
On Domain Modelling and Requisite
Variety

Current State of an Ongoing Journey

Henderik A. Proper1,2(B) and Giancarlo Guizzardi3

1 Luxembourg Institute of Science and Technology (LIST),
Belval, Esch-sur-Alzette, Luxembourg

e.proper@acm.org
2 University of Luxembourg, Luxembourg City, Luxembourg

3 Free University of Bolzano, Bozen, Italy
giancarlo.guizzardi@unibz.it

Abstract. In the 1950’s, W. Ross Ashby introduced the Law of Requi-
site Variety in the context of General Systems Theory. A key concept
underlying this theory is the notion of variety, defined as the total num-
ber of distinct states of a system (in the most general sense). We argue
that domain modelling (including enterprise modelling) needs to confront
different forms of variety, also resulting in a need to “reflect”/“manage”
this variety. The aim of this paper is to, inspired by Ashby’s Law of Req-
uisite Variety, explore some of the forms of variety that confront domain
modelling, as well as the potential consequences for models, modelling
languages, and the act of modelling. To this end, we start with a review
of our current understanding of domain modelling (including enterprise
modelling), and the role of modelling languages. We then briefly discuss
then notion of Requisite Variety as introduced by Ashby, which we then
explore in the context of domain modelling.

Keywords: Domain modelling · Conceptual modelling · Requisite
Variety

1 Introduction

In the context of software engineering, information systems engineering, business
process management, and enterprise engineering & architecting in general, many
different kinds of models are used. In this paper, we consider each of these kinds
of models as being valued members of a larger family of domain models.

Domain models have come to play an important role during all stages of the
life-cycle of enterprises and their information and software systems, which also
fuels the need for more fundamental reflection on domain modelling itself. This
includes the act of modelling, the essence of what a model is, and the role of
(modelling) languages. Such fundamental topics have certainly been studied by

c⃝ IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020. All Rights Reserved
J. Grabis and D. Bork (Eds.): PoEM 2020, LNBIP 400, pp. 186–196, 2020.
https://doi.org/10.1007/978-3-030-63479-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63479-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-63479-7_13


On Domain Modelling and Requisite Variety 187

different scholars (e.g. [1,14,24,32,37,38]), as well as by ourselves (see e.g. [7,8,
12,15–18,22,29,31]). At the same time many challenges remain (see e.g. [18,29]).

In this paper, we focus on the challenge of how domain modelling (including
enterprise modelling) needs to deal with different forms of variety, also resulting
in a need to “reflect”/“manage” this variety. In line with this, we will explore
some of the forms of variety that confront domain modelling, as well as the poten-
tial consequences for models, modelling languages, and the act of modelling. We
will do so from the perspective of the Requisite Variety. This concept has been
introduced by W. Ross Ashby [2], in the context of General Systems Theory,
as part of the Law of Requisite Variety, where variety refers to the number of
states of a system (system in the most general sense).

We see this short paper as part of an ongoing “journey” we undertake, with
the aim of deepening our insights into the foundations of domain modelling,
mixing our theoretical work and practical experiences in developing (founda-
tional and core) ontologies and domain models, associated modelling languages,
frameworks, and methods.

The remainder of this paper is structured as follows. Section 2 starts with
a review of our current understanding of domain modelling, while Sect. 3 then
complements this with our view on the modelling languages. We then continue,
in Sect. 4, by reviewing the Law of Requisite Variety as introduced by Ashby [2],
and the notion of Requisite Variety in particular. The notion of Requisite Variety
is then, in Sect. 5, explored further in the context of domain modelling.

2 Domain Models

Based on general foundational work by e.g. Apostel [1], and Stachowiak [37],
more recent work on the same by different authors [19,32,33,38], as well as our
own work [7,15,16,22,31], we consider a domain model to be: An artefact that
is acknowledged by an observer to represent an abstraction of some domain for a
particular purpose. Each of the stressed words in this definition requires a further
explanation, and as we will see in Sect. 5, results in different kinds of variety.

A model is seen as an artefact ; i.e. it is something that exists outside of our
minds. In our fields of application, this artefact typically takes the form of some
“boxes-and-lines” diagram. More generally, however, it can, depending on the
purpose at hand, take different forms including text, mathematical specifications,
physical objects, etc.

With domain, we refer to “anything” that one can speak/reflect about explic-
itly. It could be “something” that already exists in the “real world”, something
desired towards the future, or something imagined. The observer observes the
domain by way of their senses and/or by way of (self) reflection. What results
in the mind of the observer is, what is termed a conceptualisation in [16], but
also what is termed conception in [13].

When the modelled domain pertains to a part/perspective/aspect of an
enterprise, then one can indeed refer to the resulting domain model as an enter-
prise model. This may, include enterprise (wide) data models, enterprise archi-
tecture models, etc.



188 H. A. Proper and G. Guizzardi

As, it is ultimately the observer who needs to acknowledge the fact that
the artefact is indeed a model of the domain, it actually makes sense to treat
their conceptualisation/conception of the domain as the de-facto “proxy” for the
domain. As such, we should also realise that the observer observes the model (as
artefact) as well, which therefore also creates a conceptualisation (in their mind)
of the modeler. The observer, therefore, needs to validate the alignment between
their model-conceptualisation and their domain-conceptualisation, using the pur-
pose as alignment criterion.

Models are produced for a purpose. In the context of enterprise modelling, [28]
suggest (at least) seven high-level purposes for the creation of enterprise mod-
els: understand, assess, diagnose, design, realise, operate and regulate. In specific
situations, these high-level purposes will need to be made more specific in terms
of, e.g., the need for different stakeholders to understand, agree, or commit to
the content of the model [30], or for a computer to be able to interpret the
model in order to e.g. automatically analyse it, use it as the base of a simula-
tion/animation, or even execute it.

A model is the representation of an abstraction of the domain. This implies
that, in line with the purpose of the model, some (if not most) “details” of the
domain are consciously filtered out. For domain modelling, important abstrac-
tion flavours are [5]: (1) selection, where we decide to only consider certain
elements and/or aspects of the domain; (2) classification (including typing); (3)
generalisation; and (4) aggregation.

As a result, an observer actually needs to harbour (at least) four conceptu-
alisations: (1) a “full” conceptualisation of the domain (as they “see” it), (2) a
conceptualisation of the purpose for the model, (3) an abstracted conceptuali-
sation of the domain, (4) a conceptualisation of the artefact that is (to be) the
model representing the latter abstraction.

The latter has been illustrated in Fig. 1, where we see how the conceptu-
alisation of the purpose modifies the abstraction, and the alignment between
the conceptualisations of the model and the abstraction. The purpose may
actually already influence the original observation of the domain. When the
model-conceptualisation corresponds to the abstraction-conceptualisation, then
the observer would agree that the artefact is a model of the domain for the
given purpose. As a consequence, different models may indeed result in the same
model-conception, in which case (for the observer) they are equivalent models
of the same domain (for the same purpose). If the observer is “the modeller”,
i.e. the person creating the model, they also need to “shape” the model in such
a way that it best matches their desired model-conceptualisation.

In line with the above discussion, a domain model should be (the representa-
tion of) the abstraction of (the conceptualisation of) a domain. At the same time,
for different computational purposes, such as the ability to use the model as a
base for simulation, computer-based reasoning, execution, or database design, it
may be necessary to make “compromises” to the conceptual model. These com-
promises result in a model that does not correspond to (an abstraction of) the



On Domain Modelling and Requisite Variety 189

Purpose

Model

Model Abstraction Domain Domain
observeabstract

representobserve

Purpose

observe

aligned?

conceptualisation

Fig. 1. Conceptualisations involved in domain modelling

original domain. They are essentially models of a “close enough” approximation
of (the conceptualisation of) the original domain.

This is where we suggest to make a distinction between conceptual domain
models and computational design model in the sense that a conceptual domain
model is: “A model of a domain, where the purpose of the model is dominated
by the ambition to remain as-true-as-possible to the original domain conceptu-
alisation”, while a computational design model includes compromises needed to
support computational design considerations that e.g. support simulation, ani-
mation, or even execution of the model.

Note the use of the word ambition in the definition of conceptual domain
model. We are not suggesting there to be a crisp border between conceptual
models and computational design models. However, the word ambition also sug-
gest that a modeller/observer, as their insight in a domain increases, should be
driven to reflect on the conceptual purity of their conceptualisation and of the
resulting model.

Computational design models certainly have an important role to play. How-
ever, it is important to be aware of the compromises one has made to the original
domain conceptualisation. As such, it is also possible that one conceptual model
has different associated computational design models, each meeting different
purposes.



190 H. A. Proper and G. Guizzardi

3 The Role of Modelling Languages

In its most general form a language identifies the conventions to which the expres-
sions in the language should conform to. In a domain modelling context, these
conventions are often equated to a definition in terms of a concrete visual syn-
tax, and a grammar in terms of a set of rules, while the semantics are defined in
terms of some mathematical structure (formal semantics [21]) or an ontological
theory (ontological or real-world semantics [12]). However, style guides, refer-
ence models, patterns, etc., can also be seen as part of the set of conventions
that define a (modelling) language.

Sometimes, a modelling language comes in the form of a number of connected
sub-languages. Typical examples are ARIS [34], UML [26] and ArchiMate [3,23],
each featuring more specific languages focused on one aspect or layer, as well
as (some more, some less) the integration/coherence between these aspects or
layers.

We argue that, if a model is represented in some (pre-)defined language,
then the (relevant part of the) definition of that language should actually be
seen as being a part of the model. This also allows us to illustrate the role of the
modelling language in the sense of providing a trade off. If, given some purpose,
there is a need to represent an abstraction A, and one has a choice between
using a language L1 with an elaborate set of conventions (the light grey part), or
using a language L2 with only a more limited set of conventions (the dark grey
part), then this will lead to a difference in the size of the (situation specific parts
of the) model one would still need have to specify. This has been illustrated in
Fig. 2, where we show that the “size” of the two models as a whole remains the
same. Of course, the notion of “size” is to be clarified. We will return to this in
Sect. 5 when discussing the consequences of the Requisite Variety, as the “size”
indeed connects directly to the variety of the model.

M1: A in L1 M2: A in L2

Fig. 2. Trade off between languages with different sizes of their definition

A final consideration is the fact that the conventions which define a modelling
language need to reflect the intended set of valid models. Which also means
that these conventions need to accommodate all the possible purposes of these
intended models. For standardised general purpose languages, such as UML [26],
BPMN [27] or ArchiMate [3,23], this does lead to tensions, as the set of purposes
keeps growing, resulting in a continuous growth of the set of allowable models,



On Domain Modelling and Requisite Variety 191

thus also triggering a growth in the “size” of the body of conventions defining
these languages [6,8].

As such, the we should also realise that the grey parts in Fig. 2 amount only
to that part of the respective languages that are relevant for the interpretation
of the white parts. However, the other parts of the language will also need to
be learned by the “users” of the language, or at least be visible as part of the
standard.

4 Requisite Variety

The Law of Requisite Variety by W. Ross Ashby [2] is one of the defining con-
tributions to the field of General Systems Theory and Cybernetics in particular.
This law postulates that when a system C aims to control/regulate parts of the
behaviour of a system R, then the variety of C should (at least) match the vari-
ety of that part of R’s behaviour it aims to control; “only variety can destroy
variety” [2, page 2020]. The notion of Requisite Variety, which also builds on
Shannon’s Information Theory [35], refers to the variety that is required from
the controlling system, where variety refers to the number of states of a system
(system taken in the most general sense).

In the context of the Law of Requisite Variety it is also important to clearly
understand the scope of the system that would need to be controlled. For exam-
ple, controlling a car in the sense of getting it into motion and steering it in
a certain direction on an empty car park, is quite different from driving a car
through busy traffic. The latter system clearly needs to deal with a larger variety.

It is also important to realise that the earlier remark “the variety of C should
(at least) match the variety of that part of R’s behaviour it aims to control”, is
actually directly related to the notion of abstraction as discussed in Fig. 1. The
controlling system C does need, in line with its steering goal/purpose, to have
access to a relevant abstraction/model of the aspects of R it aims to control.
More recently, [20] formulated this as (stress added by us): “ The analogy of
structure between the controller and the controlled was central to the cybernetic
perspective. Just as digital coding collapses the space of possible messages into a
simplified version that represents only the difference that makes the difference,
so the control system collapses the state space of a controlled system into a
simplified model that reflects only the goals of the controller. Ashby’s law does
not imply that every controller must model every state of the system but only
those states that matter for advancing the controller’s goals . Thus, in
cybernetics, the goal of the controller becomes the perspective from which
the world is viewed .”

In our understanding, domain modelling involves different flavours of variety.
In the next section, we will explore these in more detail. The existence of these
varieties (as well as complexities) has inspired us to try and follow the logic
behind Ashby’s Law of Requisite Variety, and apply this in the context of domain
modelling. In doing so, however, we should indeed not forget that the Law of
Requisite Variety, is defined in the context of one system controlling (aspects of)



192 H. A. Proper and G. Guizzardi

another system. As such, it would have been better to refer to it as the Law of
Requisite Variety of systems controlling systems.

The latter raises three main questions: (1) how to define variety in the context
of domain modelling, (2) what is “that” what may need to have requisite variety,
and (3) would this indeed result in a law akin to the Law of Requisite Variety?
In line with the explorative nature of this paper, this paper will certainly not
provide the full answer to these questions. In the next section, while discussing
(some of the) flavours of variety as we (currently) understand to exist in relation
to domain modelling, we will also reflect on these three questions.

5 Requisite Variety in Domain Modelling

In this section, we explore (some of) the flavours of requisite variety we may
encounter in the context of domain modelling.

Requisite variety needed to conceptualise a domain – When conceptualising a
domain (see Fig. 1), an observer needs to deal with variety in the domain, uncer-
tainties about properties of the domain, as well as complexity of the domain.
The combination of these yields a requisite variety that needs to be met by the
observer(s) of the domain that is to be modelled, in the sense that:
– the observer should harbour a conceptualisation in their mind, catering for
the variety-in, uncertainties-about, and complexity-of the domain,

– understanding this conceptualisation (e.g. to be able to make an abstraction
in line with a modelling purpose) requires a certain “mental state space”,

– the later corresponds to the need for variety from the observer; i.e. requisite
variety.

Towards future research, it would be beneficial to better qualify, or even quantify,
how the variety-in, uncertainties-about, and complexity-of the domain results in
a requisite variety that needs to be (potentially) matched by the cognitive ability
of the observer.

Residual requisite variety in relation to the model purpose – Driven by the model
purpose, there is a need to capture a relevant (but not trivialised) part of the
domain. In other words, the observer(s) will need to make an abstraction (see
Fig. 1) of the domain. As the abstraction involves filtering out “details”, one
would expect that the residual requisite variety needed from the observer, to
harbour the abstraction in their mind, is less than the requisite variety needed
for the “full” domain conceptualisation.

In line with Fig. 1, the resulting model will also need to meet the residual
requisite variety, in the sense that the latter needs to be captured in terms
of the “informational payload” of the model (indeed, also linking back to the
information-theoretical [35] roots of Ashby’s Law of Requisite Variety.

The relation between the original requisite variety of a domain, and the
residual requisite variety of an abstraction, is also related to the point made
in [20] regarding the need of a controlling system to have a model of the controlled
system, tuned to the steering goals.



On Domain Modelling and Requisite Variety 193

Requisite variety trade-offs related to modelling languages – In Sect. 3, we already
pointed (see Fig. 2) at the need to essentially include the (relevant parts of the)
definition of the modelling language in a model. The whole of the specified model
(the white parts in Fig. 2) and the parts provided by the language (the gray parts
in Fig. 2) need to match the variety of the abstraction. The border between these,
however, depends on the language used.

Of course, when using a “thin” language with a small set of conventions, it
may be easy to learn the language, and also easy to create modelling tools that
support the language. At the same time, specifying the actual models (the white
parts in Fig. 2) will require more effort than it would cost when using a language
with more pre-defined concepts and conventions. Provided of course, that these
(pre-defined concepts and conventions) indeed meet the modelling purpose, and
domain, at hand.

Here it is also interesting to refer back to older discussions (in the field of
information systems engineering) regarding the complexity of modelling nota-
tions. As also mentioned by Moody [25], models need to provide some informa-
tional payload. A simpler notation might be easier to learn, and easier to look
at when used in models, but when it cannot “carry” the needed informational
payload, then the more “simpler” notation may actually turn out to be a liability
(given that it transfers the modeling complexity to the modeler).

Towards future research, it would also be beneficial to better qualify, or
even quantify, how abstraction actually results in a reduction of requisite variety
facing observers of a domain, as well as the “informational payload” needed from
the model. In addition, in terms of such insights, it would also be possible to
more specifically reason about that part of the variety that should preferably by
covered by a (domain specific language), and which part should be left to the
actual model.

Requisite variety originating from social-complexity – The context in which the
model is to be used may involve different stakeholders, uncertainty about their
interests, backgrounds, etc. This is where, based on experiences from the IBIS
project [9], Conklin coins the term social complexity [10,11].

Social complexity poses a risk on the successful outcome of development
projects. As such, it is an aspect (with its variety) of a system (the development
project), which would need to be managed. In this case, the original Law of
Requisite Variety in the sense of Law of Requisite Variety of systems controlling
systems, seems to apply.

Part of the variety that is due to the social complexity will need to be
met/managed by the overall development/engineering process. However, the
more finer grained processes/tasks in which domain models are actually cre-
ated/used, in particular when multiple stakeholders are involved, will also need
to deal with this variety. Especially since, in terms of Fig. 1, they will need to
agree on the purpose/goals of the model, the abstraction to be made, and its
representation in terms of the model.



194 H. A. Proper and G. Guizzardi

A future research challenge would be to, on the one side, once again fur-
ther qualify or even quantify the involved variety, as well as show how different
collaborative modelling strategies [4,36] may deal with this variety.

6 Conclusion

In this paper, inspired by Ashby’s Law of Requisite Variety, we explored some
of the forms of variety that confront domain modelling, as well as the potential
consequences for models, modelling languages, and the act of modelling.

We first provided a review of our current understanding of domain mod-
elling (including enterprise and conceptual modelling), and the role of modelling
languages.

Using this as a base, we then explored some of the possible conse-
quences/challenges of the notion of requisite variety in a domain modelling con-
text.

As mentioned in the introduction, we see this paper as part of an ongo-
ing “journey”, with the aim of deepening our insights into the foundations of
domain modelling. In line with this, we certainly do not claim this paper to be
a fully finished work. These are reflections providing a snapshot of our current
understanding of these topics. We hope they will trigger debates in the modeling
community, which we expect to provide fruitful insights to the next steps of this
journey.

Acknowledgements. We would like to thank the anonymous reviewers for their com-
ments on earlier versions of this short paper

References

1. Apostel, L.: Towards the formal study of models in the non-formal sciences. Syn-
these 12, 125–161 (1960). https://doi.org/10.1007/978-94-010-3667-2 1

2. Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall, London (1956)
3. Band, I., et al.: ArchiMate 3.0 specification. The open group (2016)
4. Barjis, J., Kolfschoten, G.L., Verbraeck, A.: Collaborative enterprise modeling. In:

Proper, E., Harmsen, F., Dietz, J.L.G. (eds.) PRET 2009. LNBIP, vol. 28, pp.
50–62. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01859-6 4

5. Batini, C., Mylopoulos, J.: Abstraction in conceptual models, maps and graphs. In:
Tutorial presented at the 37th International Conference on Conceptual Modeling,
ER 2018, Xi’an, China (2018)

6. Bjeković, M.: Pragmatics of enterprise modelling languages: a framework for under-
standing and explaining. Ph.D. thesis, Radboud University, Nijmegen, the Nether-
lands (2018)

7. Bjeković, M., Proper, H.A., Sottet, J.-S.: Embracing pragmatics. In: Yu, E., Dob-
bie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 431–444.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12206-9 37

8. Bjeković, M., Proper, H.A., Sottet, J.-S.: Enterprise modelling languages. In:
Shishkov, B. (ed.) BMSD 2013. LNBIP, vol. 173, pp. 1–23. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06671-4 1

https://doi.org/10.1007/978-94-010-3667-2_1
https://doi.org/10.1007/978-3-642-01859-6_4
https://doi.org/10.1007/978-3-319-12206-9_37
https://doi.org/10.1007/978-3-319-06671-4_1


On Domain Modelling and Requisite Variety 195

9. Conklin, J.: The IBIS Manual: a short course in IBIS methodology. Touchstone
(2003)

10. Conklin, J.: Dialogue Mapping: Building Shared Understanding of Wicked Prob-
lems. Wiley, New York (2005)

11. Conklin, J.: Wicked Problems and Social Complexity. Technical report CogNexus
Institute, Edgewater, Maryland (2006)

12. de Carvalho, V.A., Almeida, J.P.A., Guizzardi, G.: Using reference domain ontolo-
gies to define the real-world semantics of domain-specific languages. In: Jarke, M.,
et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 488–502. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-07881-6 33

13. Falkenberg, E.D., et al. (eds.): A Framework of Information Systems Concepts.
IFIP WG 8.1 Task Group FRISCO, IFIP, Laxenburg (1998)

14. Frank, U.: Multi-perspective enterprise modeling (MEMO) - conceptual framework
and modeling languages. In: HICSS 2002: Proceedings of the 35th Annual Hawaii
International Conference on System Sciences (HICSS 2002)-Volume 3, , Los Alami-
tos, California, Washington, DC, p. 72. IEEE Computer Society Press (2002)

15. Guarino, B., Guizzardi, G., Mylopoulos, J.: On the philosophical foundations of
conceptual models. Inf. Model. Knowl. Bases XXXI 321, 1 (2020)

16. Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages,
and (meta)models. In: Vasilecas, O., Eder, J., Caplinskas, A. (eds.) Databases and
Information Systems IV - Selected Papers from the Seventh International Baltic
Conference, DB&IS 2006, July 3–6, 2006, Vilnius, Lithuania. Frontiers in Artificial
Intelligence and Applications, vol. 155, pp. 18–39. IOS Press (2006)

17. Guizzardi, G.: Theoretical foundations and engineering tools for building ontologies
as reference conceptual models. Semantic Web 1(1, 2), 3–10 (2010)

18. Guizzardi, G.: Ontological patterns, anti-patterns and pattern languages for next-
generation conceptual modeling. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.)
ER 2014. LNCS, vol. 8824, pp. 13–27. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-12206-9 2

19. Harel, D., Rumpe, B.: Meaningful modeling: what’s the semantics of ”semantics”?
IEEE Comput. 37(10), 64–72 (2004). https://doi.org/10.1109/MC.2004.172

20. Hillis, W.D.: The first machine intelligences. In: Brockman, J. (ed.) Possible Minds:
Twenty-Five Ways of Looking at AI, pp. 170–180. Penguin Publishing Group, New
York (2019)

21. Hofstede, A.H.M.T., Proper, H.A.: How to formalize it? Formalization principles
for information system development methods. Inf. Softw. Technol. 40(10), 519–540
(1998)

22. Hoppenbrouwers, S.J.B.A., Proper, H.A.E., van der Weide, T.P.: A fundamental
view on the process of conceptual modeling. In: Delcambre, L., Kop, C., Mayr,
H.C., Mylopoulos, J., Pastor, O. (eds.) ER 2005. LNCS, vol. 3716, pp. 128–143.
Springer, Heidelberg (2005). https://doi.org/10.1007/11568322 9

23. Lankhorst, M.M., et al.: Enterprise Architecture at Work - Modelling, Communica-
tion and Analysis. The Enterprise Engineering Series, 4th edn. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-53933-0

24. Mahr, B.: On the epistemology of models. In: Abel, G., Conant, J. (eds.) Rethinking
Epistemology, pp. 1–301. De Gruyter, Berlin (2011)

25. Moody, D.L.: The “physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779
(2009)

https://doi.org/10.1007/978-3-319-07881-6_33
https://doi.org/10.1007/978-3-319-12206-9_2
https://doi.org/10.1007/978-3-319-12206-9_2
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1007/11568322_9
https://doi.org/10.1007/978-3-662-53933-0


196 H. A. Proper and G. Guizzardi

26. OMG: OMG Unified Modeling Language (OMG UML), Infrastructure, V2.1.2.
Technical report The Object Management Group, Needham, Massachusetts,
November 2007

27. OMG: Business Process Modeling Notation, V2.0. Technical report OMG Doc-
ument Number: formal/2011-01-03, Object Management Group, Needham, Mas-
sachusetts, January 2011

28. Proper, H.A.: Digital enterprise modelling - opportunities and challenges. In: Roe-
lens, B., Laurier, W., Poels, G., Weigand, H. (eds.) Proceedings of 14th Interna-
tional Workshop on Value Modelling and Business Ontologies, Brussels, Belgium,
16–17 January 2020. CEUR Workshop Proceedings, vol. 2574, pp. 33–40. CEUR-
WS.org (2020). http://ceur-ws.org/Vol-2574/short3.pdf

29. Proper, H.A., Bjeković, M.: Fundamental challenges in systems modelling. In:
Mayr, H.C., Rinderle-Ma, S., Strecker, S. (eds.) 40 Years EMISA 2019, pp. 13–
28. Gesellschaft für Informatik e.V, Bonn (2020)

30. Proper, H.A.E., Hoppenbrouwers, S.J.B.A., Veldhuijzen van Zanten, G.E.: Commu-
nication of enterprise architectures. Enterprise Architecture atWork. TEES, pp. 59–
72. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53933-0 4

31. Proper, H.A., Verrijn-Stuart, A.A., Hoppenbrouwers, S.J.B.A.: On utility-based
selection of architecture-modelling concepts. In: Hartmann, S., Stumptner, M.
(eds.) Conceptual Modelling 2005, Second Asia-Pacific Conference on Conceptual
Modelling (APCCM2005), Newcastle, NSW, Australia, January/February 2005.
Conferences in Research and Practice in Information Technology Series, Sydney,
New South Wales, Australia, vol. 43, pp. 25–34. Australian Computer Society
(2005)

32. Rothenberg, J.: The Nature of modeling. In: Widman, L.E., Loparo, K.A., Nielsen,
N.R. (eds.) Artificial Intelligence. Simulation & Modeling, pp. 75–92. Wiley, New
York (1989)

33. Sandkuhl, K., Fill, H.-G., Hoppenbrouwers, S., Krogstie, J., Matthes, F., Opdahl,
A., Schwabe, G., Uludag, Ö., Winter, R.: From expert discipline to common prac-
tice: a vision and research agenda for extending the reach of enterprise model-
ing. Bus. Inf. Syst. Eng. 60(1), 69–80 (2018). https://doi.org/10.1007/s12599-017-
0516-y

34. Scheer, A.W.: Architecture of Integrated Information Systems: Foundations of
Enterprise Modelling. Springer, Heidelberg (1992). https://doi.org/10.1007/978-
3-642-97389-5

35. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 22,
379–423 (1948)

36. Ssebuggwawo, D., Hoppenbrouwers, S., Proper, E.: Interactions, goals and rules
in a collaborative modelling session. In: Persson, A., Stirna, J. (eds.) PoEM 2009.
LNBIP, vol. 39, pp. 54–68. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-05352-8 6

37. Stachowiak, H.: Allgemeine Modelltheorie. Springer, Heidelberg (1973)
38. Thalheim, B.: The theory of conceptual models, the theory of conceptual mod-

elling and foundations of conceptual modelling. In: Embley, D., Thalheim, B. (eds.)
Handbook of Conceptual Modeling, pp. 543–577. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-15865-0 17

http://ceur-ws.org/Vol-2574/short3.pdf
https://doi.org/10.1007/978-3-662-53933-0_4
https://doi.org/10.1007/s12599-017-0516-y
https://doi.org/10.1007/s12599-017-0516-y
https://doi.org/10.1007/978-3-642-97389-5
https://doi.org/10.1007/978-3-642-97389-5
https://doi.org/10.1007/978-3-642-05352-8_6
https://doi.org/10.1007/978-3-642-05352-8_6
https://doi.org/10.1007/978-3-642-15865-0_17

