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Abstract

The promises of network-accessible information are increasingly di�cult to achieve. These di�culties are due to a

variety of causes, such as, the rapid growth in the volume of network-available information and the increasing com-

plexity, diversity and terminological ¯uctuations of the di�erent information sources available. This paper presents a

conceptual architecture for the organization information space across collections of component systems in a multi-

database network that provides serendipity, exploration and contextualisation support so that users can achieve logical

connections between concepts they are familiar with and schema terms employed in multi-database systems. Large-scale

searching for multi-database schema information is guided by a combination of lexical, structural and semantic aspects

of schema terms in order to reveal more meaning both about the contents of an information term and about its

placement within the distributed information space. Ó 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The dramatic growth in global interconnectivity has placed vast amounts of data within easy
reach. At the same time it has made on-demand access to widely distributed information a natural
expectation for users.

A complicating factor is the di�culty in providing coherent access and correlation of infor-
mation that originates from diverse and widely distributed sources. This is an involved process,
not only because of the sheer volume of information available, but also because of heterogeneity
in naming conventions, meanings and modes of data usage. Di�erences in descriptions, ab-
straction levels, and precise meanings of terms being used in disparate sources do not yield well at
all to automation. These problems are compounded by di�erences in user perceptions and in-
terpretations, and variations that may occur at autonomous sources over time. Users are
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presented with the problem of gaining adequate knowledge of a potentially huge, complex and
dynamic system in order to access and combine information in a coherent and logical manner. Yet
multi-database systems demand from users prior detailed knowledge of the de®nition and uses of
their underlying data [31]. This expectation on a user's intellectual capacities is quite unreasonable
in the context of a large distributed information space.

The focus in multi-database systems is on query processing techniques and not on how to
discover where the actual schema elements in the component systems reside. No particular at-
tention is paid to how schema items are structured, what they mean and how they are related to
each other across component database schemas. The user's perception of the information content
in networked databases is that of a vast space of information in a large ¯at, disorganized set of
database servers. In contrast to this, our approach to searches for widely distributed information
concentrates on providing a dynamic, incremental and scalable logical organization of component
database sources, and search tools that are guided by this organization.

We view user interaction with a multi-database space as comprising two major phases, the:
schema information discovery phase, where users systematically explore the multi-database

space to locate potentially useful databases, and
distributed query/transaction phase, where the requested data sets are retrieved from the can-

didate databases.
We consider the development of a methodical, scalable search process critical to the successful

delivery of information from networked database systems. Hence, in order to provide users with
tools for the logical exploration of distributed information sources a four-step process, termed
schema information discovery, is introduced. This process encompasses the following steps:
1. Determining the information needs of users by means of di�erent term suggestions.
2. Locating candidate database sources that address these needs.
3. Selecting schema items of interest from these sources.
4. Understanding the structure, terminology and patterns of use of these schema items which can

subsequently be used for querying/transaction purposes.
The very nature of this process suggests that we should provide facilities to landscape the

information available in large multi-database networks and enable the users to deal with a
controlled amount of material at a time, while providing more detail as the user looks more
closely.

To support the process of schema information discovery while overcoming the complexity of
wide-area information delivery and management, we cannot rely on a collection of indexes which
simply contain schema information exported by individual database sources. A more structured
and interactive approach to searching is required. The precursor of such an advanced search
approach assumes that we are in a position to impose some logical organization of the distributed
information space in such a way that potential relationships between the component database
systems in the network can be explored. In addition, to maintain scalability, this must be achieved
through a decentralized mechanism which does not proceed via a one-step resolution and merging
of system information into a single static monolithic structure as advocated by many conventional
practices for integrating multi-database systems. These and related issues are addressed in this
article.

This paper presents the concept of schema information discovery for large multi-database
networks. The paper is organized as follows. Section 2 presents related work. In Section 3 a logical
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organization for the semantic cross-correlation of meta-data information from component da-
tabases in a multi-database system is de®ned formally. This logical organization of meta-data
forms the core of our conceptual architecture for information space. Section 4 presents clustering
techniques that allow the information space to be populated with available database nodes.
Navigation and querying mechanisms to navigate and query the resulting information space are
provided in Section 5. Finally, Section 6 presents some experimentation results while Section 7
presents our conclusions and future work.

This work is an extension and elaboration of some early ideas outlined in [33,47]. In [33] we
concentrated on the organization of physical data sharing in large database networks, and de-
scribed how physical data sharing ties in with a precursor of the conceptual organization of the
information space presented in this paper. In [47] we described techniques and algorithms used for
the conceptual clustering of databases. In this paper we concentrate on an extension and for-
malization of these ideas and on the logical grouping of databases, according to subject and a
common terminology context. In addition, we present navigation and querying techniques for
understanding the semantic context of networked databases.

2. Finding information: An overview

This section starts by providing a broad discussion of the problem of ®nding information in
vast information spaces. This is complemented by a discussion of a number of techniques from
di�erent ®elds for locating information.

2.1. The vastness of information space

The elementary building blocks of information space are the information assets themselves.
The term information asset can be de®ned as:

any distinct information baring entity that is accessible on a networked environment and
which may be combined with other such entities connected to the same network.
A de®nition that truly supports the open character of the network. Examples of information

assets included in this de®nition are:
· Web pages (including free-text, sound, images, and video fragments).
· Free-text databases, such as newsgroups, mailing list archives, etc.
· Digital libraries.
· Traditional (relational, object-oriented) databases.

This de®nition of information asset should give an indication of the potential vastness of in-
formation space. Although in this paper we con®ne ourselves to information assets in conjunction
with multi-database networks, the techniques outlined herein can also be applied to other ex-
amples of information assets.

2.2. Dealing with the vastness of information space

Di�erent techniques have been, and still are being, developed to deal with the vastness of in-
formation space.
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2.2.1. Web-based searching
The growth in use of the World Wide Web (WWW) has led to the development of a variety of

search engines which attempt to locate a large number of WWW documents by indexing large
portions of the Web. These search engines tend to return many potentially relevant information
assets. Users are still required to manually wade through large result sets in search of truly rel-
evant assets.

Most approaches to WWW querying [7,32] concentrate only retrieval based on the contents of
an information asset ``as-is''. They naively assume that the user (or search engine) is explicitly
aware of the structure, semantics and vocabulary di�erences of the information assets that are
available to them. However, due to the multiplicity, complexity, and terminology ¯uctuation of
the information available, such an assumption is not practical. Practical studies have shown that
there is a critical mismatch between a user's and the Web's vocabulary [51]. Picking the right terms
depends on how intimate searchers are with the vocabulary use in documents they wish to re-
trieve.

Centralized index search engines such as Lycos [35], Web Crawler [45] are manual indexing
schemes that rely on techniques which ``crawl'' the network compiling a master index. The index
can then be used as a basis for keyword searches. These systems are not scalable because they
use a global indexing strategy, i.e., they attempt to build one central database that indexes
everything. Such indexing schemes are rather primitive as they cannot focus their content on
a speci®c topic (or categorize documents for that matter): as the scope of the index coverage
expands, indexes succumb to problems of large retrieval sets and problems of cross-disciplinary
semantic drift.

Some of the above limitations are addressed by content-based search engines such as the
Content Routing System [52] and Harvest [12]. These systems generate summarized descriptions
(content labels) of the contents of information assets. The Content Routing System creates and
maintains indexes of widely distributed sites. In this distributed information retrieval system a
collection of documents is described by means of a content label which in turn can be treated as a
document and can be included in another collection. Content labels help users explore large in-
formation spaces. However, document collections and their labels are con®ned to the context of
their underlying information servers. This idea has been extended in the HyPersuit system [56] by
generalizing collections so that they may span documents from various servers.

The Harvest information discovery and access system [12] provides an integrated set of tools
for gathering information from diverse Internet servers. It builds topic-speci®c content indexes
(summaries from distributed information), provides e�cient search mechanisms, and caches
objects as they are retrieved across the Internet. Each local search engine builds a specialized
directory for a certain domain of documents. Federated search engines scan those directories and
form federated directories which aggregate documents according to application-speci®c needs.

2.2.2. Subject gateways
A subject gateway, in network-based information access, is de®ned as a facility that allows

easier access to network-based information resources in a de®ned subject area [28]. Subject
gateways o�er a system consisting of a database and various indexes that can be searched through
a Web-based interface. Each entry in the database contains information about a network-based
resource, such as a Web page, Web site or document.
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Advanced gateways provide facilities for enhanced searching. For example the Social Science
Information Gateway (SOSIG) [53], incorporates a thesaurus containing social science termi-
nology. This gives users the option of generating alternative terms/keywords with which to search
the resource catalog. Another example of an advanced subject gateway is the Organization of
Medical Networked Information (OMNI) [40] which allows users to access medical and health-
related information. OMNI also facilitates searches across other databases of resources such as
databases of dental resources.

The key di�erence between subject gateways and the popular Web search engines, e.g., Alta
Vista [5], lies in the way the indexing is performed. Alta Vista indexes individual pages and not
resources. For example, a large document consisting of many Web pages hyper-linked together
via a table of contents would be indexed in a random fashion. In contrast this subject gateways,
such as OMNI, index at the resource level, thus, describing a resource composed of many Web
pages in a much more coherent fashion.

Furthermore, a subject gateway has the ``luxury'' of being able to focus on a speci®c subset of
the information space. Usually an area for which some well-de®ned thesaurus is available.

2.2.3. Federated digital libraries
The most important problem speci®c to digital libraries with spatial distribution is the feder-

ation problem: making distributed collections of heterogeneous documents appear to be a single
(virtually) integrated collection. Each such federation may address a speci®c domain area, e.g.,
biomedicine, computer science, social sciences and so on. In such Federated Digital Libraries
(FDLs) the di�culty lies in transforming a federation of multiple semi-structured heterogeneous
sources (which lack coherence) into a single logical source. Here, we are faced with at least two
major technical challenges. Firstly, document handling is hard as there is a large number of
documents with di�ering structure and di�ering terminology. Secondly, due to the large number
and variety of documents available, unless classi®cation schemes are employed ± so that document
sources can be indexed in di�erent ways and di�erent levels of detail ± distributed searching
cannot be feasible [51].

2.2.4. Multi-database systems
Multi-database (or federated) systems have as their aim the ability to access multiple auton-

omous databases through querying. The emphasis is on integration and sharing of distributed
information and not on information discovery. A particular database may choose to export parts
of its schema which are registered in a federal dictionary. A requesting database consults the
federal dictionary for existing databases and then imports schema elements that it requires. While
this approach might be appealing for a small number of interconnected databases it is clearly not
scalable. Locating the right information in a large unstructured network of data dictionaries is
extremely cumbersome, has limited potential for success and, more importantly, is error prone as
it does not deal with terminology nuances.

Several research activities in the area have concentrated on the issue of creating semantically
enhanced federated database dictionaries [8,10,17,38]. Construction of conceptual ontologies on
the basis of domain-speci®c terminologies and formalisms that can be mapped to description
logics are also discussed in [31]. Some of the issues relating to the identi®cation of semantically
related information can be found in [10], where the authors describe an approach that relies on an
abstract global data structure to match user terms to the semantically closest available system
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terms. Concepts grounded on a common dictionary are de®ned in a domain and schema elements
from component databases are manually mapped to these concepts. A di�erent approach is taken
by Kahng and Mcleod [29], where a domain-speci®c classi®cation scheme is built incrementally by
considering one schema at a time and mapping its elements in a concept hierarchy. However, both
these approaches tend to centralize the search within a single logical index thereby defeating
scalability by introducing performance limitations for large networks.

2.2.5. DAI: Multi-agent systems
Most of the work on software agent systems has concentrated on improving information

discovery methods on the WWW and adopt them for use within cooperating agent con®gurations.
The protocols of the WWW provide purely keyword-based index services and look up in col-
lections of documents. Most DAI approaches employ some form of knowledge representation to
enable more sophisticated representation of information sources and inferencing abilities [9,
22,41]. Two of the most notable activities which are related to this work are: information
matchmaking [27] and information brokering using context logic [22].

Matchmaking is an automated process whereby information providers and consumers are
cooperating assisted by an intelligent facilitator utilizing a knowledge sharing infrastructure.
Matchmaking depends on messaging and content languages and allows information providers
and consumers to continuously issue and retract advertisements and requests, so that information
does not become stale. This is particularly critical where information changes rapidly.

Brokering agents use distributed information resource discovery and retrieval facilities to assist
service providers list and publish their services, and help seekers to ®nd services and information
of interest. Brokering agents in DAI normally employ disambiguation techniques that rely on
ontological terms to make assertions that will assist them in accomplishing their mission. For
instance, in business applications an information broker uses standard terms in the ontology to
describe products in a particular domain and identi®es correspondences between the standard
term(s) and terms used by diverse companies to describe the same product. In this way consistent
business semantics can be provided across di�erent market domains and segments. Several
projects that develop ontologies for use with the Web such as SHOE [25] and the Wide
Knowledge Base (WebKB) [20] are used with agent technology. SHOE is a Web-based knowl-
edge representation language that supports multiple versions of ontologies and ontology inte-
gration. WebKB uses ontologies and machine learning to achieve automatic classi®cation of Web
pages.

3. Logical architecture of a multi-database information space

In order to improve e�cient searching and gathering of schema information in large multi-
database networks, the ®rst task is to partition the multi-database information space into distinct,
domain-speci®c, categories that are meaningful to database users. These categories can be formed
by using some form of topic/subject-based classi®cation mechanism. Such classi®cation mecha-
nisms are common practices in library and information sciences, e.g., the INSPEC indexing and
abstracting service covering most of the research literature in Computer Science and Electrical
Engineering [51]. Using domain-speci®c classi®cations to create logical clusters of databases
makes searches more directed, meaningful and e�cient. In addition, a directory of topics created

256 M.P. Papazoglou et al. / Data & Knowledge Engineering 36 (2001) 251±281



as a result of domain-speci®c database categorization can also provide topic-speci®c searches and
useful browsable organization of inter-component database schema information.

There are three basic principles that a system must address to allow for scalable information
searching and gathering. Firstly, some organization of the underlying databases is needed to
enable the discovery of data inter-relationships. Topic classi®cation schemes are used for this
purpose, as they summarize related information subspaces together. Secondly, this organizational
structure must itself be scalable. In other words, both interactions with the resulting structure, as
well as maintenance of the structure, must be scalable. Thirdly, users must be presented with a
collection of tools (lexicographic, and user friendly graphical interfaces) which allows for easy
exploration and interpretation of the information contents of the system. In the following, we
address these issues in the context of a logical architecture for a multi-databases information
space.

The logical architecture presented below has been among other inspired by ideas from the ®eld
of information retrieval, where documents are clustered to form a multi-layered information space
[3,4,6] that can be navigated by users in search of relevant documents.

3.1. Basic building blocks for schema information discovery

Our approach to information searching and gathering in large database networks relies on
logically partitioning a collection of networked databases into distinct topic-based categories that
are meaningful to users. This occurs by creating abstract representations of these topics as logical
objects (henceforth referred to as topics). Database-content clustering algorithms are employed to
automatically compute sets of related component databases ± via their exported meta-data terms
± and associate them with an appropriate topic, see Fig. 1. The abstract objects representing these
topics essentially represent centroids around which databases cluster, and are engineered to de-
scribe a particular domain. It is expected that the databases in a multi-database network target-
speci®c narrow domains, such as Geophysics, Biomedicine, Economics, Chemical Engineering
and so on.

To put the organization of a topic-based multi-database information space into perspective, we
use a comprehensive example from an Education & Training multi-database network. This net-
work connects educational and training service providers, publication providers, accreditation,
and government agency database servers. This situation is shown in Fig. 1 which provides a
conceptually holistic view and cross-correlates information from the multiple database servers
(referred to as assets). In the following, we will describe this process in two broad steps.

Firstly, we employ meta-data to describe the structure and contents of each individual exported
asset schema. Each exported schema may also contain additional meta-data elements such as
those described in Section 3.4. Subsequently, distinct sets of meta-data terms are logically ag-
gregated to describe a particular subtopic. For example, aggregation (summarization) of meta-
data which abstract assets containing information about Courses, Committees, Accreditation-
processes and so on, may represent a subtopic such as Accreditation. This subtopic is a composite
object which contains meta-data objects describing assets and their attributes. For instance, the
Course object and attributes pertaining to it such as Course-name, Credit-points, Duration, Se-
mester, etc. would be contained in the Accreditation subtopic. The term contents of subtopics are
organized in the form of graphs, which are called context graphs, see Section 4. Each subtopic is
represented as a descriptor object in a descriptor graph, e.g., descriptors such as d1; d2; d3; . . . in
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Fig. 1. The aggregation of semantically related descriptors may span a speci®c topic. For example,
semantically related subtopics such as for example Accreditation (descriptor d4) and Enrollment-
Program (descriptor d5) are connected into a higher-level construct which we call a topic, e.g.,
Education, see Fig. 1. Topics thus represent semantically related database clusters (via their re-
spective meta-data schemas) and form topically coherent groups that unfold descriptive textual
summaries and an extended vocabulary of terms for their underlying assets. The area of interest of
a topic is de®ned in terms of a descriptor graph. Each descriptor graph in turn is de®ned in terms
of related context graphs. An example can be found in Fig. 2, where the meta-data for Course are
represented synoptically and abbreviated context graphs for descriptors d5 and d12 are illustrated.
This ®gure also illustrates that a meta-data object can be associated with (can contribute to)
di�erent subtopics.

Secondly, to circumvent terminology mismatches and semantic drifts between disparate schema
terms, topical synoptic knowledge and a standard vocabulary for term suggestions is supported by
each topic. A topic materializes a class hierarchy depicting all terms within the topic sampled by
the topic, e.g., Education. Each topic is characterized by its name and the context of its terms
(term hierarchy and term descriptions) for each speci®c subject. Terms within a topic are shown to
have a distinct meaning (sense) and context. The terminology context (description graph) of a
topic is based on a standard domain ontology, e.g., Education. An ontology can be de®ned as a
linguistic representation of a conceptualization of some domain of knowledge [24]. This ontology
consists of abstract descriptions of classes of objects in a vertical domain, relationships between

Fig. 1. Three-level organization of the information space.
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these classes, terminology descriptions and other domain-speci®c information and establishes a
common vocabulary for interacting with between the various information sources underlying a
topic. Currently, WordNet [37] is used to derive such a standard vocabulary for each of the topics.
Hence, the topic structure is akin to an associative thesaurus and on-line lexicon (created auto-
matically for each topic category). Thesaurus-assisted explanations created for each topic-based
information subspace serve as a means of disambiguating term meanings, and addressing ter-
minology and semantic problems. A topic is thus a form of a logical object (a kind of a con-
textualized abstract view over the content of large semantically related database collections) whose
purpose is to cross-correlate, collate, and summarize the meta-data descriptions of semantically
related network-accessible data, 2 and thus it is grounded on a common standard ontology.

Fig. 3 shows an excerpt from WordNet showing eight di�erent senses of Course. By identifying
the sense which a topic about Courses is about, terminology use in the context of that topic may be
standardized 3.

The topic-based multi-database con®guration provides an appropriate frame of reference for
both component database schema term indexing and user instigated searches. Fig. 1 in particular
illustrates that the Education & Training multi-database network comprises a set of topics such as
Education, Training, Literature & Publications, Employment, and so on. The topic-areas, described
by each topic are interconnected by weighted links to make the searches more directed. For ex-
ample, Fig. 1 illustrates that the topic Education is connected to other topics such as Literature &
Publications, and Training by means of weighted links. Weighted links represent the degree of

Fig. 2. Meta-data and descriptors for database schemas.

2 Topics were termed ``Generic concepts'' or ``Global concepts'' in previous work [33], [47].
3 The WordNet lexicographic tool is presently used only for experimental purposes and will be replaced by an appropriate subject

gateway in the near future.
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semantic relatedness between resources and are created based on comparison of their descriptor
terminology. Automatic comparison of descriptor terminology is conducted based on a set of
similarity matrices. A detailed study of a similarity matrix-based algorithm for comparing de-
scriptor terms and deriving weights can be found in [34].

A topically organized multi-database information space can be viewed as a Web-space, or a
hyper-text, that encompasses collections of exported meta-data [3,4]. Such a multi-database in-
formation space partitions component databases into topically coherent groups, and presents
descriptive term summaries and an extended vocabulary of terms for searching and querying the
vastly distributed information space of the component databases that underly it. Thus, when
dealing with a speci®c subtopic such as Accreditation we are not only able to source appropriate

Fig. 3. Di�erent senses of the term course.
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information from remote assets based on the same topic but also to provide matching information
about enrollment-programs, training schemes, research activities and publication data.

Assets in this network may become a member of more than one topic if they relate to their
thematical foci, see Figs. 1 and 2. Individual topics are useful for browsing and searching large
database collections because they organize information space in more comprehensible subspaces.
For example, the Education topic provides a common terminology basis upon which database
assets dealing with Enrollments, Courses, Accreditation, etc. (see Fig. 1) achieve knowledge of each
others information content.

Although topics provide synoptic information about their underlying database clusters, they do
not require integration of the data sources. This approach comes in strong contrast with ap-
proaches to semantic inter-operability based on explicit integration of conceptual schemas on the
basis of semantic lexica [10,17]. The advantage of forming conceptual database clusters is that
searches are goal-driven and the number of potential inter-database interactions is restricted
substantially as it facilitates the distribution and balancing of resources via appropriate allocation
to the various database partitions.

Formally, the basic building blocks of information space can be represented by three sets:
· let TO be the set of topics,
· let DE be a set of descriptors,
· let AS be the set of assets (databases) in information space.

Collectively, we refer to these elements as information objects:

IO�MAS [DE [TO:

As a ®rst rule, the three base sets should not overlap, so the following axiom should apply:

[IS1] AS, DE, and TO are mutually disjoint sets.

Overall a multi-database network can be viewed in terms of three layers, see Fig. 1. In this
®gure the AS, DE, and TO information objects each de®ne a distinct level in the multi-database
information space:
· Topics layer. A layer consisting of the topics that have been used to classify the assets (the un-

derlying databases).
· Descriptors layer. A layer consisting of all descriptors used to provide a thematical description

for the topics and de®ne what the underlying assets (the databases) are about. Each descriptor is
represented in terms of a context graph which organizes the terms contained in an asset. A for-
mal description of descriptors can be found in Section 3.3, while the process of creating and ag-
gregating context graphs is described in Section 4.

· Asset layer. A layer consisting of the actual databases; being the assets of information
space.

3.2. Structure of information space

As shown in Fig. 1, information space is characterized by a number of relationships between
the constituting information objects in each layer. Let RL de®ne the set of relationships in in-
formation space. For relationships, the following functions are presumed to be de®ned:
· Src;Dst : RL ! IO, de®ning the source and destination of a relationship.
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· Weight : RL!WG, de®ning the certainty of a relationship. For weights, the existence of a
combination operation 
 and a total order < is presumed. For example, when using probabil-
ities as weights, the combination operation may be computed as:

w
 v�M 1ÿ �1ÿ w� � �1ÿ v�:
To combine the weights associated to links in information space, i.e., when more precisely

de®ning the 
 operator, we can actually make use of the same probabilistic reasoning as has been
studied in the context of probabilistic information retrieval. See, for instance, [23,49,57].

The relationships in information space should be irre¯exive:

[IS2] 8r2RL��Src�r� 6� Dst�r���.
As an abbreviation we shall use

x !r
w y�M Src�r� � x ^ Dst�r� � y ^Weight�r� � w:

When we are not interested in the speci®c weights associated to links, we will usually omit the
weight w, and simply write x !r y.

Two key classes of relationships between information objects can be distinguished:
· intra-layer relationships (IA � RL), linking information objects of the same layer, viz., hor-

izontal dimension, and
· inter-layer relationships (IR � RL), linking information objects of di�erent layers, viz., verti-

cal dimension.
These classes of relationships are presumed to form a partition of RL:

[IS3] IA and IR are a partition of RL.

The ®rst class of relationships between information objects we focus on are the inter-layer re-
lationships, i.e., those relationships that bridge information objects in the three layers. The fol-
lowing three classes of relationships exist between the information objects of the di�erent layers:
· AR � IR a set of aboutness relationships de®ning what the underlying assets are about,
· DR � IR a set of de®ning relationships expressing the thematical focus of a topic in terms of

descriptors, and
· MR � IR a set of membership relationships identifying to which topics a given asset belongs.

The aboutness relationships in AR de®ne what the underlying databases are really about in
terms of the descriptors. In other words, the aboutness relationship de®nes the thematical scope of
the databases.

These classes of relationships are presumed to form a partition of IR:

[IS4] MR, DR and AR are a partition of IR.

For the three classes of inter-layer relationships, the following predicates may be de®ned:

x IsMemberOfw y�M 9r2MR�x !r
w y�;

x IsAboutw y�M 9r2AR�x !r
w y�;

x Definesw y�M 9r2DR�x !r
w y�:

262 M.P. Papazoglou et al. / Data & Knowledge Engineering 36 (2001) 251±281



These relationships should indeed bridge the appropriate layers:

[IS5] x IsMemberOf y ) x 2AS ^ y 2TO.

[IS6] x IsAbout y ) x 2AS ^ y 2 DE.

[IS7] x Defines y ) x 2 DE ^ y 2TO.

The second class of relationships between information objects are concerned with intra-layer
relationships. Many di�erent types of relationships between information objects within a single
layer may exist. For example:
· di�erent types of associations,
· di�erent types of part±whole relationships.

Instead of introducing a whole plethora of possible relationship types, we only focus on the
following two general classes of relationships which are fairly representative:
· AR � IA a set of associations,
· PR � IA a set of part±whole relationships.

The membership relationship between assets and topics is fully derivable from the IsAbout and
Defines relationships:

[IS8] a IsAboutw1
d ^ d Definesw2

t() a IsMemberOfw1
w2
d.

Each asset must be about some descriptor with the maximum weight, e.g., 10/10, associated:

[IS9] 8a2AS9d �a IsAbout1WG
d�,

where 1WG denotes the maximum weight from WG based on the total order. Each topic must
be de®ned using a descriptor with the maximum weight associated:

[IS10] 8t2TO9d �d Defines1WG
t�.

These classes of relationships are presumed to form a partition of IA:

[IS11] AR and PR are a partition of IA.

For the two general classes of intra-layer relationships, the following predicates may be de®ned:

x IsAssocTow y�M 9r2AR�x !r
w y�;

x IsPartOfw y�M 9r2PR�x !r
w y�:

Intra-layer relationships should indeed be intra layer:

[IS12] For each S 2 fAS;DE;TOg
x 2 S ^ x IsAssocTo y ) y 2 S:

[IS13] For each S 2 fAS;DE;TOg
x 2 S ^ x IsPartOf y ) y 2 S:

Part-of relationships cannot be weighted. In other words, they should always be of the maxi-
mum weight:
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[IS14] x IsPartOfw y ) w � 1WG.

In the context of multi-database systems it does not make sense to allow for subset relation-
ships between topics as topics are autonomous and disjoint from each other. In other words, we
have:

[IS15] x IsPartOfw y ) x; y 62TO.

The part-of relationship is transitive and irre¯exive:

[IS16] x IsPartOf y IsPartOf z) x IsPartOf z.

[IS17] :�x IsPartOf x�.
In the context of multi-database systems, it furthermore does not make sense to introduce intra-

layer relationships between the underlying databases due to the unnecessary complexity and also
because all databases are strongly related to their encompassing topic.

In other words, in this context we have:

[IS18] x IsAssocTo y ) x; y 62AS.

[IS19] x IsPartOf y ) x; y 62AS.

In future research we will apply the results as presented in this paper to more general forms of
assets, such as Web-pages, documents, etc. In these latter cases it is indeed sensible to cater for
associative and part-of relationships between the assets. For example, documents referring to each
other imply an associative relationship while a chapter is-part-of a book.

The set of descriptors that is associated to a topic by the Defines relationship is essentially the
thematic scope of a topic:

Thema�t��M d d Defines tj gf :

The theme of a topic should have a unique top element based on the IsPartOf relationship on
descriptors:

[IS20] 8t2TO9!x2Thema�t��:9y2Thema�t��x IsPartOf y��.
If two topics are associated to each other with some weight, then this association should

somehow be re¯ected by the associations between descriptors associated to the respective topics:

[IS21] t1 IsAssocTow t2 ) w � 

r2B�t1;t2�

Weight�r�, where

B�t1; t2��M r 2AR 9d12Thema�t1�;d22Thema�t2��d1

��� ! r d2�
	
:

The set of descriptors used to express what an asset is about, is referred to as the aboutness of
that asset:

Aboutness�a��M d a IsAbout dj gf :

The aboutness of an asset should have a unique top element as well:

[IS22] 8a2AS9!x2Aboutness�a��:9y2Aboutness�a��x IsPartOf y��.
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The aboutness of assets is a rather complex relationship. In [11,43] detailed studies have been
made of what aboutness really is. In these publications several rules may be found governing the
aboutness relationship. An example of such a rule would be:

[IS23] x IsPartOfw1
y ^ x IsAboutw2

c) y IsAboutw1
w2
c.

For more detailed rules on aboutness, refer to, e.g. [11,43].

3.3. Descriptors

The descriptors de®ning the theme of a topic play a very important role in information space. It
provides users, as well as the system, with a description of a context in terms of some suitable
language. Topics in information space may be described using such mechanisms as: keywords,
index expressions [18], noun phrases, or di�erent forms of conceptual graphs [54]. Most readers
will be familiar with keywords to express what a text database or document is about. The lan-
guage of index expressions was introduced as a description language that would allow keywords
to be put in relation to each other. For example sentences of the form:

Training scheme contains research programs

rather than simple keywords:

ftraining; scheme; research; programg:
The e�ectiveness of index expressions in an information retrieval context has been studied and
reported in [14]. The language of index expressions is actually a subset of the language of noun
phrases. For example, the language used in this paper employs terms such as part-of, pertains-to,
contains, is-a, is-related-to and conceptual graph descriptions. The use of conceptual graph like
languages for retrieval purposes has been studied in, e.g. 2,39,13]. These publications point out
that it is useful to separate concepts and their description as a speci®c concept may quite well be
represented in di�erent languages using a speci®c description for each of the languages.

In this subsection the descriptors are de®ned in more detail. As keywords and index expressions
can both be represented as conceptual graphs, we base the formal de®nition of descriptors on
conceptual graphs.

To de®ne descriptors formally, we start out from two base sets:
· a set CO of concepts, and
· a set ED of edges.

In addition, the following functions are needed:
· Src;Dst : ED ! CO, de®ning the source and destination of an edge.
· Name : �ED [ CO� ! String, the name of a relationship or a concept. The names of the rela-

tionships could, for example, be based on the ones as pre-de®ned by WordNet, such as: hyper-
nyms, hyponyms, part-of, and pertains-to.

· Explain : CO ! String, some additional explanation of the concept.
Together CO, ED, Src, Dst, Name, and Explain de®ne a concept space.
Using this concept space, the set of (possible) descriptors can be de®ned as follows:

DE�M E � ED
The set of edges E spans a connected subgraph and

8c;d2Concepts�E��Name�c� � Name�d� ) c � d�

���� ��
;
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where Concepts�E��M [e2E fSrc�e�;Dst�e�g. Note that within one descriptor, the names of con-
cepts must be unique. For descriptors d; e 2 DE, the IsPartOf relationship can be de®ned formally
as:

d IsPartOf1WG
e�M d � e:

The IsPartOf relationship for the descriptors d and e can simply be de®ned formally as:

d IsPartOf e�M d � e:

By using ontologies more contextual information may be added to the descriptions of concepts.
For instance, in Fig. 3, a WordNet [37] style context for the Course concept is shown. There it is
shown what particular meaning (sense) and context of the word Course is the focus of the concept.
As mentioned before, two di�erent concepts (in di�erent topics) may indeed have the same name,
while they are concerned with di�erent senses of the same name/term.

3.4. Additional meta-data

To each of the information object, additional meta-data attributes may be associated [55] to
provide semantic richness. Such meta-data attributes may for example be concerned with:

authorship; dateofcreation; medium; fileformat; pricing; quality; and location:

Meanwhile di�erent emerging meta-data standards have come into being. For example, Dublin
Core [19] or PICS [44]. Meta-data attributes may be formalized as follows:
· Name : IO ! Names providing the name of the information object.
· Location : AS ! URI yielding the physical location/address of an asset (database). For exam-

ple, in terms of a Universal Resource Indicator (URI, such as the well-known URL from the
World Wide Web).

· Layer : IO ! fTopics;Descriptors;Assetsg returning the name of the layer an information ob-
ject belongs to.
For Layer we obviously have:

[IS24] 8t2TO�Layer�t� � Topics� ^ 8d2DE�Layer�c� � Concepts� ^ 8a2AS�Layer�a� � Assets�.

4. Clustering of assets

In the following we describe a general methodology that aids in clustering databases and
creating their corresponding topic nodes in information space. Key criteria that have guided this
methodology are: scalability, design simplicity and easy to use structuring mechanisms.

4.1. Describing databases and subtopics

In order to initially cluster component databases, a high level description of the database
contents in the form of a descriptor must ®rst be derived.

To demonstrate this consider a set of assets (databases) that contribute towards the Accredi-
tation subtopic and deal with academic institutions and accreditation processes. These assets
contain entities such as Courses, Committees, Accreditation, Processes, etc. In order to become
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part of a topic-based multi-database network the schema terms of these databases are represented
in the form of a context graph. This graph is essentially a form of a conceptual graph and inter-
connects terms (concepts) on basis of their their semantic relatedness. To achieve this we use a
variant of an information retrieval technique called, the star technique. With this technique, a
concept is selected and then all concepts related to it are placed in a class [30]. Concepts not yet in
a class are selected as new seeds until all concepts are assigned to a class. Classes in the star
technique are not related to each other. The variant of the star technique that we are using starts
with a concept, then an additional concept that is related to an already selected concept is rep-
resented as a another class and is explicitly connected to the selected concept. The new concept is
then selected as a pivot and the process is repeated until no new concepts can be added. For
example, the context graph for the Accreditation descriptor, is depicted in Fig. 4 and is shown to
contains nodes which contain the terms Committee, Institutions, Courses, etc. and their related
terminology.

The context graph edges depict inter-connections (association, generalization, specialization or
containment) between the concepts within a particular asset. Concept inter-relations are deter-
mined on the basis of a reference lexicographic substrate that underlies the concepts in infor-
mation space. For this purpose, as already explained, we use the lexicographic system WordNet
[37] that supports semantic concept matching through the use of an extensive network of word
meanings connected by a variety of textual and semantic relations.

If d is the context graph (descriptor) that is derived for a database (asset) a using the algorithm
as sketched above, then we know: a IsAbout d. Furthermore, using the IsPartOf relationship for
descriptors, we can also infer that for any context graph e, if e IsPartOf d we have a IsAbout e.

To facilitate clustering and discovery of information, we require that a subtopic (descriptor)
can be totally described in terms of three sections which contain a synoptic description of the
meta-data content of the asset; associations between meta-data terms in the form of a semantic-
net; and ®nally, links from these descriptions to other related assets in the network. This infor-
mation can be viewed by users of the system once they have chosen a component database that
potentially matches their interests (see Section 5).

Fig. 4. Describing a subtopic.
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Fig. 4 illustrates that each database node contains the following sections:
· concept features,
· context graph, and
· topic connections section.
The concept features section contains additional information concerning the concepts used in the
context graph, essentially providing the Explain function for concepts in the context graph. These
descriptions include abstract descriptions of terms in the domain such as their sense (unique),
relationships between these terms, composition of terms, terminology descriptions, hypernym,
hyponym, antonyms-of, part-of, member-of, pertains-to relations, contextual usage (narrative
descriptions), a list of keywords, and other domain-speci®c information, that apply to the entire
collection of members of a topic. Moreover, it may include other useful details such as: geo-
graphical location of databases, access authorization and usage roles, explanations regarding
corporate term usage and de®nitions, domains of applicability, charge costs, and so on. The
feature descriptions entries are partially generated on the basis of WordNet and contain infor-
mation in the form represented in Figs. 3 and 5.

Fig. 5. Further WordNet details for Course.
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The context graph section contains a non-directed graph which connects the concepts as de-
scribed by the concept features section. Except for viewing purposes when navigating information
space, the context graph used in the clustering of databases to form topics. Each of the concept
nodes de®nes (in conjunction with its respective entry in the feature descriptions window) a
common structured vocabulary of terms and term relationships relevant to that concept. Finally,
the topics connection section shows to which topics the Accreditation descriptor is related to in the
network.

4.2. Similarity-based clustering of databases

Similarity-based clustering of database schemas organizes databases into related groups based
on the concepts that are referred to by the concept features section of their database description
(see Fig. 4) they contain and the link structure of their context graphs.

Our clustering algorithm determines the similarity between two graphs (representing two dif-
ferent database schema meta-data) based on both concept similarity and link similarity factors.
This is accomplished in two steps. Firstly, a pairwise-similarity of nodes in two context graphs is
computed. From this an initial ``pairing'' of the nodes is determined. In the second step a com-
parison of the link structure of two context graphs is made based on the inter-node pairings and a
semantic distance value is calculated. We chose this concept/link similarity-based algorithm be-
cause it is relatively easy to implement and avoids generating very large clusters.

Concept-based similarity. This is calculated using cluster analysis techniques [21] to identify co-
occurrence probabilities ± representing the degree of similarity ± between two discrete concepts.

Our similarity metric is based on the meaning of the collection of terms representing the ter-
minological context (viz., semantic-levels) of a particular concept, e.g., Course, see Fig. 3. The
comparison is based on: a conversion of each context graph node Committee, Process, Subject,
Course, etc. (see Fig. 4) to a corresponding matrix of noun terms (containing the entire termi-
nological context of a concept); and a subsequent comparison of terms within these matrices.

A matrix a for concept c with m columns, and n rows, should be organized such that:
1. Each column contains synonyms describing the same concept

816 i<j6m;q6 k6 n�ai;k described the same concept as aj;k�:
For example, Course, Course-of-study, Course-of-lectures, etc.
2. There must be a unique column in which the ®rst element corresponds to the name of the

concept

9!i�Name�c� � ai;1�:
3. The columns in the matrix should be ordered from general to more speci®c. In other words,

terms to the left should (pairwise) not be more speci®c than terms to the right

816 i<j6m;16 k6 n�ai;k is not a more specific term than aj;k�:
For example, Education, Educational-activity, are more general terms than Course, while Com-
puter-science-course is a more speci®c term than Course.

Similarity analysis is mainly based on statistical co-occurrences of terms based on techniques
which have been successfully used for automatic thesaurus generation of textual databases [21,
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50]. In fact, we base our term-based similarity on the improved cosine formula [50] which is used
to calculate the semantic distance between the vector for an item in a hierarchical thesaurus and
the vector for a query item. To provide the right ontological context for semantic term matching,
we use again the massive semantic net WordNet [37].

Comparison of the conceptual structure of two context graphs. To determine the structural and
semantic similarity between two graphs, we based our algorithms regarding conceptual similarity
between terms on heuristics-guided spreading activation algorithms, and on work in the infor-
mation retrieval area presented in [48]. These approaches take advantage of the semantics in a
hierarchical thesaurus representing relationships between index terms. The algorithms calculate
the conceptual closeness between two index terms, interpreting the conceptual distance between
two terms as the topological distance of the two terms in the hierarchical thesaurus. During this
process similarity between nodes is established by considering the edges separating the nodes in
the context graph as well as the actual graph structure. Some initial results regarding the com-
parison and clustering process can be found in [36].

Once similarity between the context graphs describing what the underlying databases are about
has been established, the context graphs can be aggregated to create topics. The aggregation of the
context graphs from various component databases, results in the clustering of inter-related dat-
abase schema terms, and forms a descriptor graph at the top level (see Fig. 6). This aggregation is
performed on the basis of the reference lexicographic substrate (WordNet). The aggregation al-
gorithm employed does not integrate the aggregated databases, as is the usual case with other
approaches [31], but rather links concepts at the topics level with semantically equivalent concepts
in its underlying cluster of database context graphs.

For each database cluster, a topic is created to represent the area of interest that the group
embodies, e.g., a Education topic for the Accreditation, Tertiary-Education and Enrollment-Pro-
gram databases, see Fig. 1. The aggregated context graph is used as a base to de®ne the thematic
scope of the particular topic.

Fig. 6. Clustering interrelated component schema terms.
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When clustering the databases, some cut-o� value needs to be employed to express how similar
two databases should be for them to be placed in the same cluster. This cut-o� value then es-
sentially expresses the internal cohesion of the resulting cluster (and topic) [34].

4.3. Deriving subtopics

When some topic t contains a large number of databases, it may be useful to split t into several
smaller topics. This can be done by re-clustering the underlying set of databases using a higher
cut-o� value. Each of the resulting new topics has an internal cohesion that is higher than the
original topic. If T is the set of resulting subtopics, then these may be linker to the original (large)
topic using the IsPartOf relationship:

s 2 T ) s IsPartOf1WG
t;

where 1WG represents the maximal value from Weight.

4.4. Inter-relating topics

Once the topics have been created, it is also possible to use the similarity algorithm to compute
the similarity between the (aggregated) context graphs associated to topics. This similarity can
then be interpreted as the similarity between topics. Using some cut-o� value, the similarity re-
lationship between topics can be used to ®ll the IsAssocTo relationship between topics. The
similarity weight can be used as a weight on these relationships. In other words, if c is the cut-o�
value, and Sim�t1; t2� expresses the similarity between two topics, we have

Sim�t1; t2� � w ^ w P c) t1 IsAssocTow t2:

5. Navigation and querying

Schema information discovery spans a spectrum of activities ranging from a search for a
speci®c data-item(s) (contained in possibly several component databases) to a non-speci®c desire
to understand what information is available in these databases and the nature of this information.
This section is concerned with navigating and querying information space as techniques for
schema information discovery.

The architecture discussed so far in this paper has been implemented in [34]. This architecture
needs appropriate extensions for querying and navigation. This is on-going research based on
several ideas that have been tested and implemented elsewhere in the literature. In particular,
[1,15,3] presents techniques that have been applied in the context of documents, while in the work
reported in [26] these techniques are translated to query formulation on databases. The latter
publication is in line with the application of strati®ed hyper-media as a way of navigating a multi-
database information space.

5.1. Strati®ed architecture

As mentioned before, information space can be grouped into an assets, descriptors, and a topics
layer. These three layers allow us to organize information space as a three-level strati®ed hyper-
media as reported in, e.g. [1,15,3]. Organizing a multi-database information space as a strati®ed
hyper-media enables users to navigate information space in a natural way.
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In a strati®ed hyper-media, each layer consists of a set of nodes and links. For a set X of in-
formation objects in a particular layer, AS, DE, and TO, the corresponding layer is de®ned by:
hX ; IsAssocToX ; IsPartOfX i, where:

x IsAssocToX y�M x; y 2 X ^ x IsAssocTo y;

x IsPartOfX y�M x; y 2 X ^ x IsPartOf y:

The three layers of information space can then be de®ned as follows:
1. Assets layer: hAS; IsAssocToAS; IsPartOfASi.
2. Descriptors layer: hDE; IsAssocToDE; IsPartOfDEi.
3. Topics layer: hTO; IsAssocToTO; IsPartOfTOi.

The above de®nitions are general and can be used for all sorts of information assets, e.g.,
documents. However, in the case of multi-database systems for AS both relationships
IsAssocToAS; IsPartOfAS are empty whereas for the TO layer the IsPartOfTO is empty, see the
corresponding axioms in Section 3.

As AS, DE, and TO are disjoint sets, these layers are disjoint as well. When navigating a
strati®ed hyper-media architecture, users may not only want to navigate within a single layer, they
will also want to navigate between layers.

The JumpsTo relationship is a generalization of IsMemberOf, Defines and IsAbout and is used
for inter-layer navigation. This generalization is de®ned as follows:

x JumpsTo y�M 9r2IR�fx; yg � fSrc�r�;Dst�r�g�:
This three-tier architecture is the key ingredient to ®nding information in distributed, scalable
systems. It generates a semantic hierarchy for database schema terms in layers of increasing se-
mantic detail. Most searches will initially target the richest semantic level, viz., the topics layer,
and percolate via the descriptors layer to the assets layer in order to provide access to the contents
of an asset. This type of content-based clustering of the searchable information space provides
convenient abstraction demarcators for both the users and the system to make their searches more
targeted, scalable and e�ective. This methodology results in a impli®cation of the way that in-
formation pertaining to a large number of inter-related database schemas can be viewed and more
importantly it achieves a form of global visibility [42].

5.2. Node presentation

When navigating the strati®ed hyper-media as derived from an information space, users travel
from information object to information object via intra-layer or inter-layer links. Each infor-
mation object is presented to a user by providing three types of information to the user:
· the current location in information space,
· the possible steps to continue the journey in information space,
· more information about the current location.

Let f be the information object in information space where the user is currently at, then the
above three types of information can be further specialized as:
· The description of current location consists of Name�f �, Layer�f �, and Size�f �.
· The possible continuations consists of six sets:
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1. Re®nements: x x IsPartOf fj gf .
2. Enlargements: x f IsPartOf xj gf .
3. Associations: x f IsAssocTo xj gf .
4. Jumps to the topics layer: x 2TO f JumpsTo xj gf .
5. Jumps to the descriptors layer: x 2 DE f JumpsTo xj gf .
6. Jumps to the assets layer: x 2AS f JumpsTo xj gf .

In describing the possible continuations to users, the system may choose to use Name�x�. In the
case of descriptors, it may be useful to also include some synoptic version of the context graph.
· Other information about the current focus f may consist of any other meta-data available on f.

In presenting this information to a user, the system may opt to use multiple screens. For ex-
ample, Fig. 7 illustrates how a user moves from the topic to the descriptor and the asset layer
when looking for information relating to Education. Here we assume that the user started from the
Education topic layer and that the concepts within the descriptor layer are organized in ascending
order of speci®city, e.g., from Tertiary-Education to Enrollment-Program, Accreditation and so on.
Once the user arrives at a desired descriptor term, e.g., Tertiary-Education, then s/he can move to
its asset level, e.g., Course descriptions. For instance, the user can move from the term activity,
which is a highly abstract term, to more concrete terms such as Course-of-study, Course-of-lectures,
and so on. We can move between these concepts by using the re®nement ®eld (operation). In
Fig. 7 we assume that the user was interested in ®nding assets dealing with Accreditation.

The order in which the continuation options are listed in the nodes should ideally be deter-
mined by the relevance of these options to the user. For example, we consider using the mech-
anisms presented in [16] where the relevance of these options can be derived based on a user's
search behavior up to a certain point in time. This may be combined with the relative weights that
can be associated to the links in the information space.

Fig. 7. Screens representing information objects.
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5.3. Navigation techniques

There are two basic modes in which searching of the system may be organized. These search
modes depend upon the nature of the information a user is attempting to access, and how this
information relates to the database that the user is operating from. Serendipity, exploration and
contextualization are supported by navigating the strati®ed hyper-media spanned by information
space. In such cases the user is interested in ®nding out about a particular topic rather than a
speci®c information (schema) item. We call this former form of exploration index-driven.

Alternatively, if a user is seeking data which is closely related or allied to her/his local database,
then searching may be organized around the links of this database to other topics in information
space. We refer to this form of exploration as concept-driven. Concept-driven querying is the
subject of a previous publication [46]. In this paper, we are mainly concerned with index-driven
searches.

Index-driven navigation allows the users to deal with a controlled amount of material at a time,
while providing more detail as the user looks more closely. This form of searching is related to the
dynamic indexing schemes and incremental discovery of information requirements for informa-
tion discovery. An index-driven search will usually start out from some name n 2 Names of a
concept. From this point, the search will gradually percolate down to the required level of
speci®city. This process starts by treating n as a descriptor and matching this to the set of available
concepts. This results in a set (D�n� say) of potentially interesting descriptors. This set may be-
come rather large. It may therefore be sensible to limit this set to the elements that are lowest (i.e.,
least speci®c) in the IsPartOf hierarchy:

d 2 D�n� :9e2D�n��e IsPartOf d��� 	�
:

By presenting the resulting set of concepts, users can consequently home in on the intended in-
terpretation of n, and consequently re®ne their focus of interest by navigating through the de-
scriptors layer.

If a user is already focussed on a speci®c topic (t say), the set D�n� can be limited in advance to
the set Thema�t� \ D�n�.
5.4. Querying of domain meta-data

When the user needs to further explore the search target, intensional, or schema queries [42] ±
which return meta-data terms from selected schema terms ± can be posed to further restrict the
information space and clarify the meaning of the information items under exploration. Such
domain-speci®c queries should not be confused with queries which target the data content of the
assets (to which we refer to as distributed queries/transactions). Intensional queries are particularly
useful for assisting users who are unfamiliar with the vocabulary of terms that can be used in
connection with distributed queries/transactions or with the range of information that is available
for responding to distributed queries. Sample intensional queries related to the descriptions as
depicted in Fig. 3 may include the following:

Query-1. Find the set of common super-terms of course.
Query-2. Find all terms more speci®c than course and all their parts under sense education.
Query-3. Find the smallest common super-term of course of lectures and workshop.
Query-4. Find all parts of the term course.
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Query-5. Which are the common properties of refresher course and seminar?
Query-6. Find all terms which contain the properties lesson and classroom project.
Query-7. What is the de®nition of the term refresher course?
All of the above queries ± except for the last one ± are rather intuitive. The last query returns a

narrative description of the requested term in English (if available).
Finally, when users feel su�ciently informed about the contents and structure of asset schema

terms they have explored, they can pose meaningful distributed database requests which target the
data content of the relevant component databases.

6. Experimentation and performance evaluation

The framework that we described in this paper was implemented on Sun Sparc stations under
Solaris 2 using GNU C++ and CGI scripts. In order to evaluate automated clustering a test
platform based on the clustering of about hundred networked relational databases has been
created. There are two basic areas of experimentation being pursued. Firstly, there is the question
of how well the initial automatic clustering of databases based on each asset's meta-data de-
scription can be performed. That is, the question of ®nding appropriate initial information and
relationships in the presence of large numbers of database sources. The types of experiments
performed here are somewhat allied with the ®eld of information retrieval and clustering. The
second set of experiments deals with the processing and communications necessary to support the
underlying distributed structure by which the generic concepts and their inter-relationships are
implemented, queried and updated. This second group of experiments thus has its roots in the
®elds of distributed/parallel processing and communications performance. Details of both sets of
experiments can be found in [34]. In the following we summarize the ®rst set of experiments.

The ®rst set of experiments are based on the notion of precision and recall (as de®ned within
IR). The precision of the retrieval is the ratio of relevant documents to retrieved documents. A
precision value of 1.0 (or 100%) indicates that all the documents retrieved were relevant. Recall
gives an indication of how many relevant documents were actually retrieved ± and is the ratio of
relevant retrieved documents to relevant documents. To achieve this, a collection of a hundred
relational databases were procured from a large organization's collection of database systems. A
similarity matrix was created based on the comparison of these asset descriptions with each other.
Each row of the matrix represents a ranking of descriptions ± assets ± with respect to queries. The
ranking within each row of the similarity matrix is a consequence of our asset description com-
parison algorithm, and this is compared against a ``perfect'' series of queries and their respective
asset rankings. We generated average recall and precision across many queries to gain an im-
pression of the retrieval e�ectiveness of the system, i.e., how close the automatically generated
ranking of assets are to the perfect manual rankings. We made use of the simple Dice similarity
coe�cient [21] for all experiments, and a baseline was generated by using ``raw'' (unprocessed)
database attributes as the description of an asset. During the experiments two basic factors were
varied: the asset description and the comparison algorithm. The asset description was varied by
adding to the raw terms linguistic aspects of the terms (the e�ect of sense, synonym, hoponym, etc.
inclusion), level of abstraction hierarchy (the e�ect of ontological descriptive terms), and struc-
tural information (the ordering of terms) based on WordNet. Three basic type of comparison
algorithms were used during experimentation: one based on simplistic term matching, a second
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identifying structural similarity based on the notion of spreading activation energy [36], and a
third hierarchical approach to address the perceived di�culties with the previous two methods.

A perfect description and comparison process produces a similarity matrix which ranks da-
tabases such that 100% precision is achieved and all relevant databases are retrieved (100% recall).
This situation is is shown in the upper most curve of the graph in Fig. 8 ± where the manually
generated perfect similarity matrix has been compared to itself - returning an average precision of
100%. The lower curve of the graph shows the raw versus perfect matrix comparison ± and an
average precision of only 55%. The table on the left-hand side of the ®gure documents the recall
precision data and indicates the percentage precision change between the perfect and raw simi-
larity matrices. The points on the precision recall graph can be interpreted as follows. For the raw
case at a recall level of 10 (meaning that when 10% of the relevant databases have been retrieved)
80.8% of those databases retrieved are actually relevant.

Fig. 9 introduces incrementally aspects of the description term generation process for assets. In
the ®rst experiment term strings of the raw data have been ®ltered and normalized to produce basic
description terms. Filtering entails eliminating all solely system related information from the
databases while normalization involves conversion of strings ± where possible ± to corresponding
meaningful terms found in WordNet. The results of this experiment are shown by the curve la-
beled ``Raw + ®lter/norm''and indicate a precision improved by an average increase of 11.8% with
respect to the raw descriptions. A similar situation occurs in the second curve of Fig. 9, termed
``Raw + super'', where the raw description has been augmented with hierarchy (super) level terms
based on the ontological organization of WordNet. Finally, the curve ``Raw + ®lt/norm/super''

Fig. 8. Perfect and raw term (attribute) precision and recall.
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combines the factors of ®ltering, normalization and higher level term descriptions. In [34] further
experiments were conducted by including linguistic properties of terms, semantic, structural and
branching aspects of terms and a variety of IR-based algorithms. By and large, the cumulative
e�ects of these factors are greater than either of the previous graphs ± indicating the importance of
the standard ontology and term interpretation for locating schema information from multiple
databases, see Fig. 10.

7. Summary and future work

The topic-based organization of a multi-database network supports semantic reconciliation of
autonomous interconnected data sources as it helps the users understand what information is
available through the network; helps them categorize and con®gure their information demands on
the basis of the information available to them; and assists them to semantically disambiguate their
speci®ed terms against those provided by the database schemas in a multi-database network. This
architecture enables users to gather and rearrange information from multiple networked data-
bases in an intuitive and easily understandable manner. Large-scale searching is guided by a
combination of lexical, structural and semantic aspects of schema terms in order to reveal more
meaning both about the contents of a requested information item and about its placement within
a given database context. Experience with this con®guration suggests the clustering mechanisms
used provide a valuable discovery service to end users, and that the logical organization used
supports the ability of the system to scale with modest increases in topic label sizes.

Fig. 9. Augmented raw term (attribute) descriptions.
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In the current prototype link weights are established at a clustering phase on a tentative basis
only. However, it is expected that during execution link weights to topics may need to be updated
(strengthened or weakened) over time depending on interaction, new topics may be formed, and
existing topics may need to merge. The next suite of experiments to be performed will deal with
the characteristics of the link weight update and topic split/merge processes. From this policies
will be developed (e.g., delayed/batch updating of topic information), and then evaluated.
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