
 

 

 

 
 

 
ArchiMate 
Language Primer 

 
Introduction to the ArchiMate Modelling 
Language for Enterprise Architecture 





 

 

 
COPYRIGHT © 2004 TELEMATICA INSTITUUT / ARCHIMATE CONSORTIUM 
 
PERSONAL USE OF THIS MATERIAL IS PERMITTED. HOWEVER, PERMISSION TO REPRINT/REPUBLISH THIS MATERIAL FOR ADVERTISING OR PROMOTIONAL PURPOSES OR 

FOR CREATING NEW COLLECTIVE WORKS FOR RESALE OR REDISTRIBUTION TO SERVERS OR LISTS, OR TO REUSE ANY COPYRIGHTED COMPONENT OF THIS WORK IN 

OTHER WORKS MUST BE OBTAINED FROM OR VIA TELEMATICA INSTITUUT  (HTTP://WWW.TELIN.NL). 

 Colophon 

Title : ArchiMate Language Primer 
Date : 26-08-2004 

Version : 1.0 
Change :  

Project reference : ArchiMate/D1.1.6a  
TI reference : TI/RS/2004/024 

Company reference :  
URL : https://doc.telin.nl/dscgi/ds.py/Get/File-43840/  

Access permissions :  Project 
Status : Final 
Editor : Marc Lankhorst 

Company : Telematica Instituut 
Author(s) : Marc Lankhorst and the ArchiMate team 

Synopsis: 
This document describes the essentials of the ArchiMate language for 
enterprise architecture, and gives an extended example of its use. 

  





 

 A R C H I M A T E / D 1 . 1 . 6 A   V  

ArchiMate 

Organisations need to adapt increasingly fast and anticipate changing customer 
requirements and business goals. This need influences the entire chain of activities of a 
business, from the organisational structure to the network infrastructure. How can you 
control the impact of these changes? Architecture may be the answer. The ArchiMate 
project will develop an integrated architectural approach that describes and visualises the 
different business domains and their relations. Using these integrated architectures aids 
stakeholders in assessing the impact of design choices and changes. 

Architecture is a consistent whole of principles, methods and models that are used in the 
design and realisation of organisational structure, business processes, information systems, 
and infrastructure. However, these domains are not approached in an integrated way, which 
makes it difficult to judge the effects of proposed changes. Every domain speaks its own 
language, draws its own models, and uses its own techniques and tools. Communication 
and decision making across domains is seriously impaired. 

The goal of the ArchiMate project is to provide this integration. By developing an 
architecture language and visualisation techniques that picture these domains and their 
relations, ArchiMate will provide the architect with instruments that support and improve the 
architecture process. Existing and emerging standards will be used or integrated whenever 
possible. ArchiMate will actively participate in national and international fora and 
standardisation organisations, to promote the dissemination of project results. 

The project will deliver a number of results. First of all, we will provide a visual design 
language with adequate concepts for specifying interrelated architectures, and specific 
viewpoints for selected stakeholders. This will be accompanied by a collection of best 
practices and guidelines. Furthermore, ArchiMate will develop techniques that support 
architects in visualisation and analysis of architectures. Finally, project results will be 
validated in real-life cases within the participating organisations. 

To have a real impact on the state of the art in architecture, the ArchiMate project consists 
of a broad consortium from industry and academia. ArchiMate’s business partners are 
ABN AMRO, Stichting Pensioenfonds ABP, and the Dutch Tax and Customs Administration 
(Belastingdienst); its knowledge partners are Telematica Instituut, Ordina, Centrum voor 
Wiskunde en Informatica (CWI), the Leiden Institute for Advanced Computer Science 
(LIACS), and Katholieke Universiteit Nijmegen (KUN). 

More information on ArchiMate and its results can be obtained from the project manager 
Marc Lankhorst (Marc.Lankhorst@telin.nl) or from the project website, archimate.telin.nl. 

 





 

 A R C H I M A T E / D 1 . 1 . 6 A   V I I  

Table of Contents 

1  Introduction 1  
2  Core Concepts of the Language 3 
3  Business Layer Concepts 5  
4  Application Layer Concepts 7  
5  Technology Layer Concepts 8 
6  Relations 9  
7  Example Case: ArchiSurance 11  
Appendix A -  ArchiMate Language Metamodel 17  
Appendix B -  Graphical Notation 19 





 

 A R C H I M A T E / D 1 . 1 . 6 A   1  

1 Introduction 

In many modern ICT-intensive organisations, several types of architects and architectures 
can be found.The technical ICT-related disciplines already have a somewhat longer 
architectural tradition, although the distinction between architecture and design is not 
always sharp. Application architects, for example, describe the relations between the many 
software applications used within the enterprise, as well as the global internal structure of 
these applications. Presently, the Unified Modelling Language (UML) is usually the 
language of choice for this purpose, although there are still organisations using their own 
proprietary notation. The architecture of the technical infrastructure, describing, among 
others, the layout of the computer hardware and networks hardware in the company, is 
generally captured in informal drawings of ‘clouds’ and ‘boxes’, if at all. 

In the more business-oriented disciplines, “working under architecture” is a more recent 
development. Since the advent of process orientation in the nineties, more and more 
organisations have started to document their business processes in a more or less formal 
way. However, these descriptions do not focus on the architectural aspects, i.e., they do not 
provide an overview of the global structure within processes and the relationships between 
them. Some organisations have a description of their product portfolio, which is generally 
text-based: visual modelling has not yet gained acceptance in this field. 

Process architectureProcess architecture

Application architectureApplication architecture Technical architectureTechnical architectureTechnical architecture

Information architectureInformation architecture Product architectureProduct architecture

??

??

??

??

??

 
Figure 1. Heterogeneous architectural domains. 

Thus, we can say that within many of the different domains of expertise that are present in 
an enterprise, some sort of architectural practice exists, with varying degrees of maturity. 
However, due to the heterogeneity of the methods and techniques used to document the 
architectures, it is very difficult to determine how the different domains are interrelated. Still, 
it is clear that there are strong dependencies between the domains. For example: the goal 
of the (primary) business processes of an organisation is to realise their products; software 
applications support business processes, while the technical infrastructure is needed to run 
the applications; information is used in the business processes and processed by the 
applications. For optimal communication between domain architects, needed to align 
designs in the different domains, a clear picture of the domain interdependencies is 
indispensable. 



2  A R C H I M A T E  L A N G U A G E  P R I M E R  

With these observations in mind, we conclude that a language for modelling enterprise 
architectures should focus on inter-domain relations. With such a language, we should be 
able to model: 
• The global structure within each domain, showing the main elements and their 

dependencies, in a way that is easy to understand for non-experts of the domain. 
• The relations between the domains. 

Another important property of an enterprise modelling language – as for any modelling 
language – is a formal foundation, which ensures that models can be interpreted in an 
unambiguous way and that they are amenable to automated analysis. Also, it should be 
possible to visualise models in a different way, tailored towards specific stakeholders with 
specific information requirements. 

None of the currently existing modelling languages completely meet these requirements. In 
this chapter, we propose the enterprise modelling language that we use throughout this 
book. Although, in principle, the concepts of this language are sufficiently generic and 
expressive to model many aspects within different domains, it is clearly not our intention to 
introduce a language that can replace all the domain-specific languages that exist. For 
specific (detailed) designs of, e.g., business processes or applications, the existing 
languages are likely to be more suitable. In the language that we propose, we conform as 
much as possible to existing standards. 



 

 A R C H I M A T E / D 1 . 1 . 6 A   3  

2 Core Concepts of the Language 

In the enterprise modelling language that we propose, the service concept plays a central 
role. A service is defined as a unit of functionality that some entity (e.g., a system, 
organisation or department) makes available to its environment, and which has some value 
for certain entities in the environment. Service orientation supports current trends such as 
the service-based network economy and ICT integration with Web services. These 
examples already show that services of a very different nature and granularity can be 
discerned: they can be provided by organisations to their customers, by applications to 
business processes, or by technological facilities (e.g., communication networks) to 
applications. 

A layered view provides a natural way to look at service-oriented models. The higher layers 
make use of services that are provided by the lower layers. Although, at an abstract level, 
the concepts that are used within each layer are similar, we define more concrete concepts 
that are specific for a certain layer. In this context, we distinguish three main layers: 
1. The Business layer offers products and services to external customers, which are 

realised in the organisation by business processes performed by business actors. 
2. The Application layer supports the business layer with application services which are 

realised by (software) applications.  
3. The Technology layer offers infrastructural services (e.g., processing, storage and 

communication services) needed to run applications, realised by computer and 
communication hardware and system software. 

Application layer

Business layer

Technology layer

Environment

 
Figure 2. Layers. 

Each of these main layers can be further divided in sub-layers. For example, in the 
Business layer, the primary business processes realising the products of a company may 
make use of a layer of secondary (supporting) business processes; in the Application layer, 
the end-user applications may make use of generic services offered by supporting 
applications. On top of the Business layer, a separate Environment layer may be added, 
modelling the external customers that make use of the services of the organisation 
(although these may also be considered part of the Business layer). 

In line with service orientation, the most important relation between layers is formed by use 
relations, which show how the higher layers make use of the services of  lower layers. 
However, a second type of link is formed by realisation relations: elements in lower layers 
may realise comparable elements in higher layers; e.g., a ‘data object’ (Application layer) 



4  A R C H I M A T E  L A N G U A G E  P R I M E R  

may realise a ‘business object’ (Business layer); or an ‘artifact’ (Technology layer) may 
realise either a ‘data object’ or an ‘application component’ (Application layer). 

The general structure of models within the different layers is similar. The same types of 
concepts and relations are used, although their exact nature and granularity differ. Figure 3 
shows the central structure that is found in each layer.  

collective

external

structure

individual
internal

behaviour

Structure
element

Structure
element

Inter-
action
Inter-
action

Collabo-
ration

Collabo-
ration

ServiceService
Inter-
face

Inter-
face

Behaviour
element

Behaviour
element

Structure
element

Structure
element

Inter-
action
Inter-
action

Collabo-
ration

Collabo-
ration

ServiceService
Inter-
face

Inter-
face

Behaviour
element

Behaviour
element  

Figure 3. The core concepts in three dimensions. 

First, we distinguish the structural or static aspect (right side of Figure 3) and the 
behavioural or dynamic aspect (left side of Figure 3). Behavioural concepts are assigned to 
structural concepts, to show who or what displays the behaviour. In the example, role, 
interface and collaboration are assigned to business process, organisational service and 
business interaction, respectively. 

Second, we make a distinction between an external view and an internal view on systems. 
When looking at the behavioural aspect, these views reflect the principles of service 
orientation as introduced in the previous section. The service concept represents a unit of 
essential functionality that a system exposes to its environment. For the external users, only 
this external functionality, together with non-functional aspects such as the quality of 
service, costs etc., are relevant. If required, these can be specified in a contract or service 
level agreement. Services are accessible through interfaces, which constitute the external 
view on the structural aspect.  

Although for the external users only the external view is relevant, the design of 
organisations or systems and their internal operations and management also requires 
knowledge about the internal realisation of the services and interfaces. For this realisation, 
we make a distinction between behaviour that is performed by an individual structural 
element (e.g., actor, role component, etc.), or collective behaviour (interaction) that is 
performed by a collaboration of multiple structural elements.  

In addition to active structural elements (the business actors, application components and 
devices that display actual behaviour, i.e., the ‘subjects’ of activity), we also recognise 
passive structural elements, i.e., the objects on which behaviour is performed. In the domain 
of information-intensive organisations, which is the main focus of our language, these are 
usually information objects in the business layer and data objects in the application layer, 
but they may also be used to represent physical objects. 



 

 A R C H I M A T E / D 1 . 1 . 6 A   5  

3 Business Layer Concepts 

In this section we describe concepts for architectural descriptions that can be placed in the 
business layer of Figure 2. An example of a business layer model is shown in Figure 4. 

   Damage claiming process

Client Insurant InsurerArchiSurance

Registration PaymentValuationAcceptance

Customer
information

service

Claims
payment
service

Claim
registration

service

Claim
registration

service

Business roleBusiness actor

Organisational
service

Business
process

used by

assignment

realisation

triggering

Invoice

Business object

access

 
Figure 4. Example of a business-layer model. 

In the example, Client and ArchiSurance are business actors, the active entities (the 
subjects) that perform behaviour such as business processes or functions. Business actors 
may be individual persons (e.g. customers or employees), but also groups of people and 
resources that have a permanent (or at least long-term) status within the organisations. To 
each actor a business role is assigned: Client has the role of Insurant and in this role makes 
use of two services offered by the insurance company. ArchiSurance plays the role of 
Insurer and this role it is responsible for the Damage claiming process; this is expressed by 
the assignment relation between the business process and the role. Note that the use of 
roles decouples (physical) actors from business activity and gives more flexibility in the 
allocation of activities to actors.  

In the example a distinction has been made between “external” and “internal” behaviour of 
ArchiSurance. The externally visible behaviour is modelled by the concept organisational 
service, which represents a unit of functionality that is meaningful from the point of view of 
the environment; ArchiSurance has three such organisational services. Within 
ArchiSurance, these services are realised by one business process: the Damage claiming 
process, which consists of four subprocesses. Other concepts that can be used for 
modelling behaviour are business functions and business interactions. Business processes, 
functions and interactions, in turn, may use other services (internal to the organisation, but 
external to a smaller entity within the organisation). 



6  A R C H I M A T E  L A N G U A G E  P R I M E R  

Travel Insurance

Claim
registration

service

Customer
information

service

Claims
payment
service

Insurance policy

Insurance
application

service

Premium
payment
service

Customer
data mutation

service

Customer "be insured"
(security)

value

contract
product

 
Figure 5. Services grouped into a product. 

Services are grouped to form (financial or information) products, together with a contract 
that specifies the characteristics, rights and requirements associated with the product. 
Figure 5, for example, shows the Travel insurance product. These services are often 
organisational services, but application services may also be part of a product. This 
‘package’ is offered as a whole to (internal or external) customers. ‘Buying’ a product gives 
the customer the right to use the associated services. The value of a product or service is 
what makes some party appreciate it. Value is often expressed in terms of money, but non-
monetary value is also essential to business, for example, practical or functional value 
(including the right to use a service), and the value of information or knowledge. In our 
example, the value associated by the client of the travel insurance would typically be 
something like ‘to be insured’ or ‘security’. 



 

 A R C H I M A T E / D 1 . 1 . 6 A   7  

4 Application Layer Concepts 

The main structural concept for the application layer is the application component. This 
concept is used to model any structural entity in the application layer: not just (reusable) 
software components that can be part of one or more applications, but also complete 
software applications, subapplications or information systems, such as the CRM system, the 
Policy administration, and the Financial application in the example of Figure 6. This concept 
is very similar to the UML component concept (Object Management Group, 2003b). Data 
objects are used in the same way as data objects (or object types) in well-known data 
modelling approaches, most notably the ‘class’ concept in UML class diagrams. 

Home & Away Policy administration

Policy creation

Calculate
premium

Calculate
risk

Create
policy

Store
policy

Policy 
creation
service

Customer fileInsurance policyInsurance request

data object

application service

application function
application component

 
Figure 6. Example of an application-layer model. 

In the purely structural sense, an application interface is the (logical) location where the 
services of a component can be accessed. In a broader sense (as used in, among others, 
the UML definition), an application interface also has some behavioural characteristics: it 
defines the set of operations and events that are provided by the component, or those that 
are required from the environment.  

Behaviour in the application layer can be described in a way that is very similar to business 
layer behaviour. We make a distinction between the externally visible behaviour of 
application components in terms of application services, and the internal behaviour of these 
components to realise these services. This concept fits well within the current developments 
in the area of, e.g., web services.  

An application function describes the internal behaviour of a component needed to realise 
one or more application services. An application interaction is the collaborative behaviour of 
two or more application components.  



8  A R C H I M A T E  L A N G U A G E  P R I M E R  

5 Technology Layer Concepts 

The main structural concept for the technology layer is the node. This concept is used to 
model structural entities in the technology layer. Nodes come in two flavours: device and 
system software, both inspired by UML 2.0 (the latter is called execution environment in 
UML). A device models a physical computational resource, on which artifacts may be 
deployed for execution. An example is the zSeries mainframe Figure 7. System software 
represents the software environment for specific types of components and data objects, like 
the DB2 database in the figure. Typically, a node will consist of a number of subnodes, for 
example a device such as a server and an execution environment to model the operating 
system.  

An infrastructure interface is the (logical) location where the infrastructural services offered 
by a node can be accessed by other nodes or by application components from the 
application layer. An artifact is a physical piece of information that is used or produced in a 
software development process, or by deployment and operation of a system. It is the 
representation, in the form of e.g. a file, of a data object or an application component, and 
can be assigned to (i.e., deployed on) a node.  

Claim
files

service

zSeries mainframe

DB2
database

Financial
application

EJBs

Customer
files

service

Sun Blade

iPlanet
app server

Device

Infrastructure
service

System software ArtifactNetwork  
Figure 7. Example of a technology-layer model. 

The interrelationships of components in the technology layer are mainly formed by 
communication infrastructure. The communication path models the relation between two or 
more nodes, through which these nodes can exchange information. The physical realisation 
of a communication path is a modelled with a network, i.e., a physical communication 
medium between two or more devices.  

In the technology layer, the central behavioural concept is the infrastructure service. We do 
not model the internal behaviour of infrastructure components such as routers or database 
servers; that would add a level of detail that is not useful at the enterprise level of 
abstraction. 



 

 A R C H I M A T E / D 1 . 1 . 6 A   9  

6 Relations 

In the previous sections we have presented the concepts to model the business, 
application, and technology layers of an enterprise. In each of the layers presented thus far, 
different relations between concepts have been used: 
• The access relation models the access of passive elements, e.g. business or data 

objects, by processes, functions or interactions. 
• The use relation models the use of active or behavioural elements, e.g. the use of 

services by processes, functions or interactions, or the use of interfaces by roles, 
components or collaborations. 

• The composition relation indicates that an object consists of a number of other objects, 
i.e., the lifecycles of the contained objects are tied to that of their container.  

• The aggregation relation indicates that an object groups a number of other objects, but 
the grouped objects continue to have an independent lifecycle. 

• The assignment relation links units of behaviour with active elements (e.g. roles, 
components) that perform them, roles with actors that fulfil them, or artifacts that are 
deployed on nodes. 

• Association models a relation between objects that is not covered by another, more 
specific relation. 

• The realisation relation links a logical entity with a more concrete entity that realises it. 
• The specialisation relation indicates that an object is a specialisation of another object. 
• The triggering relation describes the temporal or causal relations between processes, 

function, interactions and events. 

As we did for the concepts used to describe the different conceptual domains, as much as 
possible we adopt corresponding relation concepts from existing standards. For instance, 
relation concepts such as composition, association, specialisation are taken from UML, 
while triggering is used in most business process modelling languages.  

As we observed before, the architectural layers (business, application and technology) 
constitute some sort of hierarchy within an enterprise. A common way of looking at an 
enterprise is to start from the business processes and activities performed. These are 
carried out by some actor or role in the organisation, possibly supported by one or more 
business applications, or even fully automated. These activities, however, can also be 
viewed as services to this business process.  

If we connect the separate models shown in the previous sections by means of services, we 
arrive at Figure 8, which shows a small example of an integrated and service-oriented 
enterprise architecture model. 



1 0  A R C H I M A T E  L A N G U A G E  P R I M E R  

Infrastructure

External infrastructure services

Application components and services

Roles and actors

External application services

External business services

   Damage claiming process

Client Insurant InsurerArchiSurance

Registration PaymentValuationAcceptance

Customer
information

service

Claims
payment
service

Claims
administration

service

Risk
assessment

service

Payment
service

    Risk
    assessment

    Claims
    administration

         Financial
        application

Claim
information

service

Claim
registration

service

Claim
registration

service

Customer
administration

service

    Customer
    administration

Claim
files

service

zSeries mainframe

DB2
database

Risk
assessment

EJB

Customer
files

service

Sun Blade

iPlanet
app server

 
Figure 8. Example of an integrated enterprise architecture. 



 

 A R C H I M A T E / D 1 . 1 . 6 A   1 1  

7 Example Case: ArchiSurance 

ArchiSurance, a (fictious) company that originally provided home and travel insurance, has 
merged recently with two other insurance companies, PRO-FIT (car insurance) and 
LegallyYours (legal aid). To create insight in ArchiSurance’s primary operations, the 
company is described in terms of its main business functions: 
• Maintaining Customer Relations and Intermediary Relations: these business functions 

are  responsible for the contacts of ArchiSurance with its customers and the 
intermediaries that sell its products. It handles customer questions and incoming claims, 
and performs marketing and sales. 

• Contracting: this function does the ‘back-office’ processing of contracts. It performs risk 
analysis and ensures legally and financially correct contracts. 

• Claims Handling: this function is responsible for handling insurance claims. 
• Financial Handling: this function performs the regular premium collection, according to 

the insurance policies with customers as produced by Contracting, and handles the 
payment of insurance claims. 

• Asset Management: this function manages the financial assets of ArchiSurance, e.g. by 
investing in stocks and bonds. 

These business functions are very similar for most insurance companies and represent 
what is most stable about an enterprise. 

Insurer

Maintaining
Intermediary

Relations

Contracting

Financial
Handling

Claims
Handling

Claims

Insurance
policies

Customer information

Money

Maintaining
Customer
Relations

Asset
Management

Contracts

Product
information

Customer
information

Claims

Insurance
information

Insurance
premiums

Claim
payments

Insurance
policies

Customer
information

Product
information

Claims

Money

Claim
information

Intermediary

Customer

Customer’s
Bank

 
Figure 9. ArchiSurance business functions. 

Post-merger integration is in full swing. The first step in the integration process has been the 
creation of a unified front office, comprising departments for managing relations with 



1 2  A R C H I M A T E  L A N G U A G E  P R I M E R  

customers on the one hand, and intermediaries on the other hand. However, behind this 
front office are still three separate back offices: 
• Home & Away: this department was the original pre-merger ArchiSurance, responsible 

for home and travel insurance. 
• Legal Aid: this is the old LegallyYours, responsible for legal aid and liability insurance. 
• Car: this department is the core of the old PRO-FIT and handles car insurance, 

including some legal aid. 

Furthermore, ArchiSurance is in the process of setting up a Shared Service Center for 
document processing, which will handle all document streams and performs scanning, 
printing, and archiving jobs. The company’s structure is shown in Figure 10. 

ArchiSurance

Back Office

Front Office

Home
&

Away
Car Legal

Aid

Customer
Relations

HRMProduct
DevelopmentFinance

Intermediary
Relations

Document Processing SSC

 
Figure 10. ArchiSurance departments. 

As in many recently merged companies, IT integration is a problem. ArchiSurance want to 
move to a single CRM system, separate back-office systems for policy administration and 
finance, and a single document management system. However, Home & Away still have 
separate systems for the policy administration and the financial handling of premium 
collection and claims payment, and use the central CRM system and call center. The Car 
department have their own monolithic back-office system, but use the central CRM system 
and call center. The Legal Aid department have their own back- and front office systems 
(Figure 11). 



 

 A R C H I M A T E / D 1 . 1 . 6 A   1 3  

Front office

Legal Aid

CarHome & Away

Home & Away
Policy 

administration

Home & Away
Financial

application

Car Insurance
application

Legal Aid
backoffice 

system

Web
portal

Call center
application

CRM application

Legal Aid
CRM

Bank
system

 
Figure 11. Applications grouped according to departments. 

An important prerequisite for the changes in ArchiSurance’s IT is that the IT integration 
should be “invisible” to ArchiSurance’s clients: products & services remain the same. 
However, this is not a straightforward requirement. To illustrate the complexity of the 
relationships between products, business processes and IT support, Figure 12 shows the 
services provided by the Handle Claim business process, Figure 13 shows the relations 
between this business process and its supporting IT applications, and Figure 14 shows how 
a single service of these applications is realised. Note that this only shows these relations 
for a single business process! In general, many different business processes within the back 
office link the external products and services with the internal systems. This web of relations 
creates a major problem if we want to create insight in the IT support of ArchiSurance. 

 Process Claim

Register PayValuateAccept

Claim
registration

service

Customer
information

service

Claims
payment
service

Customer

Damage 
occurred

 
Figure 12. Business services provided by the Handle Claim business process. 



1 4  A R C H I M A T E  L A N G U A G E  P R I M E R  

ArchiSurance Service Bus

 Handle Claim

Register PayValuateAccept

Home & Away
Policy 

administration

CRM
application

Home & Away
Financial

application

Customer
information

service

Claim
information

service

Customer
administration

service

Claims
administration

service

Payment
service

Printing
service

Scanning
service

Document 
management

system

Bank
system

Money transfer
service

 
Figure 13. Relations between the Handle Claim business process and its IT support. 

Home & Away Policy administration

Policy creation

Calculate
premium

Calculate
risk

Create
policy

Store
policy

Policy 
creation
service

Customer fileInsurance policyInsurance request

 
Figure 14. Realisation of the Policy creation application service by the Home & Away Policy 

administration. 

The infrastructure on which the applications are deployed is a hybrid of traditional 
mainframe processing and more recent additions in the form of a server farm of Unix blade 
servers (Figure 15). A Network Attached Storage (NAS) server is used by the Unix 
machines, whereas the mainframe runs the usual system software such as a DBMS, 
message queuing middleware, and a CICS environment. The ArchiSurance network is 
connected to the intermediaries via the Internet, of course with the appropriate firewalling. 
Onto this infrastructure, the various logical applications are deployed in the form of physical 
artifacts such as EJBs; an example of this is given in Figure 16. 



 

 A R C H I M A T E / D 1 . 1 . 6 A   1 5  

ArchiSurance

Unix server farm

Mainframe

Intermediary

Admin
serverLAN

NAS 
File server

LAN TCP/IP
NetworkFirewall Firewall

Unix
server

Unix
server

DBMS

Message
Queing

CICS

 
Figure 15. ArchiSurance infrastructure. 

Integrated Web access

Home & Away Policy administration

Policy data 
management

Customer
data access

Claim data 
management

Web access
Client-side
(browser)

Web access
Server-side

(JSP)

Customer data
Business logic

(EJB)

Policy data
Business logic

(EJB)

Claim data
Business logic

(EJB)

Customer data
Persistence

(EJB)

Policy data
Persistence

(EJB)

Claim data
Persistence

(EJB)

DBMS
(DB2)

Logical

Physical

 
Figure 16. Mapping of logical application components of the ArchiSurance policy administration onto 

physical artifacts. 

 





 

 A R C H I M A T E / D 1 . 1 . 6 A   1 7  

Appendix A -  ArchiMate Language Metamodel 

 

Figure 17 gives a summary of the ArchiMate concepts and their relationships.  

Business
actor

Business
role

Application 
component

Business object

Artifact

Value

Application 
service

Application 
interface

Infrastructure 
interface

Infrastructure 
service

Node

DeviceSystem
software Network

Business 
service

Event

Business
interface

Business 
process /
function / 

interaction

Business

Application

Application

Technology

Data object

Contract

Product

Representation

Communication
path

Application
function /

interaction

Business 
collaboration

Application
collaboration

Meaning

 
Figure 17. Overview of the main concepts and relationships. 

A distinction is made between the “external” and “internal” behaviour of an organisation or 
system. For the external behaviour, the designation “service” is used. The service is the 
externally visible effect of processes, function or interactions, that can be used by other 
units of behaviour that require this service. The internal behaviour, on the other hand, 
represents what is required to realise this service. For the ‘consumers’ of a service the 



1 8  A R C H I M A T E  L A N G U A G E  P R I M E R  

internal behaviour of a system or organisation is usually irrelevant: they are only interested 
in the functional and non-functional results of the behaviour that are advertised by the 
service. In this way different layers can be related to each other (behaviour aspect) by 
means of services. Each layer makes its services available to the next higher layer. 

As for the structure aspect, we could say that an (application) interface is the location where 
components (applications) in the application layer interact with (business) actors. Therefore, 
‘interface’ can be considered a linking concept comparable to the service concept for the 
behaviour aspect. 

 

 



 

 A R C H I M A T E / D 1 . 1 . 6 A   1 9  

Appendix B -  Graphical Notation 

In the picture below we summarise the graphical notation for the ArchiMate concepts and 
relations as proposed in the previous chapters. In most cases the graphical notation has 
been taken over from standards such as UML or other architecture tools. For the behaviour 
and structure concepts we propose a choice between two notations. Take for instance the 
behaviour concepts, which are represented by a rectangle with rounded angles or oval 
shape. In order to distinguish the different concepts an icon is placed within these graphical 
representations. We propose to use these icons as a possible notation as well. 

 
Meaning

Value

Object

Representation

Artifact

Process
function

Process

Function

Service

Activity

Event

Actor

Role

Component

Interface

provided

required

symmetric

Collaboration

Node

Device System
software

Network Communication
path

Group

Specialisation

Composition

Aggregation

Assignment

Realisation

Triggering

Use

Access

Association

Junction

Product Flow

Meaning

Value

Object

Representation

Artifact

Process
function

Process

Function

Service

Activity

Event

Actor

Role

Component

Interface

Meaning

Value

Object

Representation

Artifact

Process/
function

Process

Function

Service

Activity

Event

Actor

Role

Component

Interface

provided

required

symmetric

Collaboration

Node

Device System
software

Network Communication
path

Specialisation

Composition

Aggregation

Assignment

Realisation

Triggering

Use

Access

Junction

Product Flow

ActivityActivityInteraction

Meaning

Value

Object

Representation

Artifact

Process
function

Process

Function

Service

Activity

Event

Actor

Role

Component

Interface

provided

required

symmetric

Collaboration

Node

Device System
software

Network Communication
path

Group

Specialisation

Composition

Aggregation

Assignment

Realisation

Triggering

Use

Access

Association

Junction

Product Flow

Meaning

Value

Object

Representation

Artifact

Process
function

Process

Function

Service

Activity

Event

Actor

Role

Component

Interface

Meaning

Value

Object

Representation

Artifact

Process/
function

Process

Function

Service

Activity

Event

Actor

Role

Component

Interface

provided

required

symmetric

Collaboration

Node

Device System
software

Network Communication
path

Specialisation

Composition

Aggregation

Assignment

Realisation

Triggering

Use

Access

Junction

Product Flow

ActivityActivityInteraction

 


