
Developing an Architecture Method Library

R.D.T. Janssen1, H.A. Proper1,2, H. Bosma1, D. Verhoef1, S.J.B.A. Hoppenbrouwers2

1Ordina Institute, Groningenweg 6, 2803 PV Gouda, The Netherlands
2University of Nijmegen, IRIS, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

E-mail: {R.Janssen, E.Proper, H.Bosma, D.Verhoef}@ordina.institute.nl, stijnh@cs.kun.nl

PUBLISHED AS:

R.D.T. Janssen, H.A. Proper, H. Bosma, D. Ver-
hoef, and S.J.B.A. Hoppenbrouwers. Developing
an architecture method library. White paper, Or-
dina Institute, Gouda, The Netherlands, EU, Jan-
uary 2001.

Abstract

Today, there are millions of professionals worldwide act-
ing as a designer, architect or engineer in the design, real-
ization, and implementation of information systems. At this
moment there is no well established and clearly identified
body of knowledge that defines their profession in a “stan-
dard” way.

In this article, we present the idea of developing an ar-
chitecture method library. Such a library could play a piv-
otal role to further professionalize the field. The library
contains project experiences, reference architectures, liter-
ature, proven methods, tools, etc.

Access mechanisms allow the professional to use this
body of knowledge. By giving it an open nature, it can be
filled by professionals from different fields. Feedback mech-
anisms are possible to improve the contents of the library,
for example by giving feedback on the method components
in the library.

1. Introduction

The design, realization, and implementation of informa-
tion systems provides employment to millions of profes-
sionals worldwide. When attempting to clearly identify
their profession, one discovers that there does not exist a
well established and clearly identified body of knowledge.

The Software Engineering Body of Knowledge (SWE-
BOK) project [SWE01] started from a similar observation
for the field of software engineering. The following moti-
vation of the SWEBOK project is provided:

In other engineering disciplines, the accredita-
tion of university curricula and the licensing and
certification of practicing professionals are taken
very seriously. These activities are seen as crit-
ical to the constant upgrading of professionals
and, hence, the improvement of the level of pro-
fessional practice. Recognizing a core body of
knowledge is pivotal to the development and ac-
creditation of university curricula and the licens-
ing and certification of professionals.

This inspired us to develop an architecture method library,
containing project experiences, reference architectures, lit-
erature, proven methods, tools, etc.

Using various kinds of access mechanisms the profes-
sional is able to use this library. By giving it an open na-
ture, it can be filled by professionals from different fields
and with different backgrounds. Feedback mechanisms can
be used to improve the contents of the library by e.g. giving
feedback on the method components present based on the
actual use of the library.

This article describes the design of such an architecture
method library, what it contains, the way it is filled and how
it can be used. Some future directions are given. In section 7
an extended example is given to illustrate the results from
the other sections.

2. Restrictions on the scope of the library

Given the unclear boundaries of the information systems
engineering field (what is part of this domain and what is
not?), we use the following definition of information sys-
tem:

An information system is a sub-system of
an organizational system, comprising the
communication- and information-oriented
aspects of the organization system [FHL+98].

In this article, the term information systems engineer-
ing is used to refer to all activities involved in the design,

Submitted to: WICSA2001, Working IEEE/IFIP Conference on Software Architecture, Amsterdam, August 28–31, 2001.



realization and implementation of information systems (in-
cluding non-IT or non-automated aspects). This essentially
ranges from the high level design of a portfolio of informa-
tion systems (an information architecture) to the design and
realization of a specific information system.

We use an organic approach to the development of the
architecture method library. This essentially means that no
strong restrictions are set on the scope of the library before-
hand. It will emerge from the content as more is added. This
fits with the fact that most of the knowledge available on in-
formation systems engineering is in case-based form, tied
to experiences learned from specific cases from industrial
practice.

For this moment, the demarcation lies in the group of
professionals responsible for providing the content: those
people who consider themselves to be architects or infor-
mation systems engineers.

We realize that we cannot aim to develop a fully in-
tegrated and completely consistent architecture method li-
brary. Reasons for this are (among others) the huge amount
of literature in the information systems field, the ‘vague-
ness’ of the field (and, subsequently, the various back-
grounds of the professionals involved), and the case based
nature. Therefore, we aim to compile and structure a li-
brary filled with a collection of significant, loosely cou-
pled ‘knowledge items’ or ‘method components’, consid-
ered useful to project members of an information systems
engineering project. These method components consist of
focused denotations of knowledge pertaining to information
systems engineering.

3. Related work

Related work can be found in e.g. [DGC+97]
and [FHL+98]. In [DGC+97], a model curriculum is de-
scribed for undergraduate degree programs in information
systems and it also contains a definition of a body of knowl-
edge for information systems engineering. The Framework
for Information Systems Concepts (FRISCO) as reported
in [FHL+98] aims to give the field of information systems
a conceptual underpinning by introducing a unified frame-
work of concepts. What both of these approaches lack is
the practical side in terms of concrete work practices, tech-
niques and tools to be used, etc.

Another field that is of relevance is the field of method
engineering [BLW96, Har97]. The approach taken there
tends to dissect methods to the level of distinct concepts
and their relationships. For the moment, it involves too
much detail to be applied to the gathering and structur-
ing of a library of knowledge items. However, the theo-
ries provided by method engineering are useful in dissect-
ing method knowledge into more elementary items and will
also be useful for developing a consistent body of method

knowledge once a significant collection of knowledge items
has been gathered into our architecture method library.

4. Contents of the library

The architecture method library should contain infor-
mation about various architecture and information systems
subjects, such as:

• project strategies,

• case studies (both successes and failures),

• descriptions of methods, techniques and tools,

• reference models and frameworks,

• heuristics on the use of project strategies, methods,
techniques, etc.,

• knowledge to aid in planning and execution of projects,

• heuristics and guidelines with regard to design deci-
sions, the use of reference models, architecture princi-
ples, etc.

The intended audience of the library includes managers,
architects, designers, engineers, etc. In the next sections
it is shown how we intend to dissect this knowledge into
focused ‘knowledge items’ or ‘method components’ as we
will call them below.

First, method components and a characterization of them
are introduced. This is followed by situational factors and
heuristics. Finally, the complete structure of the library is
given.

4.1. Method components

In literature on method engineering, frameworks are
found that basically provide an anatomy of a method. See
for example [FGH96, WH90]. This has led us to define our
framework for building an architecture method library on
five “standard” questions, which can be identified with the
following method components:

• Product. Based on the question “what has to be deliv-
ered?”

• Activity. Based on the question “what has to be done
to obtain the deliverable?”

• Actor. Based on the question “who will be doing it and
what capabilities do they need?”

• Tool. Based on the question “what tools can be used?”

• Principle. Based on the question “what architecture
principles have to be used?”

2



4.2. Characterization of method components

Each method component has to be characterized so that a
potential user is able to judge whether that component may
be of use to him. For example, for a modeling technique,
it is important to know for what types of modeling it may
be used for: e.g. for modeling of business processes, for
modeling of organizational structures, for communication,
etc.

For this purpose, we define properties with property val-
ues. During the development of the library it will be discov-
ered which of them are useful and which not. Examples of
such properties are:

• System scope. What is the scope of the method com-
ponent in terms of the system(s) considered? Some
examples are: portfolio of systems, family of systems,
specific system, and specific use-case.

• Systemic focus. What system is the method compo-
nent focused at? Some options are: organizational
system, information system, computerized informa-
tion system, and infrastructural system.

• Systemic aspect. Zachman has identified a number of
different aspects of a system [Zac87], based on the in-
terrogatives of the English language. This leads to as-
pects such as: what, how, when, why, and where.

• Level of abstraction. What level of abstraction, with
respect to the systems under consideration, is the
method component focused at? Examples (derived
from [ISO87]) are: conceptual level, logical level, and
physical level.

• Communication style. What is the communication
style used in describing the method component? Some
examples are: reference material, study material, and
teaching material.

• Natural language used. What is the language used to
express the method component? Examples are: Dutch,
English, American English, German, and French.

• Development cycle. Where in the development cycle
can the method component be positioned? For exam-
ple, activities can belong to the following aspects: de-
livery approach, construction approach, cognitive ap-
proach, social approach, development approach, qual-
ity control, and configuration control [FV99b].

The characterization can be seen as being orthogonal to
the method components. An illustration is given in figure 1.

pr
od

uc
t

ac
tiv

ity


ac
to

r

to
ol



pr
in

ci
pl

e

system scope

systemic focus

systemic aspect

level of abstraction

communication style

nat. language used

method
components

ch
ar

ac
te

riz
at

io
n

development cycle

- delivery approach
- construction approach
- cognitive approach
- social approach
- development approach
- quality control
- configuration control

Figure 1. The method component characterization can
be seen as being orthogonal to the method components.
The aspects of ‘activities’ of the characterization ‘devel-
opment cycle’ are shown as example.

4.3. Situational factors

For each method component in the library, there may ex-
ist various situational factors which determine its applica-
bility. In this context, a situational factor is defined as:

A situational factor is a property of the problem
situation that can be used to determine the most
appropriate problem-solving strategy. This in-
cludes those properties that can have an impact on
the different types of uncertain events which may
occur and their adverse consequences [FV99a].

A situational factor is important since it determines how
a method component can be used and how it can be adapted
to a specific situation. And, vice versa, given a specific sit-
uation, the situational factor indicates which method com-
ponents have been proven to work in that specific situation.

For the library, this means that it is necessary for the user
to be able to select method components based on the situa-
tion at hand. Therefore, there has to be a way to specify the

3



situational
factors heuristics method

components

properties property
values

Figure 2. The structure of the library.

situational factors. This is done by giving them a name and
a value, e.g.

name = CompanyType
value = {Financial company, Public company, Industrial

company, ...}

4.4. Heuristics

The situational factors are linked to the method compo-
nents by using heuristics. A heuristic is a rule-of-thumb
specifying which method component can be used in which
situation. This is represented using an IF...THEN... rule
with a logical expression about the project situation at hand
in the IF part and the method component to be used in that
situation in the THEN part. For example:

IF the complexity of the data to model is high
THEN it can be recommended to use a modeling technique

based on natural language

Another example based on the relation between two method
components is:

IF a participatory approach is used in the architects team
THEN it can be recommended to have a socially skillful

team

4.5. Structure of the library

The complete structure of the library is given in figure 2.
It is a collection of situational factors, heuristics, activities,
tools, etc. which are coupled by relations. The heuristics
specify which relations can be applied when. The properties
define the method components and are being used in the
heuristics. In section 7 (extended example), examples of
method components, attributes, and the relations between
them can be found.

5. Using the library

Project members can use the architecture method library
to find the answers to questions such as:

• Which activities, techniques and tools are most appro-
priate given a specific project situation and task?

• What reference models are relevant for my project?

• What reference models are relevant in a situation
where the business has selected “customer intimacy”
as in [TW97] as their strategic focus?

• What are relevant architecture principles?

• Which reference models represent a front/mid/back of-
fice architecture?

• Which guidelines are useful for designing a data
model?

• What methods can be used for designing an application
architecture in a process intensive environment?

Just like a regular (physical) library, the architecture
method library is meant to assist professionals. That means
that the content in the library may help users in deciding, for
example, which activities are appropriate in a certain project
situation. The library will then present several possibilities,
but only judgment of the professional will make this usable
in a project context. As always, the expert is responsible for
decisions made.

When the architecture method library is used, the gen-
eral steps for answering questions like those above are the
following:

1. Analysis of the situation at hand.

2. Selection of base method components for the ques-
tion(s) at hand.

3. Selection of other useful method components. This
step can be repeated as desired.

4. Use of all the method components selected helps to
complete the analysis.

All this can be done by accessing the library. Adding
these steps to the structure of the library as given in figure 2,
the subsequent figure 3 results.

There are three different ways to access components of
the library. The first method is to formulate an exact query.
One formulates a question based on logical expressions
with values for various properties. This is used as a query
to the library. Examples of these kinds of queries are given
at the beginning of this section.

4



situational
factors heuristics method

components

properties property
values

analysis of
the situation

selection of
method components

completed
analysis

Figure 3. An example use of the library.

Often, it is not easy to formulate an exact query like this.
In such situations, browsing and selecting relevant method
components may be more appropriate. This is often called:
query by navigation.

The third method of accessing the library is the use of a
more-or-less predefined decision tree. Using such a tree as
a guideline helps to investigate the situation with which the
user is confronted. The base for this are situation factors and
heuristics which are used to select the applicable method
components.

Of course all three access methods can be combined. Af-
ter an initial selection has been made, more can be added at
will. This results in a more refined analysis, as is indicated
by the curved arrows in figure 3. Method components se-
lected may (left open arrow) or may not (right open arrow)
lead to additional or revised analysis. In section 7, the dif-
ferent access mechanisms are illustrated.

6. Filling the library

Filling the library is an iterative process. That means that
adding new documents to the library is an ever continuing
process.

Examples of new, not yet analyzed documents are
project deliverables, project archives, textual descriptions of
methods, techniques and tools, case descriptions, etc. From
the perspective of the library, this material is not likely to be

very homogeneous with respect to the method components
which are already present. For example, a book on some
modeling method could discuss this technique in a way that
is highly intertwined with a specific tool that can be used
to produce the models which is already present in a method
component in the library. This relation can only be added
after (extensive) analysis of each source document.

After addition of these new documents, in the follow-
ing step this analysis is performed. From the source docu-
ment, the method components are extracted and described
in a framework as described in the previous section. Dur-
ing this step, the relations with other method components
already in the library are determined. This is often a time
consuming task. The resulting material is homogeneous in
nature.

In principle, anything can be added to the library. How-
ever, when quality criteria are used for “screening” new raw
material, the time necessary for adding extracted method
components can be reduced drastically. Criteria can be:

• Is the new source document in some way structured
(the structure may lead to easier identification of
method components)?

• Is the knowledge present in the new source document
an addition to knowledge already present in the library
(preventing double occurrences of the same method
component)?

• Does the material fit in the domain of the library (pre-
venting the addition of irrelevant material)?

• Is the knowledge expected to be interesting for more
than one specific customer or situation (preventing the
addition of material which is too specific to be used
elsewhere)?

As can be seen, adding material to the library is a non-
trivial task which has to be done by an experienced ar-
chitect. Guidelines are important to prevent differences in
interpretation of the raw material and to prevent different
phrasings. In the next section the importance of this is il-
lustrated. However, one should realize that such differences
cannot be prevented completely.

Other, general maintenance tasks for the library can be
done by a qualified “librarian”.

An additional step may be the rewriting of method com-
ponents to some form of “standard terminology”. In this
phase aggregation can be executed, as well as normaliza-
tion of terminology and concepts used. However, this will
take a substantial amount of time and the usefulness of such
an exercise is not clear at this moment.

5



situational factor
organizable and

manageable coherence

situational factor
flexibility in
exploitation

situational factor
efficiency of system

development and maintenance

situational factor
pluriformity in

solutions

principle
infrastructural

approach

principle
data independency

principle
functional

decomposition

activity
information

architecture design

situational factor
reliability in
exploitation

situational factor
efficiency in
exploitation

property
aspect of the

system to model

product
foundation

business model

product
interaction model

product
job model

activity
modeling

activity
foundation business

model design

product
Porter description

product
job description

system

property value
company

property value
company functions

property value
company objects

property value
infrastructure

property value
applications

Figure 4. Two examples with method components from [SS97]. The italicized line indicates the type of method
component, and the other lines the name, which in some cases can be found in the text. See the text for further
explanation.

7. Extended example

In this section an extended example is discussed. We
have taken [SS97] as raw material.

7.1. Filling the library

The analysis was started by checking the criteria from
section 6: we have found this book to be structured, the
knowledge was not in our architecture method library, the
scope did fit and since it is a general purpose architecture
method book, it was certainly interesting for more than one
specific customer or situation.

First, we identified the various kinds of method compo-
nents (cf. sections 4.1 to 4.4) and next the relations between
them.

For each method component, a number of attributes was
determined: most importantly a (reference) name and a
short description (which can be seen as a citation or short
summary). Then there are additional fields such as the ref-
erence to the book, the page numbers, etc. The library is
flexible so more fields can be added as necessary.

Below, we will only show (for brevity) some of the
method components identified from [SS97]. Also, in fig-
ure 4 only a few of the method components identified from
this book are shown.

6



Situational factors
Name: organizable and manageable coherence.
Description: coupling of systems determines the coherence
of the resulting information system.
Reference: [SS97].
Page: 49.

Name: reliability in exploitation.
Description: relates to the capability of a system to maintain
its level of performance under stated conditions for a stated
period of time.
Reference: [ISO/IEC 9126 standard].

Name: efficiency in exploitation.
Description: relates to the relationship between the level of
performance of a system and the amount of resources used,
under stated conditions.
Reference: [ISO/IEC 9126 standard] (reference and pages
for brevity omitted from now on).

Principle
Name: infrastructural approach.
Description: infrastructural rules guide the (partly) au-
tonomous processes. There are two layers: one with ap-
plications and one with reusable software components. The
infrastructure is common for both layers.

Name: functional decomposition.
Description: functional decomposition allows applications
to use common centralized data and reusable software com-
ponents.

Activity
Name: information architecture design.
Description: using the foundation business model, the in-
frastructural components (function model and data mainte-
nance system) and the business organization (organization
model) are determined. Using the organization model and
the system architecture the applications, data, and coher-
ence between them are developed.

Property
Name: aspect of the system to model.
Description: this is the perspective of the system to model.

Products
Name: foundation business model.
Description: global, independent model of the business.
Contains the purpose and a description of some sub models:
job model, interaction model and object model (last model
not shown in the lower part of figure 4).

Heuristics
In this example, heuristics are found in the upper part of
figure 4, in the relations between the situational factors and

other method components (from the top most row to the
second row) (cf. section 4.4).

Relations between method components
The relations are shown as arrows in figure 4.

The construction of other method components is similar.

7.2. Creating the network

After identifying the method components and relations,
a network as shown in figure 4 can be constructed automat-
ically. Since for this example only one book was taken and
not all method components and relations have been drawn,
it is only a very small network. One can imagine that the
network is larger when all method components and rela-
tions from [SS97] are drawn, and that the network is even
larger when method components and relations from other
documents are present.

Now the importance of a unified framework comes into
view: whenever the professionals filling the library do not
use the same framework, the network cannot be constructed
automatically.

In addition, it can be seen why adding a new document is
a non-trivial task: the relation with all the existing method
components must be identified. Also, the correspondence
between method components from the new document and
already existing ones must also be identified. See for ex-
ample the method component “job model”. This relation
was explicit in [SS97] so it could be identified easily. But it
could have been that this document was already represented
in the library. In that case the the two networks would have
been linked.

7.3. Using the library

In section 5 the various access mechanisms to the archi-
tecture method library have been discussed. For answering
exact queries the method components are accessed directly
using some kind of query language. Query by example can
be done using networks as discussed in the previous section
by going from node to node using the relations and marking
the interesting ones. Access using a decision tree resembles
using a network which has pre-marked nodes; the profes-
sional will not “see” the non-marked nodes. Again, he or
she can mark the interesting ones.

After browsing the architecture method library, the ex-
pert obtains a list of selected method components and rela-
tions between them. These can then be used in e.g. a project
plan.

7



8. Future directions

Eventually, once the library has been filled with a reason-
able number of method components, a core body of knowl-
edge for information systems engineering may be identified.
Such an explicit and accepted body of knowledge would, for
example:

• Allow universities and training institutes to tune their
curricula to a well defined body of knowledge accepted
by both industry and academia.

• Allow for the identification of distinct roles in the
information system engineering process and related
forms of certification.

• Allow managers of information systems engineering
projects to constitute project teams with professionals
who share a common terminology and understanding
of the profession.

• Allow client organizations to organize second opinion
reviews among providers of information system engi-
neering.

• Allow for re-use of experiences and materials between
practitioners from different backgrounds.

Ideally, the library should make use of a common and
unified conceptual framework. This will require several it-
erations of analysis of the library.

Once the library becomes filled with some critical mass
of assets, it may become part of a “learning cycle”. The
actors in an information systems engineering project who
use the knowledge in the library for their project activities
will be able to give feedback on the contents of the library
based on their experiences in a project.

Of course, these experiences should be added to the li-
brary, resulting in an open library where professionals sub-
mit method components or refinements of existing ones to
the library.

9. Conclusion

In this paper we have presented an architecture method
library which eventually may evolve to some kind of infor-
mation systems engineering body of knowledge. Discussed
are the restrictions on the scope of the library, the contents
of the library, how the library can be used and how it can
be filled, and finally future directions. Also, an extended
example has been provided.

This project is a collaboration between the Dutch Ordina
group and the University of Nijmegen. We are currently in
the process of gathering information systems engineering

knowledge within the context of the Ordina group. We ap-
preciate contributions of other companies, research groups
and universities and invite them to join our effort in gather-
ing and structuring the architecture method library.

References

[BLW96] S. Brinkkemper, K. Lyytinen, and R.J. Welke,
editors. Proceedings of the IFIP TC8 WG8.1/8.2
Working Conference on Method Engineering.
Chapman & Hall, Atlanta, Georgia, August
1996.

[DGC+97] G.B. Davis, J.T. Gorgone, J.D. Couger, D.L.
Feinstein, and H.E. Longenecker, Jr., editors.
IS’97 – Model Curriculum and Guidelines for
Undergraduate Degree Programs in Information
Systems. ACM, AIS and AITP, 1997.

[FGH96] L. Fokkinga, M.H. Glastra, and H. Huizinga.
LAD - Het lineair ontwikkelen van informatiesys-
temen. Academic Service, Schoonhoven, The
Netherlands, 2nd edition, 1996. In Dutch. ISBN
9039504008

[FHL+98] E.D. Falkenberg, W. Hesse, P. Lindgreen, B.E.
Nilsson, J.L.H. Oei, C. Rolland, R.K. Stam-
per, F.J.M. Van Assche, A.A. Verrijn-Stuart, and
K. Voss, editors. A Framework of Information
Systems Concepts. IFIP WG 8.1 Task Group
FRISCO, 1998. ISBN 3-901-88201-4

[FV99a] M. Franckson and T.F. Verhoef, editors. Dictio-
nary. Information Services Procurement Library.
ten Hagen & Stam, Den Haag, The Netherlands,
1999. ISBN 907630484X

[FV99b] M. Franckson and T.F. Verhoef, editors. Intro-
duction to ISPL. Information Services Procure-
ment Library. ten Hagen & Stam, Den Haag, The
Netherlands, 1999. ISBN 9076304858

[Har97] A.F. Harmsen. Situational Method Engineering.
PhD thesis, Twente University, Enschede, The
Netherlands, 1997.

[ISO87] Information processing systems – Concepts and
Terminology for the Conceptual Schema and the
Information Base, 1987. ISO/TR 9007:1987.
http://www.iso.org

[SS97] W. van der Sanden and B. Sturm. Informatie-
architectuur – de infrastructurele benadering.
Panfox, Rosmalen, The Netherlands, 1997. In
Dutch. ISBN 9080127027

8



[SWE01] Software Engineering Body of Knowledge,
November 2001.
http://www.swebok.org/

[TW97] M. Treacy and F. Wiersema. The Discipline of
Market Leaders - Choose your customers, nar-
row your focus, dominate your market. Addison-
Wesley, Reading, Massachusetts, 1997. ISBN
0201407191

[WH90] G.M. Wijers and H. Heijes. Automated Sup-
port of the Modelling Process: A view based on
experiments with expert information engineers.
In B. Steinholz, A. Solvberg, and L. Bergman,
editors, Proceedings of the Second Nordic Con-
ference CAiSE’90 on Advanced Information Sys-
tems Engineering, volume 436 of Lecture Notes
in Computer Science, pages 88–108, Stock-
holm, Sweden, EU, 1990. Springer-Verlag. ISBN
3540526250

[Zac87] J.A. Zachman. A framework for information sys-
tems architecture. IBM Systems Journal, 26(3),
1987.

9


