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Abstract. In this paper we are concerned with the degree to which mod-
eling languages explicitly accommodate conceptual distinctions. Such
distinctions refer to the precision and nuance with which a given mod-
eling concept in a language can be interpreted (e.g., can an actor be a
human, an abstraction, or a collection of things). We start by elaborat-
ing on the notion of conceptual distinctions, while also providing a list
of common modeling concepts and related distinctions that are relevant
to enterprise modeling. Based on this, we will then analyze a number
of conceptual modeling languages to see whether they accommodate the
explicit modeling of (potentially important) conceptual distinctions –
that is, whether they have specific language elements to model concep-
tually distinct entities with. We conclude by discussing what impact our
findings may have on the use (and creation) of modeling languages.
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tinction, conceptual understanding

1 Introduction

Most concepts common to conceptual modeling languages and methods (e.g.,
goal, process, resource, actor, etc.) can be interpreted in a number of concep-
tually distinct, yet equally valid, ways. For example, in the context of business
processes, one may choose to interpret actors as being human beings who take
decisions and execute actions. At the same time, however, interpreting them as
being abstract agents or dedicated pieces of hardware might be equally valid in
another context. One could also choose to interpret actors as being a collection
of things that, together, execute some actions (e.g., an organizational depart-
ment composed of many employees, a cluster of computers) instead of being a
single thing executing an act. Depending on the context of the domain to be
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modeled, the stakeholders and other modelers we interact with, and the goal of
the model itself, we often choose among the different possible interpretations.
These different interpretations of the same concept can lead to a host of semantic
considerations. For example, if an actor is a human being, one can never be as
sure that s/he will behave as expected compared to, say, a computer.

It is important that such different interpretations can be modeled distinctly.
It would not do well for the overall clarity and semantic quality of a model if
we conflate semantically different interpretations (e.g., human beings, abstract
entities and material objects) under the same banner (e.g., ‘actor’) and pretend
that they are one and the same thing. Yet, this is often the case with model-
ing languages. Frequently, the designers of a modeling language define a type
(e.g., actor) and allow it to be instantiated with a wide diversity of entities
(humans, hardware, abstract and mathematical entities) which have no com-
mon ontological basis. Sometimes modeling languages do accommodate (some)
of these conceptual distinctions, but then do so only implicitly. That is, in their
specification or meta-model they assume a particular interpretation. As such, all
instantiations of a model are then implicitly assumed to abide by that interpre-
tation (e.g., all actors in the given model are assumed to be human things, all
goals are assumed to be hard goals). An example of a language doing so is the i*
specification as found in the Aachen wiki [10], which defines agents (the acting
entities) as having “a concrete physical manifestation”. This implicitly makes
it semantically incorrect to use abstractions (e.g., agents as they are commonly
understood) and furthermore, perhaps ontologically incorrect to use composite
agents – market segments – as the composition itself is not physically manifested.

It is more useful if a modeling language accommodates such conceptual dis-
tinctions explicitly, to the extent needed in relation to its expected and planned
use. That is, instead of relying on the underlying semantics to define every con-
cept they allow (or perhaps require), to use a notation that explicitly encodes
information about our interpretation – and do so by providing distinct notational
elements for all the important different conceptual distinctions. This can mean
for instance, having exclusive (visual) elements to represent such distinct con-
cepts by (e.g., the amount of ‘stick puppets’ in in ArchiMate actor type denoting
whether it is a single actor or a collection of them). This is important from a
cognitive point of view as it improves the quality of the notation by ensuring
there is no notational homonymy. These points (and more) were argued for by
e.g., Moody in his work on a general “physics of notation” [14]. Several modeling
languages have been analyzed to estimate their cognitive quality in terms of this
framework (e.g. i* [15], BPMN [7], UCM [6], and UML [13]). However, most of
these analyses are aimed at the semantics of the (visual) syntax, and forego a
more detailed analyses of the semantics of the individual elements of meaning
themselves. By this we mean that they analyzed the semantic quality of the
formalization of the syntax (i.e., which elements interoperate in what way), but
spent less attention to the question what the elements arranged by this syntax
actually means to the users of the language (e.g., what is this element called
‘agent’, what thing does it really represent). From a quality perspective, impor-
tant related issues are semiotic clarity (one-to-one correspondence between se-



mantic constructs and graphical symbols) and perceptual discriminability (sym-
bols should be clearly distinguishable) [14].

Thus, in this paper we will specifically look at the cognitive quality of a num-
ber of modeling languages and methods in terms of the semiotic clarity of their
semantic constructs. These constructs can be both visual (for visual notations)
and textual (for textual notations), but both require a proper correspondence
between semantic constructs and symbols used for them. To do so we will pro-
vide an initial (likely non-exhaustive) overview of different aspects of enterprises
that are explicitly modeled today, and show to what degree relevant conceptual
distinctions can be explicitly modeled in the languages and methods used for
them. The goal of this work is not to provide detailed individual analyses of
all the languages involved, but to explore whether there is a trend in modeling
languages to support enough distinctions or not, and provide advice on basis of
that for modeling language use and design in general.

2 Aspects of Enterprises and Associated Languages

Enterprises are large socio-technical systems encompassing many aspects (e.g.,
business processes, value exchanges, capabilities, IT artifacts, motivations, goals),
which themselves are often the domain of specialized (groups of) people. As these
models are produced by different people, often using different languages, inte-
gration is a vital step in order to have a coherent picture of the enterprise [11].
Ensuring that different conceptual distinctions are modeled explicitly is thus
especially important in this context, as much information can be lost in this in-
tegration step, leading to enterprise models that are no longer correct or complete
in regards to the semantics intended to be expressed (and possibly only done
so implicitly) in the models made of each of the distinct aspects. Traditionally
processes and goals received a lot of attention in terms of explicit models and
dedicated modeling languages and frameworks, while recently more and more
aspects are being considered equally as important to deal with. Other aspects
such as motivations and goals, value exchanges, deployment and decision mak-
ing now have dedicated, often formally specified, modeling languages available.
This increases the amount of languages (ideally) capable of explicitly supporting
conceptual distinctions important to the individual aspects that are in use, but
perhaps at the cost of fragmenting the modeling landscape itself. Table 1 gives
a brief overview of some current languages and the aspects they are, or can be
used for.

3 Conceptual Distinctions for Aspects & Languages

The different aspects that are focused on in enterprise modeling, typically have
a number of (not necessarily overlapping) specific conceptual distinctions, which
are important to be aware of. For example, a motivational model describing the
things to be achieved by an enterprise and the reasons for wanting to achieve



Table 1: A cross-section of aspects of modern enterprises and some modeling languages
used, or usable to represent them.

Aspect of an Enterprise Related languages

Architecture ArchiMate [24] (1.0, 2.0), ISO/DIS 19440, ARIS

(Business) Processes BPMN [17], (colored) Petri nets, IDEF3, EPC [1]

Design decision-making EA Anamnesis [19], NID [5], OMG DMN (proposed,
seemingly unfinished)

Deployment of IT artifacts ADeL [18]

Goals & Motivations i*, GRL, KAOS [2], TROPOS [8], AMORE [21], Archi-
Mate [24] 2.0’s motivational extension, OMG BMM [16]

Management of IT artifacts ITML [4]

Strategy & Capability Maps TBIM [3], OMG BMM [16], Capability Maps [22]

Value exchanges e3Value [9], REA-DSL [23], VDML (under development)

them is likely to require more detail (and thus fine-grained conceptual distinc-
tions) for what goals are than, say, a model describing the related process struc-
ture. Such distinctions can be for instance whether goals absolutely have to be
achieved, whether the ‘victory’ conditions for achieving it are known, whether
the goal itself is a physical thing to be attained or not, and so on. On the other
hand, a model describing the process undertaken to achieve a certain goal (e.g.,
bake a pizza) might require conceptual distinctions like whether the actors in-
volved are human entities or not, whether it is one or more actors responsible for
ensuring the goal’s satisfaction, and so on. Thus, not all conceptual distinctions
that are relevant to one aspect (and the modeling language used for them) will
be as relevant (and necessary to model explicitly) for other aspects. In order to
systematically talk about whether the selected modeling languages accommo-
date different conceptual distinctions we need both a set of common modeling
concepts and a set of distinctions to analyze. We base ourselves on an analysis
of modeling languages and methods commonly used in (enterprise) modeling as
reported on in [12].

Table 2: This table gives an overview of a number of relevant conceptual distinctions
for common modeling. For each of the concepts, we list relevant conceptual distinctions,
show what they are useful for, and what languages support modeling them explicitly,
might support it, or (where relevant) make a specific implicit interpretation.

Dimension Useful to . . . Supported by . . .

actor



human Distinguish between actors that
can be more fickle than pure ra-
tional agents.

BPMN through the explicit use of
a ‘Human Performer’ resource type,
VDML does contain a ‘Person’ sub-
type of Actor which is specified to be
human, but does not distinguish in
the visual notation between types of
Actors.

composed Distinguish whether an actual
entity acts or whether a group
of them does, which impacts re-
sponsibility judgments for ac-
tions

ArchiMate, TROPOS via ‘composite
Actor’, somewhat as well with dif-
ferentiation between ‘role’ and ‘posi-
tion’, e3Value somewhat through dif-
ferentiation between actor and mar-
ket segments, VDML distinguishes
between an ‘actor’ being a singular
participant, and modeling ‘collabora-
tion’ or ‘participant’ as potentially
multiples.

material Know whether an actor phys-
ically interacts with the world
(and can thus be affected by
it directly – think hardware vs.
software)

i* assumes that an agent is an actor
“with a concrete physical manifesta-
tion” (iStar Wiki)

intentional Know whether an actor is con-
sidered an explicit part of a sys-
tem, i.e., is expected to act or not
on certain things, in contrast to
actors from outside the systems
scope which may act but were
not regarded or thought of to do
so

Implicit in most languages, men-
tioned as such in TBIM, depending
on interpretation could be argued to
be explicit in OMG BMM with dif-
ferentiation between internal and ex-
ternal influencer.

specific Knowing whether an actor is a
specific thing (i.e., an instantia-
tion) or a general thing (i.e., a
role)

Supported by some (e.g., Archi-
Mate), through type/instantiation
dichotomy, explicit in TBIM by
the claim that an agent “represents
a concrete organization or person”
ArchiMate, implicit in e.g., e3Value
and RBAC by automatic use of roles
(types).

event

intentional Distinguish between events that
should, or will happen given a
set of circumstances, and events
that happen (seemingly) unpro-
voked.

Arguably explicitly supported by
BPMN through the use of ‘None’
type triggers for Start Events.



goal

composed Distinguish between complexity
level of goals, i.e., whether they
are an overarching strategy or di-
rectly needed goals.

TBIM explicitly models composite
goals as ‘business plan’ types, implicit
in some other languages focused on
strategy/tactics (e.g., OMG BMM).

material Distinguish between objects and
their representations, i.e., is the
goal to achieve an increment in
the integer on a bank account, or
to hold an n amount of currency.

necessary Distinguish between goals that
have to be attained and those
that should.

specific Distinguish between goals for
which the victory conditions are
known and not, i.e., hard vs. soft
goals.

Most goal modeling lan-
guages/methods/frameworks (e.g.,
i*, GRL, KAOS, AMORE) support
this explicitly.

process

composed Distinguish between black
(closed, singular) and white
(open, composed) boxes.

Arguable either way for BPMN with
the use of pools, which can function
as black boxes, however, those do not
allow for linking sequence flow to it,
and are thus self-contained.

intentional Know whether they are part of
an intended strategy or some-
thing that has to be dealt
with (i.e., negative environmen-
tal processes)

specific Know whether the structure is
(supposed to be) clear (deter-
ministic) or not (fuzzy).

resource

natural Know whether a resource re-
quires a ‘fabrication’ process.

Somewhat related, TBIM explicitly
models resource types as being either
animate or not.

human Know whether resources can act
on their own and produce issues,
e.g.., be unreliable, not always
generate the same outcomes

material Distinguish between objects
and their representations, i.e.,
whether a given resource a
collection of paper and ink blobs
or the information contained
within them.

Explicit in ITML through the use of
hardware/software dichotomy.



restriction

natural Distinguish between restrictions
we cannot do anything about
and those we can.

intentional Distinguish between restrictions
we stipulate from those that
arise holistically (whether good
or bad).

Some languages implicit, e.g., EA
Anamnesis, and BPMN through use
of ‘Potential Owner’.

necessary Distinguish restrictions that can
be broken from those that can-
not.

(supported by some GPML, e.g.,
ORM 2.0).

specific Distinguish restrictions for
which we know when they are
broken and not.

result

natural Know whether a result requires
some kind of ‘fabrication’ pro-
cess

material Distinguish between an object
and its representation, i.e.
whether the physical pizza or
the status update in the IS
saying a pizza was baked is the
result of a given step in the
pizza making process.

specific Know whether a result is (sup-
posed to be) clear (determinis-
tic) or not (fuzzy).

Arguably supported in BPMN
through the use of ‘None’ type End
Events.

4 Discussion

Around half of the conceptual distinctions we analyzed were explicitly supported
by at least one modeling language, with some cases being arguable either way.
Languages used for specific aspects do seem to explicitly accommodate some ba-
sic (and often widely accepted) necessary conceptual distinctions. For example,
the de facto used language for process modeling, BPMN, has explicit support
for differentiating between human and non-human actors, which can be im-
portant to know for critical steps in a process. Most modeling languages used
for motivations and goals also accommodate the distinction between goals with
well-specified victory conditions and those with vague or unknown conditions
by means of separate hard and soft-goal elements. These explicit distinctions in
the notation are likely correlated with the conceptual distinctions being widely
accepted as important and having become part of the basic way of thinking.
However, taken overall, there does not seem to be a consistent or systematic



pattern behind what language explicitly accommodates (or lacks) which concep-
tual distinctions.

As such, there are a number of conceptual distinctions for which we found no
explicit support by any modeling languages. For example, we found no support
for explicitly modeling goals and results as being material things. It also did
not seem possible to explicitly model goals as being a logical necessity in the
investigated languages. The distinction whether results were things that natu-
rally occurred or fabricated was also not supported. When it comes to processes
we found no support to model them explicitly as being intentional, and distin-
guishing between specific (i.e., well-defined) processes and processes more fuzzy
in their structure. Modeling resources as being humans was also not supported,
while this is likely not an unthinkable interpretation – effective management
of ‘human resources’ being important for large enterprises. Finally, we found
no explicit support for modeling restrictions as naturally occurring and specific
things. We will discuss some of these distinctions in more detail.

4.1 Some unaccommodated conceptual distinctions

Surprisingly, we found no explicit support for differentiating between goals with
varying levels of necessity and obligation. While many common methodologies
(e.g., the MoSCoW technique of dividing requirements into must, should could,
and would haves) call for such distinctions, many modeling languages conflate
them all into a single kind of goal. Arguably in certain aspects it would make
sense to make an implicit choice, as in e.g., process modeling it is necessary for
certain steps in a flow to be reached before the flow continues, which can be seen
as an analog to logically necessary goals. However, goal models in dedicated lan-
guages seem to not make this distinction, even though there is a strong focus on
differentiating between hard and soft-goals, which seem correlated with different
levels of necessity (e.g., one cannot as certainly rely on a soft-goal to be achieved
compared to a hard-goal, especially for mission critical goals).

Another seemingly unaccommodated distinction is the necessity of restric-
tions, that is, whether some restriction (e.g., a rule, principle, guideline) is an
alethic condition that cannot be broken or whether it is not and thus can be
broken. While in the context of enterprise modeling there is a strong differentia-
tion of terminology used for different kinds of normative restrictions that can be
considered breakable, or at least not strictly enforceable (e.g., principles, guide-
lines, best practice), these often seem to be used outside of modeling languages
in their own approaches – e.g., architecture principles [20]. It seems problem-
atic that many languages used for aspects of enterprises, and languages used to
describe the actual enterprise architecture like ArchiMate do not have explicit
notational support for these different kinds of restrictions. Many models that
are analyzed a posteriori (e.g., when they are integrated in other models, and
the original modelers are no longer involved or available) then become difficult
to interpret, as the notation of different kinds of restrictions can be ambiguous
and lead to situations where it is not clear whether a restriction can be relaxed
or not. Surprisingly the only language that seems to support this conceptual



distinction is ORM (in particular version 2), which supports the explicit model-
ing of restrictions as being either alethic or deontic conditions through its visual
notation.

Thus, it seems necessary to stimulate a move towards more explicit focus
on (formalization of) the semantics of the elements of meaning of modeling lan-
guages. The lack of coverage for some of the distinctions shown in Table 2 makes
it clear that more work on extending the specification of relevant languages with
the ability to explicitly distinguish between these different conceptual under-
standings. Given the existence of a large number of different dialects of model-
ing languages sometimes only differing slightly (e.g., i*, GRL, TROPOS for goal
modeling), it seems that supporting many different conceptual distinctions in a
single notation would be welcomed by many.

5 Conclusion and Future Work

We have discussed the importance of explicitly modeling conceptual distinc-
tions and analyzed a number of modeling languages to investigate what kind of
distinctions they support. We showed that, while some conceptual distinctions
are explicitly supported by relevant modeling languages, there are still a large
amount of potentially relevant distinctions that are not accommodated, or im-
plicitly interpreted in a specific way by modeling languages. We proposed that
research should be done regularly to keep up to date with conceptual distinctions
deemed relevant and important by modelers and stakeholders alike. Our future
work will involve investigations into which distinctions are deemed important.
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