
Traceability and Modeling of Requirements in
Enterprise Architecture from a Design Rationale

Perspective

Georgios Plataniotis, Qin Ma, Erik Proper
Luxembourg Institute of Science and Technology,

Luxembourg
Radboud University Nijmegen,

Nijmegen, the Netherlands
EE-Team, Luxembourg, Luxembourg

{georgios.plataniotis, qin.ma, erik.proper}list.lu

Sybren de Kinderen
University of Luxembourg, Luxembourg,

Luxembourg
EE-Team, Luxembourg, Luxembourg

sybren.dekinderen@uni.lu

Abstract—Enterprise architecture modeling languages capture
holistically the structure of an enterprise. Therefore, they repre-
sent how the services and business processes of an organization
are supported by IT infrastructure and applications. However,
the reasoning behind the selection of specific design decisions
in the architecture remains usually implicit. Our earlier work
proposes the EA Anamnesis approach for the capturing of design
rationalization information. Its major contribution is a formal
metamodel that captures the reasoning and the inter-relationships
of design decisions. We have already evaluated our approach in
a real world case where EA Anamnesis successfully captured
design rationales in the context of an enterprise transformation.
However an important deficiency was also observed during
this evaluation, which points out the need for the traceability
of enterprise architecture designs to the functional and non-
functional requirements that were used for this design. This paper
extend the EA Anamnesis approach to address this important
aspect of EA rationalization. By doing as such we provide an
explicit bridging between the problem space which is described
by the different requirements and the actual solution space which
is described by specific design decisions. More specifically, we
contribute: (1) an enhanced EA metamodel that also supports
requirements traceability and (2) an illustrative case study from
the insurance sector to demonstrate the potential usefulness.

Keywords—Enterprise Architecture, Design Rationale, Func-
tional requirements, Non functional requirements, Decision making
process

I. INTRODUCTION

Enterprise Architecture (EA) models are considered as an
instrument to represent an enterprise holistically [1], linking
perspectives on an organization which are usually considered
in isolation. In doing so, one can consider the organization-
wide impact of a change [1], [2], expressing its complete
business-to-IT-stack [3]. For example, for a newly introduced
IT application, EA models can be used to consider implications
on business processes, human resources, organizational goals,
and more.

The Enterprise Engineering Team (EE-Team) is a collaboration between
Public Research Centre Henri Tudor, Radboud University and HAN University
of Applied Sciences (www.ee-team.eu)

Although EA models can be used to capture the holistic
design of an organization, they seldom specify the design
decisions behind the resulting models. Even if we should be
careful with the analogy, experience from the field of soft-
ware architecture shows that leaving design rationales implicit
leads to ‘Architectural Knowledge vaporization’ (cf. [4]). This
means that, without design rationale, one leaves implicit design
criteria, reasons for a design, and design alternatives.

As a result of lacking rationalization architects are un-
able to justify their designs [5]. Furthermore new designs
are constructed in an ad hoc manner without taking into
consideration constraints implied by past design decisions [5].
Here, constraints refer to boundaries implied by the design.
These boundaries can be of business or technical nature, such
as the choice for a programming language implied by choosing
a particular application environment.

Moreover, a survey amongst enterprise architecture prac-
titioners [6] provides indications of the usefulness of design
rationalization for motivating design decisions, and for archi-
tectural maintenance. At the same time, however, the survey
shows that practitioners often forego the use of a structured
template/approach when rationalizing an architecture, relying
instead on ad hoc information capturing in tools such as
Microsoft Office.

In our earlier work [7], [8], [9] we introduced the
EA Anamnesis approach for architectural rationalization. EA
Anamnesis captures decision characteristics such as decision
criteria and used decision making strategy, and shows the
relation between business-level and IT-level decisions. Further-
more, EA Anamnesis relies on a metamodel-based formal link-
age between EA modeling languages (mainly ArchiMate) and
the corresponding decision aspects to realize the connection
between EA designs and EA rationale.

So far we have already applied the EA Anamnesis approach
in the context of a real world enterprise architecture trans-
formation. The evaluation showed that EA Anamnesis could
sufficiently capture design rationale and enabled practitioners
to structure and replay their decision making processes. More
importantly, the evaluation also indicated that we should work

further on the traceability from specific design decisions back
to the original requirements. More specifically our approach
already provides adequate information on how an EA design
issue was addressed in the solution space by making specific
design decisions but it does not explicitly interrelate these
decisions with the requirements that the architect took into
consideration while he was deciding.

As a response, in this paper we enhance the EA Anamnesis
metamodel to provide an explicit linkage with requirements en-
gineering concepts. By doing so we enable backward / forward
traceability from design decisions to the given requirements
and vice versa, and the capability to identify if the architectural
decisions are aligned to the essential enterprise architecture
requirements. According to [10] this capability is one of the
main purposes of the enterprise architecture function in an
organization. The refinement of the metamodel was based
on existing approaches from the requirements engineering
domain.

This paper is structured as follows. Section II presents the
background literature in requirement engineering and decision
making, Section III introduces the refined metamodel, while
Section IV illustrates the use of our approach with an insurance
industry case study. Section V presents related work from the
domains of requirements engineering and design rationale and
finally Section VI concludes.

II. BACKGROUND

The work reported in this paper is based on established
literature in requirements engineering and architectural deci-
sion making. This section reports on the two streams that
were examined: (1) decision making theories which provide
insight on how people decide given specific contexts (2) and
requirements engineering approaches for architectural decision
making which show how the decision making is affected by
the requirements.

A. Decision making and requirements engineering

Decision making strategies generally fall in two main
categories: compensatory and noncompensatory [11], [12],
[13], [14]. We briefly explain these strategies with a car buying
example. In this example, a customer selects a car based upon
the criteria ‘color of car’, ‘carbon emission’, ‘small size of
car’ and ‘gasoline consumption’.

In compensatory decision making [11], alternatives are
evaluated exhaustively, taking all criteria and their trade-offs
into consideration. Criteria with high values compensate for
criteria with lower values. Finally, the alternative with the
highest score is selected. For our car buying example, this
implies that a customer considers all four criteria ‘color of
car’, ‘carbon emission’, ‘small size of car’ and ‘gasoline
consumption’. For example: s/he can state that ‘color of car’
is of high importance, and ‘carbon emission’, ‘small size of
car’ and ‘gasoline consumption’ are of less. By doing so the
customer then selects a car that best complies with all these
criteria.

Compensatory strategies aim to provide the best possible
decision outcomes given the decision data at hand. However,
compensatory strategies require full information on how alter-
natives score on all criteria, and they are time consuming [11].

Noncompensatory strategies [11], on the other hand, are
consistent with the concept of bounded rationality. This means
that the rationale to make a decision is limited by factors such
as hard constraints, time constraints and the cognitive load
of the decision maker. As such, noncompensatory strategies
evaluate alternatives heuristically, using only a limited number
of criteria and trade-offs.

Considering a noncompensatory decision strategy for our
car buying example, let us now assume that the customer lives
in the city and selects between two cars: a small and a big one.
Now, ‘small size of car’ is a hard constraint for the customer
due to the limited parking space available in the city. Therefore,
regardless of the criteria ‘carbon emission’, ‘color of car’, and
‘gasoline consumption’ s/he excludes the big car from her/his
choice set.

The main characteristics of noncompensatory strategies are
twofold: (1) they reduce the decision making effort, (2) they
are not demanding regarding the information needed to make
the decision. As such, it is a common practice for decision
makers to use noncompensatory strategies in situations (time
stress, hard constraints) the limitations of which affect the
decision making process [15]. However, by definition decision
makers do not take all criteria into account when using
noncompensatory decision strategies.

Last but not least, in some cases the use of a combination
of compensatory and noncompensatory decision strategies (a
hybrid) is required [16], [17], [14]. For example, a decision
maker starts his evaluation process by excluding alternatives
that do not meet certain noncompensatory criteria, and only
thereafter evaluates the remaining alternatives with a compen-
satory strategy.

Regarding the relationship between requirements engineer-
ing and decision making there is already a tight bond. The
research community has already identified that the prioriti-
zation of requirements by using advanced techniques from
decision science can improve the resulting quality of design
decisions. Moreover, there are already approaches which con-
sider software architecture as a set of design decisions [4]. In
this perspective, requirements and especially the non functional
ones play the role of the quality criteria which determine
the selection among alternative designs and implementations.
In this decision centric context it is of high importance to
have approaches that would enable the architect to manage
and prioritize among the given requirements. By doing so the
quality of design decisions would be better [18].

III. REFINED METAMODEL

In this section we present the motivation behind the de-
velopment of the refined refined metamodel and the newly
introduced concepts. Furthermore, based on the evaluation
of our existing approach, we have reconsidered the existing
concepts and their interrelationships and multiplicites.

A. Motivation

The idea behind the enhancement of our metamodel with
concepts from the requirements engineering domain is based
on existing approaches from the domain of software archi-
tecture. In this domain requirements play an important role

in the selection of alternative designs. We argue that the
role of requirements in enterprise architecture is even more
important than software architecture. This is because of the
heterogeneity of the domain of enterprise architecture. The en-
terprise architecture consists of completely different in nature
structural elements, like business processes, hardware artifacts
etc. The role of the architect is to guarantee that the enter-
prise architecture has a homogeneous behaviour. Therefore he
should check whether the different structural elements comply
with the desired behavior. However this means that a desired
behavior in the business layer can be achieved by completely
different in nature requirements than in the application layer or
technology layer. A mechanism should enable the tracing from
specific design decision in the enterprise architecture back to
the requirements and vice versa.

B. Metamodel

Figure 1 presents the refined metamodel. This metamodel
focuses on capturing (1) decision making strategies that were
used during the architectural design process for a specific
EA decision, (2) the rationale behind this specific decision
strategy choice (3) the role of the functional and non functional
requirements during the decision making process and (4)
available alternatives that were taken into account.

Requirement: Requirements are defined as statements of
need, conditions or capabilities that should be realized by a
system [19], [20]. These statements can range from high level
of abstraction until very detail descriptions of system functions.
Moreover requirements can describe the constraints that are
generated during the requirements engineering process.

The role of requirements in enterprise architecture is very
essential since they must be applied in different layers /
domains of the enterprise and that means that they should be
interpreted by the architect in different ways depending on
the domain. For example, a generic requirement for security
must be realized in different ways across the different layers
of the enterprise. The enterprise architect should translate this
generic need into specialized requirements per domain. From
the other hand an abstract requirement in a specific domain
can be decomposed further in more concrete requirements in
the same domain.

Our metamodel covers two different types of relationships
between requirements as well as two different types of require-
ments. We define these types as follows:

Relationship types:

Based on our previous work [8] we have defined 2 different
types of relationships between the requirement concept:

1) Decomposition:

As we can see in Figure 1 the requirement can be
decomposed further until we arrive to a desired abstraction
level for the domain architecture. For our approach this
means that we can decompose the problem until we arrive
to design decisions that lead to a concrete EA element. The
decomposition relationship is in line with ’decomposes into’
relationship of Kruchten’s ontology [21].

2) Translation:

Translation relationship describes how requirements that
belong to different EA layers / elements are translated in
requirements on a different layer / artifact [8]. This relationship
is critical for the domain of enterprise architecture since it
provides to the enterprise architect a holistic view of the cross
layer dependencies of the requirements.

Requirement types:

Requirement types can be further categorized in two types,
functional and non functional requirements [22], [23]. This
distinction is of high importance in enterprise architecture
because the selection of specific requirements of one type
can influence the other. Before we go into details on this, we
describe the two different types:

a) Functional requirements:

Functional requirements specify what the system should do
or in other words a specific behavior that a system must have
[24]. It is worthwhile here to mention that even though the
definition of functional requirement is new for the approach,
the semantic behind this approach was partially existent. What
we mean here is that the functional requirements after they
have been translated or decomposed describe EA design issues
that should be addressed with concrete EA design decisions.
This is aligned with the semantic of the concept ‘EA Issue’
of the EA Anamnesis approach [8], [7]. According to the
definition ‘an EA issue represents the architectural design
problem that enterprise architects have to address during the
Enterprise transformation process.’ During the refinement of
the metamodel we decided to replace the term ‘EA issue’ with
‘functional requirement’ for the following reason: functional
requirements, as was stated before, cover different levels of
abstractions. By using the decomposition and translation rela-
tionships we can reach the abstraction level which is adequate
for describing specific design issues. As a result we avoid
unnecessary information redundancy and we signify explicitly
that our approach can model and trace the given functional re-
quirements. Moreover, our approach can now easily integrated
with existing requirement engineering techniques.

b) Nonfunctional requirements:

Nonfunctional requirements specify the behavioral aspects
of a system or in other words the quality criteria that determine
how the system works. Furthermore other important factors
like design and implementation constraints, legal requirements
and project management budget and release dates are catego-
rized as non-functional requirements [25].

Similarly with the functional requirements concept, EA
Anamnesis approach was partially covering the semantic of
non functional type through the ‘criterion’ concept. However
the criterion concept was covering semantically only very
concrete quality attributes. When we want to refer to more
generic non functional requirements the expressivity of crite-
rion concept was not sufficient.

From the other hand, in the case of evaluation of alter-
natives based on their qualities, we need a lower level of
abstraction which is achieved through the decomposition /
translation relationships of non functional requirements. In
that case the concept ‘no functional requirement’ can be

translates

Requirement

decomposes

0..* 0..*

ValueWeight

EA element

results in1..*

0..1

hashas

Non functional
requirement

justfies1..*

1

has

Score

EA decision
Alternative

Strategy
rationale

1

1

derived by

1..*

1..*

co
ns

id
er

ed
 in

potentially
addresses

1

1..*

has the
highest score

11..*

1

1..*

1addresses

1

Functional
requirement

Decision making
process

1..*

1..*

Decision making
strategy

1
1..*

1 1

co
ns

id
er

ed
 in

co
ns

id
er

ed
 in

includes

Fig. 1. Refined metamodel

used like the concept ‘criterion’ of our previous work [9] for
evaluation in different decision making strategies. Depending
on the decision strategy that was used for the evaluation
process, nonfunctional requirements can be compensatory or
noncompensatory. For example, if a disjunctive strategy was
used, the criteria that were used for the evaluation with this
strategy are disjunctive. Furthermore, the concepts value and
weight of criterion are included in our metamodel. Value
concept represents the value that the decision maker assigns to
the non functional requirement during the evaluation process
and weight concept represents the importance of the non
functional requirement. Weight concept is used in WADD
strategies. This gives the ability to the architect to trace back
the decision making process and analyze the value as well as
the importance of each non functional requirement during the
evaluation process. By capturing the type, value and weight
of non functional requirements, stakeholders that analyze in
depth the architecture, can understand which criteria had a
determinant role in the selection process and on which strategy
they were based.

Last but not least the design of our metamodel can ex-
press relationships between different types of requirements,
for example decomposition from a functional requirement to a
nonfunctional requirement or vice versa [24]. For example the
non functional requirement ‘security’ may be translated to the
functional requirement ‘encryption’ in the application layer.

Decision making process: A decision making process
provides the summarization of the decision making for a
specific design decision. As we explain below one or more
decision making strategies can be used for the making of a
single decision. In our metamodel the decision making process
is automatically derived by the set of the the decision making

strategies and it is linked to the concept of EA decision.

Decision-Making Strategy: This concept captures the
decision making strategy used by the enterprise architect to
(1) evaluate the alternatives, and make the actual EA decision.
As we mentioned in Section II-A, decision strategies are char-
acterized as compensatory, noncompensatory, or as a hybrid
of these two. In our metamodel, we specify this as follows:

• Compensatory strategy
◦ Weighted additive (WADD): In WADD strate-

gies the criteria that evaluate the alternatives
have different weights. The score of each
alternative is computed by multiplying each
criterion by its weight and then by taking
the sum of these values. The alternative with
the highest score is chosen by the decision
maker [14].

◦ Equal weight: The score of each alternative
is calculated by the same way as WADD
strategies. The difference is that criteria have
the same weight [14].

• Noncompensatory strategy
◦ Conjunctive: In conjunctive strategies, alter-

natives that fail to comply with a minimum
threshold level of one or more criteria, are im-
mediately excluded from the decision maker’s
choice set [14].

◦ Disjunctive: In this strategy alternatives are
evaluated based on the maximum threshold
level of one or more criteria. Those which fail
to meet the maximum level, are excluded from
the choice set [14].

We should also mention that there is no restriction in
the use of additional decision strategies. We include a set
of common decision strategies, but we also denote in the
strategy viewpoint metamodel that more decision strategies can
be supported.

Strategy rationale: In the context of a decision making
process, the architect not only has to choose amongst some
alternatives (actual decision making process), but has also
to select the decision strategy that satisfies his current eval-
uation needs. Typical reasons for the adoption of different
strategies by the architect are constraints that come from
different domains of the enterprise. The capturing of this
information justifies the decision strategy that was selected for
the evaluation process. This is what is referred as metadecision
making, decision making about the decision process itself [26].
As stated in the metamodel one strategy rationale can justify
one ore more decision making strategies.

EA decision: The concept of EA decision represents the
design alternative which has the maximum score (utility)
after the execution of the decision making process. Since the
information for the alternatives already exist the concept ‘EA
decision’ is automatically derived from the alternative with the
highest score.

Alternative: The concept of alternative represents the
available choices that are under evaluation by using a specific
decision making strategy.

IV. ILLUSTRATIVE EXAMPLE

We now show how the EA Anamnesis approach captures
decision making processes as well as the influence of re-
quirements on them. The refined metamodel enhances the
rationalization information that EA Anamnesis provides. For
illustration purposes, we use an insurance company case study
presented in our previous paper [27].

A. ArchiSurance: moving to an intermediary sales model

ArchiSurance is an insurance company that sells insurance
products using a direct-to-customer sales model. The company
used this disintermediation scheme to reduce its operations and
product costs.

Although, disintermediation reduces operational costs, the
use of intermediaries in insurance sector is very important
because they provide accurate risk customer profiles [28].
ArchiSurance management decides to adopt this practice and
to change its selling model to intermediary sales. The role of
the Insurance broker is added to the business operation of the
company.

B. Capturing the influence of requirements on decision process
for ArchiSurance

In our scenario, an external architect called John is hired
by ArchiSurance to change the Enterprise Architecture and
analyze the impacts that the intermediary sales of insurance
has on the company.

John uses the EA modeling language ArchiMate to capture
the impacts that selling insurance via an intermediary has in

terms of business processes, IT infrastructure and more. The
resulting ArchiMate model is depicted in Figure 2.

Here we see for example how a (new) business process
‘customer profile registration’, owned by the insurance broker
(ownership being indicated by a line between the broker and
the business process), is supported by the IT applications
‘customer administration service intermediary’ and ‘customer
administration service ArchiSurance’.

However, John (by using ArchiMate) can not capture the
rationale behind this model. For example, he captures the
change for the different application system that supports the
new business process, but he is not able to justify why and
how he selected this specific system among other alternatives.

To capture design rationales behind the ArchiMate model,
John relies on the EA Anamnesis approach (our previous work,
see [27], [7]). Table I shows an example application of the EA
Anamnesis approach (EA decision 13). As it can be observed,
decision facets such as the decision rationale (why the decision
was taken), criteria (factors, such as cost), observed impact
(ex-post) are captured. For further details, see [27].

However, from a requirements engineering point of view
the traceability of the functional and nonfunctional require-
ments is not explicitly provided by the EA Anamnesis ap-
proach. Moreover we are not able to identify the role of
these requirements on the decision making process of John.
Therefore, we now replaying the decision making process
which leads to the creation of the decision 13 displayed in
Table I in order to show the role of the functional and non
functional requirements to this decision.

Capturing the influence of requirements on decision
process for ArchiSurance:

For the purposes of this paper, we focus on capturing and
analyzing the influence of requirements on the decision making

Fig. 2. ArchiSurance intermediary EA model

TABLE I. EA DECISION 13 DETAILS

Title: Acquisition of COTS application B
EA issue: Current version of customer administration application is not

capable to support maintenance and customers administra-
tion of intermediaries application service

Decision Maker: John
Layer: Application
Intra-Layer
dependent
Decisions:

EA decision 10

Inter-Layer depen-
dent Decisions:

None

Alternatives: COTS application A
COTS application C
Upgrade existing application (inhouse)

Rationale: Scalability: Application is ready to support new application
services

Criteria: Customized reports capability, interoperability, scalability,
cost

Observed Impact: Interoperability issues. Application COTS B can not commu-
nicate with existing applications of some insurance brokers.

process. Therefore, we assume that John is a single decision
maker, who is capable to identify the above concepts and he
has full information to evaluate them. We thus abstract away
from the identification of specific alternatives, requirements
and their respective scores.

Figure 3 visualizes the role of the requirements on the
decision making process. We can first observe how this ar-
chitecture scenario is analyzed as a set of functional and
nonfunctional requirements. The need for a new business
process that would support the insurance broker role is ex-
pressed by the functional requirement ‘Establish business pro-
cess intermediary’. Subsequently, this functional requirement
creates another requirement ‘Find an appropriate application
to interface with the intermediary’ in the application layer of
the enterprise. The new business process should be supported
by an appropriate application system. As we explained in the
metamodel section, EA Anamnesis captures the relationship of
requirements that they belong in different architecture layers
with a translation relationship. Furthermore in the context of
the specific application system John captured the functional
requirement ‘Find user interface for the application’. Since this
requirement describes a subproblem for the same architectural
element we use a decomposition relationship to connect it
with the ‘Find an appropriate application to interface with the
intermediary’ requirement.

Let us now zoom into the decision making process for
design decision 13. John made this decision in order to address
the functional requirement ‘Find an appropriate application
to interface with the intermediary’. John now uses the EA
Anamnesis approach to capture the role of the non func-
tional requirements on the decision making process. Initially
he captures how more generic non functional requirements
which are defined during the initial phases of the enterprise
architecture transformation are decomposed into more detailed
non functional ones which can be used for the evaluation of the
alternatives. This is expressed by the decomposition relation-
ship between non functional requirements. For this specific
case the generic requirement ‘IT Systems Adhere to Open
Standards’ is decomposed in the non functional requirement
‘interoperability’. As a next step he uses EA Anamnesis, to
capture the non functional requirements which were used for
the evaluation of the alternative solutions (the requirements for

application selection are grounded in [29]).

For our illustrative example, John considers that the most
important non functional requirements are ‘customized reports
capability’, ‘interoperability’ and ‘scalability’. Based on these
requirements he identifies four alternatives to choose from:
three alternative Commercial Off-The-Shelf (COTS) applica-
tions and one to upgrade the existing application in house.

Let us also assume that John receives a budget constraint of
10000$ for the acquisition of new IT systems. As we described
in the metamodel section constraints are also expressed as non
function requirements

John is now faced with a hybrid decision strategy: on the
one hand, he wants to carefully evaluate the four alternatives
on the non functional requirements ‘customized reports capa-
bility’, ‘interoperability’ and ‘scalability’ (via a compensatory
strategy), but on the other hand John has to account for the
hard constraint of ‘budget limitation’ (via a non-compensatory
strategy).

At this time John uses the decision making strategy part
of the approach to capture and justify his strategy selection,
as well as the alternatives and non functional requirements
of his decision problem. For the noncompensatory part, John
wants to discard all alternatives that fail to meet the budget
constraint. Because of this hard constraint, he chooses a
disjunctive noncompensatory strategy (for an explanation, see
Section III-B) to exclude from his choice set alternatives that
exceed the maximum budget cost.

Table II summarizes the score of each alternative. COTS
application C is eliminated from the choice set because it failed
to meet the maximum cost requirement.

As we mentioned before, disjunctive noncompensatory
strategies evaluate alternatives using a maximum threshold
level on one or more criteria. In this example the disjunctive
criterion is ‘cost’. The alternatives ‘COTS A’,‘COTS B’ and
‘Upgrade application’ comply with this criterion (Table II) and
will be evaluated further in the next step of the decision making
process. ‘COTS C’ cost exceeds the maximum budget limit
and it is eliminated from the choice set. For noncompensatory
strategies, alternatives either comply or not to some criteria
and their score are Boolean data types. The scores of the
alternatives are also captured by our metamodel.

For the compensatory part, John evaluates the three remain-
ing alternatives based on the values and the weight of each of
the criteria.

Scalability is the most important factor because, according
to John, this application should be able to support changes
in the business processes of ArchiSurance. This is important
in order to support the addition of extra intermediaries.
Customized reports capability and interoperability are also
important, not as important as scalability.

TABLE II. EA DECISION 13 NONCOMPENSATORY DISJUNCTIVE
STRATEGY

Alternatives cost score
COTS A 9000$ 1
COTS B 8000$ 1
COTS C 12000$ 0

Upgrade app 5000$ 1

TABLE III. EA DECISION 13 COMPENSATORY WEIGHTED ADDITIVE
STRATEGY

Alternatives custom reports interoperability scalability score
COTS A 7x7 7x5 7x10 154
COTS B 8x7 3x5 9x10 161

Upgrade app 5x7 5x5 4x10 100

Given the fact that criteria that evaluate alternatives have
different weights, John selects the use of a weighted additive
compensatory strategy. At this moment John captures again
his decision strategy as well as the weights and the values
of the compensatory criteria. The score of each alternative is
calculated by multiplying the value of each non functional
requirement by its weight, and then by taking the sum of these
values. Here, the weights range from 1 - not important - to 10
- important. The alternative with the highest score is chosen
by the decision maker.

Table III shows us: (1) the criteria. ‘Scalability’, the most
important non functional requirement for John, has a weight
of 10, while ‘Custom reports’ and ‘interoperability’ have
weights of 7 and 5 respectively, (2) the score on a particular
non functional requirement for each alternative. For example:
the alternative ‘COTS B’ scores 9 on ‘scalability’, whereas
‘Upgrade app’ scores 4. (3) the total score of each alternative.
For example: ‘COTS B’ receives the highest score and as such,
is selected by John.

Reflecting upon the captured decision making process
and requirements. So far, we have illustrated the capturing
of design rationales by John. Let us now illustrate how the
information can be useful by the new enterprise architect, Bob.

Bob’s predecessor, John, captured the decision making
process and the role of requirements with the EA Anamnesis
decision strategy viewpoint. Bob can now analyze (1) the used
strategy, (2) why this strategy was selected, and (3) the role
and importance of requirements for this evaluation process.

Figure 3 shows the decision making process for EA deci-
sion 13 based on the refined metamodel. From the decision
making steps ‘Conjunctive strategy because of budget con-
straint’ and ‘WADD strategy different NFR weights’ , Bob
understands that a hybrid decision making strategy model was
used. More specifically, he realizes that because of a budget
constraint one of the alternatives was discarded with the use
of a disjunctive noncompensatory strategy. Furthermore, Bob
observes that a compensatory weighted additive strategy was
used to evaluate the remaining alternatives. He realizes that
his predecessor used this strategy, because the non functional
requirements ‘customized reports capability’, ‘interoperability’
and ‘scalability’ did not have the same importance for the
selection of an appropriate application that would support the
new business process of ArchiSurance. He can also see the
weight of each non functional requirements, as well as the
final score of each of the alternatives.

This reconstruction of the decision making process makes
transparent how an EA design decision has been made.
Amongst other, this transparency allows an architect to com-
pare the outcome of an EA decision with the non functional
requirements that influenced this decision. As a result, s/he
can learn which factors in the decision making process had

a positive/negative impact to the EA design and follow/avoid
these decision making practices for future decisions.

After a period of time, COTS application B does not have
a sufficient performance due to interoperability issues. Bob,
is asked by management to explain the choice for COTS
application B. He can reconstruct and examine the decision
making process using Tables II and III. First, he observes
that COTS application C was eliminated because of budget
issues. Second, from the weight assigned to the different non
functional in Table III, he observes that scalability was an
important criterion for his predecessor to select COTS appli-
cation B, but not interoperability. By examining the captured
non functional requirements and their weights as well as
the observed impact of the EA Decision (Table I) Bob can
learn that interoperability is an important non functional
requirement for Archisururance enterprise architecture and
should be weighted and compared against other non functional
requirements more carefully. For example: in a future decision
making process, Bob can provide a weight of 7 or 8, instead of
5, to the non functional requirement interoperability to better
weight it against other criteria such as scalability.

V. RELATED WORK

Concerning argumentation-based approaches, The Deci-
sion Representation Language (DRL) [30] and Issue Based
Information System (IBIS) [31] are two well known ap-
proaches for capturing design rationale. Both DRL and IBIS
are inspired by Toulmin’s analysis of argumentation [32] and
argumentation maps. For DRL and IBIS, key rationalization
concepts are the issue, the arguments and the resolution
of design argumentation. Here, for example, resolutions are
similar to Toulmin’s conclusion of an argument.

However, as pointed out by Shipman III and McCall [33],
argumentation-based approaches are not suitable for captur-
ing communicating design rationales in practice. Mainly this
is because argumentation-based approaches require extensive
documentation [33]. Furthermore, argumentation-based ap-
proaches lack formality, and thus are not amenable to the
computer-based support that we aim for with EA Anamnesis.
Also argumentation-based approaches do not make an explicit
relation to the design artifact under consideration, while for
us it is important to focus our rationalization on particular EA
artifacts (such as elements of architectural languages).

Moreover, since its second version the Archimate EA
modeling language has a motivation extension and an imple-
mentation and migration extension. The motivation extension
is used to model the reasons behind architectural changes,
but lacks concepts common to existing rationalization ap-
proaches. For example, the motivational extension does not
capture design alternatives, the used decision making strat-
egy, or unanticipated consequences of decisions. Furthermore
the Implementation and Migration Extension deals with the
project management and the planning of enterprise architecture
changes and as such, is not well suited for architectural
rationalization.

Finally, there exist design rationale approaches for Soft-
ware Architecture [4][5][34][35][36]. These approaches are
template based or model based. Akin to argumentation-based
rationalization approaches, template based approaches [34][36]

FR – Find an appropriate
application to interface with the

intermediary

Alterna
tive 1

NFR

Alterna
tive 2

Alterna
tive 3

Alterna
tive 4

FR – Find user interface for the
application

Alterna
tive 1

Alterna
tive 2

Alterna
tive 3

NFR – Constraint
Cost $10000

NFR NFR NFR

Customized
reports

Capability
W=7

Interoperability
W=5

scalability
W=10

NFR

IT Systems
Adhere to Open

Standards

COTS A
Score = 1

COTS B
Score = 1

COTS C
Score = 0

Upgrade app
Score =1

COTS B
Score=161

COTS A
Score=154

Upgradeapp
Score=100

NFR Requirement decomposition

FR
 R

eq
ui

re
m

en
t

de
co

m
po

si
tio

n

Conjunctive strategy because
of budget constraint

WADD strategy – different NFR
weights

Winning
alternative is
decision 10

FR – Establish business process
intermediary

FR
Requirement
translation Business Layer

Application Layer

Fig. 3. Decision making process and requirements traceability of design decision 13

describe in textual format elements of Architectural Deci-
sions such as Rationale, Issue, Implications and etc. Differ-
ently, model based approaches [4][5][35] provide a formal
metamodel of decision rationalization concepts, thus enabling
computer-processable rationalization.

However rationalization approaches from software archi-
tecture focus on software issues (such as code documenta-
tion). Yet these issues are different from those in Enterprise
Architecture [37]. For one, as part of their responsibilities
enterprise architects concern themselves with the business-
to-IT-stack [38]. Here, for example, they analyze impacts of
changes in IT infrastructure to business processes and vice
versa. Thus enterprise architects deal with different, cross-
organizational, issues compared to software architects, who
deal mostly with software concerns.

VI. CONCLUSION

In this paper we introduced a metamodel for capturing
the the influence of functional and non functional requirement
on the decision making processes in enterprise architecture.
Furthermore, we argued about the role of the requirements on
the decision making process and why it is useful to capture
such information (1) by argumentation, (2) by an illustrative
case study.

For future research, we aim to continue our evaluation
activities by means of case studies. In the next iteration of

the evaluation we will focus on indenting to what extend
the requirements influence the decision making process of
practitioners and if the EA Anamnesis approach helps them
to capture and analyze this information.

Last but not least, one of our major challenges is to
investigate the return of capturing effort for our approach.
Our design rationale assists architects to better understand
existing EA designs, but the effort of capturing this information
might be a dissuasive factor. To address this issue our research
will focus on ways to decrease the capturing effort. One way
of doing this is by evaluating the actual practical usefulness
of the concepts in the decision making strategy viewpoint.
For example we capture the strategy rationale for selecting
a decision making strategy, but it remains to be seen if the
effort for capturing this, outweighs the received benefits.

ACKNOWLEDGMENTS.

This work has been partially sponsored by the Fonds
National de la Recherche Luxembourg (www.fnr.lu), via
the PEARL programme.

REFERENCES

[1] M. Lankhorst, Enterprise architecture at work: Modelling, communica-
tion and analysis. Springer, 2009.

[2] M. Op’t Land, E. Proper, M. Waage, J. Cloo, and C. Steghuis, Enterprise
architecture: creating value by informed governance. Springer, 2008.

[3] R. Winter and R. Fischer, “Essential layers, artifacts, and dependencies
of enterprise architecture,” Journal of Enterprise Architecture–May, pp.
1–12, 2007.

[4] A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” in Software Architecture, 2005. WICSA 2005. 5th
Working IEEE/IFIP Conference on. IEEE, 2005, pp. 109–120.

[5] A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model
for design traceability and reasoning,” Journal of Systems and
Software, vol. 80, no. 6, pp. 918 – 934, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121206002287

[6] G. Plataniotis, S. de Kinderen, D. van der Linden, D. Greefhorst, and
H. A. Proper, “An empirical evaluation of design decision concepts in
enterprise architecture,” in Proceedings of the 6th IFIP WG 8.1 working
conference on the Practice of Enterprise Modeling (PoEM 2013), 2013.

[7] G. Plataniotis, S. de Kinderen, and H. A. Proper, “Ea anamnesis:
An approach for decision making analysis in enterprise architecture,”
International Journal of Information System Modeling and Design
(IJISMD), to appear.

[8] G. Plataniotis, S. d. Kinderen, and H. A. Proper, “Relating decisions in
enterprise architecture using decision design graphs,” in Proceedings of
the 17th IEEE International Enterprise Distributed Object Computing
Conference (EDOC), 2013.

[9] G. Plataniotis, S. de Kinderen, and H. A. Proper, “Capturing
decision making strategies in enterprise architecture – a viewpoint,”
in Enterprise, Business-Process and Information Systems Modeling,
ser. Lecture Notes in Business Information Processing. Springer
Berlin Heidelberg, 2013, vol. 147, pp. 339–353. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-38484-4 24

[10] D. Greefhorst and E. Proper, Architecture Principles: The Cornerstones
of Enterprise Architecture. Springer Science & Business Media, 2011,
vol. 4.

[11] H. Einhorn, “The use of nonlinear, noncompensatory models in decision
making.” Psychological bulletin, vol. 73, no. 3, pp. 221–230, 1970.

[12] J. Payne, “Task complexity and contingent processing in decision
making: An information search and protocol analysis,” Organizational
behavior and human performance, vol. 16, no. 2, pp. 366–387, 1976.

[13] O. Svenson, “Process descriptions of decision making,” Organizational
behavior and human performance, vol. 23, no. 1, pp. 86–112, 1979.

[14] L. Rothrock and J. Yin, “Integrating compensatory and noncompen-
satory decision-making strategies in dynamic task environments,” De-
cision Modeling and Behavior in Complex and Uncertain Environments,
pp. 125–141, 2008.

[15] J. Payne, J. Bettman, and E. Johnson, The adaptive decision maker.
Cambridge University Press, 1993.

[16] T. Elrod, R. Johnson, and J. White, “A new integrated model of non-
compensatory and compensatory decision strategies,” Organizational
Behavior and Human Decision Processes, vol. 95, no. 1, pp. 1–19,
2004.

[17] I. Jeffreys, “The use of compensatory and non-compensatory multi-
criteria analysis for small-scale forestry,” Small-scale Forestry, vol. 3,
no. 1, pp. 99–117, 2004.

[18] A. Aurum and C. Wohlin, “The fundamental nature of requirements
engineering activities as a decision-making process,” Information and
Software Technology, vol. 45, no. 14, pp. 945–954, 2003.

[19] A. P. Sage and W. B. Rouse, Handbook of systems engineering and
management. John Wiley & Sons, 2009.

[20] The Open Group, ArchiMate 2.0 Specification. Van Haren Publishing,
2012.

[21] P. Kruchten, P. Lago, and H. Vliet, “Building up and reasoning about
architectural knowledge,” in Quality of Software Architectures, ser.
Lecture Notes in Computer Science, C. Hofmeister, I. Crnkovic, and
R. Reussner, Eds. Springer Berlin Heidelberg, 2006, vol. 4214, pp.
43–58.

[22] P. Loucopoulos and V. Karakostas, System Requirements Engineering.
New York, NY, USA: McGraw-Hill, Inc., 1995.

[23] E. Kavakli and P. Loucopoulos, “Goal modeling in requirements
engineering: Analysis and critique,” Information Modeling Methods
and Methodologies: Advanced Topics in Database Research: Advanced
Topics in Database Research, p. 102, 2004.

[24] S. Robertson and J. Robertson, Mastering the requirements process:
Getting requirements right. Addison-wesley, 2012.

[25] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, “Non-functional
requirements,” Software Engineering, 2000.

[26] H. Mintzberg, D. Raisinghani, and A. Theoret, “The structure of
unstructured decision processes,” Administrative science quarterly, pp.
246–275, 1976.

[27] G. Plataniotis, S. de Kinderen, and H. A. Proper, “Ea anamnesis:
towards an approach for enterprise architecture rationalization,” in
Proceedings of the 2012 workshop on Domain-specific modeling, ser.
DSM ’12. New York, NY, USA: ACM, 2012, pp. 27–32. [Online].
Available: http://doi.acm.org/10.1145/2420918.2420927

[28] J. Cummins and N. Doherty, “The economics of insurance interme-
diaries,” Journal of Risk and Insurance, vol. 73, no. 3, pp. 359–396,
2006.

[29] A. Jadhav and R. Sonar, “Evaluating and selecting software packages:
A review,” Information and software technology, vol. 51, no. 3, pp.
555–563, 2009.

[30] J. Lee, “Extending the potts and bruns model for recording design ratio-
nale,” in Software Engineering, 1991. Proceedings., 13th International
Conference on. IEEE, 1991, pp. 114–125.

[31] W. Kunz and H. W. Rittel, Issues as elements of information systems.
Institute of Urban and Regional Development, University of California
Berkeley, California, 1970, vol. 131.

[32] S. E. Toulmin, The uses of argument. Cambridge University Press,
2003.

[33] F. M. Shipman and R. J. McCall, “Integrating different perspectives
on design rationale: Supporting the emergence of design rationale from
design communication,” Artificial Intelligence for Engineering Design,
Analysis and Manufacturing: AI EDAM., vol. 141, p. 141, 1997.

[34] J. Tyree and A. Akerman, “Architecture decisions: Demystifying archi-
tecture,” Software, IEEE, vol. 22, no. 2, pp. 19–27, 2005.

[35] P. Kruchten, “An ontology of architectural design decisions in software
intensive systems,” in 2nd Groningen Workshop on Software Variability,
2004, pp. 54–61.

[36] J. Savolainen, “Tools for design rationale documentation in the develop-
ment of a product family,” in Position Paper Proceedings of 1st Working
IFIP Conference on Software Architecture, San Antonio, Texas, 1999.

[37] C. Coggins and J. Speigel, “The methodology for business transfor-
mation v1.5: A practical approach to segment architecture,” Journal of
Enterprise Architecture, 2007.

[38] S. Aier and R. Winter, “Virtual decoupling for it/business alignment
- conceptual foundations, architecture design and implementation
example,” Business & Information Systems Engineering, vol. 1, no. 2,
pp. 150–163, 2009. [Online]. Available: http://dx.doi.org/10.1007/
s12599-008-0010-7

