
TOWARDS A GENERAL THEORY FOR
THE EVOLUTION OF APPLICATION DOMAINS

H.A. PROPER

AND

TH.P. VAN DER WEIDE

Department of Information Systems, University of Nijmegen,

Toernooiveld, NL-6525 ED Nijmegen, The Netherlands,

E.Proper@acm.org

Published as: H.A. Proper and Th.P. van der Weide. Towards a General Theory for the
Evolution of Application Models. In M.E. Orlowska and M. Papazoglou, editors,
Proceedings of the Fourth Australian Database Conference, Advances in Database
Research, pages 346–362. World Scientific, Brisbane, Australia, February 1993.

ABSTRACT

In this article we focus on evolving information systems. First a delimitation of the
concept of evolution is discussed. The main result is a first attempt to a general
theory for such evolution. In this theory, the underlying data model is a parameter,
making the theory applicable for a wide range of modelling techniques.

1. Introduction

As has been argued in [18] and [7], there is a growing demand for information systems,
not only allowing for changes of their information base, but also for modifications in their
underlying structure (conceptual schema and specification of dynamic aspects). In case of
snapshot databases structure modifications lead to costly data conversions and reprogram-
ming.

The intention of an evolving information system ([6]) is to be able to handle updates
of all components of the so-called application model, containing the information structure,
the constraints on this structure, the population conforming to this structure and the possi-
ble operations. The theory of such systems should, however, be independent of whatever
modelling technique is used to describe the application model. In this paper, we discuss
a general theory for the evolution of application models. The central part of this theory
will make weak assumptions on the underlying modelling technique, making it therefore
applicable for data modelling techniques such as ER ([3]), NIAM ([16]) and PSM ([10]),

and action modelling techniques such as Task Structures ([21]), DFD ([2]) and ExSpect
([9]).

Version modelling in engineering databases can be seen as a restricted form of
evolving information systems ([14], [13]). An important requirement for evolving infor-
mation systems, not covered by version modelling systems, is that changes to the structure
can be made on-line. In version modelling, a structural change requires the replacement of
the old system by a new system. Other research regarding evolving information systems
can be found in [15], in which an algebra is presented that allows relational tables to evolve
by changing their arity.

The structure of the paper is as follows. In section 2 we describe the approach that
has been taken to the concept of evolution. We will not focus on a particular modelling
technique. In section 3 we describe what the minimal requirements of a modelling tech-
nique. By considering all elements that may be subject to evolution, we then introduce in
section 4 the application model universe, and describe what constitutes a application model
version. Finally, in section 5 the evolution of an application model is formally introduced,
and some properties of wellformedness are presented.

2. An Approach to Evolving Information Systems

In this section we discuss our approach to evolving information systems. We start with the
identification of that part of an information system that may be subject to evolution. From
this identification, the difference between a traditional information system, and its evolving
counterpart, will become clear. This is followed by a discussion on how the evolution of an
information system is modelled.

2.1. A hierarchy of models

According to [8], a conceptual (i.e. complete and minimal) specification of a universe of
discourse consists of the following components:

1. an information structure, a set of constraints and a population conforming to these
requirements.

2. a set of action specifications describing the transitions that can be performed by the
system.

The set of action specifications is referred to as the action model. The world model encom-
passes the combination of information structure, constraints and the population. A concep-
tual specification of a universe of discourse, containing both the action and world model,
is called an application model ([6], [7]). The resulting hierarchy of models is depicted in
figure 1.

Information
Structure Constraints Population

World
Model

Action
Model

Application
Model

����������
�

�
�
�
�
�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

Legend:
	 = contains

Figure 1: A hierarchy of models

2.2. An example of evolution

Traditionally, a world model consists of a fixed data model according to some data mod-
elling technique, and a population conforming to this data model. The action model de-
scribes all possible transitions on populations, and is usually modelled by means of Petri-
net like specifications (such as ExSpect or Task Structures), or languages such as SQL. The
evolvable part of the application model in these cases is restricted to the population.

Some traditional information systems do allow however, to a limited extend, mod-
ifications of other components from the application model. For example, adding a new
table in an SQL system is easily done. However, changing the arity of a table, or some of
its attributes, will result in a time consuming table conversion, which also leads to loss of
the old table! In an evolving information system, the entire application model is allowed to
evolve on-line, without loss of any information.

As an illustration of an evolving universe of discourse, consider a rental store, for
audio records (LP’s). In this store a registration is maintained of the songs that are recorded
on the available LP’s. In order to keep track of the wear and tear of LP’s, the number
of times an LP has been lent is registered. The information structure and constraints of
this universe of discourse are modelled in figure 2 in the style of ER, according to the
conventions of [23]. Note the special notation of attributes (�����) using a mark symbol (#)
followed by the attribute (# �����).

An action specification in this example is the rule ������	�
, stating that whenever a
new LP is added to the assortment of the store, it’s lending frequency must be set to �:

����� ������	�
 =
���� ��� ��� � �

��� ��� � ��� ���������	�
����� �� �	�
������ �

This action specification is in the style of Lisa-D ([11]). Note that the keyword ‘���’ con-

LP

Title
Artist

Song

Title
Author

Frequency

Times

�

�
�

�

�
�
�
�

Recording

�

�
�

�

�
�
�
�

Lending-
frequency

�
�
�
�
�
�

Figure 2: The Data Model of an LP rental store

nects object types to relation types, and the keyword ‘��’ just the other way around.
After the introduction of the compact disc, and its conquest of a sizeable piece of the

market, the rental store has transformed into an ‘LP and CD rental store’. This leads to the
introduction of object type Medium as a generic term for LP’s and CD’s. The relation type
Medium-type effectuates the subtyping of Medium into LP and CD. In the new situation,
the registration of songs on LP’s is extended to cover CD’s as well. The frequency of
lending, however, is not kept for CD’s, as CD’s are hardly subject to any wear and tear. As
a consequence, the application model has evolved to figure 3.

Medium

Title
Artist

Song

Title
Author

CD

LP
Frequency

Times

�
�
�
�
�
��

�
�
�
�
�

Medium-
type

�

�
�

�

�
�
�
�

Recording

�

�
�

�

�
�
�
�

Lending-
frequency

Figure 3: The Data Model of a LP and CD rental store

The action specification ������	�
 evolves accordingly, now stating that whenever a
medium is added to the assortment of the rental store, it’s lending frequency is set to �

provided the medium is an LP:

����� ������	�
 =
���� ��� ����!� � �

�� ��� � ����

��� ��� � ��� ���������	�
����� �� �	�
������ �

2.3. The approach

The two ER schemata, and the two action specifications, as discussed above, correspond
to two distinct snapshots of an evolving universe of discourse. Several approaches can be
taken to the modelling of this evolution. A first approach is to model the history of appli-
cation model elements by adding birth-death relations to all object types in the information
structure ([19]). This approach, however, is very limited, as it only enables the modelling
of evolution of the population of an information system. For example, the evolution of the
Recording relation type can not be modelled in this approach. Evolution of other applica-
tion model elements than population, can then be descibed by a meta model approach.

This paper takes another approach, and treats evolution of an application model as
a separate concept. There still are two alternatives to deal with the history of application
models. The first one is to maintain a version history of application models in their entirety,
leading to a sequence of snapshots of application models. The second one is to keep a
version history per element, so keeping track of the evolution of object types, instances,
methods, etc.

An advantage of this second alternative is that it enables one to state rules about,
and query the evolution of distinct objects. This alternative also allows for the formulation
of rules concerning the well formedness of the evolution of application model elements
([17]). The first alternative clearly does not offer this oppertunity, as it does not provide
relations between successive versions of the application model.

Furthermore, the snapshot view from the first alternative can be derived by con-
stituting the application model version of any point of time from the current versions of
its components. In the theory of evolving application models we will therefore adapt the
second alternative.

An application model element history describes the history of an application model
element, and is seen as a partial function assigning to points of time the actual occurrence
(version) of the element. For example, when CD’s are added to the assortment of the
rental store, the version of the application model element "���	���� changes from a relation
type that registrates songs on LP’s to a relation type that registrates songs on Media. An
application model history is a set of application model element histories. The current
version of an application model then is constituted by the current versions of all application
model elements.

3. A World Model for Application Models

In this section we take a closer look at application models, and define what constitutes an
application model version. An application model version is formulated conforming to some
modelling technique. The only assumption on this modelling technique is, that it delimits
an application model universe, i.e., the space for the evolution of application models.

3.1. The Information Structure Universe

The kernel of the application model universe is formed by the information structure uni-
verse ��� � ���� �����, fixing the evolution space for information structures. Further
refinements of the information structure universe depend on the chosen data modelling
technique (such as NIAM, ER, PSM and Object Oriented data models), and are beyond the
scope of the theory in this paper. For our purposes, an information structure universe is
assumed to provide (at least) the above components, which are available in all conventional
high level data modelling techniques.

3.1.1. Object Types

The central part of an information structure is formed by its object types (referred to as
object classes in object oriented approaches). Two major classes of object types are distin-
guished. Object types who’s instances can be represented directly (denoted) on a medium
(strings, natural numbers, etc) form the class of label types �. The other object types, for
instance entity types or fact (relation) types, form the class � . The example of figure 2
contains nine object types: three entity types "���	�, #��� and �	�
�����, two relation types
"���	���� and ���������	�
�����, and four label types �����, �	����, �����	 and ��!��.

3.1.2. Type Relatedness

For object types, the (reflexive and symmetrical) relation � expresses type relatedness be-
tween object types (see [12]). Object types � and � are termed type related (� � �) iff pop-
ulations of object types � and � may have values in common. Type relatedness corresponds
to mode equivalence in programming languages ([22]). The relation of type relatedness
can be recognised in conventional modelling techniques like ER, NIAM, or PSM, as well
as object oriented data modelling techniques. Typically, subtyping and generalisation lead
to type related object types. For the data model depicted in figure 2, the type relatedness
relation is the identity relation: � � � for all object types �.

3.1.3. The Identification Hierarchy

In data modelling, a crucial role is played by the notion of object identification: each object
type of an information structure should be identifiable. In a subtype hierarchy however, a
subtype inherits its identification from its super type, whereas in a generalisation hierarchy

the identification of a generalised object type is inherited from its specifiers. For the data
model depicted in figure 3 this means that instances of �$ and �� are identified in the same
way as instances of ����!. An object type from which the identification is inherited, is
termed a parent of that object type. The inheritance hierarchy (identification hierarchy) is
provided by the relation �� �, meaning that � is the parent of �. For figure 3 this leads to:
 ����!� �$ and ����!� ��.

Object types in an information structure that have no parent are called roots as they
form the roots of the inheritance hierarchy (a directed acyclic graph). The roots of an object
type � are found by: � "���� � ��� � � � �� �� � �	� ��� ��.

For every data model from conventional data modelling techniques, a parent (�)
and root ("����) relation can be derived. If no specialisations or generalisations are present
in that data model, the parent relation will be empty. As a result, the root relation will be
the identity relation. For instance the root relation for figure 2 is: � "���� � for every object
type �.

3.2. Properties of Information Structure Universes

Two interesting properties on the root and parent relation are:

Lemma 3.1 (common roots)
� � �
� 	��� "���� � � � � ��

The intuition behind this property is that type relatedness must be based on the type relat-
edness of some root. Furthermore, type relatedness of roots implies type relatedness of
object types:

Theorem 3.1 (type relatedness propagation)
	�������� � �� � �� "���� � � �� "���� ��
� � � �

These properties have been proven in [17].

4. Secondary elements of Application Models

The hierarchy of models (see figure 1) describes how an application model is constructed
from other (sub)models. However, this hierarchy disregards relations that must hold be-
tween these submodels, for example, the relation between a population and the information
structure. These relations are crucial elements of an application model, as they form the
fabric of the application model.

4.1. Application Model Universe

An application model version is bound to the application model universe � �, which is
captured in the tuple: �� ��� �� �� �� �� ��������. The information structure universe
��� was introduced in the previous section.

4.1.1. Constraints

Most data modelling techniques have a language in which constraints can be expressed,
resulting in the set � of all possible constraint definitions. Constraints are treated as appli-
cation model elements, that assign to (some) object types a particular constraint definition.
A constraint is said to be owned by an object type, if the object type has assigned a con-
straint definition by the constraint. Constraints are inherited via the identification hierarchy.
However, as in object oriented data modelling techniques, overriding of constraint defini-
tion in identification hierarchies is possible (see for instance [5]).

�
�
�
�

Un-
registered-

airplane

�
�
�
�

Registered-
airplane
�

�
�
�
�

Owner
(Name)
�

�
�
�
�

Airplane
(PL-Code)

�
�
�
�

Age

(Nr)

�
�
�
�

Admission-
code

(Adm-Id)

�

�
�
�
�

Manufac-
turer

(Name)
�

is-owned-
by of

	

of has-as

	

received given-to

	

builds build-by

 	������

��
��
��

��
��

��

�����������	��
�	�� = ��
�	�� �������� �������������

�������������	��
�	�� = ��
�	�� ������� �����������	��
�	��

Figure 4: Constraint assignment

As an illustration of the assignment of constraints to object types, consider figure
4. The depicted data model is conforming to NIAM, while the subtype defining rules
have been formulated in LISA-D. The modelled universe of discourse is concerned with
the administration of airplanes. As airplanes should be replaced in time, the age of an
airplane is an important attribute. Furthermore, an airplane may be registered by an aviation
association, in which case it has associated an admission code. The owner of registered
planes is maintained by the administration.

The graphical constraints contained in this data model, are assigned to object types
in the following way:

�� � �	���	������

�� ���� �Manufacturer.builds �
�� � ��
�	��

�� ������ � Airplane.has-as �
�� � �������������

�� ���� � Admission-code.given-to �

All these constraints are owned by a single object type. A more interesting case with respect
to inheritance results by adding the following constraint:

All airplanes must have associated a manufacturer or an age. Unregistered airplanes must have
both.

The object type assignment for this constraint is:

�� � ��
�	��

�� ���� � Airplane.build-by, Airplaine.has-as �
�� � �����������	��
�	��

�� ���� � Airplane.build-by, Airplaine.has-as �
�� � �������������	��
�	��

�� ���� � Airplane.build-by � AND TOTAL � Airplaine.has-as �

The constraint �� is considered to be owned by object types ��	�����, "������	�����	����� and
%�	������	�����	�����.

A constraint �, in an application model version, will therefore be a (usually very
sparse) partial function � � ��, providing for every object type a private definition
of the constraint. Each modelling technique will have its own possibilities to formulate
inheritance rules, thus governing the mapping �. The set of constraints in an application
model version at time � is denoted as ��.

4.1.2. Methods

The action model part of an application model version will be provided as a set of action
specifications. The set of possible action definitions (�) depends on the chosen mod-
elling technique for the action model. As for constraints, a modelling technique dependent
inheritance hierarchy can be recognized. A method � is regarded as a partial function
� � ��, assigning action specifications to object types. The set of all methods present
in an application model version is: ��.

4.1.3. Domains

The separation between concrete and abstract world is provided by the distinction between
the information structure � , and the set of underlying (concrete) domains in � ([11]).
Therefore, label types in an information structure version will have to be related to do-
mains. An application model version contains a mapping ��! � providing the relation be-
tween label types and domains. Some examples of such domain assignments, in the context
of the rental store, are: ��!�� �� �����& ����� �� #�	��� , where ����� and #�	��� are presumed to
be (names of) concrete domains.

4.1.4. Instances

The population of an information structure is not, as usual, a function that maps object
types to sets of instances. Rather, an instance is considered to be an independent thing,

which can evolve by itself. Therefore, (non empty) sets of object types are associated to in-
stances, specifying the object types having the instance as an instantiation. This association
is contained in the relation ��������� � �����, where � is the set of all possible instan-
tiations of object types. An example of such an association is:

�
	��

�
 ����!& ��

��
, meaning

	� is an (abstract) instance of entity types ����! and ��. The population of an object type,
traditionally provided as a function
 � �����, can be derived from the association
between instances and object types: $������ �

�
� � �

��� � ��������� � � � � �
�
.

4.1.5. Evolution dependency

Every method and constraint specification refers to (uses) a set of object types and deno-
table instances. This relation is provided in the application model universe by means of the
dependency relation (�������). The relation ������� is modelling technique dependent, but
is not subject to evolution.

The intuition behind this relation is as follows: � ������� � means that if � is not
present in an application model version, then � can not be used in that version. A conse-
quence is, that in case of evolution of application models, when � evolves to � �, then � must
be adapted appropriately.

As an example, consider the second action specification from the rental store exam-
ple. This action specification depends on object types ����!& �� and �	�
�����. It, further-
more, depends on the domain assignment: �	�
����� �� �����. If one of the object types, or
the domain assignment, is terminated or changed, the action specification has to be termi-
nated or changed accordingly.

4.2. Application Model Versions

An application model version (��) over information structure universe � �� is determined
by the following components: �, ��, ��, ���������, ��!�. With a version of the appli-
cation model, we can associate the following version of the information structure: � � �
����� �������� where:

— �� � � ��,
— � � � � �� ,
— � �� ��� � � � �� � � �, and
— ��� ���� � � �� � � �.

As an overview of the components of an application model version, a meta model is pro-
vided in figure 5. This (meta) data model is conforming to the PSM data modelling tech-
nique, an extention of the NIAM modelling technique. The object types �� and �� in
figure 5 are power types, the data modelling pendant of power sets in set theory.

Every application model version must adhere to some rules of wellformedness.
Some of these rules are modelling technique dependent. Nonetheless, some general rules
about application model versions can be stated. In [17] a formalisation of these rules is
provided.

�
�
�
��

�
�
�
�� �

�
�
�
���
� �

�
�
��

�
�
�
��

�
�
�
��

�
�
�
�

�
�
�
�
�
�
�
��

�
�
�
�

�
�
�
�
��

�
�
�
�
��

���������

 	
�
�
�
�
�
�
�

��!�

	

 	
��������

 	
��������

��

�
�

*
��

�
�

*

� �

Figure 5: A meta model for information structures

An object type � is called alive at a certain point of time �, if it is part of the applica-
tion model version at that point of time (� � �). Furthermore, an object type � is termed
active at a certain point of time, if there is an instance with � as one of its associated types
(� ��������� � � �).

A first rule of wellformedness states that every active object type must be alive as
well. This rule can be popularised as: ‘I am active, therefore I am alive’. Furthermore,
the set of object types associated to an instance must be mutually type related, as their
populations share at least this value.

From the very nature of the root relation it immediately follows that instances are
included upwards, towards the roots. As a result, every instance of an object type is also
an instance of its parents (if any). This rule has a structural pendant as well. Every living
object type should be accompanied by one of its parents (if any). If all object types in a data
model have a non empty instantiation, i.e. every object type is active, the latter (structural)
rule immediately follows from the former (population) rule. However, when some non-root
(alive) object type is not active, implying that its parent(s) do not have to be active, it does
not follow that at least one of its parents must be alive. Therefore, a rule demanding this
explicitly is required.

Constraints and methods are defined as mappings from object types to constraint
and method definitions respectively. Thus, object types that own a constraint or a method
must be alive. Furthermore, object types that own the same constraint or method, have to
be type related. Finally, due to inheritance, if a constraint is defined for a parent object
type, it must be defined for its children as well.

For populations some interesting properties have been proven [17]. An first example
states: every instance of an object type is also an instance of one of its roots.

Lemma 4.1 $������ �
�

�"���� � $������

From the nature of type relatedness it follows that the populations of roots which are not
type related are mutually exclusive. This rule can be generalised to all object types, leading
to:

Lemma 4.2 � �� � � ���� �$������� $������ � ��

For the proofs of these properties, refer to [17].

5. Evolution of Application Models

The basis of the theory for evolving application models is formed by the concept of evo-
lution continuum, capturing both dimensions of evolution of application models, being the
universe of application model and time. The evolution continuum serves as a state space
for evolutionary navigation: �� � �������

Time, essential to evolution, is incorporated into the evolution continuum through
the algebraic structure �� � �� � � �, where � is a (discrete) time axis, and � a set of
functions over � . In this paper, the time axis is regarded as an abstract data type. Several
ways of defining a time axis exist, see e.g. [4], [20] or [1]. The time axis is the axis along
which the application model evolves (through the application model universe).

An application model element history is a partial function, that assigns to points
of time the actual version of the element, and thus is a partial mapping � ���� , where
��� is the set of all evolvable elements of an application model: ����� ��������� ��!.
An application model history over an information structure universe � �� then is defined by:

Definition 5.1
��� � � ���� �

As a first rule of wellformedness, the evolution of application model elements is bound
to classes. For example, an object type may not evolve into a method, and a constraint
may not evolve into an instance. A consequence of this rule is that an application model
history can be partitioned into the history of its object types, its constraints, its methods, its
populations, and its concretisations (of label types):

Definition 5.2

object type histories:
����� �

�
� � ���

��� 	������ � �
�
,

constraint histories:
������� �

�
� � ���

��� 	������ � ��
�
,

method histories:
�	��
 �

�
� � ���

��� 	������ � ��
�

,

population histories:
���� �

�
� � ���

��� 	������ � ���������
�
,

concretisation histories:
���	 �

�
� � ���

��� 	������ � ��!�
�

. �

An application model version � � � ����� �������� is easily derived from the application
model history:

Definition 5.3

object types:
� �

�
����

��� � � ����� � ���
�

,

constraints:
�� �

�
����

��� � � ������� � ���
�
,

methods:
�� �

�
����

���� � �	��
 ����
�
,

population:
��������� �

�
����

��� � � ���� � ���
�

,

concretisations:
��!� �

�
����

��� � � ���	 � ���
�

. �

In this definition ��� is used as an abbreviation for 	� ���� �� � � �, stating that (partial)
function � is defined at time �.. As an example of evolution, the following table respresents
three object type evolutions (��� ��� �� � �����) from the rental store (see section 2):

����� �� �� ��
�� �� �� �
�� �� �� �
�� �� �� �
�� �� �� ��
�� �� �� ��

where ��� � � � � �� � � , and ��� � � � � �� � are object types, such that:

�� � ‘Entity type: ������’
�� � ‘Fact type: ��������� �� ���� �� ������’
�� � ‘Fact type: ��������� �� ���� �� ������’
�� � Entity type: ������’

Note that the evolution step (from figure 2 to figure 3) takes place at point of time ��. Two
example instance evolutions (��� �� � ����), obeying the above schema evolution, are:

���� �� ��

��

�
���

�
��
�� �

���

�
��
��

��

�
���

�
��
�� �

���

�
��
��

��

�
���

�
��
�� �

���

�
��
��

��

�
���

�
��� ��

�� �
���

�
��
��

��

�
���

�
��� ��

�� �
���

�
��
��

where ��� � � � � �� � �� are instances such that:

�� � ‘Brothers in Arms’
�� �

�
‘Money for nothing’� ‘Brothers in Arms’

�
�� �

�
‘Brothers in Arms’� ‘Brothers in Arms’

�
�� �

�
‘Brothers in Arms’� ‘Brothers in Arms’

�

The interpretation of this table leads to:

������ �
�
���

�
��� ��

	�
means: ‘Brothers in Arms’ is both a ������ and a �
 at ��,

������ �
�
���

�
��
	�

means: ���� ‘Brothers in Arms’ �� �������� �� ������ ‘Brothers in Arms’,
������ �

�
���

�
��
	�

means: ���� ‘Brothers in Arms’ �� �������� �� ������ ‘Brothers in Arms’.

�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
��

�
�
�
�
�
�
�
��

�
�
�
�

�
�
�
��

�
�
�
�

�
�
�
�
�
�
�
��

�
�
�
��

�

�

�

�

���

�
�
�
�

�����

�
�
�
�

�������

�
�
�
�

�	��

�
�
�
�

����

�
�
�
�

���	

�
�
�
����

�
�
�
�

�
�
�
�
� �

�
�
�
�

� � � � 	

 �
�

�

� �

�	��
��

 	
�
�
�
�
�
�
�

!��

 	

 	
��������

 	
��������

� ���'��

 	

�
�
�

�

�
�

Figure 6: A meta model for the evolution system

As an outline of the hitherto defined concepts, a (meta) data model, relating all
defined concepts, is provided in figure 6. The data model depicted there is conform the PSM
modelling technique, and uses the notion of schema objectifications (object type ���),
and powertyping (object type ���). The population of an objectified schema at hand is

to be looked upon as one single abstract object instance of the object type corresponding
to the objectified schema. Powertyping is, as stated before, the data modelling pendant of
powersets from set theory.

6. Conclusions and Further research

In this paper we presented a first attempt to a general theory for the evolution of application
models, supporting evolving information systems. As a next step a set of well formedness
rules on evolution steps has to be defined, since not all evolution steps of application models
will correspond to sensible/valid evolution steps in an actual universe of discourse.

Furthermore, in order to validate the theory, it must be applied to some modelling
techniques. In the near future we will therefore apply this theory to PSM, a data mod-
elling technique serving as a common base for data modelling techniques such as NIAM,
ER, and IFO, and to Task Structures, a powerfull action modelling technique. A query
and manipulation language must be defined supporting the evolution of information sys-
tems. Finally, the consequences of evolution for the internal representation of information
structures should be studied.

Acknowledgements

The investigations were partly supported by the Foundation for Computer Science in the
Netherlands (SION) with financial support from the Netherlands Organization for Scientific
Research (NWO).

References

1. J.F. Allen. Towards a General Theory of Action and Time. Artificial Intelligence,
1984(23):123–154, 1984.

2. P.D. Bruza and Th.P. van der Weide. The Semantics of Data Flow Diagrams. In
N. Prakash, editor, Proceedings of the International Conference on Management of
Data, Hyderabad, India, 1989.

3. P.P. Chen. The Entity-Relationship Model: Toward a Unified View of Data. ACM
Transactions on Database Systems, 1(1):9–36, March 1976.

4. J. Clifford and A. Rao. A simple, general structure for Temporal Domains. In
C. Rolland, F. Bodart, and M. Leonard, editors, Temporal Aspects in information
Systems, pages 17–28. North-Holland/IFIP, Amsterdam, The Netherlands, 1987.

5. O.M.F. De Troyer. The OO-Binary Relationship Model: A Truly Object Oriented
Conceptual Model. In R. Andersen, J.A. Bubenko, and A. Sølvberg, editors, Pro-
ceedings of the Third International Conference CAiSE’91 on Advanced Information

Systems Engineering, volume 498 of Lecture Notes in Computer Science, pages
561–578, Trondheim, Norway, May 1991. Springer-Verlag.

6. E.D. Falkenberg, J.L.H. Oei, and H.A. Proper. A Conceptual Framework for Evolv-
ing Information Systems. In H.G. Sol and R.L. Crosslin, editors, Dynamic Mod-
elling of Information Systems II, pages 353–375. North-Holland, Amsterdam, The
Netherlands, 1992.

7. E.D. Falkenberg, J.L.H. Oei, and H.A. Proper. Evolving Information Systems: Be-
yond Temporal Information Systems. In A.M. Tjoa and I. Ramos, editors, Pro-
ceedings of the Data Base and Expert System Applications Conference (DEXA 92),
pages 282–287, Valencia, Spain, September 1992. Springer-Verlag.

8. J.J. van Griethuysen, editor. Concepts and Terminology for the Conceptual Schema
and the Information Base. Publ. nr. ISO/TC97/SC5/WG3-N695, ANSI, 11 West
42nd Street, New York, NY 10036, 1982.

9. K.M. van Hee, L.J. Somers, and M. Voorhoeve. Executable Specifications for Dis-
tributed Information Systems. In E.D. Falkenberg and P. Lindgreen, editors, Infor-
mation System Concepts: An In-depth Analysis, pages 139–156. North-Holland/IFIP,
Amsterdam, The Netherlands, 1989.

10. A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Data Modelling in
Complex Application Domains. In P. Loucopoulos, editor, Proceedings of the Fourth
International Conference CAiSE’92 on Advanced Information Systems Engineering,
volume 593 of Lecture Notes in Computer Science, pages 364–377, Manchester,
United Kingdom, May 1992. Springer-Verlag.

11. A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Formal definition of
a conceptual language for the description and manipulation of information models.
Information Systems, 18(7):489–523, October 1993.

12. A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data
modelling. Data & Knowledge Engineering, 10(1):65–100, February 1993.

13. M. Jarke, J. Mylopoulos, J.W. Schmidt, and Y. Vassiliou. DAIDA: An Environ-
ment for Evolving Information Systems. ACM Transactions on Information Sys-
tems, 20(1):1–50, January 1992.

14. R.H. Katz. Toward a Unified Framework for Version Modelling in Engineering
Databases. ACM Computing Surveys, 22(4):375–408, 1990.

15. E. McKenzie and R. Snodgrass. Schema evolution and the relational algebra. Infor-
mation Systems, 15(2):207–232, 1990.

16. G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational Database De-
sign: a fact oriented approach. Prentice-Hall, Sydney, Australia, 1989.

17. H.A. Proper and Th.P. van der Weide. A General Theory for the Evolution of Appli-
cation Models. IEEE Transactions on Knowledge and Data Engineering, 7(6):984–
996, December 1995.

18. J.F. Roddick. Dynamically changing schemas within database models. The Aus-
tralian Computer Journal, 23(3):105–109, August 1991.

19. R. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. In Proceedings of

the ACM SIGMOD International Conference on the Management of Data, pages
236–246, Austin, Texas, 1985.

20. G. Wiederhold, S. Jajodia, and W. Litwin. Dealing with the Granularity of Time
in Temporal Databases. In R. Andersen, J.A. Bubenko, and A. Sølvberg, editors,
Proceedings of the Third International Conference CAiSE’91 on Advanced Infor-
mation Systems Engineering, volume 498 of Lecture Notes in Computer Science,
pages 124–140, Trondheim, Norway, May 1991. Springer-Verlag.

21. G.M. Wijers, A.H.M. ter Hofstede, and N.E. van Oosterom. Representation of In-
formation Modelling Knowledge. In V.-P. Tahvanainen and K. Lyytinen, editors,
Next Generation CASE Tools, volume 3 of Studies in Computer and Communica-
tion Systems, pages 167–223. IOS Press, 1992.

22. A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A. Koster, M. Sintzoff, C.H.
Lindsey, L.T. Meertens, and R.G. Fisker. Revised Report on the Algorithmic Lan-
guage ALGOL 68. Springer-Verlag, Berlin, Germany, 1976.

23. E. Yourdon. Modern Structured Analysis. Prentice-Hall, Englewood Cliffs, New
Jersey, 1989.

