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Abstract

Query formulation in the context of large conceptual schemata is known to be a hard problem. When
formulating ad-hoc queries users may become overwhelmed by the vast amount of information that
is stored in the information system; leading to a feeling of lost in conceptual space. In this article we
develop a strategy to cope with this problem. This strategy is based on ideas from the information retrieval
world. In particular the query by navigation mechanism and the stratified hypermedia architecture. The
stratified hypermedia architecture is used to describe the information contained in the information system
on multiple levels of abstraction.

When using our approach to the formulation of queries, a user will first formulate a number of simple
queries corresponding to linear paths through the information structure. The formulation of the linear
paths is the result of the explorative phase of query formulation. Once users have specified a number of
these linear paths, they may combine them to form more complex queries. This last process is referred
to as query by construction, and corresponds to the constructive phase of the query formulation process.

1 Introduction

Most present day organisations make use of some automated information system. This usually means that
a large body of vital corporate information is stored in these information systems. As a result an obvious,
yet crucial, function of information systems is the support of disclosure of this information. Without a set
of adequate information disclosure avenues an information system becomes worthless since there is no use
in storing information that will never be retrieved.

Adequate support for information disclosure, however, is far from a trivial problem. Most information
systems do not provide any support for the users in their quest for information. Furthermore, the conceptual
schemata of real-life applications tend to be quite large and complicated. As a result, the users may easily
become ‘lost in conceptual space’ and they can end up retrieving irrelevant (or even wrong) objects and
may miss out on relevant objects. Retrieving irrelevant objects leads to a low precision, missing relevant
objects has a negative impact on the recall ([SM83]).

3Part of this work has been supported by an Australian Research Council grant, entitled: “An expert system for improving complex
database design”
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The disclosure of information stored in an information system has some clear parallels to the disclosure
problems encountered in document retrieval systems. To draw this parallel in more detail, we quote the
information retrieval paradigm as introduced in e.g. [Rij75] and [SM83]. The paradigm starts with an
individual or company having an information need they wish to fulfill. This need is typically a vague
notion and needs to be made more concrete in terms of an information request (the query) in some (formal)
language. Formulation of this need leads to an information request q. The information request should
be as good as possible a description of the information need. The information request is then passed
on to an automated system, or a human intermediary, who will then try to fulfill the information request
using the information stored in the system. To this end, the information request is matched against the
characterisation of information objects which are available in the information base (also referred to as
information carriers or documents). This is illustrated in the information disclosure, or information retrieval
paradigm, presented in figure 1 which is taken from [BW92].

Information
Need

Information
Request

q
Information

Base
K

Character-
isation

X
Formulation Matching Indexing

Figure 1: The information retrieval paradigm

The information retrieval paradigm for document retrieval systems is, in our opinion, directly applicable
to traditional information systems. In the paradigm, the retrievable information is modelled as a set K
of information objects, which together constitute the information base (or population). In a document
retrieval system the information base will be a set of documents ([SM83], [Rij75]), while in the case of
an information system the information base will contain a set of facts conforming to a conceptual schema.
Each information object o ∈ K is characterised by a set of descriptors χ(o) that facilitates its disclosure.
The characterisation of information objects is carried out by a process referred to as indexing. In an
information system, the stored objects (the population or information base) can always be identified by a
set of (denotable) values; the identification of those objects. For example, an address may be identified as
a city name, street name, and house number. The characterisation of objects in an information system is
directly provided by the reference schemes of the object types.

The actual information disclosure is driven by a process of matching. In document retrieval applications this
matching process tends to be rather complex. Furthermore, the characterisation of documents is known to
be a hard problem ([Mar77], [Cra78], [SM83]), although newly developed approaches turn out to be quite
successful ([Sal89]). In information systems the matching process is less complex as the objects in the
information base have a more clear characterisation (the identification). In this case, the identification of
the objects (facts) is simply related to the query formulation q by some (formal) query language.

The remaining problem is then the query formulation process itself. An easy and intuitive way to formulate
queries is absolutely essential for adequate information disclosure. Quite often, the quest from users to
fulfill their information need can be aptly described by ([Bru93]):
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I don’t know what I’m looking for, but I’ll know when I find it.

In document retrieval systems this problem is attacked by using query by navigation ([GGP89], [Luc90],
[CD90], [ACG91], [BW92]) and relevance feedback mechanisms ([Rij89]). The query by navigation inter-
action mechanism between a searcher and the system is well-known from the Information Retrieval field,
and has proven to be useful. The above discussed parallel between information disclosure in the context
of information systems, as well as information retrieval systems, leads to the natural conclusion that these
mechanisms also apply to the query formulation problem for information systems.

In line with the above discussed information retrieval paradigm and the notion of relevance feedback, a
query formulation process (both for a document retrieval system, and an information system) can be said
to roughly consist of the following four phases:

1. The explorative phase. What information is there, how is it related, and what does it mean?

2. The constructive phase. Using the results of phase 1, the actual query is formulated.

3. The feedback phase. The result from the query formulated in phase 2 may not be completely satis-
factory. In this case, phases 1 and 2 need to be re-done and the result refined.

4. The presentation phase. In most cases, the result of a query needs to be incorporated into a report or
some other document. This means that the results must be grouped or aggregated in some form.

Depending on the user’s knowledge of the system, the importance of the respective phases may change.
For instance, a user who has a good working knowledge of the structure of the stored information may not
require an elaborate first phase and would like to proceed with the second phase as soon as possible.

One important step that has already led to an improvement of information disclosure in information sys-
tems, has been the introduction of query languages on a conceptual level. Examples of such conceptual
query languages are RIDL ([Mee82]), LISA-D ([HPW93], [PW95]), and FORML ([Hal95]). Thus far,
these languages are mainly used in the context of the ORM ([Win90], [HM94], [Hal95]) approach to in-
formation modelling. A key difference between ORM approaches and ER based approaches are the close
ties to natural language. In the design procedures for ORM models, one starts out by modelling a domain
in terms of a set of natural language sentences. These natural language sentences verbalise this domain in
terms used by the domain experts; i.e. the people that will be using the information system. Essentially,
these verbalisations provide the basic expressions for the conceptual query languages. Similar attempts for
ER models are usually hampered by the lack of rich verbalisations in such models.

By letting users formulate queries on a conceptual level, users are safeguarded from having to know the
exact mapping to underlying relational tables to be able to formulate queries in a non conceptual language
like SQL. This allows users to concentrate on the actual query formulation, during the constructive phase,
rather than on such mapping details. The next step on this path is to introduce ways to support users in
the formulation of queries in such conceptual query languages (CQL); more exploiting the rich semantics
provided by the conceptual schema of an application. In this paper, we show how the application of query
by navigation may lead to an elegant query formulation process. Query by navigation is particularly useful
for the explorative and feedback phases of the query formulation process. We also introduce a query by
construction mechanism allowing for the formulation of the final query using computer support.

The structure of the paper is as follows. In section 2 we describe a general architecture for hypermedia
systems used for query by navigation systems, and discuss how a conceptual schema and its population fit
in this architecture. A larger example will provide a preview of the capabilities of a query by navigation
mechanism. In section 3 and section 4 the formal definition of the query by navigation system, in relation
to a conceptual schema, is given. The migration between abstraction levels, and the underlying prerequi-
sites, are discussed in section 5. Finally, before concluding, section 6 discusses the query by construction
mechanism complementing the query by navigation mechanism with syntactically richer expressions.
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2 An Architecture for Information System Exploration

Stratified hypermedia is an architecture in which information is organised via several layers of abstraction,
allowing access to the information via each of these layers. Base layers contain the actual information,
while the other layers provide descriptions (abstractions) of this information with the purpose to simplify
access to those base layers, and to provide insight in specific characteristics of this information.

In this section we briefly explain this architecture and discuss an example of how this architecture can be
applied in the context of query formulation for information systems. The remainder of this article then
develops this idea in more exact and formal terms.

2.1 Stratified Hypermedia Architecture

Stratified hypermedia architecture, in its simplest form, is a two level hypermedia architecture as introduced
in e.g. [Luc90], [GGP89], [AAC+89], [ACG91], [BW92], [RWB93]. The two level architecture usually
features a descriptive layer (the hyperindex) indexing the lower layer (the hyperbase). The hyperbase
contains the actual information, whereas the hyperindex only provides an outline (characterisation) of
the stored information. A stratified hypermedia architecture supporting multiple layers of abstraction is
discussed in e.g. [SDBW91].

Users of a hypertext application based on the stratified hypermedia architecture may be compared to explor-
ers. When navigating within one layer of abstraction, users are completely free to follow any link between
pieces of information, thus allowing them to connect relevant information in their own (subjective) way.
By navigating within and between the layers, users slowly but surely increase their knowledge about rel-
evant parts of the information stored in the system at their own accord and preferred level of abstraction.
In doing so, at a proper level of abstraction, they become cognitively better equipped to descend to the
lower abstraction levels and select the desired pieces of information. The stratified hypermedia architec-
ture, and its accompanying query by navigation system, have proven to be useful in practical situations (see
e.g. [Pol93], [BBB91]). This creates the expectation that a similar query formulation strategy would also
work well in the context of traditional information systems. Although there is currently no implementation
available of the ideas presented here, there is considerable commercial interest. For example, the produc-
ers of the InfoModeler CASE-Tool ([Asy94]), are developing a query formulation tool which will already
incorporate some of the underlying ideas.

As an example of a hyperindex, consider figure 2. This example is taken from [BBB91], which describes
a prototype implementation of a query by navigation based retrieval system supporting that is still being
used by History of Art libraries, and is now sold as a commercial application. This is a simple example
hyperindex, only dealing with a breakdown of the index expression

proclamation of resurrection of Jesus by disciples

In reality, a hyperindex is formed by the union of a large number of such smaller lattices, which then
form a so-called lithoid. A sample navigation session is provided in figure 3. A user starts at the starting
node, which contains a list of all elementary terms from the hyperindex. The user can then select one
of these words as a first refinement. Once a more complicated index expression has been selected, e.g.
resurrection of Jesus, it becomes possible to select the more elementary expressions that are part of the
currently focussed expression. In the case of resurrection of Jesus this would be resurrection and Jesus. In
such a navigation session, the user basically traverses edges in the graph of the hyperindex as shown in
figure 2.

Each entry in the nodes displayed in figure 3 represents one way to continue the search through the hy-
perindex. A node thus corresponds to a moment of choice in the search process. The order in which the
alternatives are listed in the starting node, and nodes in general, can be based on multiple factors. An ex-
ample of such a factor is the user’s past search behaviour ([BHW96]). In this article we also briefly discuss
another factor; which is based on the conceptual relevance of object types, and other components, within a
conceptual schema.
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Figure 2: An example part of a hyperindex

In stratified hypermedia architecture, layers are related to each other via so-called characterisations. For in-
stance, chunks of information from the hyperbase may be characterised by keywords. In that case, similarly
to the given example, the hyperindex is organised around the concept of keyword. This characterisation
relation forms the basis for inter layer navigation. Typically, a user formulates an information request
by navigating through the hyperindex to an information descriptor aptly describing the user’s information
need. Then the user transfers to the hyperbase, focusing on the information objects matching this descrip-
tion. In terms of the example given above, the user navigates in a query by navigation session from the start
node to the node resurrection of Jesus. A transfer to the hyperbase would now lead to the presentation of a
set of documents regarding the resurrection of Jesus; or at least the documents that have a characterisation
that matches resurrection of Jesus. The reverse inter layer navigation (hyperbase to hyperindex) transfers
the user to the description of the current information object.

Transferring to the hyperindex after arriving at an interesting node in the hyperbase corresponds to a search
strategy where the user first searches an information object which is felt to be a typical example of to the
information need, and then asks for all similar information objects (query by example). This latter process
involves a transfer from the object in the hyperbase that represents the information need, to an object in
the hyperindex that characterises this hyperbase object. This transfer from hyperbase to hyperindex is
immediately followed by a transfer back to the hyperbase resulting in all objects in the hyperbase which
are relevant to the current characterisation of the hyperindex object.

Switching between layers can also be used as a feedback mechanism as used in information retrieval
([Rij86], [Rij90]). When, after navigating through the hyperindex, the user finds that the current focus
is possibly a proper description of the information need, they can test this by asking the system to present
(part of) the relevant objects in the hyperbase. This way the user will, rather than completely transferring
from the hyperindex to the hyperbase, get a first impression of what has been achieved so-far. If the user is
not satisfied, further refinements can be made based on the feedback provided by the system.
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Figure 3: Example navigation session

2.2 A Formalisation of Stratified Hypermedia Architecture

This brings us to the formal introduction of stratified hypermedia architecture as a network of layers that
are related by characterisation relations. A layer is introduced as a structure 〈F, N, G, V〉 where:

1. F is the set of (information) fragments, called the fragment base. Fragments are elementary parts of
the stored information which can (will) not be decomposed structurally into smaller components.

In the example given above, F would at least contain:

Jesus, resurrection, . . . , proclamation of resurrection, . . . ,
proclamation of resurrection of Jesus by disciples

2. N is the set of presentations (or nodes), referred to as the node base. Nodes are units of presenta-
tion and are used to present structural elements to the user. They are constructed from information
fragment references, and appear in some ordered fashion within this presentation. Formally, a pre-
sentation is a structure 〈F, ρ〉, where F is a set of information fragments, and ρ a partial order over
F .

In figure 3 three example nodes are shown.
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3. G is a structure 〈E, P〉, where E is a set of syntactic categories, and P a set of production rules. G is
referred to as the schema of the layer. The grammar G is used to structure the information in a layer.
Usually, this grammar is provided as a context-free grammar (SGML, ODA, HTML).

In our example, the grammar we used is the one for index expressions ([Cra78], [Far80], [Bru90]).

4. V is a set of views, called the mask. This is explained below.

Documents may be considered from different points of view, where each view features its own structure
of the document. For example, a document may be considered as a (long) piece of text, or may be viewed
as composed of sections, subsections, etc. It is the user who decides what view best suits the intended use
of the document. As a result, within a view, each abstract information element belongs to some syntactic
category. A set of composition rules describes the composition of syntactic categories in terms of other
syntactic categories. Elementary syntactic categories have associated an information fragment, i.e. an
elementary chunk of information. A view V , in its turn, is a structure 〈S, M,ω,π, L〉 where:

1. S ∈ E is the overall syntactic category for documents within this view (the start symbol of the
subgrammar).

In the example case, this is the start symbol of the index expression grammar.

2. M is the set of instantiations of syntactic categories that are available within this view. Such an
instantiation is called a molecule.

The nodes in the hyperindex graph shown in figure 2 are examples of molecules; not to be confused
with the presentation nodes as depicted in figure 3.

3. ω is a binary relation over M that describes how syntactic categories are composed from each other,
respecting the rules from G. ω is also referred to as the actual structure of the view.

In the example, ω corresponds to the set of edges in figure 2.

4. π : M → N maps each molecule from M to a presentation unit.

The node from the hyper index graph in figure 2 labelled resurrection is presented by the node with
the same label. In the presentation node, the direct environment of the resurrection node is displayed
as well, and the user is offered the possibilities to travel downwards or upwards in the hyper index.

5. L is a set of associative link schemata. Links are used to describe cross reference relations between
documents. A particular link scheme consists of a set of links of the same category. For example,
an isa-relation (link schema) might express the categorial classification of index terms, while a co-
relation is a symmetric relation, expressing that an index term corresponds to another index term.

In the example, the presentation node labelled resurrection of Jesus contains an associative link to a
node called resurrection of Christ.

Layers are related via characterisation relations. A characterisation relates layers via specific views within
these layers, and describes how molecules of one view are associated with molecules of the other view. So,
if χ is a characterisation of layer L1 via view V1 into view V2 of layer L2, then:

χ ⊆ V1.M × V2.M

Note that more characterisation relations may exist between two layers, for example, originating from
different views within these layers.

Two kinds of navigations between molecules are presented in figure 4, two parse trees of the hyperbase
layer are presented (B1, B2), and two parse trees of the hyperindex layer (I1, I2). The movement from
one molecule to another, using the underlying structure of a parse tree, is called structural navigation.
Selecting an associative link initiates traversal of such a link, called associative navigation, leads to a
change in context (parse tree). Associative links are used to feature cross-references between a fragment
in one molecule, and a fragment in another molecule. The beam up and beam down operations are used to
facilitate inter layer navigation.
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Figure 4: Operations of the hypermedia

2.3 Exploring an Information Structure

Now we have discussed the stratified hypermedia architecture both formally and informally, we can more
concretely discuss the ideas presented in this article. To this end an example query formulation process
is discussed that utilises the stratified hypermedia architecture. The remainder of this article is concerned
with a proper formalisation of these ideas.

In our view, the process of query formulation corresponds to a search through the information system to
gradually fulfill some information need. Using query by navigation, the arguments are constructed that are
to be integrated by the constructive phase of query formulation. During query by navigation, a (partial)
query is formulated by stepwise refining or enlarging the current formulation (the focus), until the searcher
is satisfied with the current formulation. In the example we make use of the conceptual schema of a
database for presidents of the United States of America as depicted in figure 5. This schema is provided
as an Object-Role Modelling schema ([NH89], [Hal95]). It describes a domain in terms of relationship
types (also referred to as fact types) and object types. Roles (the rectangular boxes) indicate how object
types participate in relationship types. Some examples of relationship types are: ... has vice president ...,
... has nr of ... in ..., and examples of object types are: Administration, Person. On some types a subtyping
relationship is present. President is subtype of Politician, which in its turn is a subtype of Person. Besides
these two classes of types we see constraints, like the arrow headed lines, the black dots, and the encircled
U. These will be explained in more detail when needed.

The first node shown to the user is depicted in figure 6, which simply lists all object types in the conceptual
schema. Let us presume the user is interested in presidents who are married to someone, and the number of
children that resulted from these marriages. In the starting node, the user may select ‘president’ as the first
refinement of the information need. This leads to the example node as presented in figure 7. The associated
node shows the direct environment of object type President. The set of possible refinements of the current
focus is built as follows. For each n-ary relationship type in which the current focus (president) plays a role,
we have n − 1 possible refinements since there are n − 1 possible ways to continue the path through this
relationship type. The associative links are now derived from the subtyping hierarchy in the conceptual
schema. In our example ORM schema these are the supertypes of the object type President, being Politician

and Person.

Let us presume the searcher selects the president who is involved in a marriage as the next focus. This action
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Figure 5: The structure of the presidential database

leads to the node depicted in figure 8. This node shows a second class of associative links. Besides
associative links resulting from subtyping, we also distinguish associative links to the reversed formulation
of the current focus, i.c. the marriage of a president. When navigating through the hyperindex, refinements to
the current focus will take place on the tail of the current focus. By reversing the current focus, refinements
can be made on the front as well.

The user decides to select the refinement with as spouse the person, leading to figure 9. The user considers
this, for the moment, to be a proper description of the information need. To get an impression of the query
result so far, the user selects the beam down option. This results in the node depicted in figure 10. This
node is neither part of the hyperbase, nor is it part of the hyperindex. It is an ad-hoc node representing the
result of the focus of figure 9 interpreted as a query on the underlying database. The user can now select
an instance for further navigation, which will then indeed take place in the hyperbase. Let us presume
the user selects the marriage between president Washington and M.D. Custis as starting point for further
refinement.

This leads to the node shown in figure 11. This node shows as refinements all information known about
M.D. Custis. Since the database only focuses on presidents, there is no other information known about
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Figure 6: The starting node of the hyperindex

M.D. Custis other than that she is married to president Washington. The only associative link for this node
leads to the objectification of the marriage instance. In the original ORM schema of figure 5, the object
type Marriage is modelled as a so-called compositely identified object type. This follows from the constraint
pattern and in particular from the inter-relationship uniqueness constraint, depicted as an encircled U. It
means that a marriage is identified as a combination of a president and a person. This allows us to treat a
combination of a president (Washington) and a person (Custis) as an instance of the object type Marriage.

The user now realises that s/he wanted to know more about Washington’s marriage, remembering the
initial interest in the number of children of presidential marriages. Therefore, the user now selects the
objectification of the marriage as the next point in the navigation. The resulting node, shown in figure 12,
shows all information known about this marriage. Since the user was interested in the number of children
born in presidential marriages, the user selects the resulted in children refinement. This leads to the node
depicted in figure 13. The user is now satisfied with the description of the information need in that the
instances (marriage and number of children) are good examples of the desired kind of information.

The user could now select the beam up operation to end up at the more general description of the current
focus: the marriage that resulted in children. The user can then continue with a beam down to end up with
all marriages and the resulting number of children. This latter process of:

1. a beam up of an information object in the hyperbase to a more general description in the hyperindex,

2. followed by a beam down back to the hyperbase that results in all objects with a similar characteri-
sation as the original information object

is an example of query by example. Query by example ([Zlo77]) allows users to specify an example of the
approximate query they wish to see answered. The system will then try to induce other similar results from
this example.

3 The Hyperindex Layer
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... has an election result
... has voters in an election
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beam down

politician
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... has person name

Figure 7: The quest for a president who is married with a politician

To formally define the stratified hypermedia that can be associated to a conceptual schema of an Object-
Role Modelling technique, we first need some formal definition of what an ORM conceptual schema is.
The formalisation used here is a simplified version of the formalisation of ORM as provided in [HPW93].

3.1 Generalised ORM Schemas

A conceptual schema is build around a set of object types O and fact types (also called relationship types):
F . Each fact type f consists of a set of roles from P. The fact types in F should form a partition of the
roles in P . Due to this partition, the following function for roles can be defined:

Fact(r) = f ⇐⇒ r ∈ f

All roles have a base, the object type playing the role. This base is provided by the function Base : P→O.

The president who is involved in a marriage

president
marriage
... with as spouse the person
... that resulted in children
the marriage of a president

beam down

Figure 8: Focus on marriage
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the president who is involved in a marriage
person
... has an election result
... has voters in an election
... had the nr of voters
... is president of an administration

... is the spouse of a president

... is involved as spouse in a marriage

... is spouse in a marriage

... is vice president of an administration

The president who is involved in a marriage with as spouse the person who

beam down

the person who is spouse in the marriage of the president
the president who is involved in a marriage with as spouse the president
the president who is involved in a marriage with as spouse the politician
... has person name

Figure 9: Preliminary result in the hyperindex

The president who is involved in a marriage with as spouse the person
Results of:

the president who is involved in a marriage with as spouse the person
president ’Washington G.’ is involved in a marriage with as spouse ’Custis M.D.’
president ’Madison J.’ is involved in a marriage with as spouse ’Todd D.D.P.’
president ’Polk J.K.’ is involved in a marriage with as spouse ’Childress S.’

Figure 10: Preliminary result of the query

All Object-Role Modelling variations allow for the definition of type hierarchies. Different ways to in-
troduce such hierarchies exist, e.g. specialisation and generalisation (polymorphism) ([HW93], [HPW93],
[PW94], [HP95]). For our purposes we can simply presume the existence of a general notion of a type
hierarchy which could involve different flavours of inheritance. The relation IdfBy ⊆ O × O is used to
capture this general notion. The intuition is that if x IdfBy y, object type x is identified through object type
y; which means that x inherits properties from y. It should be clear that this general relation can be used
to capture both generalisation (polymorphy) and specialisation relations. The IdfBy relation is presumed to
be transitive. Furthermore, we use x IdfBy y as an abbreviation for x IdfBy y ∨ x = y, and x ∼ y as an
abbreviation for x IdfBy y ∨ y IdfBy x. The ∼ relationship is the so-called type relatedness relationship.
Two types are type related if their populations may share instances.

As an example, consider the ORM schema depicted in figure 14. In this schema we have:

O = {A, B, C, D} F = {f, g}

P = {p, q, r, s} C IdfByB

f = {p, q} g = {r, s}

Base(p) = A Base(q) = B

Base(r) = C Base(s) = D
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person ’Custis M.D.’
president ’Washington G.’

... who is spouse in the marriage of president ’Washington G.’

beam up

the marriage of ’Washington G’ and ’Custis M.D.’

President ’Washington G.’ is involved in a marriage with as spouse ’Custis M.D.’

Figure 11: First hyperbase node

president ’Washington G.’
person ’Custis M.D.’

The marriage of ’Washington G.’ and ’Custis M.D.’

... resulted in 0 children

beam up

Figure 12: Information about the marriage between Washington and Custis

A further simplification made to the formalisation of ORM models, besides the unified treatment of spe-
cialisation and polymorphism, is the treatment of objectification. In ORM modelling (and ER for that
matter), one can choose to explicitly objectify fact types. For example, the schema fragment depicted in
the left hand side of figure 15 is equivalent to the fragment depicted in the right hand side. For instance, in
the presidential database example the object type Marriage could have been modelled conform the left hand
side. In the query by navigation mechanism for ORM schemas presented in this paper, objectifications are
treated as if they are flattened, i.e. as shown in the right hand side of figure 15.

Using this brief formal description of ORM schemas, the stratified hypermedia architecture for ORM mod-
els in general (without limiting ourselves to one dialect only) can be build. It should be noted that the
formal description equally applies to ER models, so the results of this paper can be translated to ER models

beam up

The marriage of ’Washington G.’ and ’Custis M.D.’
resulted in 0 children

the marriage of ’Washington G.’ and ’Custis M.D.’
0 children

... ... ’Madison J. and ’Todd D.D.P.’
... resulted from the marriage of

... ... ’Jackson A.’ and ’Robards R.D.’

... ... ’Polk J.K. and ’Childress S.’

Figure 13: Resulting node
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Figure 14: Example ORM Schema
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Figure 15: Objectification as an abbreviation

as well. In [BBMP95] the close relationship between ER models and ORM models is discussed in more
detail.

3.2 Linear Path Expressions

The backbone of the nodes in the hyperindex and hyperbase is formed by the so-called linear path ex-
pressions ([HPW93]). These expressions are build from object types, roles, and instances. All these com-
ponents can be interpreted as binary relations, and as such concatenated to each other. An object type o
occurring in a path expression corresponds to a binary relationship with tuples 〈x, x〉 for every instance x
of type o. A role r corresponds to a binary relationship connecting Base(r) to Fact(r), with tuples 〈x, y〉
where x is the r part of fact instance y. To traverse fact types in a path expression, it must be possible to
reverse the order of the Base(r) and Fact(r) part of a role. Therefore, r← represents the reversed binary
relation associated to role r.

When displaying linear path expressions in the nodes of the query by navigation mechanism, the linear
path expressions need to be verbalised. These verbalisations can be derived from the names given to the
object types and roles from the conceptual schema. In this article we simply presume the existence of a
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function ρ verbalising these linear path expressions. For a more detailed discussion on the verbalisation of
linear path expressions refer to [Pro94], and [HPW97].

3.3 The Descriptive View Grammar

Formally, a hyperindex is introduced as a structure L1 , 〈F1, N1, G1, V1〉 (see also [Pro94], [HPW94]).
The fragment base (F1) of the hyperindex simply contains the elements for verbalisations of the linear path
expressions. Therefore we should have:

F1 ⊆ Names+

Some examples from the fragment base of the presidential schema example are:

President, Marriage, involved in, Votes, is vice president of

The following step in defining the hyperindex is the introduction of its schema:

G1 , 〈E1, P1〉

In our approach, we navigate through the hyperindex by refinements and enlargements of a linear path
expression corresponding to a molecule in the hyperindex. An alternative approach would be to define a
grammar for the verbalisation of these path expressions, and navigate through the verbalisations rather than
the underlying linear path expression.

The context-free production rules for the hyperindex (P1), define the way in which linear path expressions
can be extended. The grammar G1 contains for each object type x a corresponding nonterminal (syntactic
category) 〈Px〉. Instantiations of syntactic category 〈Px〉 describe simple properties of (instances of) object
type x, i.e., properties that can be derived via a linear path expression starting in object type x. For any
o ∈ O we have the following rules:

〈S〉 → 〈Px〉

〈Px〉 → x

The identification hierarchy leads to the following rules. If x IdfBy y, then:

〈Px〉 → 〈Py〉

which means that properties about y may be used in expressions about x; but not vice versa. For roles r
and q such that r 6= q and Fact(r) = {r, q} we have:

〈

PBase(q)

〉

→
〈

PBase(r)

〉

◦ r ◦ Fact(r) ◦ q← ◦Base(q)

For the hyperindex we have the following syntactic categories: E1 ,
{

〈Px〉
∣

∣ x ∈ O
}

∪{〈S〉}. Note that
the above syntax describes meta-rules, which are concretised by substituting an actual object type for meta-
nonterminal x and roles q, r. So, basically this grammar is a two level grammar ([WMP+76]). For the
example ORM schema depicted in figure 14 we have:

〈S〉 → 〈PA〉 〈S〉 → 〈PB〉 〈S〉 → 〈PC〉

〈S〉 → 〈PD〉 〈PA〉 → A 〈PB〉 → B

〈PC〉 → C 〈PD〉 → D 〈PC〉 → 〈PB〉

〈PA〉 → 〈PB〉 ◦ q ◦ f ◦ p← ◦Base(A)

〈PB〉 → 〈PA〉 ◦ p ◦ f ◦ q← ◦Base(B)

〈PC〉 → 〈PD〉 ◦ r ◦ g ◦ s← ◦Base(C)

〈PD〉 → 〈PC〉 ◦ s ◦ g ◦ r← ◦Base(D)
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3.4 Molecules in the Index View

In the current approach, the hyperindex for a conceptual schema will contain only a single view. A view is
formally introduced as a structure:

V1 , 〈S1,ω1, M1,π1, L1〉

The starting point of this view is S1 ∈ E1, which is 〈S〉. The molecules M1 are formed by the set of linear
path expressions augmented with the empty path expression ε. Some path expressions can be proven to be
structurally empty, i.e. in every population they yield an empty result. As these path expressions are not
meaningful in this context, they are omitted from M1.

A o p o f o q     o B B o q o f o p     o A C o q o f o p     o A C o r o g o s     o D D o s o g o r     o C

A B C D

Start

Figure 16: Example hyperindex

The actual structure ω1 is a subset of M1 ×M1. Let x be an object type, and P be a fragment of a path
expression, then this set is identified by the following kinds of structural links:

1. a link from the empty path expression ε to any molecule x.

2. a link from a molecule P x to a molecule P x ◦ r ◦ Fact(r) ◦ q← ◦Base(q), if r 6= q, Fact(r) = {r, q}
and x IdfBy Base(r).

where P is any linear path expression, and q, r are roles and x is an object type. For the example ORM
schema in figure 14 this would lead to the (partial) hyperindex as shown in figure 16.

In our running example, as each president is also a politician, associative links are available connecting
president with politician in linear path expressions. In order to avoid chaotic structures, these links are only
included when such an object type occurs at the end of a linear path expression. So we add an associative
link from the president who has as spouse a person to the president who has as spouse a president in figure 9.
The front part of path expressions is manipulated only indirectly when navigating through the hyperindex
to master the complexity of nodes in this view. To be able to explicitly manipulate the front of path
expressions, path reversal is offered. Therefore, we add a link from the president who has as spouse a person

to the person who is the spouse of a president in figure 9. We introduce the associative links (L1) of the
hyperindex to cater for the relations in the identification hierarchy, as well as the reversal of the current
focus. Let x, y be object types, then we have the following kinds of associative links:

1. a link from a molecule of the form P x to a molecule P y if x ∼ y capturing the identification
hierarchy.

2. a link from molecule P to molecule Rev(P ) if P 6= Rev(P ) catering for the reversal of path expres-
sions.
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The reversal of a path expressions by Rev is recursively defined as:

Rev(P ◦ p ◦ f ◦ q← ◦x) , x ◦ q ◦ f ◦ p← ◦Rev(P )

Rev(x) , x

An example of such a reversal is:

Rev(x ◦ p ◦ f ◦ q← ◦ y) = y ◦ q ◦ f ◦ p← ◦x

In figure 17 we have added some associative links (dotted lines) to the example hyperindex from figure 16.

A o p o f o q     o B B o q o f o p     o A C o q o f o p     o A C o r o g o s     o D D o s o g o r     o C

A B C D

Start

A o p o f o q     o C D o s o g o r     o B

Figure 17: Example hyperindex with associative links

3.5 Presentation of molecules

Molecules are presented by nodes specified by π1. As stated before, a molecule will be presented by a
molecule containing the direct environment of the molecule. The environment of a node is depicted in
figure 18. A node, presenting molecule M , is thus made up of:

1. a verbalisation of the molecule itself, identifying the current spot (the focus) in the hyperindex.

2. a verbalisation of each immediate ancestor, showing how to decompose the focus into its compo-
nents,

3. a verbalisation of each immediate descendant, which suggests how to extend the current focus.

4. a verbalisation of each associated molecule, calling the attention to related alternatives.

The presentation of a molecule is formally identified as:

π1(M) , 〈ρ(M), ρ(4(M)), ρ(5(M)), ρ(�(M))〉

where the direct environment of M is captured by:

4(M) ,
{

N
∣

∣ 〈N, M〉 ∈ ω1

}

5(M) ,
{

N
∣

∣ 〈M, N〉 ∈ ω1

}

�(M) ,
{

A
∣

∣ 〈M, A〉 ∈ L1

}
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Figure 18: The environment of a molecule

We presume that the verbalisation function ρ is extended to sets of path expressions in the natural way. The
general format of a node is displayed in figure 19.

The order in which the elements of the above sets are actually presented in a node can be based on a
variety of factors. It can for example be based on the previous search behaviour of a user ([BHW96]). In
the context of conceptual schemas, it also makes sense to base this order on conceptual relevance. When
looking at a conceptual schema one can distinguish object types that are conceptually more relevant than
others. This relevance can be captured as some numerical value expressing the conceptual relevance of
some schema component. For instance, the object type President has, intuitively, a higher relevance than
Hobby for the modelled domain. In, e.g. [CH94] and [CH93], a procedure is described to determine the
most relevant object types in a given conceptual schema. Entries in a node could now be ordered based on
the conceptual relevance of the object types occurring in an entry.

Which ordering factors should actually be taken into consideration can only be determined after extensive
empirical testing. Currently no implementation is available to provide such a testing environment. In the
query tool developed by Asymetrix ([Asy94]) the initial factor for ordering will be conceptual relevance.

All that remains to be done with respect to the presentation of the molecules, is a proper definition of ρ(P )
where P is a path expression. This can be done by a set of derivation rules, with an associated preference
(using penalty points). As stated before, for a more detailed discussion of such a set of verbalisation rules,
refer to [Pro94] or [HPW97].

4 The Hyperbase Layer

In this section we describe the organisation of the hyperbase layer for a conventional information system.
This layer is internally organised according to the associated conceptual schema, and is instantiated in
accordance with the population of that schema. The stratified hypermedia architecture contains a single
view on the population of the associated conceptual schema, the so-called Base View. This view describes
the complete information base in the format of instantiated linear path expressions. The translation of
instantiations into a hyperbase is also carried out bottom-up, the fragment base is defined first, followed
by the node base, the schema and the views respectively. As the hyperbase layer is quite similar to the
hyperindex layer, we will not provide any additional examples.
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(D1)ρ
- Properties -

Figure 19: The presentation of a molecule

4.1 Fragment Base

The fragment base (F0) of the hyperindex is formed from the names used in the verbalisations of the
path expressions as is the case for the hyperindex, extended with the denotations of the instances (see e.g.
figure 11).

4.2 The Base View Grammar

The grammar rules for the hyperbase (G0) are formed in the same way as for the hyperindex except for one
rule. For any o ∈ O and instance i of o we have:

〈Px〉 → x ◦ i

rather than:
〈Px〉 → x

For the hyperbase we therefore have the same set of syntactic categories: E0 ,
{

〈Px〉
∣

∣ x ∈ O
}

∪{〈S〉}.
Similarly to the hyperindex, the starting symbol S0 is again 〈S〉. The set of molecules M0 of the hyperbase
corresponds to the path expressions that can be build from the grammar rules in G0, and which are not
empty.

Let x be an object type, let i, j and k be instances, and let P be a fragment of a path expression, then the
structure ω0 of the hyperbase is provided as:

1. a link from the empty path expression ε to any molecule x ◦ i.

2. a link from a molecule P x ◦ i to a molecule P x ◦ i ◦ r ◦ Fact(r) ◦ j ◦ q← ◦Base(q) ◦ k if r 6= q,
Fact(r) = {r, q} and x IdfBy Base(r).

Note by requiring that the molecules in M0 correspond to path expressions which do not have an empty
result, the instances i, j and k are implicitly required to be associated via the used relationship type Fact(r).
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The associative links (L0) for the hyperbase are quite similar to the links in the hyperbase. Let x, y be
object types and i an instance, then we have the following kinds of associative links:

1. a link from a molecule of the form P x ◦ i to a molecule P y ◦ i if x ∼ y.

2. a link from molecule P to molecule Rev(P ) if P 6= Rev(P ) catering for the reversal of path expres-
sions.

4.3 Presentation of molecules

The presentation of molecules from the hyperbase does not differ from the presentation of molecules from
the hyperindex. The verbalisation function ρ should also be able to handle instances in linear path expres-
sions.

5 Relating Hyperbase and Hyperindex

In this section, the hyperbase and hyperindex are related using the beam up and beam down operations.
We do this in a top down fashion. First we discuss how hyperbase and hyperindex can be compared to
each other presuming some characterisation for the molecules in both layers is provided. This is followed
by a discussion of three possible ways of characterising molecules, leading to strong, hybrid, and weak
characterisations.

5.1 Inter Layer Navigation

In general, interlayer navigation is a way to operationalise the characterisations of molecules in the (differ-
ing) involved layers. In section 2 the characterisation χ of layer L1 via view V1 into view V2 of layer L2

has been introduced as:
χ ⊆ V1.M × V2.M

In the remainder of this section this characterisation function is defined in more detail.

For convenience, we assume that each view within any layer is identified by a unique number. The char-
acterisation of view v in terms of view w is denoted as χ

v→w . We number the standard view within the
hyperbase layer as view number 0, and the standard view on the hyperindex layer as view number 1. Using
characterisations we are able to relate molecules to each other to identify the relevance from one molecule
to another. Several ways to determine the similarity between characterisations exist ([Rij75]). A sim-
ple and well-known method to compute similarity is the following formula, also well-known as Jaccard’s
coefficient:

Sim(C1, C2) ,
|C1 ∩C2|

|C1 ∪C2|

This formula is also useful in the context of multisets. In this case the similarity formula can also be written
as:

Sim(C1, C2) ,
∑

x

min(Freq(x, C1), Freq(x, C2))

Freq(x, C1) + Freq(x, C2)

where Freq(x, M) returns the frequency of element x in multiset M . Multisets are sometimes used to rep-
resent the result of queries (SQL, LISA-D). Another advantage is that multisets allow for a more adequate
characterisation, as they take frequencies into account.

Inter layer navigation may now be defined from the characterisation relations by using the Sim func-
tion. The beam operator Beamn→m : Mn →(Mm →[0, 1]) associates the molecules from view n with
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the molecules from view m in terms of the characterisation function χ
n→m in terms of the relevance as

follows:

Beamn→m(x) , λy∈Mm
.Sim(χn→m(x), χm→m(y))

By taking n = m intra layer beaming results, and by taking n 6= m inter layer beaming results. Beaming
from a lower numbered view to a higher number view is called beam up, the opposite direction is known
as beam down. Since this article only considers two levels in the stratified hypermedia architecture the n
and m are limited to 0 for the hyperbase, and 1 for the hyperindex.

5.2 Characterisations

As stated before, for the actual characterisation functions we distinguish between three different flavours
which are introduced in the remainder of this section. The first kind, strong characterisation, uses de-
instantiation of path expressions to obtain characterisations. The second kind uses the presentation, the
nodes, as a basis for the characterisation of molecules, leading to weak characterisations. The third class
of beam operations forms a hybrid between the first two classes. This flavour bases itself on the components
of the path expressions representing the molecules, leading to the hybrid characterisation.

Which characterisation works best in practice needs to be established by testing. However, it might turn out
that users would like to have explicit control on each of these characterisation mechanisms and combine
the similarity measures between two molecules using weights.

5.2.1 Strong Characterisation

The strong characterisation of a molecule (instantiated path expression) from the hyperbase in terms of
molecules (path expressions) from the hyperindex consists of all queries that (1) are structurally compatible
with the molecule to be characterised, and (2) from which this molecule may result in the query result. The
characterisation is effectively obtained by the replacement of all typed instances by all types which are
associated to these instances.

Let x be an object type, i an instance, p a role, and P , Q linear path expressions, then the strong character-
isation for the hyperbase is recursively defined as:

χs
0→1(x ◦ i) ,

{[

y↑1
∣

∣ x ∼ y
]}

χs
0→1(p) ,

{[

p
]}

χs
0→1(p

←) ,
{[

p←
]}

χs
0→1(P ◦Q) ,

{[

A ◦B↑n×m
∣

∣ A ∈n χs
0→1(P ) ∧ B ∈m χs

0→1(Q) ∧ InPop(P ◦Q, A ◦B)
]}

where InPop is defined as:
InPop(A, B) , µ[[A]] (Pop) ⊆ µ[[B]] (Pop)

This limits the A ◦B combinations to those that define a query that is a superset of the original query P ◦Q.
The expression P ◦Q contains instances whereas A ◦B contains none. This means that P ◦Q is (should
be) more limiting than A ◦B. Finally, expression x↑n refers to x with frequency n, whereas x ∈n M is
used to denote that x occurs in multiset M with frequency n.

Please note again that since we limit ourselves to only two layers (hyperbase and hyperindex), the charac-
terisation is only provided for navigation between these two layers.

For the hyperindex, we have the characterisation:

χs
1→1(x ◦ i) ,

{[

y↑1
∣

∣ x ∼ y
]}
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χs
1→1(p) ,

{[

p
]}

χs
1→1(p

←) ,
{[

p←
]}

χs
1→1(P ◦Q) ,

{[

A ◦B↑n×m
∣

∣ A ∈n χs
1→1(P ) ∧ B ∈m χs

1→1(Q) ∧ InPop(P ◦Q, A ◦B)
]}

As an example, the path expression B ◦ i ◦ p ◦ f ◦ j ◦ q← ◦C ◦ k from the hyperbase of the schema in
figure 20 yields the following characterisation: {[A ◦ p ◦ f ◦ q← ◦C, B ◦ p ◦ f ◦ q← ◦C]}. This set is also
exactly the characterisation of the path expression A ◦ p ◦ f ◦ q← ◦C from the hyperindex that can be as-
sociated to schema 20.

A
q

f

B

C

sr

p

D

g

Figure 20: Example characterisations

A possible way to enhance this flavour of characterisation, is to add a conceptual relevance value to each
of the elements contained in a characterisation. For a given expression in a characterisation, the concep-
tual relevance can be defined as the average conceptual relevance of all types and roles occurring in this
expression.

5.2.2 Hybrid Characterisation

The hybrid characterisation of a molecule describes an instantiated path expression in terms of the fre-
quencies of all roles, reverse roles, and object types in this expression. It is similar to the weighted vector
model for conventional documents. A difference however is that type related object types are also taken
into account in the characterisation. For the hyperbase we therefore have:

χh
0→1(x ◦ i) ,

{[

y↑1
∣

∣ x ∼ y
]}

χh
0→1(p) ,

{[

p
]}

χh
0→1(p

←) ,
{[

p←
]}

χh
0→1(P ◦Q) , χh

0→1(P )∪χh
0→1(Q)

For the hyperindex this leads to:

χh
1→1(x ◦ i) ,

{[

y↑1
∣

∣ x ∼ y
]}

χh
1→1(p) ,

{[

p
]}

χh
1→1(p

←) ,
{[

p←
]}

χh
1→1(P ◦Q) , χh

1→1(P )∪χh
1→1(Q)

For the example path expression from the hyperbase (B ◦ i ◦ p ◦ f ◦ j ◦ q← ◦C), this leads to the fol-
lowing result: {[A, B, p, f, q←, C]}. The hybrid characterisation of the (hyperindex) path expression:
A ◦ p ◦ f ◦ q← ◦C is also: {[A, B, p, f, q←, C]}.

This hybrid characterisation flavour could also be enhanced by using conceptual relevance factors for the
components.
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5.2.3 Weak Characterisation

Both strong and hybrid characterisation are based on the structure of instantiated path expressions. In-
stantiated path expressions are abstract objects, that are concretised by their representation to the user. In
the stratified hypermedia architecture, this representation is captured by the presentation function π. This
provides the opportunity to make a characterisation of instantiated path expressions based on their pre-
sentation. Presentations of instantiated path expressions are constructed from verbalisations of structural
elements. These names are exploited, and monitored (with their frequency) in the weak characterisation:

χw
1→1(M) ,

{[

w↑n
∣

∣ w ∈ Names ∧ w OccursInn ρ(M)
]}

where x OccursInn y is a predicate expressing the occurrence frequency (n) of a string x in a string y.

As an example of characterisations based on the presentation of molecules, consider:

χw
1→1(”president is involved in marriage with politician”)

=
{[

is, involved, in, marriage, politician, president, with
]}

χw
1→1(”president was born in year”)

=
{[

born, was, in, president, year
]}

χw
0→1(”president ’J.F. Kennedy’ was born in year 1917, and died at age 46”)

=
{[

age, at, born, died, was, at, and, in, president, year
]}

where ”president involved in marriage with politician” denotes the path expression (molecule) with verbalisa-
tion president involved in marriage with politician. For the example, we have the following relevance:

Sim(χw
1→1(”president was born in year”),

χw
0→1(”president ’J.F. Kennedy’ was born in year 1917, and died at age 46”))

=

∣

∣{[born, was, in, president, year]}
∣

∣

∣

∣

∣

∣

∣

{[

age, at, born, born, died, was, was, at,

and, in, in, president, president, year, year

]}∣

∣

∣

∣

∣

= 5
15 = 1/3 ≈ 0.33

A possible refinement for the weak characterisation of molecules would be the introduction of stop and
stemming lists, yielding a more refined base for characterisation.

For weak characterisations, conceptual relevance makes less sense as it is a presentation based characteri-
sation rather than a contents based one.

6 Query By Construction

The queries resulting from the explorative phase, supported by the query by navigation mechanism, are
rather simple in that they always correspond to linear path expressions. This means that the resulting
queries will never contain operations like union, intersection, difference, etc. Therefore we propose to
integrate the query by navigation interface with a LISA-D structure editor.

When such a structure editor for queries is added the linear path expressions resulting from query by
navigation can be combined into more complex ones, utilising the expressive power of LISA-D to its
fullest. For a complete discussion of all possible operations in LISA-D please refer to [HPW93], [PW95]
and [HPW97]. An example session of such an editor is depicted in figure 21. The depicted query is a
formulation in LISA-D of the request:
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List the parties which have a member who was a president, was born in Oregon, has model
railroads as a hobby, and was never vice president.

The process of building a query by combining linear path expressions in such a structure editor, is referred
to as query by construction. In this example we can see four linear path expressions:

party which has as president,
president who was born in the state,
president who has the hobby,
president who is the vice president of an administration

To create a more readable verbalisation, the President object type has been removed from the last three linear
paths. This is merely a verbalisation issue though. Besides these four linear paths, this query contains the
two operations: AND ALSO and BUT NOT, and two constants: Oregon, Model railroads. The two operations
correspond to multi-set intersection and multi-set difference respectively. It is quite possible to develop a
direct manupulation interface ([Sch83]) which allows users to manipulate these query components, while
the system provides guidance based on the grammar of LISA-D. For other examples of graphical query
interfaces, refer to e.g. [ADD+92], [Ros94].

...
_ AND ALSO _
_ OR ELSE _
_ BUT NOT _
_ _
INSTANCE

......

...

......

...

LISA-D

Identifications

...

......
hobby: _
marriage: _._
president: _
politician: _
state: _
......
...

AND ALSO

BUT NOT

Help

Query by Construction

ExitEvaluate

party which has as member the president

who was born in the state

who has the hobby

who is the vice president of an administration

Oregon

Model railroads

Figure 21: Query by construction

The presentation of query results can be fully integrated with the query by navigation interface. A query
result can be used as a starting point for a navigation session through the hyperbase. When evaluating a
LISA-D query a (multi) set of binary tuples results. To this result the following set of molecules in the
hyperbase can be associated:

Result(Q) ,
{

A
∣

∣ InPop(A, D[[Q]])
}

where D[[Q]] denotes the path expression associated to LISA-D query Q. These results can then be pre-
sented by means of a (virtual) molecule as presented in figure 22, from which instances can be selected for
a further exploration of the hyperbase.

For a formal treatment of LISA-D, refer to [HPW93] or [HPW97]. The expressiveness of the LISA-D
query language is high. As an example (taken from [HPW97]), consider the use of recursive macros in the

24



Start

Result of QBC query

state ’Washington’
state ’Oregon’

Figure 22: The result of a query

may lead to

is a direct win

Position

Figure 23: Schema of a simple game

context of a conceptual schema for a 2-person game as illustrated in figure 23. In this domain the fact type
may lead to describes how positions can be reached from one another. The unary fact type is a direct win

gives all winning positions for the first player. The question now is to yield all positions from which the
first player can win ([Cha88]). This is captured by the following macro:

Winning Positions IS is direct win UNION may lead to Position ALL IN Position may lead to Winning Positions

The above query is an example of a query that cannot be expressed as a so-called stratified query (see
figure 24, taken from [Cha88]). Stratified queries can express all the first order queries and negation is
allowed between the so-called strata. It has been shown however that stratified queries do not express all
fixpoint queries, in particular, they have difficulty taking fixpoints over universal quantifiers, such as is
needed in the above query (see [Kol91] and [Dah87]).

Conjunctive Queries

Stratified Queries

Fixpoint Queries

Computable Queries

Horn Clause Queries
(Datalog)

First Order Queries
= Relational Algebra

Select-Project Queries

Figure 24: Query language expressiveness hierarchy

The macro mechanism of LISA-D allows for the specification of arbitrary fixpoint queries. There are,
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however, some relatively simple queries which cannot be expressed as fixpoint queries (due to lack of
arithmetic operations). An example is the query Even, which determines whether the number of instances
in a certain relation is even ([Cha88]). LISA-D provides the necessary basic arithmetic operators and this
query can therefore be straightforwardly expressed:

EVEN R IS NUMBER OF(R) MOD 2 = 0

Whether every computable query can be expressed in LISA-D remains an issue for further research.

7 Conclusions

In this paper a new approach to query formulation support in the context of information systems has been
introduced. The query by navigation system can be used to formulate so-called linear path expressions in
the conceptual query language LISA-D. This mechanism allows a user to navigate through the conceptual
schema of an information system as well as the population of that system. The linear paths resulting from
a query by navigation session can be combined into more complex queries using a syntax directed editor
for query by construction. The query language LISA-D, which has a high expressiveness, thus becomes an
intuitive mechanism for the formulation of queries.

As a next step, the proposed querying system should actually be implemented after which empirical testing
can provide the feedback needed to make proper decisions on how to configure and tune the navigation
system. Since in real life applications the size of conceptual schemas may quite well match that of wall
paper, users may still become lost in conceptual space when using a two level query by navigation mech-
anism as presented here. In such cases, even a query by navigation system may fail to prevent the user
from getting lost in conceptual space. We will therefore also employ the existing idea ([CH93], [CH94])
of defining abstractions on information structures to derive a multi level query by navigation mechanism.
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