language suggested by Alexander (1977), this catalogue of interrelated pat-
terns helps architects to solve design problems at different levels of abstraction.
An example is the Mid-Office pattern, which encompasses linkage between front-
office and back-office systems and processes. This pattern uses other, more fine-
grained patterns such as Document Management and Business Process Manage-
ment that address specific aspects within the general problem field of front-office
and back-office integration.

104

Table 6. Multichannel management patterns.

Name Description

Service Selection The client is presented with service options in order to find the right service
from the right provider through a fitting channel.

Personalization A personal client profile is kept to adapt the selection, delivery and realiza-
tion of services to his/her situation, needs and desires.

Channel
Combination

Synchronous usage of two or more channels, e.g. calling up a company
while browsing through its website.

Channel Stack Usage of one channel through another, e.g. a call centre agent who uses the
company’s website to explain things to the client.

Co-Browsing Synchronous usage of (especially) the Internet channel (website) by compa-
ny employees and the client, to assist the latter.

Service
Combination

Combining services from different providers and offering these in an inte-
grated way through the same channel.

Intermediary An intermediary matches supply and demand of services and integrates the-
se to provide a good match with the client’s needs.

Service Team A service team is responsible for integrated client service, across channels
and combining front- and back-office activities.

Funnel Depending on the complexity of the client’s question, this is funneled via
the website, call centre, to back-office specialists.

Redirection A client is redirected by one channel (and service provider) to another chan-
nel (and possibly another provider).

Case Transfer A service provider transfers a client case to another provider.
Access The client identifies himself, is authenticated, authorized and provided with

access to a particular service.
Delegation The client delegates the authorization to use a service on his behalf to some-

one else, e.g. to an intermediary.
Portal Online services are offered in an integrated way via a web portal
Electronic Form Infrastructure for structured electronic forms.
Wizard Automated assistant that helps with finding the right service, filling in

forms, et cetera.
Knowledge Base Storing the business logic and other knowledge behind different products

and services in a specialized system to facilitate reuse in different channels
and applications, easy adaptation, et cetera.

Rule Engine Encoding business logic as formalized rules that can be executed automati-
cally by a rule engine.

Mid-Office Facilities to link (legacy) back-office applications to multichannel front-
office solutions (e.g. call centre, website, e-mail).

Business Process
Management

Controlling the execution of business processes through a specialized com-
ponent, separated from the application logic.

Content
Management

Centralized management of content that is used in different channels and
applications (e.g. in print, on the website, et cetera).

Document
Management

Central, digitized storage and access of all incoming and outgoing docu-
ments.

Case Management Centralized storage of all information pertaining to a specific customer case

105

(i.e., service usage), accessible by all employees handling this case.
Virtual Dossier Bringing client data together from different sources, via indices and syn-

chronization (instead of centralized storage).
Central
Administration

Concentrating client data in a single place, for usage across different chan-
nels, applications, departments and organizations.

Operational Data
Store

A solution that caches or copies back-office data for use by front-office ap-
plications and/or employees, usually for performance and availability rea-
sons.

Business
Intelligence

Measuring and analyzing current and past client data (in particular regarding
channel and service usage) to provide information to support management
decisions.

Publish-Subscribe Automatically distributing changes in data to systems that have registered
their interest, in particular to keep client and service data in sync across
channels.

For illustration purposes, we give a description of one pattern – the Mid-Office
pattern – that follows the pattern structure outlined in Sect. 3.3.

Name: Mid-Office

Problem: In many organizations, the back office is organized along the lines of
the applicable expertise, both in an organizational sense and in terms of the appli-
cation landscape. These back-office systems are often not available around the
clock, are not meant to be accessed directly by clients for security or performance
reasons, and do not provide an integrated image of the client situation. This ham-
pers, for example, the creation of a modern Web front-end for e-services or an
overview of a client’s situation in the call centre. The Mid-Office pattern provides
a set of solutions for bridging this gap.

Context: A mid-office architecture is often used as a temporary phase in the mi-
gration from monolithic legacy systems to a service-oriented architecture, which
distinguishes between:

• Core, centralized databases with e.g. client, case, service, and product data;
• Specialized services requiring specific expertise and systems;
• Generic functionality such as document management, external communication,

financial services, et cetera.

Forces: The goal of the Mid-Office pattern is to link front-office facilities provid-
ing services to clients (e.g. website, call centre) to back-office applications and
departments that realize these services.

Solution: Fig. 2 shows the main structure of this pattern. In the figure, we have
used the ArchiMate modelling language (The Open Group 2012). The services for
data access, process management and business logic are typically linked with an
enterprise service bus. This bus is not depicted in the figure and is not considered
part of this pattern (but it could be viewed as a supporting pattern). The pattern
addresses the following aspects of the ASD framework:

106

• Interaction: multiple front-office applications can serve different channels, e.g.
the website, the call center or the front desk.

• Function and coordination: the back-office applications are concerned with
business logic, as is the business process engine. Furthermore, the pattern iden-
tifies a number of required services.

• Information: The operational data store and case warehouse are part of the data
layer.

Mid-office layer

Front-office applications[*]

Document
access service

Client data
access service

Case data
access service

Process
service

Document
management

Case
management

Operational
data store

Business
process engine

Back-office applications[*]

Data access
services[*]

Domain-specific
services[*]

Document
data

Case data Client
data

Object
data

Product
knowledge

Fig. 38. Mid-Office pattern.

Rationale: The architectural solution chosen for the mid-office pattern it is based
on a fundamental principle of software architecture, namely the separation of con-
cerns, through different architecture tiers: a presentation tier, an application logic
tier and a data tier. This principle was adopted and extended in the mid-office pat-
tern to enterpise architecture, in which the data tier consists of back-office applica-
tions responsible for the processing of persistent data transactions, the mid-office
consists of applications incorporating the organisation’s business logic (and the
temporary data processed by them), and finally, the front-office which mostly
consist of channel management applications (e.g., portals, websites, call center or
front desk) and which represent the organisation’s presentation tier.

Consequences: The main advantage of the Mid-Office pattern is that it helps or-
ganizations to provide a unified, integrated face to the customer, while making the
transition from a stovepiped back-office application landscape to a service-

107

oriented architecture. The main disadvantage of this pattern is that it could serve
as an excuse to prolong the life of an outdated back-office application landscape,
preventing an organization to reap the benefits of a cleaner, more manageable ser-
vice architecture that removes duplications of functionality and data. another dis-
advantage is that some vendors offer integrated suites of applications as their
‘mid-office solutions’, whereas the various elements of the pattern could be im-
plemented rather independently and phased out step by step while moving to a
SOA.

Known uses: This pattern and its variants are widely used by large financial insti-
tutions such as banks and insurers, who have often grown through mergers and
acquisitions, resulting in a scattered and fragmented back-office landscape (not to
be confused with the ‘middle office’ organizational unit of investment banks). It
can also be observed within Dutch municipalities [Eg06, BL08], in a multitude of
variants.

Relationship with other patterns: The Mid-Office pattern combines a number of
other patterns to arrive at an integrated solution:
• Business Process Management: to control business processes (workflows)

across the borders of applications and departments;
• Case Management: to register the progress of a client case (service usage)

across applications and departments;
• Document Management: to provide a centralized database of all in- and out-

going client communication;
• Operational Data Store: to provide a safe, reliable and 24x7 accessible data

warehouse for back-office data.

We conclude this section with our evaluation of a selection of the multichannel
pattern collection with respect to the aforementioned criteria, which also includes
the Mid-Office pattern. All these patterns are used by architects and designers in
creating multichannel solutions, so their Role classification is always ‘designing’.
This is therefore left out in Table 7.

Table 7. Multichannel management pattern classification.

Name Activity Problem Type Contribution to agility
Personalization Communicating Usability Ease of changing, by offering personaliza-

tion options to users, ease of integrating
Service
Combination

Communicating,
defining require-
ments, organizing
service development

Coordination,
interoperability

Ease of integrating, by defining a process
that combines different services into one
‘super service’

Intermediary Communicating,
defining require-
ments, organizing
service development

Coordination,
interoperability

Ease of decoupling, ease of integrating, by
having a third party perform service selec-
tion and integration in lieu of the client

108

Service Team Defining require-
ments

Coordination,
interoperability

Ease of integrating, by having a team of
employees handle all service requests and
provide an integrated response

Portal Communicating,
architecting,
modelling,
designing

Usability Ease of integrating, by offering a single,
integrated front-end for multiple services;
ease of changing, by offering a customiza-
ble Web front end for services

Electronic Form Communicating Usability Agility-neutral
Rule Engine Architecting,

designing,
realizing,
integrating,
deploying

Knowledge,
coordination

Ease of changing, by separating business
knowledge from software implementation
and process flow, and making it configu-
rable in the form of (human-readable)
business rule models

Mid-Office Architecting,
designing,
realizing,
integrating

Coordination,
interoperability

Ease of integrating and decoupling, by
creating an infrastructure between back-
office and front-office systems that allows
1) the use of multiple back-office systems
in delivering services, and 2) changing or
replacing these back-office systems with-
out affecting front-end services

Business Process
Management

Analyzing,
modelling

Coordination Ease of changing, by separating process
flow from business knowledge and making
the flow configurable through human-
readable models. Ease of integrating, by
concentrating process logic in a single
place, where changes can be made when
e.g. a new service becomes available.

Virtual Dossier Communicating,
realizing,
integrating

Coordination,
knowledge,
security

Ease of integrating, by creating an infra-
structure to combine information from dif-
ferent sources and presenting this a unified
way.

5.6 Patterns at Work

In the previous sections, we have explained how we classified several pattern col-
lections along different dimensions. In our way of working, which will be ex-
plained in more detail in Chap. 6, the use of patterns is one of the inputs for sever-
al ‘agile practices’. Given the generic nature of the idea of patterns, they can of
course be applied in all practices where general design knowledge can be reused.
But more specifically, since we have classified these patterns with respect to,
among others, the problem types they address, the role of the pattern user, and the
activities in which they are used, we have three avenues for pattern selection.

First, the role of the pattern user is important. Via the three types of stakeholder
or user roles – designing, deciding and informing – you can make a first rough se-

109

lection. Most patterns in our catalogue have been classified as patterns for design-
ing; this is not surprising, since this is the most common use of patterns.

Next is an investigation of the activity in which you want to use these patterns.
The agile practices that constitute our way of working (Chap. 6) have been
mapped to the same series of activities described in the previous section. Given a
specific activity, this gives you a pre-selection of potentially relevant patterns
from those that are relevant to the specific user role you first selected.

The final step is to investigate the design or communication problem at hand.
Of course, this cannot be standardized or simplified into a step-by-step procedure.
The expertise of business specialists, architects, designers or other pattern users is
an essential factor. Nevertheless, the high-level classification of problem types
given in the previous section helps these experts in the selection of potentially rel-
evant patterns along this third dimension. Furthermore, the type of agility required
in solving this design problem must also be factored in.

Example: AgiSurance application architecture
In AgiSurance’s transformation towards becoming a product leader in insur-
ance products for niche markets, many different design problems occur. But
a specific and important one is the need for rapidly combining standardized
but configurable insurance policy components to create custom insurance
products that fit specific markets. The lead architect (a ‘designing’ role in
terms of the pattern classification) is working on the design of the architec-
tural backbone of AgiSurance that has to provide this flexibility (an ‘archi-
tecting’ activity).
In terms of the type of agility required, the need for combining different in-
surance elements points towards the ‘ease of integrating’ (in terms of the
types of agility contribution) of the different services that provide the im-
plementation of these elements. Furthermore, these services should them-
selves be highly configurable, to accommodate the specific needs of these
niche markets, i.e., they should provide ‘ease of change’. Finally, it should
be easy to provide these products via many different channels, online,
through various partners, et cetera. Triggered by the latter requirement, we
now look for relevant patterns in our example catalogue of multichannel pat-
terns. The following patterns appear particularly relevant:
‒ Service Combination: this will help with integrating different services to

create these new, modular insurance products.
‒ Mid-Office: given the still separate back-office applications of

AgiSurance, integrating the software services they offer might be facili-
tated with such a mid-office solution. Also, a future migration of these
back-office applications may be facilitated, because a mid-office decou-
ples the back- and front-end.

‒ Business Process Management: this helps in creating a model-based pro-
cess flow that links together the relevant services.

110

‒ Rule Engine: to make these insurance products highly configurable, the
internal business logic can be defined via executable business rules.

‒ Portal: given the importance of the Internet channel to AgiSurance, a
portal solution, with an integrated front-end for insurance services,
seems useful.

In Fig. 39, we see a small section of the first plateau of AgiSurance’s appli-
cation architecture. This is the medium-term target situation, in which the
back-office applications of AgiSurance’s departments are wrapped in a ser-
vice layer and linked via a mid-office solution. The model clearly shows the
application of the Mid-Office pattern. We also see that the back-office ap-
plications of AgiSurance no longer ‘own’ the client data; this is now stored
in the CRM system. Moreover, these applications are now wrapped in a ser-
vice layer and the ‘Insurance policy services’ are now partially provided by
a business process engine. In the near future, AgiSurance intends to replace
these back-office applications by a fully rule-based solution, making it much
easier to change specific insurance parameters and decisions.

Portal

Document
access service

Client data
access service

Case data
access service

Process
service

Document
management

Case
management CRM Business

process engine

Back-office
applications[*]

Insurance policy
services[*]

Document
data

Claim
data

Client
data

Policy
data

Insurance
knowledge

Business
rule engine

Fig. 39. AgiSurance mid-term ‘to be’ application architecture.

6 An Agile Way of Working

M.M. Zoet, A.W. Heerink, M.M. Lankhorst, S.J.B.A. Hoppenbrouwers, W. van
Stokkum

Internal or external changes may force an organization to introduce new services,
adapt existing services, or phase out services that have become obsolete. The im-
pact of such changes usually goes beyond the functionality of the services alone.
Sometimes it also affects the systems that are used to run the services, new work-
ing procedures that need to be put in place, communication strategies that need to
be aligned, and business models that need to be reworked. To cope with such
changes, organizations must be able to carry out the required changes as cost-
effective and efficient as possible. Besides constraints on the functionality of ser-
vices itself, the ability to deal with these events also puts constraints on how to
create services. This chapter presents the way of working to define, build, deploy
and maintain services such that organizations can cope with changing business
needs.

6.1 Introduction

As we have outlined in the first two chapters, the ability to react flexibly and
timely to changing circumstances is a key characteristic of agile enterprises. Every
organization is subject to expected or unexpected changes that affect the services
that they offer. These changes can be self-imposed, or come from the environment
in which the organization operates. To remain competitive, organizations may
have to respond to these changes, e.g., by introducing new services, modifying ex-
isting ones or phasing out obsolete services.

The contribution of architecture, models and patterns to enterprise agility was
addressed in Chaps. 3, 4 and 5. In those chapters, we looked at the design of flexi-
ble organizations and information systems. In this chapter, we will dive deeper
into the notion of agile processes: ways of working that are focused on rapidly de-
livering business value, in close relation with all relevant stakeholders, and open
to changing requirements and circumstances.

When you think about organizing a development process, it is sometimes help-
ful to view service development (or any other type of development) as resulting

112

from the ‘innovation system’ of your organization (see also Sect. 3.2.1): the sys-
tem that produces or changes the execution system that actually provides services.
The innovation system typically includes many different things, in very different
configurations: the people performing the development, but also the software in-
volved (from compilers to modelling tools), the documentation used (including
models), the methods, practices, techniques, and patterns involved, and so on. In a
participative form of development (so typical of agile service development), the
innovation capability also includes the people engaged on a regular basis in using
or managing the service system being developed.

It is important to address service development from a systems thinking perspec-
tive. This helps you to think rationally and, literally, systematically about the
whole set of factors, actors, processes and components that are relevant for the
service. Concerning the whole service system at once, instead of developing it in
piecemeal fashion, also helps you avoid sub-optimization, e.g. having excellent
business processes and IT systems, but a bad fit between them. Of course, we
might distinguish many different aspects and sub-systems and consider countless
different ways of ‘modelling the innovation system’. In a way, this whole chapter
applies such a systematic view on service development. Also, fields like ‘method
engineering’ and ‘project management’ arguably deal with innovation systems all
the time – even if they do not mention them explicitly or do not use systems think-
ing in their approach. We certainly do not claim that systems thinking is always
the best approach in process management (social factors and situated uncertainty
play too large a role in projects for that), but if we work towards the creation and
improvement of methods and tools, which are typically rational generalizations
used for specific situations, and if we simply want to better understand complex
projects and processes, then systems thinking can help a lot indeed.

The way in which an organization organizes its innovation system for business
service should match its desired agility. For example, if the organization needs to
define new services on a daily basis, then a heavy, waterfall-like development
process is unlikely to deliver the required rate of results. On the other hand, in
situations where service quality, legal requirements or safety are key, a structured
development process with extensive testing and audit procedures may be a better
choice than a poorly documented ad-hoc process. Consequently, there is a close
relation between the agility required by an organization and the way in which it
develops and changes its services. Ideally, the organization’s way of working must
be determined by the required agility, not vice versa.

In Chap. 2, we described how to operationalize this notion of process agility,
by decomposing it into five aspects:

1. The responsiveness to business needs.
2. The speed of delivering business value through working results, i.e., the re-

sponse time for dealing with new requirements.
3. The competency of the organization, i.e., delivering optimal results, in terms of

both quantity and quality, with limited resources.

113

4. The flexibility of the process, i.e., its adaptability to changing circumstances,
learning experiences of team members, etc.

5. The sustainability of the way of working, e.g. whether it can be applied in the
long run without resulting in demotivated employees or strained customer rela-
tionships.

In this chapter, we show how you can accommodate these five aspects while de-
veloping services. In particular, our focus will be on the construction and adapta-
tion of an agile way of working that fits the particular needs and circumstances of
an organization, program or project.

6.2 A Situational Approach to an Agile Way of Working

With many aspects and sources of agility discussed in the previous chapters, we
have still neglected one source: agile ways of working, from which the use of
‘agility’ in a software and service context arose in the first place. As mentioned in
Sect. 2.1, the Agile Manifesto (Back et al. 2001) states that ‘we have come to val-
ue responding to change over following a plan’. This implies that a fundamental
requirement of an agile organization is to have a service or software development
method being able to sense changes and react accordingly is. This in turn trans-
lates responsiveness to be a fundamental requirement for agile methods:

‘An agile method is a method that uses light-but-sufficient rules of project
behaviour and human- and communication oriented rules.’ (Cockburn,
2002)

Responsiveness is realized by having ‘light-but-sufficient rules’ and ‘human-and-
communication oriented rules’ (Qumer and Henderson-Sellers, 2008). Current ag-
ile development methods such as XP, Scrum and DSDM (see also Sect. 2.2) ad-
here to these principles. However, they all have their own predefined set of ‘light-
but-sufficient rules’ or practices.

A practice is a common way to do something.

Different methods provide different practices, which may well be useful outside
the context of the original method. Its practices allow XP to be effective in small
to medium size software development projects, while Scrum and DSDM are also
usable for large and non-software-related projects (Qumer and Henderson-Sellers,
2008), but they lack the specific software engineering guidance XP provides. Ex-
amples of other characteristics that determine when an agile practice can be used
are project size, team size, development style and physical environment (Qumer
and Henderson-Sellers, 2008).

114

These characteristics have different instantiations per organization or project.
For example project X might work on a small service with a team size of 7 people,
while project Y builds a large enterprise system and has several teams totalling
100 people. Project size and team size are situational factors that influence the
situation at hand and thereby the practices best applied.

Because situational factors are different at different organizations, different de-
velopment methods are required. However, pre-packaged methods like Scrum and
DSDM do not always fit entirely, and they may lack practices that you need in
your specific situation. Therefore, a more general approach to service develop-
ment is required. In this chapter, we describe our approach to the construction and
use of such an adaptive way of working. This approach is based on the one hand
on best practices and experiences from the agile community, and on the other hand
on the scientific foundations of the method engineering field (Brinkkemper 1996,
Ralyté et al. 2007).

6.3 Practices, Goals and Stakeholders

As outlined in the previous section, we want to define a process for constructing
agile ways of working that fit particular situations. In order to do this, we first
need to have a closer look at the underlying concepts and their relationships:
goals, situational factors and practices.

6.3.1 Practices as Method Fragments

As defined in Sect. 6.2, a practice is a common way to do something. Practices are
embedded in methods as method fragments. For example, the Scrum method, out-
lined in Sect. 2.2, consists of multiple practices such as Daily Stand-up Meeting,
Sprint, and Product Owner. The actual process and product part of a daily stand-
up meeting are described in a method fragment. Organizations adopt specific
methods as their way of working to formalize the processes they execute and pro-
vide guidelines they want to adhere to. For example, an organization may have
business processes in place to define services or products for particular customers,
use CMMI for process improvement, and communication guidelines to market
new services. However, organizations also extract practices from specific methods
and adopt them to their own situation. For example, an organization may combine
Scrum’s meeting practices with XP’s software engineering guidance and the Pro-
ject Start Architecture from DyA (Wagter et al. 2005). Besides these formal and
well-defined processes, organizations also have many informal, undocumented
ways of working. These also are practices executed by the organization.

Different practices are used in different phases of the service lifecycle, from in-
ception to decommissioning. Examples of such phases include planning, deliver-

115

ing, operating and managing the service. In various research projects and through
practical experiences, many practices have been identified and collected that can
be used in the lifecycle of a service. In this book, we focus 1) on practices that are
potentially relevant for agile service development, and 2) on practices that pro-
mote agility. Of course, many more practices may be identified, but these are out
of scope.

An agile practice (for service development) is a practice that promotes one
or more aspects of agility when developing services

The agility aspects that we consider include process agility aspects (responsive-
ness, speed, competency, flexibility and sustainability) and system agility aspects
(the ease of making a change, of rapidly deploying changes, of dealing with ef-
fects of changes, of integrating the system with its environment, and of decoupling
the system from its environment), as defined in Sect. 2.3. Note that an agile prac-
tice is not necessarily agile in itself; it can be a rigid practice that contributes to an
agility problem. For example, Scrum is widely recognized as an agile software de-
velopment method, although the Scrum methodology itself is standardized (in
terms of roles and meetings), well-described, and Scrum certification programmes
are in place (see, e.g., Schwaber and Beedle 2002).

Some of these practices have become ‘standard solutions’ for ‘specific prob-
lems’, and are often described in the form of patterns (see Chap. 5). Within the
field of information systems and service development, almost all existing practices
emphasize the development process of the actual realization and operation of the
service. Fewer practices are related to business aspects of the service such as its
business model, revenue streams or market segments. All these practices have
been described in a template, merging similar practices from different sources.
This template was inspired by the way design patterns are described (Chap. 5). For
each of the practices, the elements given by Table 8 have been provided.

Table 8. Description of agile practices.

Element Meaning
Name A short, descriptive name of the practice
Problem A description in a few sentences of the problem that this practice tackles. Spe-

cifically, which aspects of process agility (speed, responsiveness, competency,
flexibility and sustainability of the process) does this practice address?

Solution What way of working does this practice offer for the stated problem?
Who are the people involved in applying this practice, what are their roles,
how do they cooperate, interact or communicate?
What is the motivation for the solution? Why is this solution suitable? What
are the underlying principles/heuristics/theories justifying the solution?
Which trade-offs have to be made in applying this practice and which forces
must be balanced? For example, a system’s properties may be less predictable
beforehand because design choices are made at a late stage when a given prac-

116

tice is applied. If possible, state these trade-offs in terms of the situational fac-
tors they concern.

Situation In which circumstances is this practice useful, i.e., in which context can the
proposed solution be applied (and when not)? For example, having daily face-
to-face meetings requires a co-located team and is not possible in a geographi-
cally distributed situation (so perhaps a different practice must be applied to
achieve the same effect). Described in terms of the situational factors outlined
in Sect. 6.3.3.

Artefacts What kinds of (tangible and intangible) artefacts, and if applicable what kinds
of models in particular, does the practice use and produce?

Known uses What are examples of using this practice?
Related practices How is this practice related to other practices? Is it often applied before, after

or together with other practices? Are there alternative practices that solve the
same problem in a different way?

6.3.2 Identifying Practices

Having discussed practices and the manner in which we describe them, we now
take a closer look at already existing practices and the manner in which practices
evolve. Let us start with an example of a filled-in practice template (Table 9).

Table 9. Description of Active Stakeholder Participation (Ambler 2003).

Element Meaning
Name Active Stakeholder Participation
Problem Systems and services often do not match the expectations of their prospective

users and other stakeholders. How can you ensure that the system or service
being built conforms to these (often implicit) assumptions and expectations of
stakeholders?

Solution A high level of participation is required to make software development efforts
effective and it often it is not sufficient in many organizations, particularly in
those where politics and not reason are the order of the day. Project success of-
ten requires a greater level of involvement by project stakeholders – domain
and technical experts should be actively involved with modelling (yes, creat-
ing the actual models, not just giving information to a modeller), senior man-
agement needs to publicly and private support your project, operations and
support staff must actively work with your project team towards making your
production environment ready to accept your system, other system teams must
work with yours to support integration efforts, and maintenance developers
must work to become adept at the technologies and techniques used by your
system.
Often, these stakeholders are busy people with full schedules. Devoting
enough time is difficult, but necessary. If continuous on-site availability is not
possible, options such as regular, periodic stakeholder meetings or asynchro-
nous communication methods (e.g. email) can be explored.

117

Situation People: This practice requires having on-site access to people, typically users
or their representatives, who have the authority and ability to provide informa-
tion pertaining to the system being built and to make pertinent and timely de-
cisions regarding the requirements, and prioritization thereof.
Product: This practice is applicable for many different kinds of products and
services. However, it is particularly useful for those products that:are new to
their prospective users, i.e., they cannot easily state their requirements because
they have no comparable experience; have an interactive character, i.e., a lot of
user interaction; lend themselves to iterative development and refinement (and
hence, less applicable for products with very strict compliance or quality re-
quirements).
Process: This practice is particularly useful in case of: an iterative develop-
ment process that allows for feedback loops in which stakeholder considera-
tions can be taken into account; a development process during which the re-
quirements and/or the environment of the product or service may change.

Artefacts None
Known uses Actively practiced in all agile methods.
Related practices Communicate Powerfully

Domain Expertise In Roles
Product Owner
Sprint Review
Planning Game
Ask the Business and other knowledge elicitation patterns

This example is taken from the practices described by Ambler (2003). Many such
collections and catalogues exist. For example, in (Agile Advice 2006), seven core
practices to support an agile way of working have been identified. Coplien and
Harrison (2004) present organizational practices that strongly correlate to success
in software development processes. Popular agile development methods such as
Scrum (Schwaber and Beedle 2002), DSDM (DSDM Consortium 2008) and Ex-
treme Programming (Wells 2009) provide various concrete practices to deal with,
for example, project roles, iteration planning and engineering. Ambler has identi-
fied several practices to support agility through modelling (Ambler 2002), archi-
tecture (McGovern, Ambler et al. 2003) and information structures (Ambler
2003).

Another source of relevant practices are the principles from Lean. Its main idea
is to maximize customer value while minimizing waste. Lean originates from the
car manufacturing industry (Ruffa 2008). This idea of minimizing waste has also
been applied to the software development domain, resulting in Lean software de-
velopment methods (Poppendieck and Poppendieck 2003).

Often, practices from various sources are very similar. For example, the prac-
tice ‘Engage Customers’ from (Coplien and Harrison 2004) is similar to the prac-
tices ‘Active Stakeholder Participation’ from (Ambler 2002), ‘Involve All Stake-
holders’ from Ian Graham’s Rule Patterns (Graham 2007), and ‘All Hands On
Deck Early On’ from Xebia’s Lean Architecture principles (Xebia 2010). We have

118

classified similar practices, documented them in a standardized template, mod-
elled their dependencies and relations, and developed an instrument to select rele-
vant practices based on the situational factors of an organization. The process we
followed is depicted in Fig. 40.

Collect agile
practices

from existing
sources

Collect agile
practices

from existing
sources

Classify similar
practices

Classify similar
practices

Describe practices
in template

Describe practices
in template Relate practicesRelate practices Select practicesSelect practicesDescribe practices
in template

Describe practices
in template Relate practicesRelate practices Select practicesSelect practices

Practices Selected

Involve
stakeholders √

Architect always
involved x

…

Practices Selected

Involve
stakeholders √

Architect always
involved x

…
Practice

descriptions Practice models Selection instrument
Fig. 40. Identification of agile practices.

Of course, our library of practices is not a closed set, and new ways of working
will continually arise. However, agile practices should not be designed from
scratch or invented sitting behind a desk. Like patterns, agile practices evolve
from real-life situations and practical experience. When a certain way of working
has a proven track record, it can be added to our library.

6.3.3 Situational Factors

Now that you know what practices are, where to find them, and how to describe
them, how do you select the right practices, which fit your circumstances? To this
end, we need a concept to describe these circumstances: situational factors.

Of course, every organization is different; nevertheless, some common charac-
teristics or factors can be recognized that are important in choosing your way of
working. Examples of such factors are the organization size, number of business
units, number of customers, company policy, and customer involvement. These
common characteristics are called situational factors.

119

A situational factor is a property of the environment in which a service is
developed and/or used, which affects development processes and/or the ser-
vices offered by the organization.

These situational factors can either be self-imposed (internal), or they can arise
from the environment in which the enterprise operates (external). An example of
an external situational factor is legislation. For example, the Basel Accords on
banking supervision require banks to mitigate risks. This affects both their finan-
cial buffers, i.e., their financial risks, and their organization, systems and (physical
and IT) infrastructure, i.e., the operational risks. As a consequence, banks are for
example tightening their rules on lending money to clients. The accords also com-
prise requirements on operational risk management, including aspects ranging
from the risks of system failure and data loss to fraud and workplace safety.

In Chap. 2, we already outlined the common business drivers for agility, which
provide an important source of such external situational factors. Internal situ-
ational factors affecting the way of working include for example the business
strategy of an enterprise, the capabilities of its workforce, organizational culture,
or project budget.

Based on the definition and explanation above, you might argue that a situ-
ational factor can be virtually anything. In a sense, this is true, but not every situ-
ational factor is applicable to every design problem (Winter 2010). Of course,
generally applicable factors do exist, such as organization size or industry. How-
ever, design domains such as enterprise architecture, business process manage-
ment, software product management and agile service development all have spe-
cific situational factors affecting their management and implementation (Winter
and Bucher 2006; Bekker 2008; Winter 2010). Here, we specifically focus on situ-
ational factors affecting agile service development. These factors have been clus-
tered into the following categories:

• Business strategy;
• Business drivers;
• Barriers to change;
• Service requirements;
• Process requirements.

Section 2.4 has introduced seven types of business drivers. Investigating the busi-
ness drivers of the enterprise shows us the aspects in which its services need to be
agile. In the next section, we will explain the analysis of these business drivers and
the tool we developed for this purpose.

Although these business drivers indicate the need for agility from different per-
spectives, realizing this agility can be quite hard. Barriers within the enterprise
may delay or prevent changes. Therefore, we also have to identify and deal with
such barriers.

In addition to the situational factors concerning the entire organization, we also
have to look at situational factors that are unique to the specific service at hand.

120

For example, certain markets or user groups may pose specific requirements or
constraints. Based on these service requirements, a first specification for the pro-
ject has to be formulated (although in an agile project, this will often be only a
high-level description of the needs and ideas, and certainly not a detailed design).
During this step, the environment of the service has to be investigated. This step
provides you with the prerequisites (boundaries) with which the service needs to
comply. Examples of such restrictions are existing (technical) infrastructures,
compliance with laws and regulations, organization structures and possibly even
(management) culture.

After the relevant situational factors for the service have been determined, the
final element of this step is to determine the situational factors for the develop-
ment process. Examples of situational factors that can significantly affect the
process are the availability of people (both development team members and stake-
holders such as users and managers) and the synchronization needed with other
projects and processes in the organization.

6.3.4 Stakeholder and Goals

Moving from practices to situational factors brings us closer to the stakeholders of
the agile service. Stakeholders influence situational factors by settings goals.
Moreover, stakeholders also affect or can be affected by the organization’s ac-
tions. Let us repeat the applicable definitions from Chap. 4:

Stakeholder: the role of an individual, team, or organization (or classes
thereof) that represents their interests in, or concerns relative to, the outcome
of the architecture.

Goal: an end state that a stakeholder intends to achieve.

Examples of stakeholders (or rather stakeholder roles) are the board of directors,
shareholders, customers, employees, architects, project managers, legislative au-
thorities, et cetera. Stakeholders each have their own goals. For example, share-
holders may expect a high return on investment, customers may require value for
money, and IT managers would like to have a robust and reliable IT infrastructure
to support the organization’s business. Goals are not always aligned; different
stakeholders will often have conflicting goals. For example, building a highly reli-
able and robust infrastructure desired by the IT manager may be too expensive
from the CFO’s point of view.

For any organization, it is important to know its stakeholders and their goals,
because they affect the actions that the organization takes or should take. Does the
organization optimize shareholder value and make the shareholders happy, or does
it want to be best in class with respect to customer satisfaction and make the cus-

121

tomers satisfied? Or both? It is the task of management to balance the interests of
all stakeholders.

Moreover, stakeholders and stakeholder interests vary over time, and so do the
goals that these stakeholders pursue. This challenges organizations to continuously
monitor stakeholders and their goals, and to adapt its service offerings to keep
stakeholders satisfied.

A wide range of different stakeholder goals can be associated with the services
an organization offers. These goals do not just relate to the functionality of the
services, but also address other areas. From a business agility point of view, three
important areas stand out: the value offered to customers, the business model be-
hind the service offering, and the various risks involved.

• Service value. This relates to the added value delivered to stakeholders. Which
services should the organization offer to strengthen its portfolio? What invest-
ments should be made? What are the cash cows, stars or dogs in the portfolio?
Which stakeholders would benefit from these investments? And which types of
changes do you expect in the future, either based on market demand or by cre-
ating your own offerings?

• Business model. A business model describes the rationale of how an organiza-
tion creates, delivers, and captures value (Osterwalder and Peigneur 2009)
(economic, social, or other forms of value). For example, do customers have to
pay for the service? What price do they pay? Which partners are required to run
the service? What infrastructure is required to operate the service? Many of
these questions are addressed by Osterwalder’s Business Model Canvas, which
is a strategic instrument to develop and sketch business models. We will use
this later on to show in which areas your enterprise may require agility.

• Risk management. Another important goal is to control the various risks in-
volved in providing particular services. A proper risk analysis helps to identify
these risks and set service goals. For example, if dropping service quality will
cause customers to run to competitors, then quality assurance is probably high
on the wish list of some stakeholders. Moreover, being agile is in itself a way
of mitigating risks.

Example: AgiSurance high-level goals
AgiSurance knows that for its niche of event insurances, e.g. the music fes-
tival insurance mentioned before, it has to respond rapidly when an event is
announced; otherwise its competitors will conquer this market. It has there-
fore defined a short-cycle development process that can deliver a fully oper-
ational, simple insurance product within a week’s time. These products
themselves are to be highly tailorable, to fit with the specific characteristics
of events (e.g. indoor vs. outdoor accommodation, location, duration) in or-
der to provide maximal customer value.

122

6.4 Constructing A Situational Way of Working

Using situational factors, stakeholders and goals as inputs, we can use various
practices to construct a custom way of working that fits that particular situation.
Our situational method engineering approach, which fits the general iterative
character of agile methods, is outlined in Fig. 41.

Step 1:
Identify

situational
factors

Step 2:
Select

relevant
agile

practices

Step 3:
Combine
selected
practices

Step 4:
Execute
way of
working

Step 5:
Reflect on
the way of
working

Fig. 41. Overview of the way of working.

Step 1 First, we identify which factors determine the business need for agility of
an organization. These are based on the organizational strategy, business drivers,
available resources, and in particular the characteristics of the services that the or-
ganization provides. For example, does the organization need to offer new ser-
vices on a regular basis, or frequently change their parameters? Or is the service
portfolio stable, but do the channels to access these services often change? Or per-
haps the services and the channels are stable, but their realization is subject to
changing rules and regulations. These agility aspects depend on the environment
in which the organization operates, the culture, processes and people in the or-
ganization itself, and the services that the organization intends to offer. As these
can be different for each organization, this requires a situational approach. Exist-
ing approaches such as business requirements engineering (Engelsman et al. 2011)
and goal-oriented method engineering (Quartel et al. 2009) can be used to facili-
tate the identification of relevant agile aspects. The process of defining goals
based on the business drivers is elaborated in Sect. 6.4.

123

Step 2 Once we have identified the relevant situational factors and agility aspects,
we select relevant practices that support agility in these aspects. We have collected
a large number of agile practices from various sources in the agile community,
which may contribute to achieving the desired agility in the way of working.
Based on the agility contribution of each practice, we can decide whether a prac-
tice contributes to the required agility aspects and qualify as building blocks for
our way of working. Furthermore, the set of practices needs to cover a sufficient
part of the service development process, to provide designers and developers the
necessary guidance. The selection of practices is further discussed in Sect. 6.6.

Step 3 Next, we must combine the method fragments underlying the practices into
processes. Yet, this is not always easy: for example, practices may operate on dif-
ferent time scales, depend on each other’s outputs, or pose conflicting demands on
stakeholders or resources. How can one relate these fragments? This requires
some form of causal ordering that helps us decide how practices depend on each
other, which practices should be carried out first, and which come next. Is the
practice iterative, and if so, what is the duration of the iteration cycle? Such a
causal ordering of working practices outlines possible processes that an organiza-
tion could follow to meet the required agility goals, but it does not prescribe one
specific process. Combing practices into processes is further discussed in Sect.
6.7.

Step 4 Of course, executing the way of working is the core of any method. This is
not blindly following a series of predefined steps, but consciously applying rele-
vant practices and monitoring their effect. Moreover, not every situation will be
covered by an appropriate practice, and we should always exercise our profes-
sional judgment and make adequate decisions. In Sect. 6.8 we show how this is
done in practice.

Step 5 Internal and external events not only affect the services that an organiza-
tion offers; they also affect the way of working within the organization. Moreover,
experiences from executing the way of working are important inputs for future it-
erations. Is the current way to develop services still the best approach? Should you
intensify communication with stakeholders? Is the quality of results sufficient?
We should regularly reflect on the way of working itself to achieve agility and en-
sure the competency and sustainability of our process. This adaptive, learning be-
haviour is an essential characteristic of agile methods. For example, the Sprint
Retrospective of Scrum, a meeting held after each sprint to reflect and collect ex-
periences, is explicitly intended to improve the way of working of the team.

This, then, is where we close the loop: these experiences are used as inputs to
the next iteration, and may influence the choice and application of agile practices.
Thus we continuously improve and adapt the agile service development process it-
self.

In the next sections, we will provide more detail on each of these steps and show
how they can be combined to build and execute an agile way of working.

124

6.5 Step 1: Identify Situational Factors, Goals and Practices

Having discussed the various concepts related to an agile way of working, we
have now arrived at the question how (agile) practices can be selected based on
goals and situational factors. To this end, first we need to set appropriate goals, en
next we select those practices that help us to fulfil these goals.

6.5.1 Setting Goals

Goal planning is only concerned with goals, not with how to achieve them. Goals
may apply to all aspects and elements of an enterprise, ranging from strategy, or-
ganization and culture to architectures, business processes and technology. More-
over, these goals may range from very high-level to quite detailed and operational.
Also, goals are often related, and there can be a hierarchy or network of super-
goals and sub-goals.

If you set out to define or discuss goals, it is important that they are all real and
urgent; vague and distant goals are not going to be very useful, and certainly not in
an agile project that aims to deliver value in the short term. To avoid ‘over-
specification’ (i.e., people getting carried away by listing goals), every goal must
be ‘real’ to at least some stakeholders, and preferably already part of their plan-
ning or of their conversations about the work they do.

A systematic way of lining up goals and activities, enriching, checking, and
changing them, and eventually declaring them fulfilled, requires no more than a
well structured document that can easily be changed during the project (keeping
previous versions for later reference). This reflects both the progress in goal ful-
filment (project progress) and the changes in project goals (product agility) as well
as changes in process goals (agile way of working). To create such a document,
we adopt the business requirement analysis language from Engelsman et al.
(2011), which has also been used as the basis for the requirements concepts in
Sect. 4.5.2.

6.5.2 Situational Factors: Strategy & Business Drivers

As outlined in Sect. 6.3.3, we have different types of situational factors. First, we
need to investigate the strategy and business drivers of the enterprise, because this
will help us find out in which aspects our services need to be agile. To establish a
picture of the business drivers for agility of the enterprise, two questions need to
be answered: What are the common changes in the environment of you enterprise
that you need to deal with? And how often do these changes occur? The first ques-
tion can partially be answered by looking at common changes over the last couple

125

of years (depending on your industry). More frequent changes of course require a
higher level of agility.

After these business drivers have been identified, it is important to know which
types of changes are currently difficult to accommodate: the barriers to change.
You should focus you attention in particular on those business drivers that are im-
portant or frequent, but are difficult to accommodate.

To help you get a grip on this, we have developed an agility scan: an instru-
ment to identify the situational factors of an organization, its strategy and business
drivers, and barriers to agility. This scan uses a questionnaire intended for busi-
ness managers and strategists. Based on the answers to the questions, the agility
requirements for the enterprise can be determined.

The agility scan first assesses which elements of an organization are most
likely to be affected by strategic and situational factors and shows what the rela-
tive importance of these influences is. This part of the scan is based on the drivers
for agility described in Chap. 2. This results in a conclusion on the areas and as-
pects where business agility is required.

Example: AgiSurance strategy and business drivers
AgiSurance’s strategy is to be a product leader in niche insurance products,
as described in Chap. 2. Interviews are held with the CEO, COO and busi-
ness line managers to determine which business drivers this strategy affects.
The obvious answer is product/service dynamics, i.e., introducing new
products or services.
All interview partners identify that the insurance product portfolio changes
every month and they expect the frequency of changes to increase in the fu-
ture. The CEO states: ‘personalizing products to specific customers and their
demands will be our core competence. This will also lead to new products,
but in particular the parameters and rules of existing products will change
rapidly. In addition, the economic crisis will lead to an increased regulatory
pressure, affecting the parameters, rules and maybe the processes behind our
insurance products.’ This gives us a second important business driver: con-
tinuous compliance.
From these two drivers, we derive that AgiSurance services must be agile in
particular with respect to rules and parameters. Therefore we define the fol-
lowing goals:
– easy adaptation of product parameters;
– easy configuration of new products.
In a second batch of interviews, the operational and IT managers are ques-
tioned, mainly to assess the barriers to agility. Combining the results of the
interviews, we draw the following conclusions. First, it is difficult to change
the IT implementation, a key resource of all insurance products, because
product rules are hardcoded within the software application. It is also hard to
change rules or parameters of products at the business level, because a
proper overview of the portfolio of insurance products is missing.

126

To show the desired business agility of an enterprise, we use an extended version
of the Business Model Canvas (Osterwalder & Pigneur 2009). The scan provides
‘heat maps’ of the aspects in which agility is required but lacking, helping you to
focus your attention on the important points for improvement. Fig. 42 and Fig. 43
show examples of these heat maps for our example insurance company AgiSur-
ance. In these figures, darker colours imply a relatively higher importance. Note
that these are not absolute values; they simply imply where we should focus most
of our attention. In Fig. 42, we see that in particular the Key Activities deserve our
attention, which is in line with our analysis above. Other potentially important ar-
eas are Key Resources and Risk and Compliance.

Risk and Compliance

Customer
Segments

Customer
Relationships

Channels

Value
Proposition

Key Activities

Key
Resources

Key Partners

Revenue StreamsCost Structure

Fig. 42. Desired business agility of AgiSurance.

6.5.3 Situational Factors: Service

In addition to the business strategy, business drivers and barriers to change, two
additional sources of situational factors exist: the service requirements and devel-
opment process requirements. The first will be discussed in this section, the sec-
ond in the next.

The previous section already introduced our agility scan. In addition to busi-
ness strategy and business goals, this scan also supports assessing the service envi-
ronment. Again, the scan provides a heat map aspects in which agility is required
but lacking, in this case using the framework discussed in Chap. 4.

In Fig. 43 we observe the enabling agility of AgiSurance, i.e., how well the de-
sired business agility (depicted in Fig. 42) is supported by the company’s current
structures and systems. It shows the relevant aspects that make up the enterprise’s
architecture, and the different abstraction levels we use in the design process, from
requirements to infrastructure.

127

In this figure, we see that AgiSurance’s processes are relatively stable. For ex-
ample, the order of activities in approving an insurance claim hardly ever changes.
However, the implementation of decisions (in executable rules) and information
(objects) must be more flexible, given the frequent changes in insurance policies
we mentioned before. Also, the resources needed (in particular scaling up the
number of employees) and the way in which the company interacts with its cus-
tomers may require more agility.

Context and Goals

Interactions

Interface

Channels

Roles

Actors

Resources

Functions

Tasks

Executors

Process

Orchestra-
tion

Orchestra-
tors

Knowledge

Executable
Rules

Enforcers

Products

Objects

Stores

Requirements

Design

Implementation

Infrastructure

Fig. 43. AgiSurance’s enabling agility.

We should be aware that not all components and aspects of a business service
need the same amount of agility, for example because different business drivers
and risks are involved. As you can see in the example, different parts of a service
system may require different levels of agility. It is therefore a good practice to
break down the components of the business service and assess the both the re-
quired process agility and the required system agility at the individual component
level (Fig. 44).

components

agility aspect at
component level

Business
service

Agility scan
business service
Fig. 44. Component break-down of service.

To this end, you should examine for each component:

• which of the business drivers and goals of the business service as a whole are
related to that component;

128

• which of the identified risks and uncertainties are applicable to the component,
and what the impact of these risks might be;

• which of its aspects need frequent adaptation or maintenance.

This step can be seen as a decomposition of the agility scan, and goals, drivers and
risks will be defined on more detailed scale. This decomposition also helps in de-
fining sub-teams for the development of larger services in accordance with Con-
way’s Law, which states that ‘[…] organizations which design systems […] are
constrained to produce designs which are copies of the communication structures
of these organizations’ (Conway 1968). His reasoning is that in order for two sys-
tem parts to be linked correctly, the designers and implementers of each part must
communicate with each other. Therefore, the structure of a system (whether you
use a component-based or feature-based decomposition) will be limited by the so-
cial structure of the organization that produces it; conversely, the envisaged struc-
ture of the system is an important input in setting up the organization that should
build it. It is unwise to have two different teams working on system elements that
are highly interdependent, because of the communication overhead this induces.

Example: AgiSurance’s service architecture
AgiSurance’s insurance products are realized by several software compo-
nents and organizational elements. The business processes of these insur-
ance products are relatively stable. The steps needed to approve an insurance
application or to handle a claim are fixed; the knowledge, rules and informa-
tion used within these process steps needs to be highly changeable, however.
To this end, AgiSurance wants to employ a business rule management sys-
tem, as outlined in Chaps. 3 and 4.
Another software component will handle the connection to an existing, well-
documented back-office system. All requirements for this connection are
clear and stable, it is fully known what needs to be built, and service users
do not need to be involved. For this component, there is no particular need
for an agile development method.
On the other hand, the development of the self-service portal for customers
has to deal with a lot of uncertainty. New technology will be used (HTML 5,
iPads) and most requirements for this portal are only known in general
terms. Stakeholders such as the marketing and product development depart-
ments want an incremental development approach, to help them discover the
exact needs, functionalities and possibilities, with direct user feedback. This
component needs to be developed in an agile way, with very short iterations
(1 week).
Another component will take care of risk assessment. Risk assessment poli-
cies are known and well-documented, but the business is uncertain whether
these policies are still adequate. Because of this need for validation, an itera-
tive development process is needed, giving periodical insight in the quality
of the implemented policies.

129

6.5.4 Situational Factors: The Process

The type of service development process you need is also determined by the situa-
tion. An agile development process is very useful is situations where you need to
deal with uncertainty, for example about goals, requirements, technology and/or
added value. Agile methods are also important when stakeholders should be kept
involved by means of incremental development.

However, if you have a clear and stable set of requirements, no uncertainties
about the technology, and an experienced team, an agile development process may
not be necessary and could even be inefficient because of the overhead involved
(multiple iteration demos, planning sessions, et cetera). For example, in rebuilding
a premium calculation component in another proven technology without changing
the behaviour of that component, users and other stakeholders will not notice the
replacement and all requirements are known up-front.

There are also other circumstances that influence the type and agility of the de-
velopment process. For example, regulatory requirements may force you to create
certain project results with a prescribed process. An example of high regulatory
pressure is the healthcare industry, where specific quality and risk management
practices are mandatory, such as the ISO 13485 and ISO 14971 standards (ISO
2003, ISO 2007).

6.6 Step 2: Select Agile Practices

Now that we have determined the goals (Sect. 6.5.1), strategy and business drivers
(Sect. 6.5.2), service factors (Sect. 6.5.3) and process factors (Sect. 6.5.4), we can
now select relevant practices. To this end, we have constructed an instrument that
weighs the relevance of a set of some 80 practices, collected from various sources
in the agile, architecture and modelling communities. For each of these practices
we have identified:

• the scope in which the practice can be applied (e.g., strategy, business drivers,
requirements, design, implementation, infrastructure);

• the agility contribution of that practice (e.g., speed, responsiveness, competen-
cy, flexibility, sustainability; see Sect. 2.3.2);

• The activity in which the practice can be used (e.g., communicating, strategiz-
ing, analyzing, etc.; see also Sect. 5.3);

• The artefacts used or produced by the practice (e.g., analysis result, business
knowledge, code, etc.)

The instrument is tied in with the agility scan described in Sect. 6.5. The input for
heat maps described there is also used in selecting relevant practices. Other inputs
are the activities performed, the artefacts used and produced, and the roles in-
volved. The instrument merely provides a recommendation of potentially useful

130

practices, but does not mandate their use. The method engineer can still make his
or her own choices regarding these practices, in order to construct a situational
method.

6.7 Step 3: Combine Practices

The approach to select practices as described in the previous section does not
automatically lead to a coherent, consistent and complete set of practices, i.e., a
full way of working. Sometimes practices may overlap, complement, use or con-
flict with other practices. And in many cases, practices depend on each other’s
outputs. To help us with this issue, we have modelled various relations between
practices in ArchiMate (The Open Group 2012). Using these relations between
practices helps in selecting a consistent set of practices for a certain activities,
practices that use or produce specific artefacts.

The next sections provides different guidelines on the assembly of practices in
time based on activities, artefacts, pre-conditions, post-conditions, process incre-
ments, and iterations. It is too ambitious to expect that such assembly of practices
will result in a full-fledged method. But is it feasible to partially relate practices
thereby inducing a temporal ordering in these practices.

6.7.1 Assembly through Activities

In our model of interrelated practices, we have first aggregated all practices that
belong to a certain activity, using the set of activities listed in Sect. 5.3.1. These
practices have also been related to one other, indicating which practices use an-
other as a sub-practice.

Architecture
Envisioning

Requirements
Envisioning

Think Big,
Act SmallUnity of Purpose Investigate

Business Objects

Envisioning

Fig. 45. Agile practices related to activity ‘Envisioning’.

Take for example the activity ‘Envisioning’. Fig. 45 shows the practices (mod-
elled in ArchiMate) that may be used in this activity, and also how they use each
other. For example, the practice ‘Investigate Business Objectives’, which focuses

131

on the relevant business goals, is used by the practice ‘Requirements Envisioning’,
which provides a high-level vision of the requirements for the service being de-
veloped.

These relations provide you with a hierarchy of practices that use other,
‘smaller’ practices. But this does not tell you the order in which to use various
practices. That is addressed in the next sections.

6.7.2 Assembly through Artefacts

One way to combine and order practices is through the artefacts that they use and
produce (Fig. 46). These artefacts serve as pre-conditions and post-conditions for
practice selection. Both are documented in the artefact element of the practice
template from Table 8.

Practice

Practice

Practice

Artefact
Artefact

Artefact

produces

uses produces

uses

producesuses

Fig. 46. Practice assembly through artefacts.

To this end, we have modelled the relation of practices with the artefacts that they
use or produce. For example, Fig. 47 illustrates the practices related to the artefact
‘Documentation’ and shows for example that ‘Mercenary Analyst’ produces
documentation and ‘Legacy Analysis’ uses it. Based on these dependencies, causal
relations between practices can be established. This is visualized in Fig. 46.

Documentation

Mercenary Analyst
Iterative

Architecture
Development

Legacy Analysis

Architecture
Emerging from

Projects
Comprehensible

over
Comprehensive

Manage
Consistency Lightly

Measure Value

Fig. 47. Practices related to the ‘Documentation’ artefact.

132

6.7.3 Assembly through Conditions

Some practices can be only applied when certain conditions on their usage, re-
sources, participants or other aspects are met. An example of such a practice is
‘Active Stakeholder Participation’, which is of course conditional upon the avail-
ability of stakeholders.

Example: AgiSurance’s sales channels as a condition on development
In order for AgiSurance to sell insurance products to music festival visitors,
it decides to use the websites of ticket vendors as one of their sales channels.
This requires participation of these vendors in the service development
process, since they must extend their website with the option to buy an in-
surance.

6.7.4 Assembly through Process Increments

The composition of a set of practices in a well-defined process is very ambitious,
and often impossible. However, it is feasible to relate practices by allocating them
to various phases or steps of baseline processes. For example, in a waterfall-like
process, requirements are usually gathered before the architecture and design ac-
tivities. In a more agile, Scrum-like approach, requirements gathering, architecture
and design are interleaved on a per-feature basis.

Such an allocation induces a partial ordering of practices: which practice
should be carried out before another practice, and which practices could be done
in parallel? Here, we will take three baseline processes that vary in agility: the wa-
terfall process baseline, a semi-agile process baseline, and a fully agile process
baseline (Fig. 48):

• The waterfall process baseline is characterized by different phases that are
separated in time, type of stakeholders involved, abstraction levels addressed
and artefacts produced. For example, a typical waterfall process usually starts
with requirements gathering, followed by design, implementation and testing.
These phases are executed in sequence, and the transition between phases is
usually formalized in some way. Once a phase has been completed, it is not
common to return to this phase. In each phase, the service under design is made
more concrete.

• The fully agile process baseline is characterized by several short iterations
(called ‘sprints’ in Scrum) that cover all abstraction levels, stakeholders, arte-
facts and other aspects. Instead of having clearly recognizable phases as in the
waterfall process, in the fully agile process requirements gathering, design, re-
alization and testing is done in a short time span on a per-feature basis.

• The semi-agile process combines some aspects of the phased approach of the
waterfall process with the flexibility provided by the fully agile process. An ex-

133

ample of a semi-agile process is the use of an initial requirements analysis
phase, the creation of a project start architecture (PSA) or a separate deploy-
ment phase, whereas the development of the service itself is done in an agile
manner.

time

ab
st

ra
ct

io
n

ab
st

ra
ct

io
n

time

ab
st

ra
ct

io
n

time

Waterfall Semi-agile Agile
Fig. 48. Process baselines.

6.7.5 Assembly through Iteration Matching

Practices can be applied in different phases of service design, and have different
iteration cycles associated with them. For example, it is not likely that the enter-
prise’s strategy will change very frequently, whereas design and implementation
modifications for individual services occur much more frequently. Fig. 49 illus-
trates this for different design levels of a service, corresponding to the levels dis-
cussed in Chap 4.

Strategy

Infrastructure

Requirements

Business Drivers

Design

Implementation

Fig. 49. Iteration cycles.

Iteration cycles of practices are determined by two types of factors. First, there are
external factors that cannot be influenced directly by an organization. Examples
are the rate of change in laws that have to be implemented, the rate at which ex-
ternal infrastructure providers can scale up their resources to accommodate higher

134

volumes, or the rate at which new external service distribution channels can be in-
troduced. Second, there are internal factors that determine the iteration cycles of
service development. For example, an organization can plan to create a service in
a development process using iterations of its own choice.

An enterprise can be considered agile when it is able to modify its strategy,
business, service, design, implementation or infrastructure sufficiently quick to re-
spond to the events that drive these modifications. The key to agile service design
is to ‘match’ the iteration cycles of the practices that are needed in such a way that
delays in carrying out changes to the service are minimized. For example, it is
unlikely that practices used to create or change the enterprise strategy are used as
frequently as those for the adaptation of a service’s parameters. Given the differ-
ences between cycles (Fig. 49), this matching may not be easy. For example, a
lower frequency of change of the infrastructure may be an obstacle to agility, if
the higher layers depend on the changeability of that infrastructure.

Example: AgiSurance project resource planning process
As outlined before, the business of AgiSurance is to quickly create new in-
surance products for niche markets, such as for music festival visitors.
Sometimes, such events come up on short notice, for example when a tribute
concert is organized when a famous pop star dies. Hence, there may be little
time to plan and execute the creation of these new products and services.
AgiSurance needs to use a flexible human resource planning process to free
up people from existing projects to create such a new insurance product and
match the speed of change in the environment.

These iteration cycles also help us to order practices in time. This ordering de-
pends on the nature of the practices. Some are typically applied on a regular basis
(e.g., daily, weekly or monthly, such as ‘Daily Standup’ or ‘Sprint Planning Meet-
ing’), others are only useful when certain conditions are met (e.g., making sure
that the team possesses the right skills), and yet others may depend of the devel-
opment state of the service (e.g., ‘Definition of Done’).

6.7.6 Activity Planning

To realize goals, various activities must be carried out. How do you plan these?
Activities are concrete tasks to be done in order to achieve goals, with a time, a
place, people involved and responsible, and possibly with methods, tools and
techniques chosen to help things along or to fit a greater whole (standardization,
architecture, conventions or compliance).

Every goal can have one or more activities specified to achieve it, but it is also
possible that a goal is left without specific activities. Does this mean that nothing
needs to be done to achieve that goal? Not at all: such a goal without an activity is
either assumed to be covered by other goals, or it is simply left to team’s powers

135

of self-organization. This reason for ‘leaving out an explicit activity’ is particu-
larly important for an agile way of working: do not specify more than needed, to
keep your plans ‘lean’, but also to minimize the number of goals or activities you
have to change explicitly if your plans are changed. If there is good reason to be-
lieve the team can cope on their own, leave them to it. Other goals do have one or
more explicitly planned activities that can be linked to them.

Another important aspect of goals better left unspecified is that of their order in
time: the order in which the goals are to be achieved. It pays to keep goals sepa-
rate from planning: what you put in some order of execution should be the activi-
ties, not the goals. But of course, by planning activities one-before-the-other, indi-
rectly you do order the achievement of goals; it is just that by separating activities
and goals, you can keep your planning minimal and, therefore, as agile as possi-
ble. This is in line with the principles of declarative workflow (van der Aalst
2009) and allows for minimal specification.

As for activities, they usually have a goal they set out to achieve, and possibly
more than one. Yet, perhaps unexpectedly, sometimes it is smart to leave out ex-
plicit specification of the goal of some activity. This is not because such an activ-
ity is really ‘without goal’ (that would be rather unusual in a business-like pro-
ject), but in some cases precisely defining the goal is simply useless: it is just not
worth it, it just adds to the complexity. To give an extreme example, if a detailed
meeting agenda includes a coffee break, specifying why this is done is just not
relevant.

Still, it is of course a good idea to at least think, for every single activity you
plan: ‘what goals drive this activity’? Also, from an agility point of view, it is of-
ten recommendable to use goals and sub-goals as the main structure for prioritiz-
ing and planning, minimizing details of time, place, resources etc. However, we
also recognize the practical needs to have specific planning possibilities. For this
we describe five planning instruments.

Determine stakeholder involvement

Forget the ideal role of the single Product Owner as advocated by Scrum
(Schwaber and Beedle 2002). In practice, multiple stakeholders are involved with
developing a business service, each having their own perspectives, knowledge, vi-
sion and attitude. It is naïve to believe that one person within the organization can
represent all those expertises and perspectives (and will get the mandate to do so!)
If you are lucky, you may find a person who can help you to find the right stake-
holders instead.

For each activity, the type and purpose of the artefact that is involved in the ac-
tivity indicate which stakeholders should be involved and what should be their
profile in terms of experience, attitude, ability to envision a future situation, et cet-
era. For this purpose, the communication situation templates described in Chap. 7
are a very useful aid.

136

Note that it is the purpose of the artefact and target quality of that artefact that
indicate which stakeholders are important in the development process; this is more
complicated that using a simple practice like ‘Active Stakeholder Participation’
suggests. User involvement when creating version 0.1 of a new service may even
be counter-productive. Most users find it hard to imagine a not yet existing future
situation. However, once version 0.1 is finished and version 0.2 has to be devel-
oped, users can be very good at telling you what needs to be changed. Of course,
some user involvement may be useful in developing a first version of a service,
but only by adopting a highly incremental development process; and even then,
users might not manage to see the complete picture.

Discovery iterations

At the start of a project, we advise you to determine whether the amount of cer-
tainty with regard to both requirements and architecture is enough to start an im-
plementation iteration. Often, your stakeholders will have no idea what to expect
and cannot provide you with enough useful requirements (user stories). If this is
the case, we recommend you to schedule some preliminary discovery iterations
(commonly two with a duration of two weeks each), aimed to get enough require-
ments to safely start the full implementation iterations.

Be careful! Do not aim for completeness in all levels of detail or the complete
set of requirements (‘Big Requirements Up-Front’) or the architecture (‘Big De-
sign Up-Front’). Try to get just enough to run a short implementation iteration
(one to two weeks), and to gather the various stakeholders’ feedback on this pre-
liminary implementation of your service. This will help you to establish important
requirements or to find out the really relevant architectural guidelines. See for ex-
ample the agile practices ‘Architecture Envisioning’ and ‘Requirements Envision-
ing’ (Ambler 2003).

Setting the duration of the (next) iteration

For those development tracks that are developed in an agile way, the duration of
the iterations should be tuned to the amount of uncertainty and the need to keep
stakeholders aligned. A general rule is that the higher the degree of risk or uncer-
tainty is, the shorter an iteration should be. Examples from our own experience
show this clearly.

For a car lease company, one of the authors was involved in developing a very
complex self-service portal using rare state-of-the-art technology, while not know-
ing the requirements or functionality needed up-front. The complete business ser-
vice, including coupling to an SAP back-office service, was developed in seven
sprints of one week each.

For a government organization, a system had to be implemented based on a set
of available use cases. Stakeholders were not able to understand or validate these
use cases in such depth that they could oversee the overall operation of the system
and the added value of its functionality. Although requirements were ‘known’ as

137

‘the set of use cases that must be implemented’, for the sake of stakeholder in-
volvement and their disbelief in the quality of the use cases, an agile development
process was been chosen. However, sprints of three to four weeks were quite suf-
ficient.

Parallel development tracks

As we already outlined in Chap. 4 and in other sections of the current chapter, a
business service comprises many different aspects and elements, each of which
may have its own development track. Often, these different development tracks
can very well be executed in parallel by different teams, no matter if they are actu-
ally agile or not, or have a different iteration pace. Once development tracks are
defined and configured, attention should be paid to their interrelationships in terms
of:

• Dependencies in artefacts: an artefact in development track A may be a prereq-
uisite for an activity in track B and this artefact might (economically) be im-
possible to stub or imitate.

• Risks: it has no use to start parallel development tracks A and B if during de-
velopment of track A, it turns out that you cannot eliminate a risk that makes
development of track B no longer useful.

• Shared resources: if two parallel tracks use the same resources, availability of
resources might constraint parallel execution. Be very careful with the assump-
tion of having one Product Owner available constantly. He/she will always
need other constrained stakeholders to fulfil the Product Owner role.

Admittedly, keeping track of this all this can be a bit of a pain, because the goals
are interlinked, as are the activities, and then many goals are linked to activities
and vice versa. Adequate tool support is a prerequisite for practical use of this ap-
proach.

Backlog grooming

For the components in the development tracks, the requirements are prioritized
and estimated on the project backlog in the form of ‘user stories’. There are many
ways to prioritize this backlog. Because agile development is meant to reduce
risks on the one hand and on the other hand focus on the implementation of the
most critical or high-value functionality, a very effective way to prioritize backlog
stories is by:

1. the added value for the enterprise’s business goals and strategy;
2. the degree of risk introduced by uncertainty, and the impact this will have on

the business goals and strategy;
3. the importance of the functionality for the stakeholders involved.

Note that this means that each ‘user story’ or ‘epic’ should be related to the added
value for the business goals and strategy. The term ‘user story’ commonly used in

138

agile method is actual not quite well chosen (in analogy with ‘use case’ in UML).
A user story tends to focus on what the service should do for the end-user of the
service. It does not describe the rationale: why it should do this, or what the con-
tribution for the customers, goals and mission of the enterprise will be. A good
practice is to write business and strategic stories as well, and to relate the ‘user
stories’ to these business- and strategic stories.

Moreover, many aspects of service development do not lend themselves to a
user point of view. Having ‘architecture stories’ or ‘technical stories’ is often also
necessary, for example to investigate the impact and risks of using new technol-
ogy by building a spike solution (see Sect. 3.3.1) or to reduce technical debt using
refactoring techniques (see Sect. 3.3.2).

6.7.7 Tool Support

To assist the method engineering and execution process, we have developed an
experimental prototype that supports the generation of ‘goal trees’, visualizing the
goals and how they are related. Also, activities can be represented and linked to
this goal tree (for example by using hyperlinks). So goals and activities can be
represented in a number of ways that are helpful to the project manager and pro-
ject workers. We have used a wiki for our prototype, but in principle any form of
digital documentation can be used here (though hyperlinks are extremely useful).
Further integration of such functionality with mature development tool suites
would be very useful to support agile teams in their choice of practices.

The structures described above aim at planning project activities, and such a
plan can be changed relatively easily. But with such a structure in place, it is also
very simple to keep track of goals achieved, by simply ‘ticking them off’. In the
prototype, we used a very simple mechanism in which an authorized person could
change the state of any goal: ‘not started’, ‘pending’, or ‘achieved’. We could
even neatly visualize the achievement of goals and super-goals over time.

In full, as described in (Taufan 2011, pp. 38-39), goal entries included a ‘goal
description’, a ‘goal type’ (e.g. product goal, communication goal), optionally a
‘deadline’, an indicator of ‘top goal’ (yes or no), ‘achievement criteria’ (optional),
‘related activity’, ‘sister goal’, and ‘super goal’. Activities included a ‘descrip-
tion’, a ‘goal to which it is allocated’, a ‘location’, a ‘person responsible to ac-
complish the activity’, ‘due date/time’, and ‘resources, tools, and information
used’. Also, to allow for specification of repeated activities, an activity could be
set to recur at some interval (daily, weekly, or monthly).

139

6.8 Step 4: Execute the Way of Working

In the previous sections all preparations have been completed to actually start
building the required service. First, the business drivers for agility were identified,
which resulted in a set of relevant agile aspects that need to be addressed (Sect.
6.4). Next, agile practices were selected that support agility for these aspects (Sect.
6.6). In Sect. 6.7, several ways to assemble the selected practices into a coherent
way of working have been discussed. Now it is time to execute the way of work-
ing!

Many things can be said about the execution itself, but the bottom line is: just
do it! In many cases, the execution itself will be timeboxed and budget-boxed to
prevent that it will take unlimited resources (time and money wise). The bad thing
is that at the end of the timebox there is no guarantee that the service under devel-
opment is finished and that all stakeholders are satisfied. But no project approach
can give these guarantees for complex design projects like service development;
there are simply too many unknowns to be factored in. You should therefore be
wary of any methods that do promise you this holy grail of project management;
no amount of process or documentation can force your stakeholders to come up
with a coherent, consistent and complete set of requirements in a domain that they
simply do not fully understand yet. Iteratively and gradually building up this un-
derstanding is the only way forward. The good thing of such an approach is that
the end of a timebox provides a natural point for reflection, and possibly adaption,
of your way of working. This innate learning and feedback cycle is perhaps the
strongest point of agile methods.

6.9 Step 5: Reflect on the Way of Working

Let us now reflect on what we have done so far, and return to the big picture. We
have collected the stakeholders’ goals and business drivers and identified the rele-
vant situational factors associated with these, selected corresponding practices,
and combined these in a coherent way of working. In the previous section we
briefly discussed the execution of the way of working.

The key to agile service development is the ability to adapt the services being
developed and the way of working when circumstances change. An iterative way
of working allows you not only to incorporate new or changed requirements for
the service (‘system agility’), but also to change the way of working itself (‘proc-
ess agility’). As we already argued in Chap. 2, true enterprise agility requires a
combination of these.

Fig. 49 sketches the basic iteration that includes feedback on system agility and
process agility. Based on the stakeholder goals and situational factors, practices
are selected and a way of working is constructed and executed. After the each iter-

140

ation, the contribution of the way of working to the individual stakeholder goals is
assessed. For some stakeholders the previous execution may result in a positive
contribution of their goals, and for others it may result in a negative contribution.
This may result in an adaptation of goals, and of course changing situational fac-
tors may also lead to new goals. Second, the suitability and effect of the individual
practices is assessed; did they work well, should they be changed, should new
practices be adopted? Based on these assessments, a new iteration is started: new
goals are set, practices are selected, et cetera.

Assess goal
contribution

Determine
stakeholder goals

& situational factors

Adapt
stakeholder

goals

Select
practices

Construct Way
of Working

Execute Way
of Working

Feedback

Construction and execution

Adapt
practices

Fig. 50. Iterative way of working.

Example: Feedback on AgiSurance’s security
The Chief Customer Operations (CCO) of AgiSurance wants to make it easy
for customers to log in to their personal online environment
‘MyAgiSurance’, where they can manage their insurances online. He pro-
poses to use a username/password authentication scheme with safety ques-
tions for authentication. The Chief Security Officer (CSO) believes that such
an authentication scheme is vulnerable to fraud and proposes a better, but
more costly authentication mechanism, using a dedicated login device. To
save costs, it is decided to have the IT department of AgiSurance build soft-
ware that realizes authentication based on username/password. This posi-
tively contributes to the CCO goals, but negatively to the CSO goals. How-
ever, when AgiSurance receives negative press attention due to fraud, the
company quickly decides to change tack and to partner with national banks
that already have a safe and reliable authentication solution for their cus-
tomers.

7 Stakeholder Communication

S.J.B.A. Hoppenbrouwers, W. van Stokkum, M.E. Iacob, I. Wilmont, D.J.T. van
der Linden, C. Amrit, M. Joosen

In this chapter, we address the issue of communication with stakeholders in agile
development projects. Our approach pivots round ‘Communication Situations’
that occur in such communication; we do not cover all communication that may
occur in projects, but focus mainly on the model-oriented kind and on situations in
which stakeholders (apart from developers) play an important role. We provide
some context and background, but also concrete ways of analyzing and guiding
communication situations using some dedicated instruments. We illustrate this
with examples from practice.

7.1 Introduction

Why include a whole chapter on communication in a book on agile service devel-
opment? Communication is important in any project, but in agile service devel-
opment it is especially important. As mentioned in Sect. 2.1, the Manifesto for
Agile Development (Beck et al. 2001) states right away that ‘we have come to
value individuals and interactions over processes and tools’. This implies that
communication is a primary factor rather than one of many ‘enabling aspects’ in
an agile way of working.

Agile service development projects have some things in common when it con-
cerns communication:

• Intensive: Communication with stakeholders and others involved is intensive,
and remains intensive throughout the project’s time span, and possibly even af-
ter (maintenance).

• Non-technical: Disregarding professional developers, such communication in-
volves people who are not able or willing to talk in ‘technical terms’ unfamiliar
to them, and not able or willing to use technical ‘tools of the trade’ like detailed
specifications or models. Moreover, these terms and tools may be not so ade-
quate in capturing the essence of what stakeholders talk about.

142

• Diverse: There is much diversity between stakeholders involved concerning
their background, knowledge, skills, concerns, focus, interests, language (jar-
gon, terminology), and so on.

Communication is always a challenge, especially when it occurs between people
with different backgrounds, outlooks, and goals. Generic communication skills are
vital in daily work for most professionals, if not for every human being. Some
quite general rules of communication have long ago been observed and laid down
in a nutshell by Paul Grice in the form of his famous maxims (Grice, 1975), re-
interpreted here with modelling in mind (Lankhorst et al., 2009):

• Make your model as informative as necessary.
• Do not make your model more informative than necessary.
• Do not model what you believe to be false.
• Do not model that for which you lack adequate argumentation.
• Be relevant.
• Avoid obscurity in expression.
• Avoid ambiguity.
• Be brief (keep your model or view small).
• Be orderly (structure your model well).

Much can be said about general human communication and how to excel in it, and
elaborate communication courses of many sorts are given throughout the profes-
sional world, covering both authoring and more direct interpersonal communica-
tion, both online and offline. However, we do not cover any such generic ground
in this chapter. Instead, we focus on communication with and about models and
specifications (both in verbal and diagrammatic form).

So what is special about ‘communication with and about models’? In many
‘technical’ models, rational demands are reflected in strict rules on the way such
models and other artefacts are put together, using specific languages with specific
concepts and a specific syntax; for example, UML, BPMN, ArchiMate; ultimately
also SQL or Java. Such languages are central in many branches of computer sci-
ence and IT. We believe, however, that if you think about how models are made
and used by people, it is useful to realize that all models are also ‘texts’. Besides
providing focused and well-structured information on some domain or system
(usually just of some limited aspect thereof), these texts are then also subject to
quite strict demands stemming from the practices of rational analysis and design:
they have to be expressed in modelling languages. So the obligation to use ration-
al, artificial languages comes from the world of engineering rather than from the
usual way of communicating in or about ‘business’, ‘management’, or ‘organiza-
tion’, let alone ‘HRM’, ‘Mortgages’ or ‘Our Unique Selling Points’. How to deal
with this is often a bit of a struggle: it means respecting human-oriented commu-
nication demands but also the demands set by rational engineering.

Now as long as the people involved in model-oriented communication are
trained in, or at least sufficiently familiar with, the modelling languages and con-

143

cepts used, the challenge is reasonable. Developers with a technical analysis and
design background generally have few problems dealing with models – nothing
that reading a good textbook or doing a two-day course cannot remedy. However,
as we have seen, in an agile service development context we simply cannot as-
sume that all people involved have received even the most basic technical training.
For many ‘business people’ (to use a gross generalization), as opposed to ‘tech-
nical people’ (likewise), creating or even just understanding and evaluating mod-
els is either very hard indeed, or something they really do not want to do, and of-
ten both. This is not just a matter of ‘using modelling languages’; despite all
laudable efforts to achieve ‘business-IT alignment’, the mindset and way of think-
ing of the business community is seriously different from that of the IT communi-
ty (Hoppenbrouwers 2009). Creating information systems is simply a very differ-
ent occupation than that of creating and running businesses, and quite likely this
will remain so forever. Abstraction is at the core of the skills required to deal with
models and modelling (Wilmont et al. 2011); we return to this in Sect. 7.4.2.

In many cases, the lurking communicational conflict underlying the necessary
use of models is solved or avoided by keeping the models out of view of ‘the
business’. Specialists with an IT background talk to relevant people from the busi-
ness, interpret what they hear, conceive models (e.g. business process models,
domain models, business rules, and so on) and present them to the business stake-
holders for validation. Unfortunately, this practice has some important disad-
vantages, in particular in agile service development contexts. To mention just the
most important ones: first, it tends to create a false sense of achievement. Stake-
holders too readily assume they sufficiently understand the details, meanings and
implications of the models to pass valid judgments about them. Analysts and
modellers often make the same mistake and too easily consider a model to be
‘properly communicated or validated’. A stakeholder simply saying ‘yes’ when
asked whether a model is understood and agreed does not equal proper validation.

Second, models that are conceived and validated this way fail to create the
‘sense of ownership’ among all stakeholders which is much wanted in any partici-
patory approach. The model is not ‘theirs’, and when push comes to shove they
may not back up the model or commit to it, after all.

Working together in a heterogeneous group, possibly involving people with not
only different backgrounds but also different concerns and interests, requires a se-
rious investment in having people talk to each other. Resources simply have to be
allocated for this. Some managers may perceive this as a waste of time; they are
wrong. Investment in talking, as long as it is focused and serves a clear communi-
cational purpose, will pay itself back. People just have to get to know one another,
and their various points of view, concerns, and vocabulary. Based on a common
understanding, they can then go on to construct a shared view of whatever domain
or aspect it is they need to describe or agree or decide about, and only then they
can safely move on to commit to what they came up with (e.g. accept it as ‘official
state of affairs’, or build it). So working on models typically involves three basic
levels of agreement (Hoppenbrouwers et al. 2005):

144

• Shared understanding of each other’s situation, concepts (words), viewpoints,
concerns and interests;

• Shared consensus on current situations and future plans, based on shared un-
derstanding of each other’s thoughts and viewpoints;

• Shared commitment about taking action, based on shared consensus.

Importantly, each consecutive level requires the previous level to be taken care of,
so understanding of what is said in the model or specification is extremely im-
portant. If one level fails, the level built upon it also collapses. In addition, to real-
ly communicate and validate models, it is vital not just to produce the models as
such, which are often rather abstract (i.e., hide much information), but also to talk
about them, preferably in a focused and systematic way so as to cover all im-
portant concepts, and in particular the argumentation behind them
(Hoppenbrouwers 2008).

In addition, the most basic level of understanding is closely connected to in-
vesting in people understanding each other’s language. Note we do not even in-
clude differences between national languages here: we talk about vocabulary and
jargon that differs between professional groups, domains, companies, departments,
and so on. To mention a simple example, the definition of what ‘week’ means is
not as straightforward as it may seem. When does a week begin? Does it have five
days (working week) or seven? Such parameters in meaning are known, and are
even reflected in advanced calendar software, but the different understandings still
have to be communicated, understood, and agreed among collaborating parties.
Terminological differences are a major cause of misunderstanding, and often
cause fierce debate in meetings and reviews. Yet such debate (or negotiation) is
very much preferable over hidden differences in what words mean to different
people or groups of people. A specific instrument for finding out what people and
communities really mean by particular words and concepts, especially meta-model
concepts (van der Linden et al. 2011), is discussed in Sect. 7.4.1.

At this point is necessary to say something about the related terms ‘model’ and
‘view’. In the definition of (Lankhorst et al. 2009, pp. 56–57), a model is ‘a pur-
posely abstracted and unambiguous conception of a domain’, while a view is ‘a
representation of a system from the perspective of a related set of concerns’. These
definitions do not draw a sharp line between models and views, but it is clear that
a view on a large model gives a restricted focus on certain aspects of that model.
A view is meant to focus on providing information about a system or domain,
while a model may provide more elaborate information that can become very
complex, and may not focus on a particular set of concerns (and associated stake-
holders). This makes the view a typical instrument of communication: better fit for
achieving some specific communication goal than a complex model that meets a
number of such goals all bunched together. Not surprisingly, then, if we talk about
‘communication with and about models’, views play a key role. However, it is not
important to always keep a strict distinction between ‘views’ and ‘models’, as
long as it is clear that it is possible to ‘zoom in’ on some aspect of a model and

145

single it out for focused communication. For example, it is not all that interesting
to establish whether some process diagram in BPMN is a ‘model’, or a ‘view’ on a
larger, more complex model (perhaps of the entire enterprise). What is important
is whether it helps achieve the specific communication goals its creators and users
set out to fulfill.

Focused communication lies at the core of our approach to ‘stakeholder com-
munication with and about models’. By identifying communication goals and abil-
ities, and then selecting and applying certain practices or techniques to meet them,
you can better cope with the many diverse communication challenges you might
face.

Send
confirmation
of purchase

The activityWhat is needed so that the
activity can be performed?

•Purchase has to be complete
(approved and paid) as registered
in the transaction database
•Address of client must be known
•Client has indicated that he wants
to receive purchase confirmation
either by email or by regular letter

What must be the case
for the activity to be finished?

•Confirmation of purpose has been
sent to the right address and the
right client, through the right
channel

Fig. 51. Example of a focused view for validation purposes.

In Fig. 51, a simple view is shown for describing pre- and post-conditions for an
activity in some process model. The information gathered in the view goes beyond
the typical information represented in a flow chart, even if it includes business or
data objects. The extra information contributes to the validation of the main (pro-
cess) model by business experts, as it implies that certain activities have to be fin-
ished before this one, and some will have to come after it. While this may not be
terribly urgent from a analysis point of view, the example serves to highlight that
for one main process model, a number of specialized, focused views can help
greatly in systematically ‘talking through’ a model.

We cannot possibly give a complete overview of all communication situations
and possible setups to deal with them. Therefore, we will give some examples of
situations and recommendable practices, and show you how you can analyze and
deal with communication situations in general.

The chapter is structured as follows. In Sect. 7.2, we will explain what commu-
nication situations are, give an overview of the aspects involved, and in general
provide a backbone for talking about and organizing communication in service
development projects. In Sect. 0 we turn towards more operational ways of bring-
ing insights in communication into practice: how to embed the creation of com-
munication setups for specific situations in a general agile way of working. After
this generic part, we spend some time elaborating on certain key points. In Sect.
7.4, we consider various aspects concerning individual stakeholders. In particular,
we explore two sources of differences between stakeholders important in working
with them: their languages (Sect. 7.4.1), and their cognitive and abstraction skills

146

(Sect. 7.4.2). In Sect. 7.5 we elaborate on how visualization can be applied effec-
tively through using visualization patterns so that the result is optimally fit for
human consumption. The chapter is rounded off in Sect. 7.6 with an overview of a
number of newly formulated ‘communication practices’ summarizing the commu-
nication related results of the ASD project in an applied context; we illustrate
them with examples from practice.

7.2 Communication Situations

With a lot of communication going on all the time, it pays to think about what a
particular situation that you may encounter demands in terms of communication,
and of course to use this insight in organizing the communication so that it is both
effective and efficient. This is why we introduce the following notion:

Communication Situation (CS): An interactive session between people in-
volved in service development, during which a structured, meaningful, pur-
poseful exchange of information takes place.

People involved may be stakeholders, users, developers, or others. The situation
may or may not be part of an explicit project planning method, and it may in itself
also be guided by a predefined method/technique; or not. Interaction may be on-
line or face to face. We focus on ‘model-oriented communication situations’, but
this includes CSs that only indirectly involve models (for example, they could
concern only a textual representation of some specialized view of a model). In
principle, anything goes, but we will try to help you make sense of it.

Communication situations typically have a goal, the achievement of which re-
sults in progress for the project. A series of operational CSs will often be required
to fulfill the larger project goals. For example, if a goal in the project is to ‘create
and validate a domain model’ then it is to be expected that more than one CS (i.e.,
several sessions) will be needed to achieve this. There will be tangible outcomes,
such as a model or a structured description of knowledge elicited during a session,
and social outcomes, such as shared vision, shared understanding and model ac-
ceptance (understanding, consensus, commitment). Sessions in which such results
are worked towards may require careful preparation, possibly even including the
selection and assessment of participants, and in any case some thinking about the
documentation, knowledge and skills required to run the session: its ‘input’, which
includes both artefacts and people.

We will first take a look at how to identify and describe CSs. This starts with a
practical way of identifying and ‘naming’ CSs. There are very many possible CSs,
and they are very diverse. We recommend to label them using a combination of
two aspects: the basic communication activity performed in the situation and the
main artefact on which this activity focuses.

147

The main activities you can expect to encounter are (A stands for any ‘Arte-
fact’):

• Create A.
• Change A.
• Comment on A.
• Inform about A.
• Evaluate A.
• Prioritize / scope A.

This may seem to be a very limited list; surely, you might think of many, many
more activities. You are free to choose and name activities any way you like, and
the list can certainly be added to, but we do point out that the short list above co-
vers the main, concrete activities normally encountered in view of ‘handling an ar-
tefact’. Other, more refined activity names can usually be seen as either very simi-
lar or a combination. For example, what about ‘Review A’? Surely that is done a
lot? Well, a review may be just an opportunity for people to comment, but it may
(also) include and evaluation. In addition, it may include suggestions for change.
So a review can be any one of the following combinations of activities:

• Comment.
• Evaluate.
• Comment and evaluate.
• Comment and change.
• Evaluate and change.
• Comment and evaluate and change.

So you can safely use the term ‘review’, but it pays to at least make clear what you
mean by this in terms of the basic activities we listed. Also, it is quite possible to
combine various basic activities in one session or CS, but it may be a good idea to
see whether the activity can be broken up in successive smaller ones (e.g. first
comment, then change) to increase the focus of the single activities.

As for artefacts, there is really no sensible way to be comprehensive here. The
list is virtually endless. Just to give some examples: process models, domain mod-
els, business rule specifications, requirements, use cases, product inventories, ap-
plication architectures, architecture principles, transformation models, business
goals, service signatures. And this is a fairly random list that could have easily
been ten times as long. So we do not even try to categorize the deliverables in any
definitive way here. Still, there are some ways of looking at them that might be
helpful, and one good way of sorting them out would be using the Reference
Framework for service modelling introduced in Chap. 4 of this book, which pro-
vides an overview of the different subjects, conceptual foci, and uses of the main
model-oriented artefacts relevant in service development.

In the end, however, the most important bit from a communication perspective
is that for everyone involved, the artefact label you use is clear and well under-
stood: people know what artefact you mean, and preferably also what purpose(s) it

148

serves in project context. Artefacts take many shapes and may involve many dif-
ferent media: they can be digital or paper, draft or highly official, highly special-
ized or meant for a wide audience, confidential or public, external or internal, and
so on and so forth. We cannot tell you what they are like, and what they are for:
only you, as a ‘user’ can. We just point out that you can ask some simple ques-
tions concerning every artefact you encounter, work with or work on, for example:

• What is it used for?
• What is it about?
• Who is it for?
• What is it based on?
• Who produced it (or will produce it), and what do they (have to) know for that?
• What terminology, concepts, or modelling languages are used in it?
• How was/is it made: what was/is the process or setup leading to its creation?

It is important to see that it may be risky to assume that ‘a model’ always concerns
the same single artefact and the same way of dealing with it in communication.
There are at least three reasons why ‘the same model’ may need to be approached
differently in a different communication situation, and possibly also as a different
artefact:

• Depending on the phase of the project, the ‘same’ model may be created or
used for different purposes

• Depending on the purpose, the focus, scope, level of detail, and level of agree-
ment on the model that may be quite different

• Also depending on the purpose, but even more on the people/stakeholders in-
volved in dealing with the model, different representations of the model (or
parts of it) may be used

As described in Chap. 6, based on the goals set, risks involved, and further situa-
tional factors present, suggestions can be derived for the use of agile practices as
well as activities in some project. Once it is sufficiently clear, in enough detail,
what the goals and practices and activities are that need to be taken up, it is time to
move to operational planning of meetings or other types of interaction that should
lead to realization of the goals. Part of these activities concerns the type of com-
munication situations we focus on: model-oriented communication with and
among stakeholders. You can pro-actively look at communication situations you
are planning and try to organize them in an effective way. This will not only save
time and money, but usually it also reassure people involved that someone knows
what is needed, and how to get the job done.

This does not mean that every CS can be planned, nor that a plan or setup, once
conceived, cannot be changed (even radically). However, even if trouble strikes or
unexpected things happen in a session, a structured way of looking at the commu-
nication situation will help a lot in dealing with the issues at hand.

The main instruments we offer to view CSs in a structured way are two ‘Com-
munication Situation Templates’ (CSTs): the Intentional CST (covering goals, and

149

the given situation) and the Operational CST (covering the CS setup: how it is to
be organized). In the current section, we will introduce the Intentional CST; the
Operational CST will be covered in the next section (7.3). The templates show
some overlap in content, but their use is what really sets them apart (situational
analysis versus operational planning).

As we have seen, communication-intensive activities of the kind we are look-
ing at here typically involve artefacts (models, software, documentation) as well
as more immaterial, social results like consensus, commitment, enthusiasm etc.
Which artefacts have to be created in the activity, and more importantly which
quality requirements are involved with the artifact (completeness, level of detail,
level of commitment/validation) is mostly determined by the goal of the activity.
For example, a goal could be ‘reducing the risks of which the severity and impact
currently are unknown’.

Analogous to situational method engineering (see Chap. 6), but at a more oper-
ational, interactive level, practices for model-oriented communication situations
can be used for driving successful communication situations in agile service de-
velopment. Some such practices (sometimes represented as patterns) have been
suggested as part of existing methods or textbooks, some new ones are resented in
this chapter, and plenty could be added or refined by you or your organization.
Listing them exhaustively is almost impossible. Just becoming aware of them, and
generally of the fact that such patterns exist and can be used, is a good start. Illus-
trative examples of existing communication practices are discussed in Sect. 7.3.2.

Moving from practices to a way of matching specific sets of practices to specif-
ic communication situation, the following structure can be used. A communication
situation is meant to realize some activity (create, change, comment on, inform
about, evaluate, prioritize, scope) concerning some artefact. The artefact is to
capture a specific state (as is, to be, or both) for a specific purpose (achieving a
project goal) by involving a particular role in the organization with a specific
profile (background, knowledge, competences). The actual domain about which
communication will take place is also an important input variable for the pattern,
concerning ‘content’ rather than ‘action’. It is likely to play an important role in
determining the structure or language (topics, concepts; semantics) that are to be
used and covered in the artefact under consideration. Also, it may determine
which design patterns may be used in the creation of the artefact (see Chap. 5).

Example: AgiSurance product model
In the context of our AgiSurance case, how well the complexity of a certain
insurance product is understood is a risk factor. The risk can be managed by
creating a product model. The Intentional Communication Situation Tem-
plate (I-CST) described in Fig. 52 applies here. Such a description provides
a very useful and workable overview of the communication situation at
hand, from a ‘demand’ point of view.

150

Goal Activity and arti-
fact

Creating a product model for insurance prod-
ucts

Purpose Understanding product complexity
State As-is situation

Stakeholder Role Product developers
Profile Having overview of products

Having overview of product characteristics
Ability to abstract over instances of products
Ability to identify relations between products
Ability to identify discriminating characteris-
tics between products

Domain Life insurances

Fig. 52. Instantiated Intentional Communication Situation Template (I-CST).

The distinction between ‘Intentional’ (goal-oriented, sorting out the context and
the high-level pre and post conditions of what needs to be done) and ‘Operational’
(active shaping of the setup of the situation: getting the goals realized) seems sim-
ple enough, but experience shows that some confusion lurks. In particular, it is not
always clear whether to put something under ‘intentions’ or ‘operations’, i.e.,
whether to put it in the I-CST or the O-CST, or even in both. In many cases, the
choice is simple. For example, if the project approach demands that a domain
model is created of some domain because various stakeholders need to agree on
basic concepts on which a service is based, then creation of that domain model,
involving a certain level of agreement (social goal) among participants, clearly be-
longs in the Intentional template.

The operational template is where operational (practical, concrete) choices
need to be made aimed at realization. This often requires making some goals (even
rather concrete ones) even more concrete. For example, actual people who will
participate need to be selected, invited and briefed. In the Intentional template,
these people may have been named explicitly (in which case they are probably
mentioned in both the Intentional and the Operational CST). But in many cases,
only stakeholder types will have been mentioned in the Intentional template (e.g.
‘legal expert’, or ‘product owner’). In such cases, the operational CST will refine
the Intentional CST by naming actual people fitting the types. It is also possible
that in the I-CST, no specific thought is given to stakeholders. In that case, people
will still have to be assigned: domain models do not appear out of thin air. In such
cases, only the O-CST and not the I-CST will cover stakeholders involved. For
quite a few other aspects, only the O-CST will be relevant. For example, spatial
setup (how to organize the room some session takes place in) normally does not
belong in the Intentional template.

Example: AgiSurance product development
To create better insight in its product portfolio, AgiSurance decides to use a
online card sorting game, in which cards with various product characteristics

151

and relations are used to group products into useful categories, by domain
experts supported by a facilitator.
In Fig. 53, we present the Operational Communication Situation Template
(O-CST). In the example, the filled-in template matches the example I-CST
(Fig. 52), demonstrating a possible way to realize the goals set there.

Artefact crea-
tion pattern

 Fragments-to-networks

Technique Card sorting game
Structure Language/

concepts
Product, relations between products, characteris-
tics of products

Headings Product categories
Representation Verbalization Natural language

Visualization Lists of category groups
Artefact Set of categorized products with similar and dis-

criminating product characteristics
Level of detail All products, global description of product char-

acteristics, full validated description of discrim-
inating product characteristics

Practices Comprehensible over Comprehensive
Facilitator Name Jane Doe

Role in activ-
ity

Introducing scenarios for grouping products/
product characteristics

Profile: ex-
pertise, skills

Domain knowledge not too detailed (open mind
for new concepts). Ability to abstract and ability
to capture the reason why stakeholder will group
certain characteristics.

Attitude Open minded
Participant(s) Name John Smith
 Role in or-

ganization
Chief Product Manager

 Role in activ-
ity

Domain expert

 Profile: ex-
pertise, skills

Detailed knowledge of products; no advanced
analytical skills required

 Attitude Collaborative; critical attitude to correct specifi-
cation

Media Cardsort tool on iPad; whiteboard
Space Room 3.2; seats grouped around table.
Time Synchronous; Feb 31, 2012, 10.00-16.00h

Fig. 53. Instantiated Operational Communication Situation Template (O-CST).

One special source of confusion about whether to include some aspect in the I-
CST or the O-CST is the adoption of communication practices as part of the ge-
neric project approach instead of just for a particular CS. For example, the ap-

152

proach chosen for a project may explicitly include the ‘Model Storming’ practice.
In such a case, even some operational aspects of organizing that type of communi-
cation situation are known at the start of project: the general Way of Working im-
poses method choices (practices). If in such a case you use the I-CST as well as
the O-CST, we recommend that you put clear goal-oriented aspects in the I-CST
(encouraging situational reflection on the usefulness of model storming in the pro-
ject communication context) but still put clearly operational matters (like spatial
planning or specific people assigned) in the O-CST.

7.3 Communication Setups

Having discussed various aspects and contexts of communication situations, we
have now arrived at the question how we can organize such situations at an opera-
tional level: get together the people, and structure and guide activities. In this sec-
tion, we will give you some advice on how to approach this challenge.

7.3.1 Artefact Creation Patterns and Communication Practices

Not every model-oriented CS requires the same way of dealing with sources (doc-
uments or people) and combining them or evolving them into an end product. This
is of considerable influence to how you arrange your setup (one CS or a series of
CSs; which goals and foci to set for each session). At the ‘Collaborative Usage
and Development of Models and Visualizations’ (CollViz) workshop (part of the
ECSCW conference in Aarhus, Denmark, Sept 2011), the participants defined six
‘artefact creation patterns’ (Fig. 54). They are:

1. Merging (negotiating your way from some similar but different artefacts to a
single common artefact).

2. Combination (piecing together an artefact from various given parts).
3. Growth (starting with a central item and systematically adding items).
4. Linking (taking artefacts for what they are, but defining relations between

them).
5. Fragments-to-networks (starting with a bunch of ill-defined, isolated items and

gradually refining and relating them).
6. Re-use (selecting existing items and putting them together into a new artefact;

note that the selection sets this one apart from 2).

Clearly, such patterns may be combined and refined. Mostly they can help you in
determining how to organize the steps to be taken in your CS or CSs.

153

1: merging 3: growth2: combination

4: linking 5: fragments-to-networks 6: re-use
Fig. 54. Visualizations of six common Artefact Creation patterns.

Many existing practices are documented in the professional and academic litera-
ture that refer to or directly describe ‘ways of communicating’. Such ‘communica-
tion practices’ can always be used to help fill in the O-CST, and if they are de-
scribed in problem-context-solution format they may even be used to select a
practice based on the I-CST. In particular if your organization or project are keen
on using standards (internal or external), it is worthwhile to explicitly document
the practices you use, or even describe any newly developed or refined practices
you find useful to ‘keep for posterity’.

So let us consider just five examples of existing communication practices taken
from the literature, and how they fit our framework:

Communicate Powerfully

‘A team needs to have effective means of communicating, both amongst team
members and also to stakeholders. To communicate powerfully, a team needs to
prefer in-person communication over distributed communication. Synchronous
over asynchronous communication. High-bandwidth over low-bandwidth commu-
nication. Multi-mode communication over single-mode communication.’ (Agile
Advice 2009). This quite generic practice bundles a lot of advice on how to com-
municate in an agile context. However, it should not be blindly applied in every
CS! For example, in-person communication has much to say for it but in many
situations, distributed communication is either the only option available or has
significant advantages. We prefer more diversity and situational nuance in dealing
with communication situations.

154

Comprehensible over Comprehensive

‘To create documentation that will actually be read, we have to take the audience
into account. Documentation needs to be comprehensible for the targeted audi-
ence, or it will become TAGRI (They Aren't Gonna Read It) documentation.’
(Xebia 2010). This is a practice that we wholeheartedly subscribe to. We would
replace ‘documentation’ with ‘artefacts’, but that hardly changes anything. The
practice is a variation on our approach to let clear communication goals drive your
communication setups.

Daily Standup

‘Each day during the sprint, a project status meeting occurs. This is called a ‘daily
scrum’, or ‘daily standup’. The meeting is usually time-boxed to around 15
minutes, and held at the same time and place every working day. All team mem-
bers are encouraged to attend, but the meetings are not postponed if some of the
team members are not present’. This practice is a neat example of a quite compre-
hensively prescribed ‘communication setup’. It is a key part of the Scrum ap-
proach (Schwaber and Beedle 2002). However, if you choose to apply it, do spend
some time thinking about the project goals and communication goals you want to
achieve by that, so you know it really fits your project, and why.

Plan (and Conduct) Interviews
This widely applied practice just suggests the use of a technique, which is one way
of realizing a score if information needs. The practice as formulated by Graham
aims (2007) at answering a clear question ‘How do you discover relevant but im-
plicit business knowledge?’.

Ten Minute Rule a.k.a. Two Minute Rule
This is a nicely detailed practice by Graham (2007) that sets a cut off point for
discussion of a detailed issue in a group session: if after ten (or two) minutes of
discussion, the issue remains unresolved, ‘park’ it until later, to avoid getting
bogged down. This sort of practice can be used in many different CSs, applying
different set time, and has a very concrete impact on how a CS setup is realized: it
helps maintain sufficient focus. It is a typical guideline for facilitation.

7.3.2 Structures, Languages, Representations; Topics

If they are not given in the I-CST (and this will often be the case), you will have to
decide on which representations, structures, views or even model types you want
to actually work with in your CS. Much advice in this area can be found in Chap.
4. You may be choosing a model type (e.g. ‘process model’) and a language (e.g.

155

‘BPMN’), but note that in this category it may also be enough to simply devise a
table of contents or some headings for a document. In any case, think through your
choices in view of what you want to achieve, and whether your representation di-
rectly contributes to this. ‘KISS’ (Keep It Simple, Stupid) applies here.

Furthermore, always consider who you will involve in the CS and whether they
will be able to cope with the type of representation used. Which visualizations or
verbalizations work best for your stakeholders/participants? If you need to involve
various consecutive representations to achieve your communication goals, how do
they map to each other, and does the mapping require extra information or further
abstraction?

Thinking up a CS setup (or a set of closely related ones) will usually require
some creative goals-means thinking. For example, you may need some representa-
tion that does not go down well with the intended participants (for example, they
don’t know BPMN). In such a case there are two main ways out: either involve
other participants, or (more likely) find an alternative way of talking about the
concepts covered by the BPMN diagram you want to eventually arrive at. This
will often mean that you have to extend the communication activities and split
them up: perhaps first perform a ‘walkthrough’ and develop some scenarios; then
develop a first BPMN diagram ‘offline’ and create a verbalization of it; then vali-
date this verbalization with your stakeholders. Alternatively, you may use simpli-
fied versions of BPMN. In some cases, you will just have to discuss every inch of
the diagram with the stakeholders, but whether this is needed pretty much depends
on the social goal: how deep does the understanding, consensus or commitment
have to be? It is up to you, but keep your eye on the goals and do not ignore signs
that people cannot cope or get annoyed with what they are asked to do.

This relates to a rather difficult issue: the level of detail of your discussion and
representation. On the one hand, this very much depends on your goals, but on the
other hand you need to keep things efficient and feasible. Primarily, you have to
watch out for activities in which people keep adding detail just for its own sake. If
you miss out on detail, you can usually go back and refine. If you give too much
detail, however, this may not only be a waste of time but also cause confusion:
people may have to abstract again from your detail. However, in certain cases a
high level of detail is, of course, needed. In such cases, be prepared to take all the
time needed. Just do not simply assume some generic level of detail for a certain
type of artefact: choose your level of detail according to the situation at hand. This
is, of course, completely in line with the general Agility Principle.

Importantly, never forget that concepts, structures, modelling languages etc. are
less important than simply knowing what you want to know, and why you want to
know it. These pragmatic goals, leading to a pragmatic focus (or simply put, the
setting of a clear topic), are what should drive your CS; at the end of the day, con-
ceptual ‘lenses’ like modelling languages are just semantic and syntactic means to
help achieve clear pragmatic focus (Hoppenbrouwers and Wilmont, 2010). If you
master a language, but do not know what to talk about using it, you make for poor,
unfocused modelling.

156

7.3.3 Participants and Facilitation

No communication without participants; no participants without communication.
Participants in communication situations may be selected to fulfill project goals
(as reflected in the O-CST), but their participation may also be part of the project
goals (I-CST); thirdly, participations may be actively involved in setting the goals.
Participants may well act on individual motives, which may be hidden or out in
the open; they may represent larger groups or organizations, they have some de-
gree of power or authority, and certain expertise (e.g. domain knowledge) and
skills (applied capabilities, apart from domain knowledge). They will have a cer-
tain set of concepts, words, and languages they are familiar with, and which they
may like or dislike. They will display a positive or a negative attitude towards the
goals and the way of working in the project; they may have doubts, biases, convic-
tions; they may be heroes, they may be diplomatic, they may be warriors, they
may be bloody mindedly vindictive. They may even be stupid, or geniuses. The
point is: you will have to work with them. If you can select them, do so with an
eye on the I-CST and the O-CST; if they are simply there, in project context, work
with them in the best configuration possible, and take their individual characteris-
tics and goals seriously insofar you know them. It may be necessary to try and find
out more about them first.

This is not the place to discuss matters of group dynamics and social skills.
However, in practice, social factors (including inter-human relationships and poli-
tics) are so important that denying or ignoring them is downright silly. We may
declare them ‘out of scope’, and engineering-oriented perspectives tend to do so,
with good reason. However, from a communication and interaction perspective,
we have to emphasize the importance of the people factor. In Sect. 7.4 we will
have some more to say on some specific aspects: abstraction and psychological
skills, and terminology/language.

One particular aspect in selecting participants cannot be left unmentioned here:
make sure you do not accidentally leave out key people in the knowledge sharing
or decision process. These may be figures of authority, but they may just as well
be lower ranking people with a specific responsibility or expertise. Some sessions
can be rendered totally useless if the right people don’t show up. Whether they do
this deliberately (sabotaging the process) or for very mundane reasons (having a
bad cold) does not matter; the result is the same. Reschedule a session if neces-
sary, despite the trouble this may take.

The typical person that is responsible for dealing with ‘the human factor’ in
communication situations is the Facilitator: the person leading the session, usually
in a neutral and supporting role (but with some authority with respect to procedure
and matters of order). However, the work of the facilitator also involves planning
and organization of interactive sessions, and this of course heavily involves the O-
CST and its project context. Professional, even certified facilitators exist but are
not cheap; in most cases, it is just a fact of life that project members will take up

157

the role of facilitator. In principle this has the disadvantage that the facilitator may
not be as neutral and ‘objective’ as we might wish, and that she might even have a
stake in the project. On the other hand, a facilitator who knows the participants
and what they are dealing with may actually be more effective. It is all a matter of
balance; just try not to cross the boundaries of the acceptable.

A further disadvantage of using non-professional facilitators is simply that their
level of experience and professional skills may be insufficient to do the job
properly. As a middle way, it may be worthwhile investing in some basic facilita-
tion training for certain members of your organization.

7.3.4 Space and Time; Media, Tools and Technologies

Finally, there are the quite concrete matters of space, time, and ‘tooling’. Choose
your space wisely; do not stuff too many people in small, poorly ventilated spaces;
make sure the setup of tables, chairs, and media like flip-overs, whiteboards or
projectors is adequate. This also holds for digital media, if you use them: availa-
bility and positioning of screens, laptops, etc. In some cases, recording devices
(audio or video; smart screens) may also require spatial planning. Alternatively,
the whole spatial factor may be less relevant because you work in ‘virtual space’:
on-line, via individual screens or through projection. This may take place with
everyone in a different room (even on a different continent), but some people may
also be physically together while others ‘call in’ or ‘beam in’. Note that even in
virtual space (i.e., on individual screens), spatial thinking can play a role; for ex-
ample, advanced setups for video conferencing often emulate ‘physical’ meeting
rooms by projecting images in fixed, familiar positions, even ‘at a virtual table’.

As for time, for regular meetings this boils down to planning (setting a date and
a time; not having too much time pass between sessions) and pacing (when to
have breaks, how long to continue). Estimating how long some activity will take is
always a challenge, and you do not want to waste people’s time (in particular if
senior staff is involved).

Another temporal matter to take into consideration is that of working synchro-
nously (in direct and immediate interaction, in ‘real time’) or asynchronously
(with longer intervals between interactions, preventing immediate replies in inter-
action). Note that these notions do not apply to digital media only: sending a doc-
ument for review via good old snail mail concerns asynchronous communication
just as well as sending an email. Also note that in particular when using digital
media, the distinction between synchronous and asynchronous is blurring. After
all, if you send emails as immediate replies, this hardly counts as ‘asynchronous’,
and a ‘chat’ (typically synchronous) may now be recorded, and maintained almost
infinitely. All this just means you have an increasing liberty to choose your tem-
poral mode of interaction instead of having it imposed by the medium you use.

158

And then there are the media used, the physical means carrying the communi-
cations. Media cover everything from no-tech (the air between two people talking)
via low-tech (a whiteboard) to high-tech (smartboards, electronic meeting soft-
ware, modelling tools, groupware, videoconferencing). Low tech often works fine;
only use high-tech if you are sure it contributes something besides a high gadget
factor, and make very sure you test stuff before you use it. Mr. Murphy really en-
joys high tech.

Despite our advice to use high tech media wisely and perhaps conservatively,
we do not want to take a position that is adverse to high-tech, in particular to
asynchronous and distributed (on-line) communication. Technology has advanced
tremendously, and for example chat, video conferencing, and groupware have be-
come truely available to almost every professional now. Many people still feel
such new media are ‘second choice’: you only use them if there is no ‘real life’,
face-to-face alternative; the ‘Communicate Powerfully’ practice mentioned in
Sect. 0 is a case in point. While indeed face-to-face communication is most natural
and provides optimal information on nuances like non-verbal expression, body
language, and so on, virtual forms of communication also have great advantages.
Tricky negotiations with people you don’t trust should of course only be conduct-
ed face-to-face. However, collaborative work in context of global collaboration
has become standard in some branches of industry, and younger generations are
quite used to communicating intensively through mobile devices like laptops and
smartphones. Digital media just take a certain amount of getting used to. Choose
your medium objectively, and do not let cultural prejudice or conservatism deprive
you of good opportunities to improve your communication through using either
low tech or high tech means as best match your communication situation.

7.4 Communication Needs and Capabilities of Stakeholders

In this section we take a closer look at the many different people that may be in-
volved in communication about model-related artifacts. Though our main focus is
on ‘stakeholders’, i.e., typically people from ‘the business’ somehow involved in
service development (so not the group called ‘developers’), it is worth emphasiz-
ing that some of the developers (or ‘IT people’) are involved in most communica-
tion with stakeholders in one way or another.

As we already pointed out, even to refer to ‘the business’ or ‘stakeholders’ in
general is an enormous generalization, even worse than referring to ‘IT people’.
Similarly, some quite general terms are sometimes used to label roles for stake-
holders, often in method textbooks on modelling: ‘domain expert’, or ‘informant’.
Clearly, this represents a very limited viewpoint. There are many different roles to
play for stakeholders, and their backgrounds, insights, interests, concerns, vocabu-
laries, attitudes, knowledge and skills may also vary greatly. What many of them
share is that they are not of the ‘engineering’ persuasion (engineers usually share a

159

specific view on organizations and systems that is rather different from that of
‘business people’), but even this depends on the situation. For example, in highly
technology-oriented enterprises, it is possible that your stakeholder is more tech-
nology minded than you are. The main point being: be aware of the worldviews
and backgrounds of the people involved, and do not underestimate how different
they may be compared to other people involved –including you.

Just to give some examples of the diverse nature of ‘stakeholders’: they could
be sponsors, (end-)users, product managers, business analysts, product owners,
product marketeers, legal specialists; and dozens things more. If you go and look
in large companies, a whole range of company-specific terms to label different
roles tends to buzz around.

This brings us to another important point that is often ignored by textbooks and
organizational culture alike. Stakeholders do not primarily belong to some fixed
‘type’, or ‘role’. First and foremost, they are individuals, who may or may not pre-
cisely ‘fit’ a general type. For example, if you enthusiastically start ‘doing busi-
ness modelling’ with a bunch of lawyers, you may be in for a nasty surprise – and
then again, you may not. Generally, lawyers will be ‘text people’ and they will not
be happy about ‘doing diagrams’. They will characterize business process models
as ‘technical’, no matter if you agree with that or not. They will also typically re-
fuse to be very specific and explicit about details that from their professional per-
spective are best left unspecified, so some room is left for interpretation. But then
again, you may meet a lawyer who has somehow gained experience in working
with process models, and who sees the need to strictly specify some workflow in
view of automation of a decision process.

The two subsections below introduce some interesting and useful applications
of research looking at individual participants in communication situations, from
two rather different angles: one focusing on stakeholder language (in particular,
how stakeholders interpret modelling concepts), and one focusing on basic skills
of stakeholders and how they match their capability to deal with models, involving
abstraction of some kind.

7.4.1 Measuring the Meaning of Concepts

One of the basic needs that stakeholders have in a communication situation is to
be understood. While they have concrete goals to achieve (for example, to have
their interests properly represented in a model or product, or to see certain re-
quirements complied with) those goals cannot be reliably achieved unless others
involved understand what they attempt to communicate. This does not only de-
pend on the ability of a stakeholder to formulate her opinions and needs clearly,
but also on a shared linguistic background so that the meaning of the words used
by different stakeholders is compatible.

160

Meaning has two sides here: personal meaning (i.e., how a specific person un-
derstands things) and agreed-upon or shared meaning (i.e., how people have
agreed to talk about things). Together these sides determine whether stakeholders
have ‘compatible meaning systems’ (or to use the technical term: compatible se-
mantics). Personal meaning is important because most, if not all people reason by
using the semantics of their natural language and real-world experiences, and not
using formal specifications or agreements (Sowa 2000). Because of this, even if in
some communication situations a relevant professional dictionary (covering some
kind of ‘jargon’) is available and agreed upon, there will still be semantic influ-
ences from the personal understanding that an individual stakeholder has. Because
of this it is quite risky to just assume that every stakeholder means exactly the
same with the jargon they use.

To exemplify this, take some of the common constructs used in conceptual
modelling languages: actors, resources, restrictions and so on. While most people
will easily agree that an actor is ‘something that acts’, what exactly that something
is can (and often should!) be a matter of discussion. Some people might immedi-
ately think of Hollywood actors, and from that perspective actors must be human
beings that act. Others might look at it from an industrial production line point of
view and interpret actors as machines that act. Looking at this in more detail, there
could be a discussion on whether actors are always easily singled out and identi-
fied – singular things that act, or whether for instance people working together as
a group can be seen as a single actor – composed things that act. In most situa-
tions, these different interpretations cannot be simply represented by the exact
same concept in a modelling language: for example, in some modelling languages
actors typically must be human beings that act, so a computer system that does
something cannot be represented with that notation. So what is to be done when
another stakeholder wants to include a computer system as an actor in some pro-
cess model?

Clearly, in artefacts that require a high level of detail and precision, under-
standing the exact semantics used by people involved is necessary to make sure
that the models created are an actual representation of what their creators mean. If
we ignore such issues and just pretend everyone understands each other, misun-
derstandings may propagate through development stages and may eventually even
lead to costly, but necessary corrections in products that have already been im-
plemented and deployed. For agility’s sake, it is necessary to detect and resolve
these kinds of misunderstandings as early as possible, in the modelling phase.

Unfortunately, truly understanding what someone means by something is quite
a challenge, even for communication situations involving rather narrow profes-
sional vocabularies. You might set out to explicitly define all terms, but all the
possible details that contribute to describing the complete meaning someone has
for a specific concept would add up to such an unwieldy nest of definitions that it
rapidly becomes unworkable. This is reflected in the fact that the conceptual mod-
els that we produce are often quite incomplete specifications of our conceptualiza-
tions (Guarino 1998). We just cannot effectively ‘gauge’ someone’s complete

161

conceptualization of a domain from the models they produce or the verbalizations
they utter without investigating the individual as such.

Characterizing people and their semantics by focusing on the details that matter
is a feasible approach. Standardized discriminants, points on which people often
differ in understanding, are a useful and manageable way of figuring out how dif-
ferent people understand terms. These discriminants can be properties that are of-
ten points of discussion, divide people into different groups and so on. For exam-
ple, the properties ‘composed’ and ‘intentional’ often come up in relevant
distinctions between concepts. A possible method for discovering different under-
standings of words, assuming that the concepts and their discriminants are known,
is called the semantic differential (Osgood 1957). Pairs of words that have a mean-
ing linked to a discriminant (‘is it human’, ‘is it material’, ‘is it intentional’, and so
on) can be used to find out how strongly people feel about these factors, and to de-
termine whether someone would stereotypically understand concepts as being like
them – actors being single human beings, resources being composed material re-
sources, and so on.

You can build such semantic differentials for groups of people fairly easily if
you know what discriminants you want to investigate. For instance, if you want to
chart the different understandings people have whether something is human or not,
all you need to do is figure out which words ring true and strong about that proper-
ty, for instance asking people whether something ‘is self-aware’, ‘has feelings’,
and the obvious ‘is human’. With enough of these adjectives you can find a statis-
tically significant score for any discriminant you want to investigate.

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

Re
sp

on
se

 P
ol

ar
ity

Person 1
Person 2

Fig. 55. A Semantic Differential graph for the conceptual understanding of ‘Restriction’.

The results from such a semantic differential can be visualized as simple graphs
(see Fig. 55) which show how someone thinks about different dimensions of a
word. For example, Fig. 55 shows how two different people understand the con-
cept restriction. The orange pattern has a decidedly neutral response to most di-

162

mensions –implying that person either has little experience or is simply complete-
ly neutral about the concept. The other person, represented by the blue line, has
stronger responses to some of the dimensions. The scores for whether something
is composed and whether it is vague are strongly negative, meaning this person
understands restrictions as specifically detailed singular ‘things’. The scores for
whether something is necessary and intentional, on the other hand, are very posi-
tive, meaning that this person sees restrictions as things that are intentionally cre-
ated and necessary to adhere to.

Patterns like these can be used to verify the semantic range of a model someone
creates by indicating what this person would typically mean by common concepts
like actor, restriction and so on (van der Linden et al. 2011). The patterns in Fig.
55are more than just assistants for model integration – they show how two specific
people think about modelling concepts. Such individual-based understandings
could also be used to match people and technology, both by matching those people
who have similar understandings and by giving them the tools (for example, mod-
elling languages) that are closest to their common conceptual understanding(s).
Furthermore, how you communicate to your stakeholders and users can be person-
alized by understanding them, effectively enabling you to create service versions
aimed at specific user groups (Hoppenbrouwers 2003).

7.4.2 Abstraction Skills in Talking about Models

Most communication situations, in particular those involving models, concern ra-
tional thinking. They are typically problem-solving oriented discussions, based on
a logical argumentation and split-second decision making, requiring unambiguous
concepts. They will largely conform to the rules of proper discussion (Eemeren
and Grootendorst 2004).

But creating, discussing, evaluating and changing models takes the game to a
higher level. A rational communication situation is characterized by a clear goal,
towards which participants should continually work, which often involves struc-
turing knowledge and information in a precise and unambiguous way. Communi-
cation in such a situation often concerns models, which can serve multiple purpos-
es: ranging from a simple illustration of a complex point being made, to
representing a whole body of complex domain knowledge.

To get a stronger grip on all this rationality and abstraction stuff, let us look in-
to some psychology. What capacities do participants in a model-oriented commu-
nication process need in order to successfully execute this highly specific type of
task? One of the most important skills is the ability to fluently comprehend and
reason with abstractions. This capacity heavily depends on one’s background
knowledge and cognitive capacities. Background knowledge and experience influ-
ence what participants consider to be ‘abstract’ and ‘concrete’. Cognitive capaci-
ties influence the extent to which people can comprehend abstractions and how

163

fast they can learn to make abstractions. Furthermore, individuals differ with re-
spect to the level of abstraction to which people can take their reasoning.

Neuroscientific research shows that the brain responds to at least three different
levels of abstraction: concrete, first order (a relation between two concrete ob-
jects), and second order (a relation between two first order concepts) (Christoff
and Keramatian 2003, 2009). Concrete talk is typically illustrated with a real-life
scenario, or a first-hand experience. A first order abstraction could be, for in-
stance, two different types of signals like a letter and a phone call, which both
share the property ‘signal’ but require to be differentiated because they are associ-
ated with a different physical action. An example of a second order abstraction is,
for instance, viewing two abstract concepts like ‘signal’ and ‘end of a period’ as
‘process triggers’, because they both trigger identical activities even though they
come from different sources.

There are several key cognitive processes that deserve special attention when
dealing with abstract reasoning. These are known as executive functions. They
control and manage other cognitive processes, and conscious awareness of the ex-
ecutive functions is essential for successful modelling. An operational definition
of the executive processes is given by (Ylvisaker et al.1998):

• knowing what is easy and what is difficult;
• goal setting;
• planning behaviour to achieve the goal;
• initiating behaviour towards achievement;
• inhibiting interfering behaviour;
• monitoring behaviour;
• strategic thinking;
• flexible problem solving performance.

As part of the ASD project, we observed over forty modelling sessions, and spe-
cifically looked at the cognitive skills used and needed in them. These are some of
our findings (Wilmont et al. 2012):

• Concrete illustrations are needed for shared comprehension. Without a shared
concrete representation that both participants can visualize, reason with and
provide examples of, there can be no thorough understanding and no further
formation of necessary abstractions; progress towards the goal of the commu-
nication situation stalls.

• If people talk at different levels of abstraction, several things can happen: either
the necessary abstractions are not made because of one person lagging behind,
or the people who do tag along leave behind the people who cannot cope. In the
latter case, the process gets stuck in an initial ‘define and represent problem’
phase as long as there is no match in abstraction level and understanding. This
results in stalling of the process. Discussions then take an unnecessarily long
time, with unnecessary details being covered.

164

• Modelling sessions that do proceed well involve a high level of so-called moni-
toring behaviour. These sessions typically start by stating explicitly what the
goals of the session are, and during the course of interaction, attention is fre-
quently turned to these goals, and to whether the discussion is still relevant. If
not, actions are taken to turn the discussion towards relevant issues again.

• We do find that some social behaviour plays a role in this process. For instance,
if a participant perceives that others doubt the quality of his work, feelings of
insecurity set in and negatively influence focus and motivation. Also, if a par-
ticipant works with others who are less capable, and they keep veering off and
do not comprehend the crux of the discussion, nor respond to attempts to get it
on course again, then his motivation is negatively affected and participation
dwindles.

So what can we do to make a modelling process to a success?

1. Use concrete scenario illustrations and examples from the participants’ daily
experience and environment to make abstract concepts clear.

2. Carefully monitor the participants’ basic understanding: does everyone per-
ceive the abstraction level of concepts used in the discussion in the same way?
Then tailor the concepts used in the session to suit this level. This becomes rel-
evant when moving towards higher levels of abstraction: these still have to be
tested and monitored for comprehension with concrete illustrations.

3. Be aware of the learning process that takes place as part of the project. With
practice, executive processes can become reflexive, and perception of abstrac-
tion levels can change as people become familiar with concepts. As people be-
come flexible with abstract reasoning, the process can proceed faster.

4. Monitor what level of conceptual change people can deal with, so that goals
may be achieved more quickly and participants who have trouble can be
helped, also depending on how crucial they are in the process.

5. Monitor people’s progress. How many concrete explanations do they need in
order to grasp a concept? How easily to they grasp relations between different
concepts? Can they actively reason with these concepts, and provide examples
of possible scenarios? Or do they only tend towards passive understanding?

6. Carefully monitor the content of the interaction: is everything still relevant to
the goals stated? Why have you deviated from focus?

7. Be aware of your own executive functions, as described above in the list by
(Ylvisaker et al. 1998). What are you currently doing to ensure the structure of
the modelling session is correct, that goals are being achieved, that everything
is relevant?

8. After completing the model, explain it to others to verify whether your vision is
coherent with those of other stakeholders. Ensure you have not missed im-
portant points or made erroneous assumptions. While explaining, make sure
that the implicit relations in the model become clear to the stakeholder. These
relations, and your thought processes which these relations are based on, are

165

not directly visible to the stakeholder and should therefore be made explicit.
Verification occurs as a consequence.

7.5 Model Visualization Guidelines

Visualization is a powerful and important means in communicating models; in
fact, some people only call something a model if it is visualization (i.e., a diagram
or graph of some sort). While we do not agree with this, we acknowledge that vis-
ualizations of models and views are crucial. However, visualization has its own
rules, and creating visualizations that ‘work’ is not always easy, especially if what
you visualize is large (i.e., contains many concepts or relations) or complex. In
this subsection we discuss generic rules for making visualizations work.

Such rules, guidelines or principles are generally not formally structured and do
not provide information on impact and application details. We try and overcome
this by structuring these rules as patterns instead. This is in line with the general
approach in this book and with Chap. 5 in particular. ‘Visualization patterns’ help
practitioners understand the problems associated with using visual model nota-
tions and provide concise and precise solutions to those problems in a particular
context.

Many of the patterns are based on the principles for visual notation as described
by Moody (2009). However, we also draw on literature on aesthetics of graph and
model visualization (Eichelberger and Schmid 2009). We try to come up with a
comprehensive set of model communication patterns, which is what this subsec-
tion is about.

The patterns follow the template suggested by Meszaros and Doble (1998), and
have the following constituent elements:

Context: the situations in which the pattern would apply.
Problem: a statement of the problem to be solved.
Forces: the factors which must be considered when applying the pattern.
Solution: the proposed solution to the problem.
Examples/Explanation: cases or explanation demonstrating the existence of the
recurring problem and the application for the pattern.

As the Context of all the patterns is: designing, or using a modelling language, we
will drop the Context from the pattern descriptions below. Let us first consider the
Semiotic Clarity visualization pattern.

Semiotic Clarity

Problem: Lack of correspondence between Symbols and concepts the symbols re-
fer to.

166

Forces: Model Symbol redundancy, excess or overload can cause increase in
complexity.
Solution: To limit diagrammatic complexity it is preferable to have a symbol re-
dundancy when mapping constructs to the language symbols.
Explanation: The Semiotic Clarity pattern refers to the relation between the
shapes, symbols of any modelling language/notation and the real world concepts
to which those shapes refer. Some modelling languages are simple and use rela-
tively few shapes (circles, rectangles, lines) to represent a whole range of con-
cepts. On the other hand, other more complex languages have a variety of shapes
and symbols to represent slightly different concepts. To put this more precisely,
when there is no one-to-one correspondence between constructs and symbols, one
or more of the following anomalies can occur (Moody, 2009):
• Symbol redundancy occurs when multiple graphical symbols can be used to

represent the same semantic construct.
• Symbol overload occurs when two different constructs can be represented by

the same graphical symbol.
• Symbol excess occurs when graphical symbols do not correspond to any seman-

tic construct.
• Symbol deficit occurs when there are semantic constructs that are not represent-

ed by any graphical symbol.
When the model analyser finds a lack of correspondence between the symbols and
the referent concepts, then if it is possible, one can try and reduce the number of
symbols being used (as suggested in the pattern solution and e.g. Symbol deficit).
Example: A trivial example of symbol overload can be observed in the diagrams
produced by c-map tool (Canas et al. 2004).

structural/conceptual constraints
(languages, views)

Visualization

Verbalization

Syntax

Referant

Shapes

Lines

consists of

has
consists of

has a

Fig. 56. Semiotic clarity pattern.

Fig. 56 represents a conceptual model of any generic modelling language. Howev-
er, the symbol used for completely different concepts such as visualization, ver-
balization, shapes, lines are all the same. In fact this is a trivial example as c-map
supports just one shape for any concept. A related pattern is called Graphic Econ-
omy, which suggests that one needs a balance between the numbers of different
symbols provided by a modelling language and the expressiveness or effectiveness
of the language to communicate to the reader. Implying that if a language has too
many symbols covering a range of concepts than the understandability of the
models created could be reduced, especially for novices.

167

Symbol/Edge Overlap

Problem: The model consists of many overlapping symbols and connecting
lines/edges, placed randomly.
Forces: When symbols overlap, the symbols are difficult to understand. On the
other hand when edges overlap, it could be construed that the edges are meant join
and makes it difficult to discern the individual paths of the lines/edges.
Solution: It is best to avoid symbol-symbol, edge-edge and edge-symbol overlap
in models.
Example: In Fig. 57, the left represents how edge crossings reduce the aesthetic
appeal of a graph/model. In the diagram on the right the edge crossings are re-
moved, while at the same time the nodes have been placed in a grid to improve the
aesthetic appeal (Bennett et al. 2007).

A

B

C

D

E

F

A B

C D

E F

Fig. 57. Symbol/edge overlap.

The Symbol/Edge Overlap pattern is a typical sample pattern which helps the
modeller with aesthetics of the design notation. The other patterns dealing with
aesthetics of model visualization deal with the following Minimize Edge Bends
pattern.

Minimize Edge Bends

Problem: Too many edge bends in a model.
Forces: Edge bends make edges more difficult to follow, as an edge with a bend
can be perceived as two edges.
Solution: It is better to try and reduce the number of edge bends in a model – es-
pecially in circuit diagrams where bent edges can be trouble spots.
Example: In Fig. 58, the graph on the left has two bent edges, while the same
graph on the right has no bent edges. Quite clearly the graph on the right is more
elegant.

168

A

B

C

D

E

F

A B

C D

E F

Fig. 58. Minimize edge bends.

The Minimize Edge Bends pattern is shown by recent empirical evidence to have a
greater impact on the understandability of models/graphs compared to the Sym-
bol/Edge Overlap pattern (Eichelberger and Schmid, 2009). Related patterns in-
clude Minimize Drawing Size, which supports a homogenous symbol and edge
distribution to reduce the need for scrolling the diagram. Similarly, Uniform Ap-
pearance pattern focuses on the similarity and homogeneity of the model, empha-
sizing on short edge lengths, high density of nodes, as well as the use of an under-
lying grid or symmetry of nodes and edges.

Semantic Transparency

Problem: If the semantic meaning (i.e., the concept referred to by the symbol(s))
of the symbols is different from their intuitive or natural meaning.
Forces: It is very hard for novices to understand symbols that are not intuitive and
rather designed without keeping a novice reader in mind.
Solution: Symbols should provide clues to their meaning and need to be ‘intuitive’
or ‘natural’.
Example: Arguably, the figure on the right in Fig. 59 provides a better idea of how
a Customer: Person and Organization are related, that a customer could be a Per-
son or an Organization and they could overlap.

Customer

Person Organization

ID Number
1 1

Customer

Person ID Number

Organization
1 1

Fig. 59. Semantic transparency.

169

Complexity Management

Problem: Excessive diagrammatic complexity – a diagram with too many symbols
and links, is one of the major barriers to end user understanding of diagrams.
Forces: Complexity has a major effect on cognitive effectiveness as the amount of
information that can be effectively conveyed by a single diagram is limited by
human perceptual and cognitive abilities.
Solution: Modularisation and hierarchy can significantly reduce the complexity of
diagrams.
Explanation and Example: Hierarchical organization is seen as a way to manage
diagrammatic complexity, while at the same time improving the diagram’s aes-
thetics. In the example below we show how both clustering and hierarchical repre-
sentation can help in improving the understand-ability of a graph. Modularisation
works by dividing complex domains into smaller parts, and in models, leads to
bunching common parts of the model together and represent a domain.

Original graph

After clustering

After hierarchical organization

Fig. 60. Complexity management.

In the first graph of Fig. 60 we see the original graph, in the middle figure we see
the clustered version and in the figure on the right we see the same graph with a
hierarchical layout. Clearly the central and right figures improve the aesthetics and
understand-ability of the graph by helping the reader navigate to the different sec-
tions of the graph. This effect of the application of this pattern would be more evi-
dent with a far more complex original graph/model.

Similar to the Hierarchical Organization pattern is the Cognitive Integration
pattern that investigates the complexity of multiple models representing the same
domain. The Cognitive Integration pattern determines if the different models ‘be-
long together’ and represent the domain.

Visual Expressiveness

Problem: Using a small range of visual variables (shapes, colours, line types etc.)
reduces the understand-ability of the diagram.
Forces: The use of few (sometimes one) visual variable to encode information re-
sults in the possibility of sometimes only representing minimal data and is hence
quite inefficient.

170

Solution: The visual notation should try to match properties of visual variables to
the properties of the information to be represented, use of redundant visual varia-
bles is considered better for the notation.

A related pattern is called Perceptual Discriminability – the ability to distin-
guish between the shapes used to model different concepts. For example, the
shapes representing a Data Store, Process and an Entity (in a Data Flow Diagram)
should be distinguishable. A Data Flow Diagram where all of them are represent-
ed as rectangles would not make them distinct and hence they would not be dis-
criminable.

On the other hand, the Dual Coding pattern relates to a judicious combination
of text and graphical notation. The pattern suggests adding text to symbols whose
inherent meaning is not evident improves the understand-ability of the notation.

The Cognitive Fit pattern refers to the problem representation and the strategies
required to perform a specific task. Therefore, the Cognitive Fit pattern implies
that the cognitive effectiveness of a model could be different for experts and for
novices.

A key property of these Visualization Patterns (that is essential for its optimum
usage) is that they are not all completely independent of each other. This is the
case with the more cognitive patterns (Moody 2009), as well as the aesthetic mod-
el representation patterns (Eichelberger and Schmid 2009). An example of con-
flicting patterns is that Hierarchical Organization could conflict with Sym-
bol/Edge Overlap and Uniform Appearance patterns. Also, the proposed solution
of the Graphic Economy pattern clearly conflicts with that of the Visual Expres-
siveness pattern. The way to handle these conflicting guidelines is to treat the pat-
terns are broad guidelines and strive for a balance - in order to attain maximum
model understand-ability.

7.6 Communication Practices

In this section we discuss and illustrate a set of communication situation practices.
They are the combined best communication practices (and lessons learned) result-
ing from years of practice and research, and of the recent focus provided by the
Agile Service Development project. Please note that these practices are not all ap-
plicable in all situations: some apply in some situations, as indicated in their de-
scriptions.

Apply Focused Conversations

Many models tend to capture multiple aspects from different perspectives. For ex-
ample, process models concern roles, events, business processes, process steps,
authorization aspects, artefacts, guidelines, SLA requirements, compliance rules,
etc. Organizing a modelling session by inviting all stakeholders involved (compli-

171

ance officers, product developers, process managers, architects) is very ineffec-
tive. In such sessions, the focus and perspective is constantly and often implicitly
shifting, resulting in loss of the overview, variation in levels of detail concerning
the aspects involved, and loss of effectiveness because much time is needed to
manage the process. Furthermore, the individual participant will not feel useful
and effective all the time and may experience difficulties in understanding aspects
of the model outside their own expertise.

The use of chained focused conversations turns out to be much more effective.
For each individual aspect and perspective a focused conversation or mini session
is organized. Only relevant stakeholders should be involved. In a focused conver-
sation, only a limited set of techniques and model elements are used. These ses-
sions can be tuned to fit the competences and perspectives of the stakeholders in-
volved. Note that models of the business (e.g. a BPMN model) will not be the
direct outcome of such a session. This is not a problem, because such complex
multidimensional models are not effective in communication with multiple stake-
holders having different goals or perspectives. Let an experienced modeller con-
struct the overall BPMN model based on the outcome of the focused conversa-
tions. Key ingredient here is that all participants trust the experienced modeller to
adequately integrate the complete model.

If A Problem Cannot Be Modelled, Do Not Model The Problem

Some problems just cannot be modelled. For example, our AgriSurance organiza-
tion will find out that it is very hard to model all possible claim situations that may
occur. With respect to claims related to car accidents, almost every accident is
unique. Weather conditions are different, road situations are different, injuries will
be diverse, police may or may not have been involved. Modelling the complete
problem is like modelling the ants in an ant hill. Communication sessions trying to
model the problem in general turn out to be disastrous, because if you cannot
model the solution, how would you expect your stakeholders to be able to describe
it? This is directly linked to the 80/20 rule: 80% of the cases can be processed with
20% of the effort, so only model that (simple) 80%.

Again, applying focused conversations is a good practice to be applied in such
situations. For example, in the context of claim handling, a library of limited fo-
cused conversations can be used to model the different aspects of the claim han-
dling problem.

Do Not Communicate The Model, Communicate The Effects Of The Model

Consider this real life example. In a time span of six weeks a very comprehensive
portal was developed for a Dutch car lease company. It was extremely rich in
functionality; by means of business rules and fuzzy matching detailed advice was
to be given for cars that would fit the customers need and interest. Complex tax
and expense calculations were to be made, marketing information provided to en-
gage new customers, and existing customers would find all information about their

172

contract, their current leased car and the way they would use the car. Based on
rules and models customized advice was to be provided to drill down operational
expenses for the customers given their personal situation.

Many domain experts were involved on many different aspects. In six sprints,
each with a duration of one week, the complete system was developed. Communi-
cating the models before development would have had a huge negative impact on
development speed. Furthermore, because of the complexity of the models, under-
standing them would have been a very hard job for the experts involved. Instead,
not the models but the system being developed was validated on a weekly basis by
using a set of representative cases. Executable models (like 5 GL’s) or executable
UML are a prerequisite for this kind of situation.

Collaboratively Model, But Not Just For The Model

Collaborative modelling sessions are very useful to foster other results than just
the model created in these sessions. In some cases, it is the argumentation or rea-
soning of the stakeholders during the creation of the model that really counts. For
example, in order to capture the relevant decisions to make in a claim handling
process, AgriSurance organized a set of collaborative modelling sessions handling
a set of representative claims. The assignment given in the session was to set up a
model to a assess a claim. It was not this outcome, however, that was the main re-
sult of the session: the arguments behind the reasoning steps were the real out-
come, because these were used to model the assessment policies of the individual
experts in order to set up generic assessment policy guidelines as training material
for novice claim handling agents.

Respect Stakeholders Perspectives During Modelling

In many project multiple stakeholders are involved, each with a different lan-
guage, background and perspective on the problem at hand. Instead of trying to
find a new highly abstracted unified (modelling) language that can suit every
stakeholder, just respect the differences of the stakeholder, leading to multiple
domain and perspective-specific models. Then let facilitator/modelling expert
monitor and model the relation of the different perspectives, and model the (often
rule based) relations between the models. Such an approach has been successfully
applied for the Dutch Child Care and Protection Board in view of the ministerial
‘Youth & Family’ programme. It executes tasks that offer support to families and
takes action if the development and situation of a child is in danger. Challenge
was to realize an improved information exchange within the criminal law system,
youth care and protection chains. The Child Care and Protection Board was in
search of a business service that could achieve this goal. Screening minors, identi-
fying needs and creating risk assessments were important components of this goal.
This should improve the information exchange in the youth chains using, for ex-
ample, process steps that are not linked together. The aim was to achieve a cur-
rent, correct and complete insight concerning the children in the chain. In order to

173

achieve this, the perspective of each stakeholder in the chain was modeled: police
officers, child protection agents, teachers, psychologists, etc. Information about a
child is delivered and communicated for each specific perspective. However, an
underlying rule based model is able to ‘translate each perspective into each other
perspective’. In order to organize, maintain and guard consistency for these per-
spectives, automatic support is required to lower the human effort involved.

Do Not Organize Stakeholder Interaction Sessions Without A Concrete
Purpose Of The Model

Quite often models are created just ‘because the methodology or architecture dic-
tates it’. A typical example is the creation of domain models. Many business ar-
chitecture handbooks prescribe the development of a domain model. In many cas-
es this results in isolated sessions in which architects try hard to model all
concepts in the business on a quite high level of abstraction. In hindsight, many
such domain models are not useful because the perspective (goal) that was
set/used for the (isolated) domain model did not meet the perspective (goal) of the
stakeholders that will eventually use the model. A domain model used to develop
working instructions for agents will be quite different from a domain model that is
used in the creation of formal legal documents, which in turn will be different
from a domain model that is used to explain the product/service complexity of an
organization. Without having an explicit goal, it is almost infeasible to choose the
right perspective. General models tend to be huge and as such inflexible. Most of
the time a lot of configuration (or drilling down) is required to get the entities
needed for the job at hand. Model only what is needed for the goal is a cornerstone
of agile development.

Avoid Collaborative Sessions With Polarized Stakeholders

When setting up a collaborative modelling session, try to avoid meetings in which
domain experts with contradicting views participate at the same time. It is prob-
lematic to let experts confront each other and let them solve contradictions. This is
hardly ever going to happen, leading to frustration and endless sessions. Organize
sessions for each domain expert individually, and let the facilitator try to build
bridges by playing the ignorant but interested third party. Such a facilitator can
contact ‘the other domain expert’ by stating: ‘I don’t know anything of the prob-
lem at hand of course, so what I’m going to say will probably be ridiculous, but
what I was thinking: what about … (the contradicting view of the other domain
expert)….’. The facilitator will find that the opponent will be much more open to
think about this and consider the contradictory point of view, because he does not
feel threatened.

174

Communication Does Not Stop After The Service Has Been Created

When having developed a service, enable domain experts and/or users to continu-
ously adapt the model by means of specialized focused conversations. For large
financial institutions and healthcare organizations, tailor made maintenance facili-
ties are developed, to be used by business stakeholders, enabling them to maintain
the agile aspects of Agile Services without the need to involve the ICT department
or specialized engineers. Such maintenance facilities use the domain specific lan-
guage of each stakeholder and take the stakeholder mental model and capabilities
into account. This practice makes the business responsible and is vital for closing
the business-IT gap. It results in real agile services. It is not only the ability to
change service that counts, but also the person who is able to change the service.
In some situations, the time-to-market of changed business services can be reduces
from weeks to hours.

Be Aware Of Power And Hierarchies That Might Affect The Outcome

Be aware of how hierarchical and informal power relations may affect the out-
come the of a modelling session, which will be different if you model with stake-
holders having different levels of power. An advantage is that both parties will
learn about one another by modelling together. However, when it comes to mak-
ing design decisions, it’s authority that counts.

Good practice is to organize different interactions for different purposes: organ-
ize joint sessions for modelling the aspects relevant to the problem at hand, but
perform individual sessions for making design decisions; then organize further
joint session(s) to sort out conflicting design decisions.

Apply User Involvement With Care, Not By Default

User involvement is a great thing. Nobody dares to contest this anymore. Howev-
er, be careful when you involve users. During innovation, as in creating a com-
pletely new system (version 1.0) with a new approach, involving users is not al-
ways such a good idea because they might lack the ability to envision the new
situation; unless you are able to directly communicate parts of the new system to
them at the end of a sprint session. However, involving them in the creation of
version 1.1. or 2.0 is very useful, because they will tell you exactly what is wrong
with the first version. This practice applies especially for situations where a (radi-
cal) new way of working is being introduced, for example, an Agile Business Ser-
vice that will automate decision making process steps (automatic scheduling, au-
tomatic assessment of insurance risks, automatic configuration of customer
tailored advice).

Do Not Always Publish A Model Publicly

‘The requirement of transparency is a proof of distrust’. Being transparent is a
good practice in principle, but beware of being too transparent; publishing each

175

and every model publicly can be counter-productive. Unknowledgeable stake-
holders may see this as an invitation to meddle with other people's business, frus-
trating both the process and the quality of the outcome. Moreover, the volume of
models may create unnecessary communication overload.

Use Visualization Wisely

‘A picture says more than a thousand words’. This can be really true, but a bad
picture can also create a lot of misunderstanding. For example, a large institution
developed a quite complex architectural picture for their multi channel strategy,
but in this picture they used the same symbol for both technical channels (e.g. tel-
ephone, internet, postal mail) and distribution channels (e.g. sales by intermediar-
ies, self service portals or by local offices). This picture, presented as the project
bible, led to numerous miscommunications, false interpretations, and in the end in
developing the wrong software components. For guidelines, see Sect. 7.5.

Take Into Account The Limitations Of You Domain Experts

If during development of an Agile Service, the domain experts strongly indicate
that the task is difficult and that they want support, reconsider the feasibility of the
project. It is likely that you will find that no one that can actually help you in cre-
ating the models or business rules for developing the Agile Service effectively.
This concludes the chapter. We realize that some readers may feel a bit over-
whelmed by the many aspects, concepts and practices presented. We would like to
finish with an encouraging note: whatever your role in Service Development is,
and however agile you work, you already communicate all the time. Probably,
you are not doing such a bad job as it is. We suggest you take our advice if you
think you can use it, and invite you most of all to become (more) aware of goals
and means in communication situations, and act accordingly.

8 Adopting Agile Service Development

M.M. Lankhorst

In this final chapter, we describe how organizations can adopt our approach to ag-
ile service development. This is not an easy task and many barriers need to be
overcome, but the benefits are real and important. To help you reap these benefits,
we outline the main issues that you may need to overcome and describe a gradual
path to improve your agile capabilities, in which the elements of our approach are
positioned. Finally, we give our conclusions and outline the challenges in moving
forward with our vision of enterprise agility.

8.1 Barriers to Agility

Nearly all organizations we come across would like to become more flexible in
their response to changing circumstances. Some look even further and want to be
proactive, adapting their way of working, processes and technology even before
their environment imposes change upon them. They see agility as a strategic factor
in outsmarting the competition.

But to reach such a high level of competency and flexibility, you may have to
overcome many barriers, both at an organizational level and in your IT applica-
tions and infrastructure. Broadly speaking, we can distinguish between social, cul-
tural and organizational barriers on the one hand, and structural and technical bar-
riers on the other.

8.1.1 Technical Barriers

Many enterprises feel that their IT applications and infrastructure are hampering
their agility. By its very nature, the infrastructure of an organization’s IT is diffi-
cult to change. Large, administrative organizations often have a long history of IT
system development, spanning often three to four decades. Their legacy systems
are often very robust and business-critical, but they are built in outdated technolo-
gy that is difficult to maintain (and even more modern technology causes prob-

178

lems, as witnessed e.g. by overly complex J2EE applications from the last 15
years). Moreover, these systems were often built for a limited type of use and tai-
lored to the needs of specific parts of the organization; hence the familiar silo
landscape that many enterprises have to deal with. Finally, the interoperability of
these systems is often low and their use in a different context therefore problemat-
ic. An example of this difficulty is the effort that many banks had to make over the
last decade to facilitate Internet banking with their large, batch-oriented transac-
tional systems; similarly, government organizations have to make enormous ef-
forts in adapting their systems to changing legislation.

Integration, renovation or replacement of these systems is a difficult task and
beyond the scope of this book. Unfortunately, enterprise agility is doubly ham-
pered by these inflexible systems: First, they are difficult to adapt to the current
demands posed by an increasingly integrated and networked world and they hin-
der organizations in offering innovative modern products that meet customer de-
mands and provide them with a competitive value. Second, proactively changing
them to be more flexible in accommodating possible future changes is very diffi-
cult. So not only is the current agility adversely affected, the efforts in becoming
more agile are also hindered.

In Chap. 4, we advocated the use of standardized infrastructures and platforms,
configured with models that capture the relevant business and implementation
knowledge. Many examples show that this approach really works in practice.
However, this type of architectures is not without its own teething problems. The
technical complexity of the infrastructure, often consisting of a number of inter-
linked platforms, must be kept in check. Expertise with these new technologies
and models is often scarce and needs to be built up. Managing these models is a
specific point of attention: both a clear organization of these models and a consid-
ered management process are needed to avoid ending up with an unmanageable
mess.

Moreover, having an agile platform itself proves not to be sufficient. Business
stakeholders responsible for policies and rules should preferably be able to main-
tain these rules themselves. Complex, ICT-focused models and relatively long re-
lease cycles hinder these objectives. Finally, these new systems often have to live
in the context of a pre-existing IT landscape, posing the usual interoperability
challenges.

8.1.2 Organizational Barriers

From an organizational perspective, agile ways of working may sometimes be
perceived as a radical change. Most conventional methods try to reduce various
forms of uncertainty (e.g. functionality, time, etc.) as early as possible, but agile
methods work differently: they keep their options open as long as possible and de-
cide ‘just in time’, when the best possible information is available. Initially, this

179

apparent uncertainty may be difficult to deal with for various management levels
in the organization. This also addresses a belief issue: some managers, but also
many architects, are still convinced that they can ‘rule’ complex organization with
comprehensive and detailed regulations and policies. Other management styles
adopt the vision that the organization is capable enough to cope with many uncer-
tain situations, and that you should not implement large numbers of detailed rules
but rather provide guidance in the form of principles and boundaries.

Moreover, management at different levels has to deal with different kinds of
uncertainty. Whereas middle managers have uncertainties about introducing a new
service or the right functionality for a new IT system, C-level management deals
with issues like market share, cost reduction and compliance. Being aware of these
different levels of uncertainty, and being able to interrelate these, is crucial for be-
ing successful in agile service development. Furthermore, agile processes may
clash with other procedures within the organization. For example, compliance de-
mands or security audits may require a lengthy evaluation and testing process be-
fore a new service is put into production. The role of architecture as a way of re-
ducing or mitigating risk, as outlined in Chap. 3, is very important in this respect.

As we have described in Chap. 2, agile methods require a strong sense of re-
sponsibility, self-organization and a collaborative attitude of all those involved.
This requires more discipline from team members than in conventional methods;
team members are all accountable for the results and cannot hide behind fixed
procedures or responsibilities. Moreover, agility requires transparency, measuring
various aspects of team and business performance and focusing on continuous im-
provement of the way of working. This may also be perceived as a threat by some.

Thus, agile service development may demand both a cultural and a technologi-
cal change. This is a time-consuming process; some organizations may not be able
to make such a change in time and instead choose to start a new company or busi-
ness unit, sometimes even allowing it to compete with the original company. This
new organization is equipped with new technology a fresh team of employees who
are flexible and open to change.

Conversely, agile teams will have to live within a larger context that has differ-
ent rhythms. Many parts of the organization will keep their usual monthly, quar-
terly or yearly business cycles, and agile teams will often need to match such cy-
cles. The same may hold for technical cycles; in particular in the context of large
IT landscapes with many interdependencies, a thorough Development, Testing,
Acceptance and Production (DTAP) cycle will often be enforced. This requires
striking a balance between the need for speed and managing risk and tuning these
cycles requires a thorough analysis of the particulars of an individual organization.
Modern, model-based architectures such as those advocated in this book will at
least reduce the effort spent in such DTAP processes. Moreover, agile technology
has already proven to empower the business to publish new policies, business pro-
cesses or services in a controlled way, independent from IT, thereby reducing time
to market from weeks to hours.

180

Finally, the complexity of these new technologies and the specialized
knowledge needed to get this off the ground should not be underestimated. Re-
training the current workforce of an organization to work within such a sophisti-
cated environment may pose a serious obstacle. Conversely, young employees
with an open mind and knowledge of modern agile development are hard to moti-
vate to maintain old-fashioned legacy systems. This may motivate some enterpris-
es to outsource parts of their (IT) operations, but the essential business capabilities
that differentiate a company from its competitors should be kept close to the heart.
And in particular if an enterprise explicitly builds its strategy on its agile capabili-
ties and wants to define the right infrastructure to face a volatile future, it should
be well aware of these potential limitations.

8.2 Scaling Up Agile Processes

Agile processes may not easily fit with all environments and circumstances. Turk
et al. (2002) describe classical agile methods as providing only limited support for
distributed environments, subcontracting, building of reusable artifacts, large team
management, or safety-critical developments. But these limitations can be over-
come. For example, globally-oriented organizations have distributed units, which
is incompatible with the face-to-face communication advocated by agile process-
es. This requires other rich forms of communication, such as video conferencing.
Subcontracting is often based on precisely formulated contracts that describe the
deliverables extensively. In an agile context, different ways of specifying contrac-
tual conditions should be used. Although variable elements may be part of a con-
tract, the clear specification of iterations and milestones is not required in agile
settings.

In addition, the desire to produce reusable artifacts to yield long-term benefits
may clash with classical agile methods that are often more concerned with getting
short-term results. However, the model- and platform-oriented approach we have
advocated in this book is specifically intended to provide reusable agile solutions.

Larger projects also require additional measures, since effective communica-
tion in an agile manner (e.g. informal face-to-face chats, review meetings) may be
more difficult in large team environments. The ‘Scrum of Scrums’ practice is one
such measure. But more may be needed, in particular to control complexity when
building large-scale systems.

Furthermore, safety-critical development may require additional quality control
mechanisms to assure product safety; for example, even extensive testing cannot
cover all possible cases for all but the simplest systems.

Scaling up agile methods to be usable in such complex, distributed and large-
scale environments is an explicit goal of the Agile Scaling Model of (Ambler
2010). This which provides guidelines on adapting agile methods for such envi-
ronments, based on eight scaling factors:

181

1. Team size;
2. Geographical distribution;
3. Regulatory compliance;
4. Organizational distribution;
5. Technical complexity;
6. Domain complexity;
7. Organizational complexity;
8. Enterprise discipline.

The scaling model outlines how these factors influence the choice of methods and
tools. It also includes a disciplined agile delivery approach for such environments,
encompassing not only software construction but the entire lifecycle from incep-
tion of the first ideas to the release and operation, and feedback from usage to
complete the cycle. Basically, this can be viewed as a set of larger-scale feedback
loops around the smaller scale iterations that form the core of agile processes.

8.3 A Capability Model for Agile Service Development

As we already stated, creating truly agile enterprises is not an easy task, and some-
thing that may take several years. Where do you start? What are the quick wins
and bottlenecks? To help organizations plot a course to enhance their agility, we
have developed a capability model for agile service development, based on com-
mon models from the literature. This model positions the approaches and instru-
ments we have described in this book at different levels. A self-assessment helps
you in determining where your organization currently stands and hence where to
use elements of our approach and what next steps may be useful to improve your
agility. Note that we explicitly avoid the term ‘maturity’ here: it is not our inten-
tion that all organizations should strive for the highest possible level in this capa-
bility model, but rather that they choose appropriate capabilities that fit with their
specific strategy and circumstances.

The capability model combines the business, process and system aspects of en-
terprise agility, as explained in Chap. 2. These are also interdependent:

• System agility is often hampered by a legacy IT landscape that is difficult to
change, which impacts the business options of the enterprise, its business pro-
cesses and possibly even its organization structure. By its very nature, a low
system agility is difficult to correct. Hence in many organizations, current sys-
tem agility will score lower than process agility.

• Process agility is needed to establish ways of working that rapidly and compe-
tently deliver results that provide business value. This is often relatively easier
to realize, but only taking care of process agility merely helps you to build bet-
ter silos. Moreover, it requires management recognition and support and hence
depends on business agility as well.

182

• Business agility concerns the importance of agility for the enterprise’s business
model and strategy. But the ability to execute such a strategy depends on both
process and system agility, and of course on the cultural and organizational as-
pects described in the previous section.

Thus, to achieve true enterprise agility, all three aspects of agility must therefore
be addressed. Of course, changing the agility of your legacy IT landscape or the
culture of your organization may take considerable time, whereas improving the
way of working within a project is often a matter of months. Hence, you organiza-
tion may have different levels of capability in different aspects. Furthermore, the
type of scale is different, since the first aspect mainly addresses the agility of vari-
ous structures in the enterprise, whereas the second and third focus on (manage-
ment and design) processes. Therefore we use two different scales.

However, the Agile Manifesto’s ‘individuals and interactions over processes
and tools’ should not be forgotten. Within the agile community, the use of maturi-
ty models is highly contentious. It is certainly not our intention to prescribe specif-
ic processes or management practices in the way the CMMI is often used to assess
software development organizations; there is no cookbook for adopting agile, and
our capability model does not come near the CMMI’s level of detail. Nevertheless,
we think such a model can help organizations in assessing where they are and
which actions might helpful in improving their agility from that level.

8.3.1 System Agility Capabilities

To gauge the (organizational and technical) system agility of enterprises, we use a
set of levels or stages derived from The Open Group Service Integration Maturity
Model (OSIMM) (The Open Group 2009a), the Business Decision Maturity Mod-
el (BDMM) (Halle & Goldberg 2009), and the staged model of architecture devel-
opment of Ross et al. (2006); we have also reused the latter’s names for levels. We
have adapted these to an agile process context and extended them with our view
on models and architectures for facilitating system agility, as described elsewhere
in this book.

Level 1: Silos

At the initial level, system agility is unknown and possibly quite low. There is no
insight into the enterprise and IT architectures. Individual parts of the organization
are developing their own services independently, with no integration of data, pro-
cesses, standards, or technologies. This severely limits the ability of the organiza-
tion to implement business processes that require co-operation between the differ-
ent parts, and the IT systems cannot be integrated, reused or changed without
significant manual intervention. Business knowledge is only visible at the level of
these silos, or within specific projects. The use of models is non-existent or lim-

183

ited to the design of very specific aspects, for example data models. The lack of an
integral view of the customer hampers the development of customer-focused pro-
cesses and systems.

Level 2: Standardized Technology

At level 2, system agility is addressed reactively, only at the level of individual
systems, and focused on IT. Architecture and design models are used in an infor-
mal way and mainly for communication purposes, across various aspects of the
application-level design process, and for some specific parts of the business, such
as processes. Standardized technologies and platforms have been put in place to
communicate between silos, and to integrate the data and interconnections. Modu-
larity and reuse are low, however, and point-to-point connections between systems
dominate the landscape. Modifying processes or IT systems is still difficult and
analysis of the impact is done by hand.

Level 3: Optimized Core

At level 3, system agility is addressed across the organization’s enterprise archi-
tecture, and it is known where the most pressing problems with flexibility are in
both business and IT. The enterprise is subdivided in a set of independent business
functions; the IT systems in the silos have been analyzed and broken down into
component parts, which can be used independent from any organization structure.
Services are used as a design concept to identify business-relevant functionality
and to stimulate reuse. Business knowledge, including a unified view of the enter-
prise’s customers, is externalized and accessible to business users. Within the con-
text of an overall architectural backbone (Chap. 3), models are used for the design
of the business and IT operations, and at the level of enterprise goals, drivers, and
requirements (Chap. 4). The relationship between these two levels is used for trac-
ing the impact of business drivers for agility (see Chap. 2) and relates changes to
business goals. However, the focus is still on the internal operations of the enter-
prise and individual business and IT components are often tightly coupled; IT in-
tegration still requires writing code and is not yet based on declarative models.

Level 4: Business Modularity

At level 4, system agility is measured regularly and used to define improvements
to avoid future problems. Business drivers for agility are monitored continuously.
Enterprise architecture (Chap. 3) is explicitly used to measure and manage agility
and to optimize business modularity. Composite applications are built from loose-
ly-coupled software services, using technology and models for service composi-
tion and orchestration. Relevant business knowledge is managed explicitly across
different processes, with a focus on alignment between various parts of the enter-
prise. Models are use at three levels: for requirements and design purposes; to ob-
tain, aggregate and analyse management information and relate this to the enter-

184

prise strategy; and in suitable domains also for direct implementation (interpreta-
tion/execution or code generation). Business services to the environment can
quickly be realized across the enterprise by combining and configuring internal
and external business services, often by business analysts instead of software de-
velopers.

Level 5: Dynamic Venturing

At level 5, the organization’s strategy is based on its agility. Tools are used in an
integrated way to support teams in optimizing their work. They provide manage-
ment with sophisticated, model-based forecasting, and these predictive capabilities
help the enterprise in proactively adapting to its environment. System agility is
continuously monitored and proactively improved to accommodate predicted fu-
ture business needs. Architecture is used as a core instrument to support this rapid
adaptation, and business and IT are regarded as an integrated whole within the en-
terprise architecture. This extends beyond the borders of the individual organiza-
tion and includes the networked enterprise level. Automated, run-time assembly of
software services is used to dynamically create composite business services that
respond to needs from the organization’s ecosystem.

8.3.2 Business and Process Agility Capabilities

For assessing business and process agility, we base our capability model on the
‘mother of all maturity models’, the CMMI (SEI 2010), the Scrum maturity model
of Yin et al. (2011), and the agility@scale model of Ambler (2010). The names of
the levels are taken from the CMMI. Roughly speaking, at level 3 an organization
is mature in using agile development processes at the project level, which is
equivalent to Ambler’s ‘core agility’. Levels 4 and 5 go beyond that and extend
agile practices to the full service lifecycle, the entire enterprise, its strategy and
even its network of partners.

Level 1: Initial

At the initial level, the organization is starting to recognize that it has issues with
respect to flexibility, time-to-market, or other aspects of agility. However, no for-
malized roles, procedures, measurements or instruments are used yet to address
these issues. Processes are unpredictable, poorly controlled and reactive. Man-
agement, both at the level of the organization and at the project level, has an ad-
hoc character. The organization has no strategy on its agile capabilities. Stake-
holders are involved in service development, but often at a distance and mostly in
defining requirements. No tool support is available to agile teams beyond basic
desktop applications and development environments.

185

Level 2: Managed

At level 2, the organization has started explicitly to manage its agility. Manage-
ment recognizes the value of agile over command-and-control approaches in an
increasingly volatile environment. Agile ways of working (Chap. 6) are introduced
at the project level; some development teams use agile methods, but in a patchy
way. There is no formal training or communication on agile working. There is a
high degree of reliance on the responsibility and expertise of individuals. Manag-
ers above the project level are not aligned with an agile way of working; they are
involved as stakeholders in decision making (sometimes causing delays), but not
as part of the ongoing agile development processes. Agile teams mainly focus on
communication, stakeholder involvement, requirements management (e.g. user
stories) and planning. Some specific tool support may be used next to the usual
development environments, for example for requirements management or model-
ling.

Level 3: Defined

At level 3, management of enterprise agility progresses beyond the project level.
Business drivers for agility are recognized and the organizational strategy appreci-
ates agility as an enabling factor (Chap. 2). Agile ways of working (Chap. 6) are
used across the organization and communicated through training. Internal best
practices are not sophisticated, but shared widely, and they have full support and
active involvement from management. The workforce is well acquainted with ag-
ile practices and uses these across various business and IT functions.

Stakeholders are closely involved in agile development processes. Stakeholder
communication (Chap. 7) is actively managed and supported. Self-organizing ag-
ile teams are focused on rapid delivery of business value, stakeholder manage-
ment, iteration management, and product quality, e.g. through test-driven devel-
opment. Mature tool support for these aspects, e.g. for requirements management,
process design, software development, and automated testing of services is used.

Level 4: Quantitatively Managed

At level 4, the full service life cycle is addressed, from the business drivers for a
new or adapted service, through the managerial decision making process of needs,
wants, costs, impact (organizational, ICT, development etc.) and returns on in-
vestment, up to development, realization, deployment and use of that service. Val-
ue and risk management (Chap. 3) are integral parts of this service life cycle. Stra-
tegic and architectural choices are made based on the current and predicted agility
of the organization.

The organization actively measures outcomes and guides its process and sys-
tem agility using statistical and other quantitative techniques. Agile teams extend
beyond mere development into the primary process and management. These teams
are self-organizing and empowered with adequate tools and techniques to monitor

186

their outcomes and take action where processes appear not to be working effec-
tively. The contributions of agile practices are measured, used to improve team
performance and to ensure a sustainable pace.

Sophisticated, model-based communication techniques (Chap. 7) are used to
keep stakeholders closely involved throughout the service lifecycle. Stakeholder
satisfaction is proactively managed, and stakeholders are actively involved in
helping agile teams improve their performance. Next to the tools of the previous
levels, various collaboration, communication and visualization tools and tech-
niques are used to support e.g. larger and distributed teams as well as stakeholder
involvement in the service development process.

Level 5: Optimizing

At level 5, the organization’s strategy is based on its agility. Agile working is an
integral part of the organizational culture, which is based on an attitude of collabo-
ration and self-discipline instead of hierarchal leadership. This collaboration is
strongly supported by applicable technologies. Scenario analyses are used for
stress-testing the strategy, which is developed and adapted conjointly with busi-
ness partners. Stakeholder involvement in service development thus extends be-
yond the boundaries of the enterprise.

Agile delivery is used at a large scale, where one or more of Ambler’s (2010)
scaling factors apply: large team size, geographic distribution, regulatory compli-
ance, domain complexity, organization distribution, technical complexity, organi-
zational complexity, and enterprise discipline. The agile teams’ performance has
been highly optimized, based on the results of continuous improvement and shar-
ing of experiences with other teams and other organizations. Agile teams need lit-
tle guidance and everyone in the organization is fully aware of his or her contribu-
tion to the business value that the enterprise delivers.

Example: AgiSurance’s agile capabilities
When we apply this capability model to our example company AgiSurance,
we see that it reaches level 3, Defined, in its Business and Process agility; its
development teams use agile methods, Scrum in particular, sharing experi-
ences and practices. This only concerns the development phase, however,
and not the rest of the service lifecycle.
In its system agility, AgiSurance scores around level 3, Optimized Core. It
makes extensive use of models in various service design activities. Moreo-
ver, it already uses a case management system with a model-based business
process engine; it now wants to move to direct interpretation of models with
a business rules engine, in which it wants to specify insurance policy deci-
sions and computations. However, large parts of the business logic are em-
bedded in various legacy systems. As a first step in phasing out these sys-
tems, AgiSurance already has externalized most of their data (e.g. with
customer or policy information) and moved these to separate databases.

187

Next, it has wrapped the business logic in a service layer, with the intention
to gradually replace this logic by the aforementioned model-based business
rules solution. It is also well under way in building a full-service Web por-
tal, ‘MyAgiSurance’, which uses the same business logic for making e.g.
pro-forma calculations and offerings.
To profit fully from such a flexible infrastructure, we advise AgiSurance to
extend its agile processes beyond the development phase. In particular, be-
cause the business-oriented modelling practice will decrease the develop-
ment time for new services, its strategic focus on product leadership is fur-
ther enhanced. AgiSurance can now explicitly start using its agility as a
competitive advantage, but this requires a strong focus on the relationships
between strategy, service design and operation. The different models
AgiSurance employs should therefore be kept coherent across the service
lifecycle, and adequate tools are required. Furthermore, an enterprise-level
Architecture Owner role is advisable, who is explicitly assigned the respon-
sibility for architectural coherence and consistency.
In an increasingly unstable and fragmented financial world, speed is essen-
tial to survival. Having such a flexible landscape allows AgiSurance rapidly
to try out new online insurance services and to monitor their usage and ef-
fects. By creating a closed-loop innovation and monitoring cycle,
AgiSurance can quickly respond and even proactively induce changes to the
marketplace. Thus, AgiSurance is well positioned to achieve its vision of
becoming the market leader in special-purpose insurance offerings, serving
niches that other companies are too slow to exploit.

8.3.3 Investing in Agility

One should be aware that each of these levels requires a certain investment on dif-
ferent aspects: awareness and communication, individuals and teams, goal setting
and measurement, methodology, and tools and automation. A typical investment
pattern (Fig. 61) – inspired by Gartner’s model for the introduction of business
process management (Sinur and Hill 2010) – shows that starting is easy, but sig-
nificant investments are needed to reach level 4 or 5.

Making such investments is a strategic choice and should be supported by a
thorough business case. Not all organizations need the same capability level.
Moreover, agility is only one of the many considerations in investment decisions;
many issues contend for the limited resources available in the enterprise, and a
clear set of business goals is needed to decide on business priorities. As we have
described in Chaps. 2 and 6, you should first investigate what the required agility
of your enterprise is in the various aspects of its operation and innovation, given
its strategy and business drivers. Only then can you make informed investment
decisions.

188

Awareness and Communication

Individuals and Teams

Goal Setting and Measurement

Methodology

Tools and Automation

Level 1
Initial

Level 2
Managed

Level 3
Defined

Level 4
Quant.Managed

Level 1
OptimizingDimensions

Process Agility

Investment level
Low Medium High

Fig. 61. Investment pattern in process agility.

8.4 Concluding Remarks

In investigating this field of agile service development and in developing and us-
ing our methods and techniques, we have observed a number of common themes
we think will greatly influence the course of many enterprises in the years to
come. First of all, we see that in an increasingly volatile business environment,
successful enterprises embrace change as a positive factor. They deal with uncer-
tainty and risk not by trying to reduce it, but by increasing their capabilities to re-
spond adequately, and even proactively.

What counts are proven business results. Examples from the authors’ organiza-
tions include:

• replacing four IT platforms by one uniform, flexible platform, cutting devel-
opment effort by 75% and reducing business support from 60 to 16 FTE;

• reducing time to market from weeks to hours for product variations, and from
months to weeks for new, complex products in mortgages and insurances;

• improving customer satisfaction by pro-active interaction and the introduction
of innovative customer-centred products and services, helping a Dutch finan-
cial institution move from a customer satisfaction level of 6.2 in 2009 to 8.3 in
2011 (on a 1-10 scale);

• improving business alignment, by giving business people a hands-on role in
changing products, processes and policies;

• improved employee satisfaction, by giving them the ability to influence devel-
opment processes, work with modern technology and provide competitive
products, resulting in a better retention of valuable employees and knowledge.

189

But changing to agile ways of working does not come natural. A stable and pre-
dictable environment provides a form of security that is highly valued by many
people. Agile ways of working may therefore be ‘scary’ to various levels within
an organization, from management that does not get the comfort (or illusion) of
exactly knowing at the start what a project will deliver at the end, to the workforce
that is confronted with rapidly changing processes and systems. This cultural
change requires a high level of management commitment, and the nature of agile
methods and their flat organizational models requires managers to be closely in-
volved in a ‘hands-on’ style. Working with a clear business case for agility, which
is constantly kept up to date in this changing environment, is a crucial instrument
to show what the need and value of these changes is.

Secondly, agile enterprises strike a profitable balance between global, top-
down, strategic guidance and local, bottom-up ‘tinkering’ and change. The classi-
cal business cycles, from strategy definition via various tactical design steps to-
wards daily operations, are not flexible and quick enough to provide real agility.
But neither can you determine the course of an enterprise by adding the directions
of individual projects and local developments; that would result in a Brownian
motion with no manner of control.

This brings us to another major issue: the culture clash between agilists
(‘localists’) and architects (‘globalists’). In agile software development circles,
there is often a strong resistance against any form of structure or guidance from
outside the project at hand. This is viewed as ‘Big Design Up-Front’ or ‘waste’,
and architects are often the representatives of this, sending down commandments
from their ivory towers, without knowing the daily life in the project’s trenches.
But individual projects cannot avoid the reality of the enterprise environment and
questions like ‘what will this project cost?’, ‘what value will it deliver?’ ‘how
does it fit with the existing system landscape?’ and ‘how does it contribute to the
business strategy?’ will be asked. Conversely, many architects view the agile
movement as a bunch of hackers, tinkering away without being aware of the grand
scheme of things. They may quickly build something that works, but this may not
always fit within the rest of the enterprise landscape. However, tightening con-
trols, adding procedures, doing extensive reviews or requiring building permits is
not going to be the answer. Again, a clear business case, which relates critical
business problems with the envisaged solutions, is essential in making the right
decisions, locally and globally. Everyone should be focused on the overall busi-
ness goals of the organization: the architecture should be aligned with these goals,
as should the individual project priorities and results.

The best way to bring these two camps together is if architects work closely to-
gether with project teams to instill their larger-scale vision and directly add value
to the team’s results. Architects among themselves also collaborate in agile teams
to resolve architectural issues beyond the project scope. Thus, they are the linking
pins between the enterprise and project levels. The agile movement’s focus on in-
dividuals and interactions also applies here: intensive communication between ar-

190

chitects and other team members is essential; communicating architectures by
throwing documents over the wall is not going to work.

This focus on communication is the next key point we take away from this
work. Already in agile software development, the need for close communication
with all stakeholders is stressed, but in service development, with its larger scope
and associated stakeholder community, this is even more critical. Given the di-
verse backgrounds and skills of these stakeholders, we should pay close attention
to the means and instruments we use to discuss service ideas, requirements and
designs. The closer we can get our designs to the business world and the concepts
used there, the easier this conversation will be, not just during development but al-
so, and perhaps even more importantly, during the entire lifetime of the agile ser-
vice, to keep it aligned with a changing environment.

Furthermore, our ultimate goal is to use these business-level descriptions of
services directly in the operational realization and execution. We advocate the use
of appropriate models that capture this business essence and respect the different
perspectives involved. We should not force IT-oriented models onto business
stakeholders, but rather use domain-specific concepts and languages to capture
and communicate relevant business knowledge. These models can then be targeted
to suitable IT infrastructure, either by transforming them to technology-oriented
models or software code, or even by directly interpreting and executing these
models. This requires intelligent software solutions that guard quality, reuse and
consistency of these business designs. Such systems should for example recognize
reusable constructs such as policies and process fragments, identify conflicting
business rules and signal incompleteness of specifications.

This model-based vision is not without its own challenges. First of all, it re-
quires a domain-specific approach. For example, the concepts and constructs used
in an administrative organization are quite different from those in a chemical
plant, and different models and infrastructures will be required. Traditional pro-
gramming languages are of course much more general. Second, the use of models
requires new skills, from both technical and business people involved. In particu-
lar, this demands a conceptual level of thinking and communicative skills that may
require extensive training and experience.

Finally, our ideal is truly to bring service development to the business, and let
business experts do the design and modelling work. However, these experts are of-
ten completely involved in their business processes and are needed over there to
do their jobs; involving them in agile teams as well requires a restructuring of the
organization, breaking down the barriers between the primary business and the
development and change organization. Moreover, people who can span this
breadth of expertise and have the required skill set are still scarce. Both the pro-
fessional and the academic community have an important task in communicating
this vision, providing the right methods, tools and techniques, and training the
business service developers of the future.

References

Aalst W van der, Hofstede AHM, Kiepuszewski B, Barros AP (2003) Workflow Patterns. Dis-

tributed and Parallel Databases 14(1):5–51. See also http://www.workflowpatterns.com
Abrahamsson P, Warsta J, Siponen MT, Ronkainen J (2003) New Directions on Agile Methods:

A Comparative Analysis. Proc Int Conf on Software Engineering (ICSE’03), pp. 244-254,
May 3-5, 2003, Portland, Oregon, USA.

Agile Advice (2006) The Seven Core Practices of Agile Work.
http://www.agileadvice.com/archives/2006/09/practices_of_ag.html

Albani A, Hardjosumarto G, Terlouw L, and Dietz JLG (2009) Enterprise ontology based service
definition. In Proceedings of 4th International Workshop on Value Modeling and Business
Ontologies, Amsterdam, The Netherlands

Alexander C (1979). The Timeless Way of Building. Oxford University Press, New York
Alexander C, Ishikawa S, Silverstein M, Jacobson M, Fiksdahl-King I, Angel S (1977) A Pattern

Language. Oxford University Press, New York.
Ambler SW (2002) Agile Modeling: Effective Practices for eXtreme Programming and the Uni-

fied Process. Wiley.
Ambler SW (2003) Agile Database Techniques: Effective Strategies for the Agile Software De-

veloper. Wiley.
Ambler SW (2010) IBM agility@scale™: Become as Agile as You Can Be. IBM Global Ser-

vices, Somers, NY.
Amdahl GM, Blaauw GM, Brooks FP (1964) Architecture of the IBM System/360, IBM Journal

of Research and Development, 8(2):87-101.
Annett J (2004) Hierarchical task analysis. In: Diaper D, Stanton NA (eds.), The Handbook of

Task Analysis for Human-Computer Interaction. Lawrence Erlbaum Associates, Mahwah,
NJ, pp 67-82.

Aquino N, Vanderdonckt J, Panach J I, Pastor O (2008) Conceptual Modelling of Interaction.
Universitat Politecnica de Valencia, Spain. http://personales.upv.es/jopana/Files/Books/Con-
ceptual_Modelling.pdf. Accessed 28 Sep 2011.

Baida Z, Gordijn J, Omelayenko B (2004) A shared service terminology for online service provi-
sioning. Proc. Sixth Int’l Conf on Electronic Commerce (ICEC04), pp. 1-10. ACM Press.

Beck K (1999) Extreme Programming Explained: Embrace Change. Addison-Wesley, Boston,
MA.

Beck K et al. (2001) Manifesto for Agile Software Development.
http://www.agilemanifesto.org

Bennett C, Ryall J, Spalteholz L, Gooch A (2007). The Aesthetics of Graph Visualization. In
Cunningham DW, Meyer G, Neumann L (eds.), Proc. Computational Aesthetics in Graphics,
Visualization, and Imaging, Banff, Canada, pp. 1-8.

Bossavit L (2002) The unbearable lightness of programming: a tale of two cultures. Cutter IT
Journal 15(9):5-11.

Bouwman H, Haaker T, De Vos H (2008) Mobile service innovation and business models,
Springer Verlag.

Brinkkemper S (1996) Method Engineering: Engineering of Information Systems Development
Methods and Tools. Information and Software Technology, 38(4):275-280.

Brocke J von, Rosemann M (2010) Handbook on Business Process Management. Springer, Ber-
lin.

Brown, T (2009) Change by Design. HarperCollins.
Buschmann F, Henney K, Schmidt DC (2007) Pattern-Oriented Software Architecture Volume

4: A Pattern Language for Distributed Computing,. Wiley.
Buschmann F, Henney K, Schmidt DC (2007) Pattern-Oriented Software Architecture Volume

5: On Patterns and Pattern Languages. Wiley.

http://www.workflowpatterns.com/�
http://www.agileadvice.com/archives/2006/09/practices_of_ag.html�
http://www.agilemanifesto.org/�

192

Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M (1996) Pattern-Oriented Software
Architecture Volume 1: A System of Patterns, Wiley.

Calvary G, Coutaz J, Thevenin D, Limbourg Q, Bouillon L, Vanderdonckt J (2003) A Unifying
Reference Framework for Multi-Target User Interfaces. Interacting with Computers
15(3):289-308.

Cañas A J, Hill G, Carff R, Suri N, Lott J, Eskridge T, Gómez G, Arroyo M, Carvajal, R (2004).
CmapTools: A knowledge modeling and sharing environment. In: Cañas AJ, Novak JD,
González FM (eds.), Concept Maps: Theory, Methodology, Technology. Proc. of the First
Int. Conference on Concept Mapping, Pamplona, Spain.

Chen P (1976) The Entity-Relationship Model: Toward a Unified View of Data. ACM Transac-
tions on Database Systems, 1:9-36.

CIA (2011) CIA World Factbook - GDP Composition per Sector.
https://www.cia.gov/library/publications/the-world-factbook/fields/2012.html.

Ciborra C (1992) From Thinking to Tinkering: The Grassroots of Strategic Information Systems,
The Information Society 8, 297-309.

Cockburn A, Highsmith J (2001) Agile Software Development, the People Factor. IEEE Soft-
ware 34(11):131-133.

Conklin J (2005) Dialogue Mapping. John Wiley & Sons, New York, New York.
Conway ME (1968) How do Committees Invent? Datamation 14(5):28-31.
Coplien JO (1996) Software Patterns, Lucent Technologies, Bell Labs Innovations, New York.
Coplien JO, Harrison NB (2004) Organizational Patterns of Agile Software Development. Pren-

tice-Hall. See also http://users.rcn.com/jcoplien/Patterns/Top10OrgPatterns.html
Cunningham W (1992) The WyCash Portfolio Management System.

http://c2.com/doc/oopsla92.html. Retrieved 21 July 2011.
De Caluwé L, Vermaak H (2008) Thinking about Change in Different Colours. In: Boonstra JJ

(ed.) Dynamics of Organizational Change and Learning, Wiley, UK.
De Lara J, Vangheluwe H (2004), Meta-Modelling and Graph Grammars for Multi-Paradigm

Modelling. Software and Systems Modeling 3(3): 194-209.
Dietz JLG (1999) DEMO: Towards a Discipline of Organisation Engineering. European Journal

of Operations Research 128(2):351-363.
Dietz JLG (2006) Enterprise Ontology: Theory and Methodology. Springer-Verlag, Berlin Hei-

delberg.
Dietz JLG (ed.) (2011) Enterprise Engineering Manifesto.

http://www.ciaonetwork.org/publications/EEManifesto.pdf
Dividino R, Bicer V, Voigt K, Cardoso J (2009) Integrating business process and user interface

models using a model-driven approach. 24th International Symposium on Computer and In-
formation Sciences, Guzelyurt, Nothern Cyprus, 14-16 September.

DSDM Consortium (2008) DSDM Atern Handbook V2. DSDM Consortium, Ashford, UK.
Dybå, T, Dingsøyr T (2008) Empirical studies of agile software development: A systematic re-

view. Information and Software Technology (50:9-10), pp. 833-859.
Eemeren FH van, Grootendorst R (2004) A systematic theory of argumentation: The pragma-

dialectical approach. Cambridge University Press, Cambridge.
Eichelberger H, Schmid K (2009) Guidelines on the Aesthetic Quality of UML Class Diagrams,”

Information and Software Technology, 51(12):1686-1698.
Engelsman W, Quartel D, JonkersH, Sinderen M van (2011) Extending Enterprise Architecture

Modelling With Business Goals and Requirements. Enterprise Information Systems, 5(1):9-
36.

Enterprise Architecture Research Forum (2010) Enterprise Architecture Definition.
http://samvak.tripod.com/earf.pdf

Erl T (2009) SOA Design Patterns. Prentice Hall. See also http://www.soapatterns.org
Ernst AM (2008) Enterprise Architecture Management Patterns. Proc. PLoP ‘08, October 18-20,

2008, Nashville, TN, USA. See also http://wwwmatthes.in.tum.de/wikis/eam-pattern-
catalog/home

http://users.rcn.com/jcoplien/Patterns/Top10OrgPatterns.html�
http://www.ciaonetwork.org/publications/EEManifesto.pdf�
http://samvak.tripod.com/earf.pdf�
http://www.soapatterns.org/�
http://wwwmatthes.in.tum.de/wikis/eam-pattern-catalog/home�
http://wwwmatthes.in.tum.de/wikis/eam-pattern-catalog/home�

193

Es RM van, Post HA (eds.) (1996) Dynamic Enterprise Modelling: A Paradigm Shift in Software
Implementation. Kluwer.

European Commission (2010) Europe 2020 - EU Strategy for Smart, Sustainable and Inclusive
Growth. http://ec.europa.eu/europe2020

Falkenberg ED, Verrijn-Stuart AA, Voss K, Hesse W, Lindgreen P, Nilsson BE, Oei JLH, Rol-
land C, Stamper RK (eds.) (1998), A Framework of Information Systems Concepts. IFIP WG
8.1 Task Group FRISCO, IFIP, Laxenburg, Austria.

Fehskens L (2008) Re-Thinking Architecture – The Architecture of Enterprise Architecture. In:
20th Enterprise Architecture Practitioners Conference. The Open Group, Reading, UK.

Forrester (2009) From Agile Development to Agile Engagement. Forrester Research, May 2009.
http://www.forrester.com/research

Fowler M (1996) Analysis Patterns: Reusable Object Models, Addison-Wesley.
Fowler M (1999) Refactoring: Improving the design of existing code. Addison-Wesley, Boston,

MA.
Fowler M (2002) Patterns of Enterprise Application Architecture, Addison-Wesley. See also

http://martinfowler.com/eaaCatalog/
Gamma E, Helm R, Johnson R, Vlissides J (1994) Design Patterns: Elements of Reusable Ob-

ject-Oriented Software, Addison-Wesley.
 Gordijn J, Akkermans JM (2001) e3-value: Design and Evaluation of e-Business Models, IEEE

Intelligent Systems, July/Aug, pp. 11-17.
Govers MJG (2003) Met ERP-systemen op weg naar moderne bureaucratieën? PhD Thesis,

Radboud University Nijmegen.
Govers MJG, Südmeier P (2011) De Sitter in het informatietijdperk. Management en

Organisatie, 65(2):31-45.
Graham I (2007) Business Rules Management and Service Oriented Architecture: A Pattern

Language, Wiley.
Greefhorst D, Proper E (2011) Architecture Principles – The Cornerstones of Enterprise Archi-

tecture. Springer-Verlag, Berlin Heidelberg.
Grice HP (1975) Logic and Conversation. In: Cole P, Morgan JL (eds.), Syntax and Semantics

III: Speech Acts. pp 41-58. New York: Academic Press.
Guarino N (1998) Formal Ontology and Information Systems. In Guarino N (ed.), Formal Ontol-

ogy in Information Systems, Proc. FOIS’98, Trento, Italy, 6-8 June 1998, pp. 3-15. IOS
Press, Amsterdam.

Halle B von, Goldberg L (2009) The Decision Model: A Business Logic Framework Linking
Business and Technology. Auerbach Publications.

Halpin, T, Morgan T (2008) Information Modeling and Relational Databases, Second Edition.
Morgan Kaufmann, Waltham, MA.

Harrison NB, Avgeriou P (2007), Leveraging Architecture Patterns to Satisfy Quality Attributes,
Proc. ECSA 2007, Springer, Berlin.

Heitlager I, Kuipers T, Visser J (2007) A Practical Model for Measuring Maintainability, Proc
6th Int Conf on the Quality of Information and Communications Technology (QUATIC
2007), pp. 30-39, 12-14 Sept. 2007.

Hevner AR, March ST, Park J, Ram S (2004) Design Science in Information Systems Research.
MIS Quarterly, 28(1):75-105.

Hohpe G, Woolf B (2003) Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions, Addison-Wesley.

Hoppenbrouwers SJBA, Wilmont I (2010). Focused Conceptualisation: Framing Questioning
and Answering in Model-Oriented Dialogue Games. In: Bommel P van, Hoppenbrouwers S,
Overbeek S, Proper E, Barjis J (eds.), The Practice of Enterprise Modeling, pp. 190-204.
Springer, Berlin, Heidelberg.

Hoppenbrouwers SJBA (2003) Freezing Language; Conceptualisation processes across ICT sup-
ported organisations. PhD Thesis, University of Nijmegen.

http://ec.europa.eu/europe2020�
http://www.forrester.com/research�
http://martinfowler.com/eaaCatalog/�

194

Hoppenbrouwers SJBA (2008) Community-based ICT Development as a Multi-Player Game. In:
Benoit-Barné C, Brummans BH, Cooren F, Giroux H, Létourneau A, Raymond D,
Robichaud, D. What is an organization? Materiality, agency, and discourse: a tribute to the
work of James R. Taylor. Montreal, May, 2008. Dept. of Organizational Communication,
University of Montreal.

Hoppenbrouwers SJBA, Proper HA, & Weide TP van der (2005) Formal Modeling as a Ground-
ed Conversation. In: Goldkuhl G, Lind M, Haraldson S (eds.), Proc. 10th International Work-
ing Conference on the Language Action Perspective on Communication Modelling
(LAP’05), pp. 139-155. Kiruna, Sweden, June 2005. Linköpings Universitet and Hogskolan I
Boras, Linköping, Sweden.

Hoppenbrouwers SJBA, Stokkum W van (2011) Towards Combining ThinkLets and Dialogue
Games in Collaborative Modeling: an Explorative Case. In: Proc. Collaborative Usage and
Development of Models and Visualizations, part of the 13th European Conference on Com-
puter Supported Cooperative Work (ECSCW 2011), Sept. 2011, Aarhus, Denmark. On-line
publication: CEUR-WS proceedings.

Iacocca Institute (1991) 21st Century Manufacturing Enterprise Strategy. An Industry-Led View
of Agile Manufacturing. Volumes 1 & 2. Iacocca Institute, Bethlehem, PA.

IBM (2010). Patterns for e-business for new and enhanced IT solutions. IBM, Armonk, New
York. http://www.ibm.com/developerworks/patterns/index-revised.html

IBM Research (2011) Services Sciences, Management and Engineering.
http://www.research.ibm.com/ssme/services.shtml. Retrieved 22 July 2011.

IDEF (1981) ICAM Architecture Part II-Volume IV - Function Modeling Manual (IDEF0),
AFWAL-TR-81-4023. Materials Laboratory, Air Force Wright Aeronautical Laboratories,
Air Force Systems Command, Wright-Patterson Air Force Base, Ohio 45433.

IEEE Computer Society (2000) IEEE Recommended Practice for Architecture description of
Software-Intensive Systems, IEEE Std 1471-2000. IEEE, New York.

ISO (2003) Medical devices – Quality management systems – Requirements for regulatory pur-
poses, ISO 13485. International Organization for Standardization, Geneva.

ISO (2007) Medical devices – Application of risk management to medical devices, ISO 14971.
International Organization for Standardization, Geneva.

ISO/IEC (1991) Information technology – Software product evaluation – Quality characteristics
and guidelines for their use, ISO/IEC 9126. International Organization for Standardization,
International Electrotechnical Commission, Geneva.

ISO/IEC (2005) Information technology – XML Metadata Interchange (XMI), ISO/IEC
19503:2005. International Organization for Standardization, Geneva.

ISO/IEC (2008) Systems and software engineering – System life cycle processes, ISO/IEC
15288:2008. International Organization for Standardization, Geneva.

ISO/IEC/IEEE (2011) Systems and software engineering – Architecture description,
ISO/IEC/IEEE FDIS 42010:2011, International Organization for Standardization, Geneva.

ISPL (1999) Information Services Procurement for Large-Scale Migrations. Information Ser-
vices Procurement Library. Ten Hagen & Stam, The Hague, The Netherlands.

ITGI (2009) COBIT 4.1. IT Governance Institute, Rolling Meadows, USA.
http://www.isaca.org/Knowledge-Center/COBIT/

ITIL (2011) ITIL V3. Office of Government Commerce, UK. http://www.itil-officialsite.com
Jackson, M (1990) Some Complexities in Computer-Based Systems and Their Implications for

System Development, Proceedings of International Conference on Computer Systems and
Software Engineering (CompEuro ‘90), Tel-Aviv, Israel, 8-10th May 1990, 344-351, IEEE
Computer Society Press.

Jonkers H, Lankhorst M, Buuren R van, Hoppenbrouwers S, Bonsangue M, Torre L van der
(2004).Concepts for Modeling Enterprise Architectures, Int. J. Cooperative Information Sys-
tems 13(3):257-288.

Kendall S (2002) The Unified Process Explained. Addison-Wesley, Boston, MA.

http://www.ibm.com/developerworks/patterns/index-revised.html�

195

Kircher M, Jain P (2004) Pattern-Oriented Software Architecture Volume 3: Patterns for Re-
source Management, Wiley.

Lagerström R, Johnson P, Höök D (2010) Architecture analysis of enterprise systems modifiabil-
ity - Models, analysis, and validation. Journal of Systems and Software 83(8):1387-1403.

Lamsweerde A (2003) KAOS Tutorial, Crediti, September 5.
Lankhorst M et al. (2009) Enterprise Architecture at Work: Modelling, Communication and

Analysis (second edition). Springer-Verlag, Berlin Heidelberg.
Lankhorst M, Oude Luttighuis P (2009) Enterprise Architecture Patterns for Multichannel Ma-

nagement. Proc. Patterns in Enterprise Architecture Management (PEAM2009), 2 March
2009, Kaiserslautern, Germany. See also
http://www.telin.nl/Project/Kanalen/Kanaalpatronen.htm (in Dutch).

Lankhorst, M et al. (2009) Enterprise Architecture at Work. Second edition. Springer.
Lee G, Xia W (2010) Toward Agile: An Integrated Analysis of Quantitative and Qualitative

Field Data on Software Development Agility. MIS Quarterly 34(1):87-114.
Linden DJT van der, Hoppenbrouwers SJBA, Lartseva A, Proper HA (2011) Towards an Inves-

tigation of the Conceptual Landscape of Enterprise Architecture. In: Halpin T, Nurcan S,
Krogstie J, Soffer P, Proper E, Schmidt R, Bider I (eds.), Enterprise, Business-Process and
Information Systems Modeling; 12th International Conference, BPMDS 2011, and 16th In-
ternational Conference, EMMSAD 2011, held at CAiSE 2011, London, UK, June 20-21,
2011. LNBIP series vol. 81, Part 8, pp. 526-535. Springer, Berlin.

Lindvall M, Basili V, Boehm B, Costa P, Dangle K, Shull F, Tesoriero R, Williams L, Zelkowitz
M (2002) Empirical findings in agile methods. In: Proc. Extreme Programming and Agile
Methods – XP/Agile Universe 2002, pp. 197-207.

Marca DA, McGowan CL (1987) SADT: Structured Analysis and Design Technique. McGraw-
Hill, New York, NY.

Martin J (1991) Rapid Application Development. Macmillan, New York.
McGovern J, Ambler SW, Stevens M, Linn J, Sharan V, Jo E (2003) The Practical Guide to En-

terprise Architecture. Prentice Hall.
Meszaros G, Doble J (1998). A Pattern Language for Pattern Writing. In: Coplien JO, Schmidt

DC (eds.) Pattern Languages of Program Design, pp. 529-574.
Meyer B (1991) Design by Contract. In: Mandrioli D and Meyer B (eds.) Advances in Object-

Oriented Software Engineering. Prentice Hall, Englewood Cliffs, NJ, pp. 1-50.
Misra S, Kumar V, et al. (2009). Identifying Some Important Success Factors in Adopting Agile

Software Development Practices. The Journal of Systems and Software, 8(11):1869-1890.
Moody DL (2009) The “physics” of Notations: Toward a Scientific Basis for Constructing Visu-

al Notations in Software Engineering, IEEE Transactions on Software Engineering
35(6):756-779.

Nielsen J (1993) Usability Engineering. Academic Press.
OASIS (2006) Reference Model for Service Oriented Architecture 1.0, OASIS Standard. OASIS

Open, Burlington, MA. http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
OASIS (2011) Reference Architecture Foundation for Service Oriented Architecture. Version

1.0, Public Review Draft 02, 06 July 2011, http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-
ra.html

ODP (2010) Ontology Design Patterns. http://ontologydesignpatterns.org
OED (2009) Oxford English Dictionary. Oxford University Press, Oxford, UK.
OMG (2008) Semantics of Business Vocabulary and Business Rules (SBVR), Version 1.0. for-

mal/08-01-02. Object Management Group. http://www.omg.org/spec/SBVR/
OMG (2009) Service oriented architecture Modeling Language (SoaML), Version 1.0 Beta 2.

ptc/2009-12-09. Object Management Group. http://www.omg.org/spec/SoaML/
OMG (2010) Object Constraint Language (OCL), Version 2.3 Beta 2. ptc/2010-11-42. Object

Management Group. http://www.omg.org/spec/OCL/
OMG (2011a) OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.4.1.

formal/2011-08-05, Object Management Group. http://www.omg.org/spec/UML/

http://www.telin.nl/Project/Kanalen/Kanaalpatronen.htm�
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf�
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.html�
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.html�
http://ontologydesignpatterns.org/�
http://www.omg.org/spec/SBVR/�
http://www.omg.org/spec/SoaML/�
http://www.omg.org/spec/OCL/�
http://www.omg.org/spec/UML/�

196

OMG (2011b) Meta-Object Facility (MOF) Core Specification, Version 2.4.1, formal/2011-08-
07. Object Management Group. http://www.omg.org/mof/

OMG (2011c) Business Process Modeling Notation Specification, Version 2.0. formal/2011-01-
03, Object Management Group. http://www.omg.org/spec/BPMN/

Op ‘t Land M, Proper E, Waage M, Cloo J, Steghuis C (2009) Enterprise Architecture: Creating
Value by Informed Governance. Springer-Verlag, Berlin Heidelberg.

Osgood CE, Suci GJ, Tannenbaum P (1957) The Measurement of Meaning. University of Illinois
Press, Urbana, IL.

Osterwalder A, Pigneur Y (2009) Business Model Generation: A Handbook for Visionaries,
Game Changers, and Challengers. OSF.

Papazoglou MP, Heuvel W-J van den (2007) Service oriented architectures: approaches, tech-
nologies and research issues. VLDB Journal 16:389-415.

Pols R van der, Backer Y (2007) ASL - Application Services Library: A Management Guide.
Van Haren Publishing.

Poppendieck M, Poppendieck T (2003) Lean Software Development: An Agile Toolkit, Addi-
son-Wesley.

Quartel DAC, Steen MWA, Pokraev S, Sinderen MJ van (2007) COSMO: a conceptual frame-
work for service modelling and refinement. Information Systems Frontiers, 9(2-3):225-244.

Quinn JB, Baruch JJ, Cushman Paquette P (1987) Technology in Services. Scientific American,
257(6):50-58.

Qumer A, Henderson-Sellers B (2008) An Evaluation of the Degree of Agility in Six Agile
Methods and its Applicability for Method Engineering. Information and Software Technolo-
gy 50(4):280-295.

Ralyté J, Brinkkemper S, Henderson-Sellers B (eds.) (2007) on Situational Method Engineering:
Fundamentals and Experiences. Proc. IFIP WG 8.1 Working Conference (ME07), 12-14 Sep-
tember 2007, Geneva, Switzerland. Springer.

Rittel H and Webber M (1973) Dilemmas in a General Theory of Planning. Policy Sciences,
4:155-169.

Ross JW, Weill P, Robertson DC (2006) Enterprise Architecture As Strategy: Creating a Foun-
dation for Business Execution. Harvard Business School Press.

Rowe, GP (1987). Design Thinking. The MIT Press.
Ruffa SA (2008). Going Lean: How the Best Companies Apply Lean Manufacturing Principles

to Shatter Uncertainty, Drive Innovation, and Maximize Profits. AMACOM.
Salvendy G, Karwowski W (2010) Introduction to Service Engineering. Wiley.
Sambhamurthy V, Bharadwadj A, Grover V (2003) Shaping Agility through Digital Options:

Reconceptualizing the Role of Information Technology in Contemporary Firms. MIS Quar-
terly, 27(2):237-263.

Sandhu R, Coyne EJ, Feinstein HL Youman CE (1996) Role-Based Access Control Models.
IEEE Computer 29(2):38-47.

Schmidt DC, Stal M, Rohnert H, Buschmann F (2000) Pattern-Oriented Software Architecture
Volume 2: Patterns for Concurrent and Networked Objects, Wiley.

Schumacher M, Fernandez-Buglioni E, Hybertson D, Buschmann F, Sommerlad P (2005) Secu-
rity Patterns: Integrating Security and Systems Engineering. Wiley.

Schwaber K, Beedle M (2002) Agile Software Development with Scrum. Prentice Hall, New
Jersey.

SEI (2010) Capability Maturity Model Integration for Services (CMMI-SVC), Version 1.3,
Software Engineering Institute, Carnegie-Mellon, http://www.sei.cmu.edu/cmmi/solutions/.

Sharifi H, Zhang H (1999) A methodology for achieving agility in manufacturing organisations:
An introduction. Int J Production Economics 62:7-22.

Sherehiy B, Karwowski W, Layer JK (2007) A review of enterprise agility: Concepts, frame-
works, and attributes. Int J Industrial Ergonomics 37:445-460.

Simon HA (1996) The Sciences of the Artificial, 3rd ed. MIT Press.
Sinur J, Hill JB (2010) ITScore Overview for Business Process Management. Gartner Research.

http://www.omg.org/mof/�
http://www.omg.org/spec/BPMN/�

197

Slot RG (2010) A method for valuing architecture-based business transformation and measuring
the value of solutions architecture. Dissertation, University of Amsterdam.

Sowa JF (2000) Ontology, Metadata, and Semiotics Conceptual Structures. In: Ganter B, Mineau
GW (eds.), Conceptual Structures: Logical, Linguistic, and Computational Issues. LNAI se-
ries vol. 1867, pp. 55-81. Springer, Berlin, Heidelberg.

Sowa JF, Zachman JA (1992) Extending and Formalizing the Framework for In-formation Sys-
tems Architecture, IBM Systems Journal, 31(3):590-616.

Spohrer J, Maglio PP, Bailey J, Gruhl D (2007) Steps Toward a Science of Service Systems.
IEEE Computer 40(1):71-77.

Sprott D, Wilkes L (2004) Understanding Service-Oriented Architecture. Microsoft Architects
Journal, Jan. 2004, pp. 10-17.

Standish Group (2011) CHAOS Manifesto. http://blog.standishgroup.com/cm2011
Stapleton J (1997) DSDM, Dynamic Systems Development Method: The Method in Practice.

Addison-Wesley, Boston, MA.
Steinberg D, Budinsky F, Paternostro M, Merks E (2008) EMF – Eclipse Modeling Framework,

2nd edition. Addison-Wesley Professional.
Stevens W, Myers G, Constantine L (1974), Structured Design, IBM Systems Journal,

13(2):115-139.
Taufan MD (2011) Method Management System: Rule-Based Method Enactment using

MediaWiki and Semantic MediaWiki. Master’s thesis, Radboud University Nijmegen.
Terlouw, L (2011) Modularization and Specification of Service-Oriented Systems. PhD thesis,

Delft Technical University, Delft, The Netherlands.
The Open Group (2009a) The Open Group Service Integration Maturity Model (OSIMM). Tech-

nical Standard. The Open Group, Reading, UK. https://www.opengroup.org/projects/osimm/
The Open Group (2009b) Navigating the SOA Open Standards Landscape Around Architecture,

The Open Group, Reading, UK. http://www.opengroup.org/soa/source-book/stds/index.htm
The Open Group (2011) The Open Group Architectural Framework (TOGAF) Version 9.1 ‘En-

terprise Edition’. The Open Group, Reading, UK. http://www.opengroup.org/togaf/
The Open Group (2012) ArchiMate 2.0 Specification, Technical Standard. The Open Group,

Reading, UK. http://www.opengroup.org/archimate/
Trætteberg H (2008) UI Design without a Task Modeling Language – Using BPMN and Di-

amodl for Task Modeling and Dialog Design. In: Forbrig P, Paterno F (eds), Proc. Second
Conference on Human-Centered Software Engineering, HCSE 2008, and 7th International
Work-shop on Task Models and Diagrams, TAMODIA 2008, Pisa, Italy, September 25-26.
LNCS 5247 Springer, Heidelberg, pp. 110-117.

Trætteberg H (2009) Integrating Dialog Modeling and Domain Modeling: The Case of Di-amodl
and the Eclipse Modeling Framework. Journal of Universal Computer Science, 14(19):3265-
3278.

Turk D, France R, Rumpe B (2002) Limitations of Agile Software Processes. Third International
Conference on eXtreme Programming and Agile Processes in Software Engineering
(XP2002), Alghero, Italy, pp. 43-46.

Vanderdonckt J (2005) A MDA-Compliant Environment for Developing User Interfaces of In-
formation Systems. In: Pastor O, e Cunha J F (eds.), Advanced Information Systems Engi-
neering, 17th International Conference, CAiSE 2005, Porto, Portugal, June 13-17. LNCS
3520, Springer, Heidelberg, pp. 16-31.

Veer G van der, Lenting BF, Bergevoet BAJ (1996) GTA: Groupware Task Analysis – Modeling
Complexity. Acta Psychologica 91:297-322.

Venkatraman N (1997) Beyond Outsourcing: Managing IT Resources as a Value Center. MIT
Sloan Management Review, 38(3):51–64.

Verhoef C (2002) Quantitative IT Portfolio Management. Science of Computer Programming
45(1):12-96.

Versendaal J (1991) Separation of the User Interface and Application. PhD thesis, Delft Univer-
sity of Technology.

http://blog.standishgroup.com/cm2011�
https://www.opengroup.org/projects/osimm/�
http://www.opengroup.org/soa/source-book/stds/index.htm�
http://www.opengroup.org/togaf/�
http://www.opengroup.org/archimate/�

198

Vissers CA, Logrippo L (1986) The importance of the service concept in the design of data
communications protocols. In: M. Diaz (ed.), Protocol Specification, Testing, and Verifica-
tion, V, North-Holland, Amsterdam, pp. 13-17.

W3C (2004) Web Services Glossary. World Wide Web Consortium. http://www.w3.org/TR/ws-
gloss/

W3C (2009) OWL 2 Web Ontology Language. W3C Recommendation. World Wide Web Con-
sortium, http://www.w3.org/TR/owl2-overview/

Wagter R, Berg M van den, Luijpers J, Steenbergen M van (2005) Dynamic Enterprise Architec-
ture – How to Make It Work. Wiley, Hoboken, NJ.

Wells D (2009) Agile Process. Extreme Programming: A Gentle Introduction.
http://www.extremeprogramming.org

Weske M (2007) Business Process Management: Concepts, Languages, Architectures. Springer,
Heidelberg.

Wilmont I, Barendsen E, Hoppenbrouwers S, Hengeveld S (2012) Abstract Reasoning in Col-
laborative Modeling. Proc. 45th Hawaiian International Conference on the System Sciences,
HICSS-45; Collaborative Systems track, Collaborative Modeling minitrack. IEEE Digital
Proceedings.

Xebia (2010) Lean Architecture Principles. http://blog.xebia.com/2010/08/11/lean-architecture-
principles-wrap-up/

Yahoo (2010) Yahoo! Design Pattern Library. http://developer.yahoo.com/ypatterns/
Yin A, Figueiredo S, da Silva M (2011) Scrum Maturity Model. Proc. 6th International Confer-

ence on Software Engineering Advances (ICSEA 2011), October 23-29, 2011, Barcelona,
Spain.

Ylvisaker M, Szekeres SF, Feeney T (1998) Cognitive Rehabilitation: Executive Functions. In:
Ylvisaker M (ed.), Traumatic Brain Injury Rehabilitation: Children and Adolescents, Butter-
worth-Heinemann, Newton.

Yu ESK (1997) Towards Modelling and Reasoning Support for Early-Phase Requirements Engi-
neering. In: Proc. 3rd IEEE International Symposium on Requirements Engineering. p. 226-
235.

Zachman JA (1987) A Framework for Information Systems Architecture. IBM Systems Journal
26(3):276-292.

Zeist RHJ van, Hendriks PRH (1996) Specifying software quality with the extended ISO model.
Software Quality Journal, 5(4):273-284, Chapman & Hall.

http://www.w3.org/TR/ws-gloss/�
http://www.w3.org/TR/ws-gloss/�
http://www.w3.org/TR/owl2-overview/�
http://www.extremeprogramming.org/�
http://blog.xebia.com/2010/08/11/lean-architecture-principles-wrap-up/�
http://blog.xebia.com/2010/08/11/lean-architecture-principles-wrap-up/�
http://developer.yahoo.com/ypatterns/�

Index

abstraction, 143, 162
action, 83
Active Stakeholder Participation, 116
activity, 83
actor, 79
Agile Manifesto. See Manifesto for Agile

Development
agile method. See method: agile
agile practice. See practice: agile
agile service. See service:agile
agility, 2, 18

business, 9, 21, 23, 181
drivers, 29
process, 9, 21, 25, 112, 181
system, 9, 21, 27, 180

agility scan, 124
ArchiMate, 42, 44
architecture, 42

description, 42
enterprise, 2, 43
process, 55
service-oriented, 44, 66

artefact
creation, 152

ASD conceptual model, 72
ASD Framework, 64
attribute, 87
BDUF. See Big Design Up-Front
Big Design Up-Front, 44
BPMN. See Business Process Modelling

Notation
bricolage, 8
business agility, 125, See agility: business
business driver, 124
Business Model Canvas, 24, 125
business process management, 66
Business Process Modelling Notation, 82
capability model, 179
channel, 31
collaboration, 78
commitment, 143
communication, 141

participants, 155
practices, 170
situation, 146
situation template (intentional), 149
situation template (operational), 150,

151
communication activity, 146
competency, 25

compliance, 38
concept, 74
conclusion, 86
condition, 86
consensus, 143
constraint, 74
Conway’s law, 47
coordination aspect, 67
coupling and cohesion, 47
daily standup, 20
decision, 85
decision aspect, 68, 84
Decision Modeling Notation, 90
DEMO, 66
dependency, 83
design level, 68
design thinking, 8
DMN. See Decision Modeling Notation
DSDM, 19
DyA, 55, 114
dynamics

product & service, 32
revenue, 33
volume, 34

e3value, 80
encapsulation, 47
enterprise architecture. See architecture:

enterprise
entity, 87
Entity Relationship Diagrams, 73
event, 83
execution capability, 46
fact type, 85
feedback, 138
flexibility, 25

channel, 36
supply chain, 37

flow, 81
function, 81
function aspect, 67
gateway, 83
goal, 76, 124
Goal, 120
implementation level, 69
infrastructure level, 69
innovation capability, 46
interaction, 83
interaction aspect, 67
interaction element, 78
interface, 78

200

item, 87
learning, 138
learning cycle, 20
location, 79
Manifesto for Agile Development, 17
meaning, 159
method

agile, 18, 113
method engineering, 113
method fragment, 114
model, 60
model integration, 89
model-based development, 52
MoSCoW prioritization, 19
object, 87
Object Constraint Language, 73
Object Role Modeling, 73
OCL. See Object Constraint Language
operating model, 49
ORM. See Object Role Modeling
OWL. See Web Ontology Language
pattern

classification, 97
language, 95

practice, 113
agile, 114

process, 83
process agility. See agility: process
product, 87
product aspect, 68
property, 74
refactoring, 54
reference, 87
relation, 74
requirement, 76
requirements level, 68
responsiveness, 25
retrospective. See sprint retrospective
risk, 53
role, 74, 79
rule, 86
rule set, 86
SBVR. See Semantics of Business

Vocabulary and Business Rules
Scrum, 19

Scrum Master, 20
semantics, 159
Semantics of Business Vocabulary and

Business Rules, 73
separation of concerns, 47
service, 4, 6, 81

agile, 9
application, 6
business, 6
consumption, 7
contract, 31
delivery, 7
economy, 1
infrastructure, 6
system, 6, 31

service orientation, 4
service system. See service: system
situational factor, 118
SOA. See architecture: service-oriented
social complexity, 8
speed, 25
sprint, 20

planning, 20
review, 20

sprint retrospective, 20
stakeholder, 76, 120, 141
standardization, 50
strategy, 124
structure aspect, 67
sustainability, 25
system agility. See agility: system
technical debt, 55
TOGAF, 41, 66
triggering, 83
UML. See Unified Modeling Language
understanding, 143
Unified Modeling Language, 73, 82
value type, 74
visualization, 164
waterfall process, 131
Web Ontology Language, 73
wicked problem, 7
XMI, 92
Zachman framework, 65

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Gray Gamma 2.2)

 /CalRGBProfile (Adobe RGB \0501998\051)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.3

 /CompressObjects /Off

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJDFFile false

 /CreateJobTicket false

 /DefaultRenderingIntent /Perceptual

 /DetectBlends true

 /ColorConversionStrategy /LeaveColorUnchanged

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /SyntheticBoldness 1.00

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 524288

 /LockDistillerParams true

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveEPSInfo true

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts false

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Remove

 /UsePrologue false

 /ColorSettingsFile (Color Management Off)

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 600

 /ColorImageDepth 8

 /ColorImageDownsampleThreshold 1.01667

 /EncodeColorImages true

 /ColorImageFilter /FlateEncode

 /AutoFilterColorImages false

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 600

 /GrayImageDepth 8

 /GrayImageDownsampleThreshold 2.03333

 /EncodeGrayImages true

 /GrayImageFilter /FlateEncode

 /AutoFilterGrayImages false

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 2400

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (None)

 /PDFXOutputCondition ()

 /PDFXRegistryName (http://www.color.org)

 /PDFXTrapped /False

 /Description <<

 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>

 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>

 >>

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [2834.646 2834.646]

>> setpagedevice

