

Towards Architectural Coordination for Digital Twins

Henderik A. Proper

Towards Architectural Coordination for Digital Twins of Socio-Technical Systems

Henderik A. Proper

Part of ongoing work

Marianne Schnellmann, Marija Bjeković, Henderik A. Proper, and Jean-Sébastien Sottet. *Towards architectural coordination for digital twins*. In Luise Pufahl and Jana-Rebecca Rehse, editors, Proceedings of the 15th International Workshop on Enterprise Modeling and Information Systems Architectures, EMISA 2025, Heilbronn, Germany, May 14-16, 2025, volume P-362 of Lecture Notes in Informatics, page 10, Bonn, Germany, 2025. Gesellschaft für Informatik.

Twin4Resilience

Business Informatics Group

Architectural Coordination

Planning challenges for Digital Twins

Towards Architectural Coordination for DT development

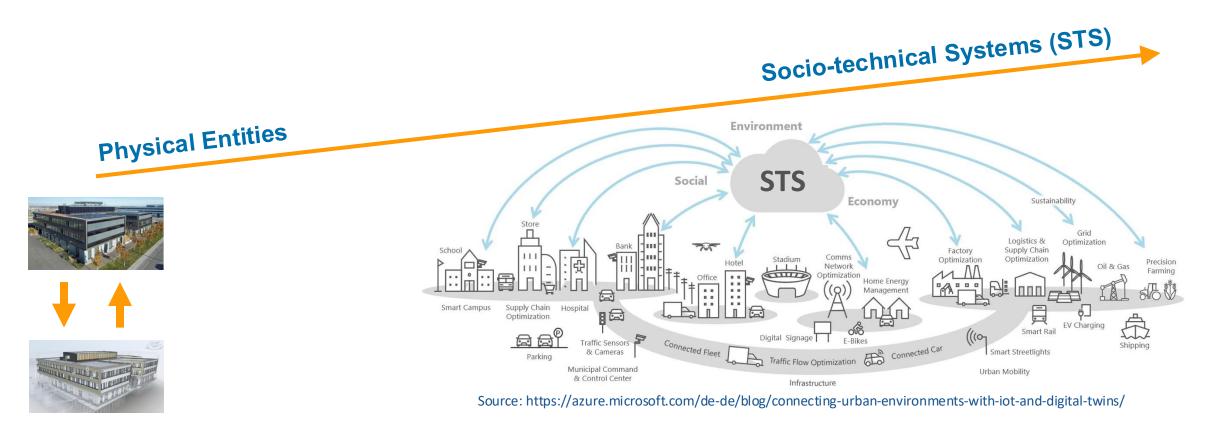
Architectural Coordination

Planning challenges for Digital Twins

Towards Architectural Coordination for DT development

Physical Entity

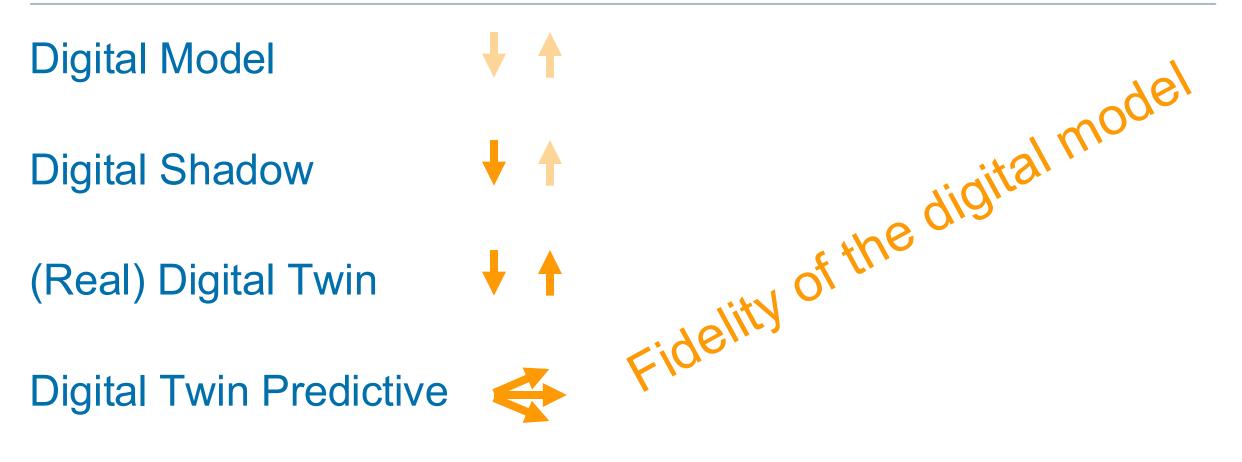
Virtual Representation


Source: https://www.ascr.at/wp-content/uploads/2022/03/2022-UC15-DE.pdf

Carry the promise of supporting better **decision-making**, **decision-execution**, **monitoring**, and **learning** in relation to the twinned entity, by integrating novel technologies, including *digital models*, symbolic and sub-symbolic *AI*, as well as advanced *optimization*, *simulation*, and *visualization techniques*

Source: https://www.ascr.at/wp-content/uploads/2022/03/2022-UC15-DE.pdf

Broadening of the possible subjects of twinning



Source: https://www.ascr.at/wp-content/uploads/2022/03/2022-UC15-DE.pdf

Urban Planning

Nochta, T.; Wan, L.; Schooling, J. M.; Parlikad, A. K.: A Socio-Technical Perspective on Urban Analytics: The Case of City-Scale Digital Twins. Journal of Urban Technology28 (1–2), pp. 263–287, 2021.

Digital Twins – A classification

Werner Kritzinger, Matthias Karner, Georg Traar, Jan Henjes, and Wilfried Sihn. *Digital twin in manufacturing: A categorical literature review and classification*. IFAC-PapersOnLine, 51(11):1016-1022, 2018. 16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018. ISSN: 2405-8963

Carry the promise of supporting better **decision-making**, **decision-execution**, **monitoring**, and **learning** in relation to the twinned entity, by integrating novel technologies, including *digital models*, symbolic and sub-symbolic *AI*, as well as advanced *optimization*, *simulation*, and *visualization techniques*

So, DTs are advanced, possibly active, information systems

Therefore, also part of a larger (inter-organizational) IS portfolio

Carry the promise of supporting better **decision-making**, **decision-execution**, **monitoring**, and **learning** in relation to the twinned entity, by integrating novel technologies, including *digital models*, symbolic and sub-symbolic *AI*, as well as advanced *optimization*, *simulation*, and *visualization techniques*

Also data-hungry and computing intensive

Do the benefits outweigh the costs?

Socio-economic sustainability of a Digital Twin?

Architectural Coordination

Planning challenges for Digital Twins

Towards Architectural Coordination for DT development

TOGAF & IEEE:

"a formal description of a system, encompassing its components, their interrelationships, and the principles and guidelines that govern their design and evolution"

TOGAF & IEEE:

"a formal description of a system, encompassing its components, their interrelationships, and the principles and guidelines that govern their design and evolution"

System Architecture Management

TOGAF & IEEE:

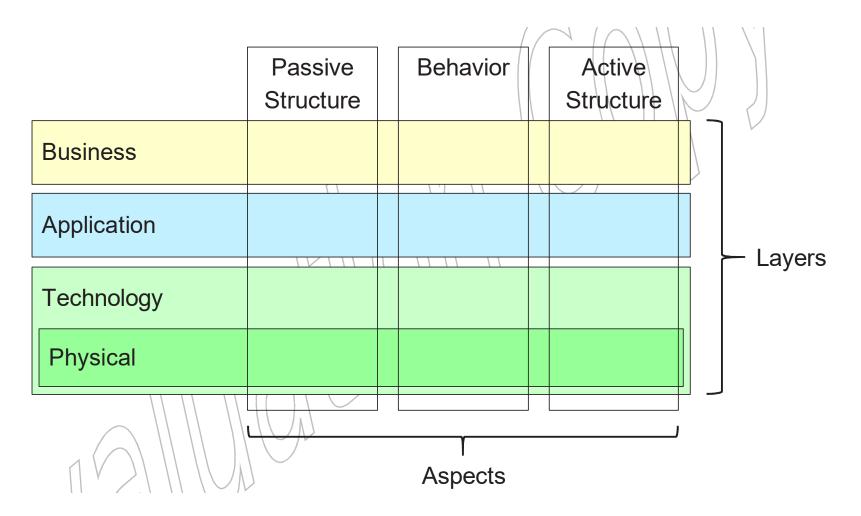
"a formal description of a system, encompassing its components, their interrelationships, and the principles and guidelines that govern their design and evolution"

System Architecture Management

TOGAF & IEEE:

"a formal description of a system, encompassing its components, their interrelationships, and the principles and guidelines that govern their design and evolution"

Martin Op 't Land, Henderik A. Proper, Maarten Waage, Jeroen Cloo, and Claudia Steghuis. Enterprise Architecture – Creating Value by Informed Governance. The Enterprise Engineering Series. Springer, Berlin, Germany, 2009


System Architecture Management

TOGAF & IEEE:

"a formal description of a system, encompassing its components, their interrelationships, and the principles and guidelines that govern their design and evolution"

Danny Greefhorst and Henderik A. Proper. Architecture Principles - The Cornerstones of Enterprise Architecture, The Enterprise Engineering Series. Springer, Berlin, Germany, 2011 *"Those properties of an artifact that are necessary and sufficient to meet its essential requirements"*

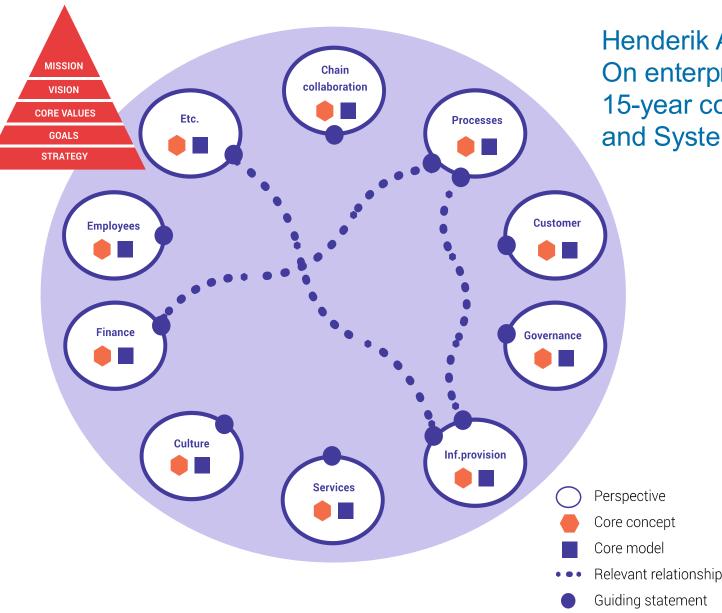
Enterprise Architecture

Source: The Open Group. ArchiMate 3.2 Specification. Van Haren, Zaltbommel, The Netherlands, 2024

Architectural Coordination

Multiple change projects and other change efforts

Within one organisation, but also across organisations


Requires coordination in the face of fragmenting forces:

- Short-term and long-term interests
- Central interests and diverse local interests

Focus on the essential requirements ...

Stakeholder engagement for coordination

Henderik A. Proper, Roel Wagter, and Joost Bekel. On enterprise coherence governance with GEA: A 15-year co-evolution of practice and theory. Software and Systems Modeling, 22(2):551-571, 2023.

Architectural Coordination

Planning challenges for Digital Twins

Architectural Coordination for Digital Twin development

Conclusion

Some planning challenges for Digital Twins

Ad-hoc & isolated development

Lack of user awareness & engagement

Fragmented & complex data ecosystems

Potential for synergies in the IT landscape

Some planning challenges for Digital Twins 4 STS

Ad-hoc & isolated development

Lack of user awareness & engagement

Fragmented & complex data ecosystems

Needs Architectural Coordination Potential for synergies in the IT landscape

Architectural Coordination

Planning challenges for Digital Twins

Towards Architectural Coordination for DT development

Towards Architectural Coordination for DTs

The basic idea ...

Think of a Digital Twin, not as a single dedicated system, but rather as a collection of functional components and their dependencies

Treat these as parts of the portfolio of (potential) functional components of the (inter-organizational) information systems landscape in general

What's needed ...

Towards Architectural Coordination for DTs

A reference framework for digital twin functional components:

- across different levels of fidelity,
- catering for an inter-organizational STS context, and
- with generic growth/degrowth roadmaps

Situation specific roadmaps, aligned to stakeholder interests:

- Grow/degrow DT functionality based on cost/benefits
- Optimise for synergies
- No regret investments in infrastructure
- Create awareness for benefits of further growth steps

Example of an overview of DT functionalities

DS.AR Al Model Repository	DS.AG Data Aggregation	IR.AS API Srvices				UX.GM Gamification	UX.DB Dashboards
DS.SR Simulation Model Repository	DS.AS Asynchronous Integration	IR.CL Collaboration Platform Integration	IC.CS Composition	IC.SM Simulation	IC.RP Reporting	UX.3R 3D Rendering	UX.XR Extended Reality (XR)
DS.SA Data Storage and Archive Services	DS.RT Real-time Processing	IR.DT Digital Twin Integration	IC.DL Distributed Ledger and Smart Contracts	IC.FL Federated Learning	IC.AL Alerts and Notifications	UX.GE Gaming Engine Visualization	UX.ER Entity Relationship Visualization
DS.DS Domain Specific Data Management	DS.BP Batch Processing	IR.IO OT/IoT System Integration	IC.BR Business Rules	IC.AI Artificial Intelligence	IC.OS Orchestration	UX.BP Business Process Mgmt & Workflow	UX.RM Real-time Monitoring
DS.IR Digital Twin Instance Repository	DS.CX Data Contextualization	IR.EG Engineering Systems Integration	IC.PS Prescriptive Recommendations	IC.PR Prediction	IC.IC Command and Control	UX.BI Business Intelligence	UX.AV Advanced Visualization
DS.RP Digital Twin Model Repository	DS.TR Data Transformation and Wrangling	IR.ET Enterprise System Integration	IC.MA Mathematical Analytics	IC.AA Data Analysis and Analytics	IC.SR Search	UX.CI Continuous Intelligence	UX.BV Basic Visualization
DS.ON Ontology Management	DS.ST Data Streaming	MG.DG Data Governance	MG.SM System Monitoring	TW.RP Responsibility	TW.RL Reliability	TW.PR Privacy	TW.DS Device Security
DS.SG Synthetic Data Generation	DS.AI Data Acquisition and Ingestion	MG.EL Event Logging	MG.DM Device Management	TW.RS Resilience	TW.SF Safety	TW.SC Security	TW.EX Data Encryption

Data Services

Integration Intelligence

UX Management

Trustworthiness

Source: https://www.digitaltwinconsortium.org/initiatives/capabilities-periodic-table/

DS.AR Al Model Repository	DS.AG Data Aggregation	IR.AS API Srvices				UX.GM Gamification	UX.DB Dashboards
DS.SR Simulation Model Repository	DS.AS Asynchronous Integration	IR.CL Collaboration Platform Integration	IC.CS Composition	IC.SM Simulation	IC.RP Reporting	UX.3R 3D Rendering	UX.XR Extended Reality (XR)
DS.SA Data Storage and Archive Services	DS.RT Real-time Processing	IR.DT Digital Twin Integration	IC.DL Distributed Ledger and Smart Contracts	IC.FL Federated Learning	IC.AL Alerts and Notifications	UX.GE Gaming Engine Visualization	UX.ER Entity Relationship Visualization
DS.DS Domain Specific Data Management	DS.BP Batch Processing	IR.IO OT/IoT System Integration	IC.BR Business Rules	IC.AI Artificial Intelligence	IC.OS Orchestration	UX.BP Business Process Mgmt & Workflow	UX.RM Real-time Monitoring
DS.IR Digital Twin Instance Repository	DS.CX Data Contextualization	IR.EG Engineering Systems Integration	IC.PS Prescriptive Recommendations	IC.PR Prediction	IC.IC Command and Control	UX.BI Business Intelligence	UX.AV Advanced Visualization
DS.RP Digital Twin Model Repository	DS.TR Data Transformation and Wrangling	IR.ET Enterprise System Integration	IC.MA Mathematical Analytics	IC.AA Data Analysis and Analytics	IC.SR Search	UX.CI Continuous Intelligence	UX.BV Basic Visualization
DS.ON Ontology Management	DS.ST Data Streaming	MG.DG Data Governance	MG.SM System Monitoring	TW.RP Responsibility	TW.RL Reliability	TW.PR Privacy	TW.DS Device Security
DS.SG Synthetic Data Generation	DS.AI Data Acquisition and Ingestion	MG.EL Event Logging	MG.DM Device Management	TW.RS Resilience	TW.SF Safety	TW.SC Security	TW.EX Data Encryption

Data Services

Integration Intelligence

UX

Management

Quantify, or at least better qualify, the "better decisionmaking, decision-execution, monitoring, and learning in relation to the twinned entity"

Development of a suitable reference framework, and associated method to develop situation specific roadmaps

Possibly extend/refine existing EA frameworks (content & process) to better cater for (business-case driven) DT in an (inter-organizational) STS context

Architectural Coordination

Planning challenges for Digital Twins

Towards Architectural Coordination for DT development

Part of ongoing work

Marianne Schnellmann, Marija Bjeković, Henderik A. Proper, and Jean-Sébastien Sottet. *Towards architectural coordination for digital twins*. In Luise Pufahl and Jana-Rebecca Rehse, editors, Proceedings of the 15th International Workshop on Enterprise Modeling and Information Systems Architectures, EMISA 2025, Heilbronn, Germany, May 14-16, 2025, volume P-362 of Lecture Notes in Informatics, page 10, Bonn, Germany, 2025. Gesellschaft für Informatik.

Twin4Resilience

Business Informatics Group

