A Fact-Oriented Approach to Activity Modeling

H.A. (Erik) Proper, S.J.B.A. Hoppenbrouwers, and Th.P. van der Weide

Institute for Computing and Information Sciences, Radboud University Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, EU
{E.Proper, S.Hoppenbrouwers, Th.P.vanderWeide}@cs.ru.nl

Abstract. In this paper we investigate the idea of using an ORM model
as a starting point to derive an activity model, essentially providing an
activity view on the original ORM model. When producing an ORM
model of an inherently active domain, the resulting ORM model can
provide an appropriate base to start out from. We will illustrate this
basic idea by means of a running example. Much work remains to be
done, but the results so-far look promissing.

1 Introduction

As argued before [7], ORM is not just suitable for the conceptual design of
databases, but for the analysis of domains in general. Even if automation of
some functionality is not a goal, ORM can be used to formalize and under-
stand domains.

In this paper we propose to use ORM’s fact oriented approach in the context
of activity modeling. Addmittedly, the work is still at a preleminary stage. Much
further work remains to be done. The basic idea is to provide a smooth transition
from an ORM model of an active domain to an activity model of that domain.
The approach we propose is to indeed start out from a ‘plain’” ORM model, and
then to add ‘temporal dependencies’ between the fact types in the model. These
temporal dependencies are preludes towards the actual triggering relationships
between activity types and are therefore based on triggering mechanisms found
in workflow modeling approaches. We use YAWL (Yet Another Workflow Lan-
guage) [I] as a reference point. YAWL is a workflow language which aims to
cover a range of workflow patterns that is as wide as possible [1].

Note that the resulting activity model really corresponds to a specific view
of the underlying ORM model. Not all details present in an ORM model will
appear in an activity model ‘view’ of the ORM model. Activity models are
particularly suited to display the intended flow of activities, while an ORM
model provides a much more generic perspective on the same domain. Most
notably, the rich variety of constraints will not re-appear in the activity model
‘view’ of an ORM model.

Once the temporal dependencies have been determined, the fact types that
are present in the ORM model of an (active) domain can be examined more
closely. In this step the aim is to identify the actors that perform activities, the
activities they perform and the actands which these activities are performed on.

R. Meersman et al. (Eds.): OTM Workshops 2005, LNCS 3762, pp. 666-[675 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Fact-Oriented Approach to Activity Modeling 667

This leads to an ORM model with roles that are explicitly classified in terms of
their kind of involvement in activities.

From this attributed ORM model, an activity model can be derived rather
mechanically. In follow up research we are looking into ways of further mech-
anising the derivation of activity models from an attributed ORM model and
also to maintain this link during the modeling process. We envisage modelers
being able to manipulate the activity models while the underlying ORM domain
model is kept up-to-date as well.

Note that the approach suggested does not particularly favor an event-driven,
a process-driven or a data-driven modeling approach. ORM is used as a language
to model domains in general, starting out from a fact-oriented perspective on the
domain. In other words, the domain that is modeled (be it processes, data, or
events) is viewed as being represented as a set of facts. These facts may deal with
processes that occur in a domain or may deal with the kind of data/information
that is being manipulated in the domain.

2 Temporal Ordering of Facts

As a running example, consider the following verbalizations (at the type level)
of a domain dealing with patients visiting doctors:

A Person fills in a Form A Person is examined by a Doctor

A Doctor produces a Diagnose A Doctor writes a Prescription
This leads to the situation as depicted in Figure [[l Suppose now that in this
domain we have the case that:

Before a Person can be examined by a Doctor, s/he should have filled in a Form.
Before a Doctor produces a Diagnose, a Person should have been Examined.
Before a Doctor writes a Prescription, a Person should have been Diagnosed.

These rules, however, still provide an incomplete picture. The examination, the
diagnosing, and the writing of a prescription should, for a given doctor’s visit,

fills out

Person

examines

Diagnose
produces

Prescription

Doctor

Fig. 1. Basic model of a visit to a Doctor

668 H.A. Proper, S.J.B.A. Hoppenbrouwers, and Th.P. van der Weide

Person

Diagnose

Prescription

Fig. 2. Doctor visits

all be performed by the same doctor. Even more, as a person may visit a doctor
twice for two different reasons, the diagnose and prescription really pertain to a
specific doctor visit. This leads to the situation as depicted in Figure

In defining the semantics of the depicted temporal dependencies a time axis
is needed. When observing the universe of discourse at point in time ¢; we may
observe: Person 'John’ fills out Form 'A20.9012', at some later point in time to
John may have finished filling out the form. This means that at to we cannot
observe Person 'John' fills out Form 'A20.9012". We could, for the sake of the
example, imagine that at to Doctor 'Smith’ examines Person 'John’ while this was
not (yet) the case at t;.

Person

Diagnose

Doctor
Visit

Prescription

Fig. 3. Doctor visits with alternative semantics

A Fact-Oriented Approach to Activity Modeling 669

State sequence: State sequence:
Doctor Visit Doctor Visit

fills out fills out

() T

examines| examines|

Person LE:‘\ Person L‘:f

Doctor Diagnose Doctor
@

es produces
Prescription 4@ Prescription 4@

writes writes

Diagnose

il
P

Fig. 4. Compact versions of Doctor visit

Informally, the semantics of the double arrow can now be defined as follows.
All role combinations at the source of the arrow should cease to exist (in time)
just before role combinations at the destination of the arrow come into existance.
A proper formalisation of the semantics of such temporal dependencies is beyond
the scope of this paper. It can, however, be defined in terms of the temporal
semantics associated to ORM as provided in e.g. [8].

Note that work on object life cycles as reported in e.g. [2] focuses on the
temporal depencies of roles (in facts) that are played by (the instances of) one
object type only. However, to be able to arrive at activity models describing the
concerted behavior of several objects within a domain, a notation as shown-in /
suggested-by Figure [2]is needed.

Now consider the situation as depicted in Figure[3l This time, the doctor who
examined the patient does not have to be the doctor producing the diagnose.

Since the diagrams of Figure[2 and[3 are rather complex, we introduce (in line
with the notation proposed in [3]) the graphical notation as shown in Figure [l

Based on the notation used in YAWL [1], the temporal dependencies may be
combined to form complex synchronisation patterns. This is illustrated in Figure[El

OR Exclusive OR AND

R
I

T ﬂ@: S %:’f ﬂ@:

Combining joins & splits ‘ %% ‘

Fig. 5. Complex synchronisation

670 H.A. Proper, S.J.B.A. Hoppenbrouwers, and Th.P. van der Weide

State sequence:
Doctor Visit

fills out

/@7

examines

Person Ji_[

Diagnose [] Y Doctor

produce;

Drug

N M

dispences

Fig. 6. Choice of medication

An example of the use of a complex synchronisation pattern is provided in
Figure[dl In this model, a doctor can either dispense a drug directly, (exclusive)
or provide a prescription.

3 Classification of Roles

In activity modeling we are concerned with modeling of domains that are active.
So there must be objects in the domain playing an active role. These activities
should be reported in the facts that can be verbalized when capturing the uni-
verse of discourse. The aim of this section is to take a closer look at these facts
in order to find the activities, the actors who perform them and the actands
they are performed on. When the activities occur is captured by the temporal
dependencies as discussed in the previous section.

With these new modeling concepts, we can typically take ORM domain mod-
els and “annotate” them in terms of the refined concepts. We will base this
process of annotation on linguistic foundations in line with the ORM tradition.
Based on these annotated ORM models, we expect to be able to mechanically
derive models in a notation that is better suited for the modeling of activities.

Let us now, as an example, consider the following domain:

A person with name James is writing a letter to his loved one, at the desk in a romantically lit room,
on a mid-summer’s day, using a pencil, while the cat is watching.

with elementary facts:

A person is writing a letter

This person has the name James

This letter has a romantic nature

This letter has intended recipient James's loved one

The writing of this letter by James, occurs on a mid-summer’s day

A Fact-Oriented Approach to Activity Modeling 671

The writing of this letter by James, is done using a pencil

The writing of this letter by James, is done while the cat is watching
The writing of this letter by James, is taking place at a desk

This desk is located in a room

This room is romantically lit

Within these elementary facts, several players can be identified. In the above
example, we can isolate the players and facts as follows:

[A person] is writing [a letter]

[This person] has [the name James]

[This letter] has a [romantic nature]

[This letter] has intended recipient [James’s loved one]

[The writing of this letter by James], occurs on a [mid-summer’s day]
[The writing of this letter by James], is done using [a pencil]

[The writing of this letter by James], is done while [the cat] is watching
[The writing of this letter by James], is taking place at [a desk]

[This desk] is located in [a room]

[This room] is lit in [a romantic] way

The writing of the letter is the central fact in the above domain. All players in
the facts describing the above domain are players in this domain. What are the
activities, actors and actands? Several degrees of activeness exist with regards
to the role which a player plays in a fact/domain. Numerous linguistics-oriented
frameworks exist to classify the roles that objects play in sentences/facts (for
example [5]). In our case we are primarily interested in distinguishing between
actors and actands. With this aim in mind, we propose the following classification
scheme for roles. The secondary classification level is mainly intended to better
and further clarify the top level classification. On a scale of decreasing activity:

Actor role — A role where the player is regarded as carrying out an activity. Linguists may also

use the term agentive.

In the example domain: The person.

Two sub-classes may be identified:

Initiating role — An agentive role, where the player is regarded as being the initiator of the
activity.

Reactive role — A non-initiating agentive role.

Actand role — A role where the player is regarded as experiencing/undergoing an activity.

In the example domain: a letter, a loved one and the cat.

Three sub-classes may be identified:

Patient role — An experiencing role, where the player is regarded as undergoing changes (in-
cluding its very creation) as intended by the actor.

Beneficiary role — An experiencing role, where the player is regarded as the beneficiary
and/or recipient of the results of the activity.

Contextual role — A role where the player is regarded as being a part of the context in which the
activity takes place. This role typically corresponds to the “adjuncts” in natural language.
Four sub-classes may be identified:

Instrumental role — A role where the player is regarded as being an instrument in an activity.
In the example domain: a desk and a pencil.

Spatial-locative role — A role, where the player is regarded as being the physical location of
an activity.
In the example domain: the desk and the room.

Temporal-locative role — A role, where the player is regarded as being a temporal orienta-
tion of the activity.
In the example domain: mid-summer’s day

Catalysing role — A role, where the presence of the player is regarded as being beneficial
(either in a positive or a negative way) to an activity.
In the example domain: the room lit in a romantic way.

Observative role — An experiencing role, where the player is regarded as observing/witnessing
the activity
In the example domain: the cat.

Predicative role — A role where the player is regarded as being a predicate on some other player.
In the example domain: the name James.

672 H.A. Proper, S.J.B.A. Hoppenbrouwers, and Th.P. van der Weide

Each role in an elementary fact must fit within one of these classes. The choice
between the different classes is subjective. It depends on the viewer. An elemen-
tary fact is an activity if-and-only-if it contains at least one actand or actor role,
otherwise it is a predication. The objects playing the four main classes of roles are
regarded as the actors, actands, context elements, and predicators respectively.

For the example given above, we would have:

Activity: [Actor: A person] is writing [Actand: a letter]

Predication: [This person] has [the name James]

Predication: [This letter] has a [romantic nature]

Predication: [This letter] has intended recipient [James's loved one]

Predication: [The writing of this letter by James], occurs on a [mid-summer’s day]

Predication: [The writing of this letter by James], is done using [a pencil]

Predication: [The writing of this letter by James], is done while [the cat] is watching

Predication: [The writing of this letter by James], is taking place at [a desk]

Predication: [This desk] is located in [a room]
Predication: [This room] is lit in [a romantic] way

In the example domain, the writing of the letter by the person is regarded as
the key activity in the domain. In other words, writing is an activity, while the
person is the actand and the letter is the actand. We may regard the cat and the
loved one as an actand as well. What about the pen, the name James, the desk,
etc? They are really players in predications over the other players. The fact that
a pen is used by the person to write the letter is a predication of the writing
activity.

If we were to zoom in on a sub-domain of the above sketched domain, we
could actually find that what is an actand in the super-domain is an actor in
the sub-domain. Consider, for example, the sub-domain:

[The writing of this letter by James], is done while [the cat] is watching

When considered in isolation, one may quite easily argue that the primary activ-
ity here is the watching, which is something that is being done by the cat. This
really makes the cat into an actor rather than an actand, while the thing that
is being watched (the writing) becomes the actand. This means that our notions
of actor, actand, activity and predication are really to be taken relative to the
domain under consideration.

As mentioned before, the work reported is still in its preleminary stages. One
of the work that remains to be done is the provision of a sound theoretical base
by which modelers can determine wether an object is a actor, actand or activity.
In doing so, we plan on integrating the work on DEMO [9], which has a sound
theoretical base in speech-act theory [4].

When taking our example domain of doctor visits we have:

Activity: [Actor: Person] fills out [Actand: Form]

Activity: [Actor: Doctor] examines [Actor: Person]

Activity: [Actor: Doctor] produces [Actand: Diagnose]
Activity: [Actor: Doctor] writes [Actand: Prescription]

Note that we have chosen to regard the person, who is being examined, as
an actor as well. It is an example of a collaborative activity. Graphically, we
now obtain the situation as depicted in Figure[ll Note that the classification is
associated to the roles. Even though the example does not show it, an object

A Fact-Oriented Approach to Activity Modeling 673

State sequence:
Doctor Visit

fills out

Form
=

}
produces %

% actor = %

actand= ~—

Person

Diagnose

i

s
.

Prescription

T
H

writes

Fig. 7. Attributed ORM model of a Doctor visit

may (for obvious reasons) be an actor in one activity, while it is an actand in
another one.

Finally, Figure® depicts the two variations of the doctor visit example domain
as an activity model using the ArchiMate [6] notation. The notation used in
this diagram is (arguably) better suited to represent activity models than the

Person Doctor
Doctor visit =)
Visiting patient ‘ ‘ Examining doctor
= =) =) =)
[~ Fillinform Examine Diagnose Prescribe
IT
= = =
Diagnose Prescription
Form
Person Doctor
Doctor visit =)

Visiting patient ‘
= 3 = =)
Fill in form Examine Diagnose Prescribe
I

Yavs Yavs

= Diagnose Prescription
Form

Fig. 8. Doctor visit as an activity model

674 H.A. Proper, S.J.B.A. Hoppenbrouwers, and Th.P. van der Weide

ORM notation. However, we have now established a clear (and formalizable)
relationship between activity models as presented in Figure [§land ORM models
as shown in Figure @l Note the one-on-one correspondence between the actors,
actands and activities.

4 Conclusions

In this short paper we have presented the idea of using ORM’s fact oriented
approach in the context of activity modeling. The basic idea as presented, is
to provide a smooth transition from an ORM model of an active domain to
an activity model of that domain. We did so by adding temporal dependency
constraints to the ORM model, and attributing the model with a classification
of roles. The resulting model was mapped onto a graphical notation used for
activity modeling in a mechanical manner.

As mentioned before, the resulting activity model really corresponds to a
specific view of the underlying ORM model. Not all details present in an ORM
model will appear in an activity model ‘view’ of the ORM model. Activity models
are particularly suited to display the intended flow of activities, while an ORM
model provides a much more generic perspective on the same domain.

In future research, we will be looking at ways to provide modelers with more
guidelines on classifying the roles. Furthermore, the relationship between the
workflow patterns from YAWL [I] and the temporal dependencies that may
be used in ORM models needs further investigation. We also intend to look
at strategies to further mechanise the derivation of activity models from an at-
tributed ORM model and also to maintain this link during the modeling process.
We envisage modelers being able to manipulate the activity models while the
underlying ORM domain model is maintained as well.

Finally, using ORM as a generalized domain modeling approach, and then
‘specializing’ this model towards an activity model (as illustrated in this paper),
is not an idea that is limited to activity modeling alone. The general underlying
idea of using a fact-oriented approach to produce an ORM model for a given
domain, and then to specialize this model by re-interpreting the fact types in
terms of a specialized classification, is an approach that is expected to be suitable
for a wide range of specialized modeling languages including business modeling
and architecture modeling. We will therefore also investigate these workings in
more detail.

References

1. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: yet another workflow
language. Information Systems, 30(4):245-275, 2005.

2. P. van Bommel, P.J.M. Frederiks, and Th.P. van der Weide. Object-Oriented Mod-
eling based on Logbooks. The Computer Journal, 39(9):793-799, 1996.

3. P.N. Creasy and H.A. (Erik) Proper. A Generic Model for 3-Dimensional Conceptual
Modelling. Data & Knowledge Engineering, 20(2):119-162, 1996.

A Fact-Oriented Approach to Activity Modeling 675

. J. Habermas. The Theory for Communicative Action: Reason and Rationalization
of Society, volume 1. Boston Beacon Press, Boston, Massachusetts, 1984.

. J.J.A.C. Hoppenbrouwers, B. van der Vos, and S.J.B.A. Hoppenbrouwers. NI struc-
tures and conceptual modelling: Grammalizing for KISS. Data & Knowledge Engi-
neering, 23(1):79-92, 1997.

. M.M. Lankhorst and others. Enterprise Architecture at Work : Modelling, Commu-
nication and Analysis. Springer, Berlin, Germany, EU, 2005.

. H.A. (Erik) Proper, A.L. Bleeker, and S.J.B.A. Hoppenbrouwers. Object-role mod-
elling as a domain modelling approach. In J. Grundspenkis and M. Kirikova, editors,
Proceedings of the Workshop on Evaluating Modeling Methods for Systems Analysis
and Design (EMMSAD’04), held in conjunctiun with the 16th Conference on Ad-
vanced Information Systems 2004 (CAiSE 2004), volume 3, pages 317-328, Riga,
Latvia, EU, June 2004. Faculty of Computer Science and Information Technology,
Riga Technical University, Riga, Latvia, EU.

. H.A. (Erik) Proper and Th.P. van der Weide. EVORM - A Conceptual Mod-
elling Technique for Evolving Application Domains. Data & Knowledge Engineering,
12:313-359, 1994.

. V.E. van Reijswoud, J.B.F Mulder, and J.L.G. Dietz. Commucation Action Based
Business Process and Information Modelling with DEMO. The Information Systems
Journal, 9(2):117-138, 1999.

	Introduction
	Temporal Ordering of Facts
	Classification of Roles
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

