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Abstract

1 Introduction

The workflow concept, proliferated through the recently emergent computer supported cooperative
work (CSCW) systems and workflow systems (see surveys in [FYW94, WW93, Rod91] and [GHS95]
respectively), advances information systems (IS) implementation models by incorporating aspects of
collaboration and coordination in business processes. Under traditional implementation models, appli-
cations are partitioned into discrete units of functionality, with (typically) operational procedures used
to describe how human and computerised actions of business processes combine to deliver business
services. Through an endowment of business process execution semantics, workflows permit a greater
organisational fit of ISs. Moreover workflows are specified at a level above traditional applications,

∗Part of this work has been supported by CITEC, a business unit of the Queensland Government’s Department of Public
Works and Housing (formerly the Administrative Services Department).
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enabling program binding and access to a loosely-coupled set of databases and files. Therefore, newer
applications may be developed out of existing applications to reflect reengineered business processes.

Crucial to the specification of any IS implementation is the conceptual level. This, of course, orients the
analysis of a given domain towards its essence (deep-structure) rather than to aspects of implementation
(physical-structure) or representation (surface-structure). It is a well-known fact the later problems and
inadequacies are detected in specifications, the greater the expense of correction [Dav90]. For work-
flows, the standardisation of concepts is progressing through the Workflow Management Coalition1 .
While the set of terms and references defined so far characterise sufficiently the notion of workflow,
e.g. event, process (including pre-conditions, post-conditions and state transitions) and organisational
(or actor) role, much of the focus is geared towards workflow management systems and their specifica-
tion languages. The emphasis is on part of business processing, namely process execution semantics:
sequence, repetition, choice, parallelism and synchronisation. A sound conceptualisation requires not
only this but also that process semantics, e.g. the messaging, database updates and retrievals involved,
to be explicitly captured.

In general, for the conceptual level, techniques are available under different paradigms, for the mod-
elling of different aspects of a business domain (see e.g. [OHM+88]). When integrated into well-
formed methods, integrated IS specifications - result. A number of paradigms may be discerned for
workflow modelling: process-centric, e.g. [DB91]; state-centric, e.g. [DP95]; and actor-centric, e.g.
[Die94] (based on the speech-act theory synthesis of [FL80]). Moreover the use of business (or enter-
prise) models, e.g. as deployed in requirements engineering methods [BB95, LK95, AMP94], in design
methods [Ram94] and in CAiSE tools e.g. AD/CYCLE [MMNR90], provides an organisational em-
bedding whereby a workflow model’s components may be backtracked to its real-world counterparts.

Although, the field of conceptual modelling has become fairly mature, the application of techniques,
has, by and large, followed the intuition of the developers of models. This, of course, involves an in-
formal to formal transition. With workflow specifications, this transition is reduced, however a greater
alignment is required between the workflow modelling cognition and business processing cognition.
Beyond the qualification of fundamental modelling concepts (e.g. process) with organisational at-
tributes (e.g. business service), the business processing semantics need to be infused into the semantics
of a technique such that a workflow may be expressed and communicated adequately using that tech-
nique. In absence of a universal organisational theory, much uncertainty exists as to how effective
conceptual modelling techniques are for business workflows; whether, given the diversity of business
processing, any generable prescription of a business processing cognition is in fact possible or desir-
able.

In general, in one form or another, the requirements which lead to effective conceptual modelling are
that: technique should adhere strictly to the conceptual level; should provide a high degree of expressive
power; should at the same time facilitate comprehensibility; and should be backed up by a solid formal
foundation whereby both the syntax and semantics are clearly defined. Equally importantly, a technique
should be suitable for its problem domain, meaning that its concepts and features reflect closely those
of the problem domain.

The focus of the paper is on the extension of conceptual workflow modelling techniques for business
suitability. Of course, to speak of a general business suitability is vague since there are many types of
organisations and many types of business processing [DO85]. Therefore, particular attention is drawn

1Refer to http://www.aiai.ed.ac.uk/WfMC/index.html for more details.
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to a specific type of (operational) business processing which exhibits precise execution paths. As ex-
amples, the processing of insurance claims, bank loans and land conveyancing, are mission-critical in
nature and are rarely undertaken without strict operational procedure. Also, multiple interactions with
clients and external organisations are typically needed to fulfill service requests.

In [BHPC96], some ground work for developing a more precise notion of business suitability has al-
ready been established. In particular, business suitability principles were elicited from an assessment
of both classical and business-oriented techniques. The Organisational Embedding Principle describes
how a model should be backtracked to organisational elements. The Scenario Validation Principle iden-
tifies the need for scenarios, and in particular, a business transaction, as distinct from business process
and business service, for workflow cognition. The Service Information Hiding Principle requires that
business processing undertaken for business service requests should be insulated from the requests,
and in so doing, motivates the need for an explicit treatment of business services within conceptual
modelling. The Cognitive Sufficiency Principle requires that all concepts involved in workflow model
enactment be simultaneously present in the model. Simultaneously absent in the assessed techniques
were the combination of structural and behavioural aspects of workflows, human to computer interac-
tion and temporal aspects. Finally, the Execution Resilience Principle identifies the need for operational
error handling to be catered for at the conceptual level, thereby incorporating the recovery management
focus of transactional workflows into a general exception handling. In this paper, a number of essential
modelling concepts and features for business transaction workflows are developed. The approach taken
is to develop a a kernel technique so that ...

The paper is organised as follows. In section ??, the problems and suitability principles are defined.
In section 3, useful concepts and features are combined, extended along the lines of the principles and
applied to a real-world case study. In section 4, the kernel is described formally. Finally in section 5,
the paper is concluded and further research issues are identified.

2 A business suitability synthesis

In this section, the main ideas behind Aquino are sketched using the business suitability principles: the
Organisational Embedding (section 2.1); Scenario Validation (section 2.2); Service Information Hiding
(section 2.3); Cognitive Sufficiency (section 2.4); Execution Resilience (section 2.5).

2.1 Organisational embedding

The Organisational Embedding Principle requires that a technique “embed all concepts in a conceptual
model, directly or indirectly, but without redundancy, into organisational concepts”. This not only ad-
dresses the arbitrary relationship that can exist between conceptual models and their problem domains,
but also the situation where specific business world views adopted in techniques, typically enterrpise
models, prescribe the essential structure of the conceptual model. The latter is, of course, a violation
of the Conceptualisation Principle. Moreover, it precludes the design of an IS process from a network
of business processes without first composing an “artificial” business process. This restriction is evi-
dent in specification frameworks of integrated modelling techniques, e.g. [Ram94], and CAiSE tools,
e.g. AD/CYCLE [MMNR90]. Such a composition at the IS level and not the business level relates to
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the comprehensibility of a process model, or reflects IS design requirements (of a multi-organisational
domain say).

To facilitate organisational embedding, a business processing universe is defined which consists of a
set of organisational concepts. (Although not described here) these include: organisational unit, actor
and actor roles, service, event, message, process and object type. For a particular area of interest (for
IS development), three delineations are imposed over this universe. This is a business scope, a business
domain and a business environment. The business scope, is the broadest perspective possible for the
area of interest, encompassing both the business domain and the business environment. The business
domain is the primary area of interest requiring all the necessary concepts for a detailed description
of business processing. A business environment only requires those concepts which describe the busi-
ness processing interaction with the business domain. For example, the events and their messages, are
sufficient for understanding interactions to and from a business domain. Through a consistent percep-
tion of a business processing universe, its detailed projection through a business domain and its partial
projection through a business environment, a “way of thinking” is also apparent. That is, for an area
of interest, the separation of the clients (environment), the server (domain) and the ancillary servers
(environment) at the outset, clarifies the modelling detail required.

2.2 Scenario validation

The Scenario Validation Principle requires that “a technique should provide an explicit notion of sce-
nario for model validation”. Validation is concerned with the interpretation of a conceptual model’s
domain semantics as distinct from verification which is concerned with formal syntax and semantics.
In a general sense, a scenario represents an effect in a business domain for some well defined reason,
which is expressible using the concepts (of typically more than one partial model). In business pro-
cessing terms, it is clear that a reason may be associated with an event, and the effect is the resultant
triggering of a set processes through which information may be accessed. Furthermore events, pos-
sibly invoking processing in the business environment may also result. Ultimately, the occurrence of
some final event signifies the (logical) termination of processing; i.e. representing the organisation’s
recognition that no further processing should proceed.

While scenarios appear synonymous with workflows, there is a subtle distinction. A scenario is a con-
cept which serves interpretation, while a workflow is a concept which serves implementation. Depend-
ing on the degree of complexity of a workflow, a scenario may address part, or all of a workflow, and
possibly several workflows. In accordance with the Organisational Embedding Principle, the notion
of a business transaction, drawn from a Macroeconomics perspective of organisations [BM91], is pro-
posed as a scenario. Business transactions are accountable units by which an organisation measures its
exchange of (goods and) services. Ultimately, this measure is aggregated for a nation’s economic met-
rics 2. As a subunit of business processing, indeed one which represents a cost closure, a business trans-
action provides a well-recognised mechanism for workflow model interpretation. The term business
transaction will hereafter be preferred over business processing, and the notion business transaction
workflow will qualify that class of business processing being considered for workflow implementation.

2Gross National Product (GNP) and Gross Domestic Product (GDP).
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2.3 Service information hiding

A key distinction in business transactions is that between business services and business processes.
This is, in fact, a generalisation of the distinction between events and processes. An event, afterall, is
associated with some intention, and more than one event may share the same intention. In a business
sense, intentions are denoted by business services.

As such, business services are a described (external) organisation of functionality which do not do
anything as such, other than being associated with process interactions. This may involve external
access such as client requests and responses from outside organisations, or internal access to services
in different parts of an organisation. Inherently, they have a set of states, e.g. initiated, processing,
rejected, and each state is associated with, and dependent on, a particular course of action resulting
from a particular event. Business processes on the other hand, are a prescribed (internal) organisation
of functionality reflecting the mechanisms by which business services are delivered. Unlike services,
they perform concrete actions, (e.g. data transformations, updates and retrievals) and their states are
(relatively speaking) dependent on the success of their processing.

The Service Information Hiding Principle requires that “a technique should allow the formulation of
service requests to be independent of their actual processing”. This is to avoid the problem of the direct
triggering of processes given the context of triggering. From the point of view of the environment
or from different parts of an organisation, the actual business processes triggered for some business
service request are inconsequential for the formulation of the request. That is, the request is issued for
a business service and as a result some internal mechanism is used to determine what action to take. An
implication is that when processes are reengineered, the actual request is not affected. This, of course,
is an application of the well-known Information Hiding Principle in software design.

2.4 Cognitive sufficiency

The Cognitive Sufficiency Principle relates the inclusion of all the concepts which “provide a sufficient
cognition of a model such that no assumptions about fundamental aspects of business processing execu-
tion semantics are required”. Notable areas of variance in process and workflow modelling techniques
are addressed below.

Object and control flows

Although techniques allow either structural or behavioural aspects of processes to be modelled (given
their distinctive purposes of analysis), both are required for capturing a business transaction’s execu-
tion semantics. Structured process models, e.g. a data flow diagram (DFD) [You89], describe object
(data) flows, i.e. identifiable containers of objects, object stores, i.e. persistent repositories of objects,
and object transforming processes. Behavioural process models, e.g. Task Structures [HN93], describe
process sequences, repetition, choice, parallelism and synchronisation.

Clearly, behavioural aspects are crucial for the specification of execution semantics. Structural concepts
are also important for two reasons. Firstly, object flows are transmitted by triggers related process
interactions, i.e. processes and processes, and events and processes. As containers of objects, they
should be differentiated from the set of attributes they transmit. For example, a process precondition
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should make reference to a particular object flow type, when other object flow types have the same set
of attribute types as it. Secondly, process specifications would be incomplete without the incorporation
of the object transformations and objects stores involved.

HCI

Another area of cognitive insufficiency is the conceptualisation of human to computer interaction (HCI)
by techniques. Although traditionally determined at a detailed design stage, HCI points and their dia-
logues may be defined in a process model to reduce the waterfall between conceptual, design and im-
plementation levels [DMHB90]. Moreover, it is possible to derive them from a business transaction’s
semantics; e.g. in [Ram94], if a human and computerised actor types involved in an action, that action
is refined a method of an external object type (a form). (How do our business transaction semantics
extend this idea?).

Temporal aspects

Despite the varying support in techniques, business transactions require temporal specifications for
process dependencies, and therefore process pre- and post-conditions. Direct analogues may be found
with normal process execution: a process may be required to execute within a time duration of another
process (sequence); a process may execute repeatedly within a time duration (repetition); a process may
be required to execute either at one time or another (choice); a number of processes may be required to
execute simultaneously, at some time (parallelism); or messages from a number of processes may be
required within a given time (synchronisation).

2.5 Execution resilience

A more specialised aspect of execution semantics relates to execution resilience. That is, errors can
occur which affect the normal execution of a business transaction. Of course, error prevention may
be defined through database constraints and process pre- and post-conditions while model verification
eliminates erroneous specifications. However, operational errors can still occur beyond the control of
an IS. For example, clients may not abide by business processing rules (borrowers not returning items
by their due-dates to a library), or system crashes, may occur.

The Execution Resilience Principle requires that “a technique should support the handling of opera-
tional errors, so that business processing execution may be verified as being resilient”. Although tradi-
tional process modelling techniques do not deal with this aspect, a recently proposed workflow mod-
elling technique, e.g. [CCPP95], provides basic mechanisms for exception handling. A more detailed
treatment of non-deterministic failures has recently become the subject of workflow implementation
specifications. In particular, the database transaction model (more recently described in [GR93]) with
its ACID properties (atomicity, consistency, isolation and consistency) has been extended for workflow
execution semantics; see survey of transactional workflows issues in [Kim94] (pp. 596-598). Under
it, a transaction binds a set of database operations into an atomic unit of execution. Following the re-
quirement of failure atomicity, a transaction’s changes to a database(s) are committed if the execution
is successful or rolled-back if not. Following the requirement of execution-atomicity, the concurrent
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execution of transactions should have the same effect as if they were executed in a serialisable or-
der. Workflows are more complex structures than database transactions, and it is unacceptable that the
failure of any one of its processes results in the rollback of the entire workflow.

Like traditional transactions, the notion of commit points can be used to define the atomic unit of
workflow execution and recovery. The normal place for the occurrence of a commit would be expected
to be at the end of a process’s execution. However, the atomic unit can be extended to include more
than one process. Of course, process objects can be composite in which case the entire superprocess
can be regarded as an atomic unit or atomic units can be formed out its decomposed processes.

The broader question of the appropriateness of database transaction rollback for workflow recovery
then emerges. For one, workflow processes are more sophisticated than database transactions, e.g.
they may involve messaging or they may be human-oriented tasks. Certainly, for a conceptual level
specification, it seems to make more sense to describe what the desired action should be rather than
having to include its implementation strategy. Clearly, during a crash type of scenario, the desired
action is a redo of the crashed process. A redos only strategy, as applied in database management
system (DBMS) implementations, is associated with a rollforward (i.e. a forwards) recovery, aimed
at database transaction durability. We therefore propose a rollforward recovery strategy for failures
situations. A special type of abort message is dedicated for this, i.e. a failure abort. Additionally, like
for distributed transaction management, we recognise the need for contingencies. Contengencies are
run when transactions fail to start, for whatever reason. Similarly, we adopt contingent processes in
workflows with a basic extension which allows a range of contingencies for given numbers of failure.
This enhances the robustness of contingency, and allows for the forcibility of a process (i.e. having an.
As in distributed transaction management, this means that the process should succeed eventually.

We contend that a rollforward recovery strategy be adopted when workflows are aborted as a result of
application-generated errors. We have introduced another type of abort message to convey this, i.e. a
non-failure abort. Following advanced transactions models [AA90] which allow nested transactions,
we adopt compensations. Compensations are an “undo” mechanism since subtransactions commit and
release their resources prior to the parent transaction reaching a commit state. If the parent transac-
tion is aborted, unwanted committed data will exist in a database. We appropriate such a strategy for
workflow rollback recovery since the rollback can be applied over committed processes. Examples of
compensations in a workflow could include: the logical-reverse of an update, i.e. an idempotent update;
sending abort messages to remote services for notification; triggering transitions to erroroneous service
states.

3 Business transaction modelling: a practical perspective

Having described its main ideas, the detailed modelling concepts and features of Aquino are illustrated
through examples of a real-world business transaction example. This is based on road closures under-
taken by the Queensland State Government’s Department of Natural Resources. The full case study is
described in [BH96]. This case study provides the complementary empirical insight into An overview
of road closures is described in section ?? while the business scope is described in section ??. The ap-
plication of Aquino’s three fundamental models, the object, process and service models, are described
in section 3.2. section 3.3 and section 3.4 respectively.
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3.1 Background

As a consequence of the Westminster System used in Australia, the government administration of
land falls under a number of statutes (or legislative acts) which involve a number of statutory author-
ities. In Queensland, the State Government’s Department of Natural Resources under the Lands Act3

is commissioned to grant tenure for unallocated state land and reserved land. In a broad sense, this
includes: the granting of ownership through freehold titles; the granting of custodianship for some pur-
pose through leasehold titles - leases; the establishment of reserves for national parks and wildlife etc.;
and the dedication of roads (which by definition in the Land Act implies public use). These apply to
parcels of land which are composed of one or more elementary allotments, or lots.

In order to grant tenure, the Department of Natural Resources obtains the views of the relevant stake-
holders - statutory authorities, affected landholders and affected associations in the community - in
order to determine whether proposed and potential use of the parcel affects the surrounding area’s cur-
rent and future land use and the current legislation. The statutory authorities include local governments,
electricity power suppliers, telecommunications carriers and environment and heritage regulation au-
thorities.

The process of determining whether tenure should be granted is complex taking from days up to
months. During this period, repeated checks are required to ensure that the appropriate requirements
are satisfied. These are needed since different actions constantly occur on related aspects of land. For
example, during the process of investigating whether a mining lease should be granted, an overlap-
ping part of the land may become heritage-protected while another overlapping part may be needed
for a railway corridor. Clearly, the three tenures may result in incompatible land use. Furthermore,
repeated interaction with the different stakeholders may be necessary to resolve unsatisfied require-
ments. During this period also, business processes may change due to changes in legislation as well as
in organisational restructures. In short, an effective coordination of processing requires: the integrity
of tenure grants to be preserved; insulation from business process change; a minimisation of customer
interaction.

The closure of roads is a particular instance of tenure allocation. Under the Lands Act, the Minister
for Lands approves road closures. This responsibility may be delegated to specific persons. Apart from
the legal reasons, the approval (and for that matter the disapproval) of road closures carries important
ramifications. For one, the general public have certain rights and expectations to roads. A road should
not be closed for reasons which include the current or potential blockage of dedicated access to another
parcel(s), the compromise of the transportation network, environmental degradation (e.g. some roads
form important corridors and refuges for flora and fauna) and the existence of Native Title4. Figure 1
contains different examples of road closures.

A road may be closed permanently or temporarily. If permanent, it may be subsumed into one or more
adjoining parcels as depicted in (a), (b) and (c). A subsumption into a freehold tenured parcel (a)
involves a Surrender of the existing title, i.e. a Certificate of Title, and the issuing of a new title, i.e. a
Deed of Grant5 over the “new” parcel. A subsumption into a leasehold tenured parcel (b) involves an
Adjustment of the existing lease. For temporary closures, a Road License (not illustrated) or a Permit

3Lands Act 1994; i.e. last issued in 1994.
4Under the Native Titles Act (Queensland) 1993, ammended in 1994, parcels without any allocated tenure are deemed to

have Native Title, i.e. their use is determined by the Aboriginal people of Australia.
5A Deed of Grant is a title which signifies the first tenure of a parcel.
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Road Road area in question

Freehold lot

Legend

Leasehold lot

(b) Subsumption into a leasehold lot. An

(c) Subsumption into two freehold lots

freehold lot

(a) Subsumption into a freehold lot. A Surrender
of existing Certificate of Title results followed by
issue of a new Deed of Grant

Adjustment of existing lease results

(d) Permit to Occupy attached to a

(e) Creation of a freehold lot. A new Deed
of Grant results

Figure 1: Road closure examples

to Occupy (d), may be issued over an area, where the State retains the right to re-dedicate the area
at any subsequent time. In the case of a Permit to Occupy, the road does not lose its status and the
public’s access cannot be impeded completely, e.g. a side walk cafe. Roads may be created into parcels
without subsumption (e), in which case a Deed of Grant is issued. A complex road closure example
(not illustrated) occurs during the development of new estates where a developer wishes to restructure
a grid-like parcel arrangement into one which has a more irregular arrangement, typically with cul-de-
sacs. This attracts more buyers. For this, the existing roads first need to be closed and the surrendered
land needs to subsumed into the existing parcels. This is provided through the Road Closures business
transaction. The newly designed road then needs to be opened, through another business transaction.

3.2 Object Modelling

The object (data) modelling technique of Aquino is based on the Conceptual Data Modelling Kernel
(CDM) [CP96]. It extends the Object-Role Model (ORM) kernel [BBMP95] to not only allow mod-
elling of ORM schemas, Entity-Relationship and (structural) Object-Oriented schemas. Its applicability
is therefore fairly wide. It achieves this through the provision of a generic mechanism for abstraction.
In particular, set of object types can be clustered together to form abstractions for different structural
constructs, e.g. specialisation heirarchies and aggregation.
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The highest level object model for the road closures business domain is depicted in Figure 2. The three
object types, Application, Parcel and Tenure, are of schema abstractions. These further decompose
into object models.

has-as-
parent-
block

Application Parcel

Tenure

road-area-in
relates-to- has-road-area-

related-to

Road-Area

Parent-Blockrequests has

Figure 2: A highest level object model

An Application plays a role, relates-to-road-area-in, with a Parcel through a binary relationship
(a split rectangle with each box representing a role). The converse role has-road-area-related-to
is also depicted. A uniqueness constraint (a double headed arrow over both roles) indicates that this
relationship is many-to-many while a mandatory role (a black dot) indicates that the corresponding
role must be played. In other words, each Application must have at least one road area. A parent block
may also pertain to an Application. Road areas and parent blocks have the same classification, namely
Parcel. The junction of roles on the mandatory role constraint of Parcel indicates that it inclusively
plays one role or the other. Road Area and Parent Block denote fact types; i.e. the object types and the
relationship types involved. This allows fact instances as a whole to be referred to. Fact type names will
not be further depicted. A Parcel (typically) has Tenure while an Application requests a Tenure.
Both relationships involve a one-to-many uniqueness constraint (a double headed arrow over one role
only).

None of the decompositions other than that for Application in Figure 3 are shown. At the top, the refer-
ence type is indicated in parentheses, namely System File Reference. It represents the way in which
each Application is identified. YY/NN is the format for the reference, in this case, denoting a year
followed a two digit number. Each Application has-as-applicant a Party (i.e. a generic for a person
or an organisation). An Application also is-of a type, A-Type, should-have-views-sought-from a
set of Stakeholders (a double lined object type indicates its occurrence elsewhere), has-documents-
stored-in a File, has dates when it was written-on, received-on, lodged-on, rejected-on, gazetted-
on and has-road-inspected-on, and an indication of whether the department is to seek views from the
Stakeholders, described through the unary role dept-to-seek-views. The lines without roles attached
to Date’s mandatory role constraint indicates that all roles (including those not relevant in this schema)
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played involve mandatory inclusive disjunction.

dept-to-seek-views

gazetted-
on

was-

Application (System File Reference)   YY/NN

A-Type
(AT-Code)

received-
on on

rejected-
onon

written-
is-of

(File
File

Reference)

has-
ents-
stored-
in

docum lodged-

should-have-views-
sought-from

inspection-

requires-

was- was-was-

applicant

on

has-road-

Stakeholder

has-as

Party
Date

(dd-mm-yy)

Figure 3: An object type decomposition

3.3 Process Modelling

The Aquino process modelling technique extends Hydra’s transaction modelling [Hof93] which in-
corporates Task Structures and LISA-D, to include structured process modelling (e.g. DFD) concepts,
messaging similar to [HH96], complex decisions, temporal aspects and operational error handling.

The processing of road closures commences with the arrival of a letter of application and relevant doc-
uments, i.e. Application Documents, at a Service Centre. The Application Lodgement depicted in
Figure 4, is the first of the three high-level business processes to be executed. In it, an Application File,
formed to contain the documents, is sent to the relevant Regional Office where it is filed away in the
Application Files by Store Application. An actor role, Service officer, is indicated for the Applica-
tion Entry. The convention we have adopted is that an actor role applies to the indicated process object
(a process or a decision) and the process objects which are triggered subsequently, until another actor
role is indicated.

The process model resembles, in part, a Hydra task Structure. Processes (boxes) including an initially
executed process (denoted by the bent arrow), together with execution triggering (arrows between pro-
cesses) are shown. Through the depictions of Application Documents and Application File, it can be
seen that we have introduced messages. Both are hard-copy messages. Application Documents has
been depicted to arrive asynchronously (a small arrow embedded in a process). This means the the
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Application
File

Service officerApplication
Documents

Application

Application
Files

Entry
Application

Application
Database

FileStore
Application

Figure 4: An example of structural processing extensions for a behavioural process model

receipt (sending) of the message does not suspend any processing. (In section 3.4, we will describe the
orthogonal issue of how the arrival of a message - as an event - triggers the execution of a process).
The messaging mode of Application Files from Application Entry to Store Application is also asyn-
chronous. We have adopted this variation of notation for intra-model messaging between processes.

In general, the semantics of messaging do not follow those of triggering. In business transaction pro-
cessing, afterall, messages are not “aimed” directly at processes but at containers, e.g. an in-tray or a
mail-box. The retrieval (sending) of messages from (to) containers is described in the process specifica-
tion. To provide a treatement of transient storage , we have extended the interaction of Hydra buffers. In
Hydra, buffers permit a FIFO (first-in first-out) queuing protocol. In Aquino, this has been generalised
for any such protocol: LIFO (last-in first-out), random or any predicate specifiable order. An equivalent
representation for Figure 4 which makes message buffering explicit is depicted in Figure 5. This repre-
sentation is more preferable when the buffers add to the comprehensive value to the model. Notice, the
name of a message need not be repeated throughout a process model. Naming on its initial occurrences
(through messaging or creation in a process) and final occurrences (through messaging or storage) is
sufficient. In this case, the initial occurrence of Application File is created by a process while the final
occurrence involves storage. Application Documents also occurs through inbound messaging but its
final occurrence is not apparent, since it is contained in Application Files.

Included in process specifications are pre- and post-conditions and component actions for database ac-
cess. A major benefit of using tightly-coupled integrated techniques such as Hydra lies in the increased
expressiveness available for their conceptual specification languages. In general, such expressiveness is
necessary to capture more fully process semantics. As a basic example, consider the following LISA-D
formulation for capturing details of an Application:

ADD Application: Current-App has System File Reference: Current-File-Ref
ADD Application: Current-App has-as-applicant PartyWITH Name = Current-Applicant
. . .
ADD Application: Current-App lodged-on Date: $Today
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Application
Files

Entry
Application

Application
Database

Store
Application

Service officer

Application
Documents File

Application

Application
File

Figure 5: An example of explicit message buffering

The schema assigment of Application to the Application Database makes this possible. Of course,
the variables Current-App, Current-File-Ref etc., permit temporary storage during the data entry. For
the data entry, HCI points have been introduced (slots on the lower part of process symbols). The
description of the form/screen of the application being used, may be contained in this slot. The (actual)
names have been omitted from the discussion (much like a CAiSE tool where certain textual details in
a model may be “clicked” on and off). Of course, object schemas are required to be assigned to HCI
points and messages. Like databases, they are storage entities and so require an information grammar.

A more complicated process model is depicted in Figure 6 for Application Investigation. In brief, it
consists of a number of internal checks to determine whether the Application is valid, a Preparation
for a more detailed investigation, Seek Views and Process Views of the Stakeholders as a part
of the detailed investigation, and a Site Inspection as another part. A decision is then made to Ap-
prove (an) offer which if negative, results in either a rejection or request for further information/action
through Suspend Processing, or if positive results in a preparation to make the offer through Ef-
fect Offer Approval. In the description that follows, only Initial Review Passed?, Preparation and
Seek Views are further elaborated on.

The example of the internal checks presents the need for an extension to decision handling in traditional
modelling. Under Hydra Task Structures for example, decisions yield either a positive or negative
outcome, given their rules. Moreover an outcome can terminate execution, returning control to the
supertask. It is evident through this part of road closures, as depicted in Figure 7, that decisions in
real-world business transactions may be based on sub-decisions. In this example, the complex decision
is refined into simple decisions, each of which is executed in parallel, with an implied synchronisation
of their outcomes.

It is possible to build up powerful complex decisions as depicted in Figure 8. This is an example of a
decision network consisting of simple and possibly further complex decisions with execution triggers
(i.e. dependencies) between them. Unlike the example of Figure 6, not all decisions need be evaluated
as also seems evident in decision-making of real-world business transactions, among others. For this,
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we propose terminating aborts for decision outcomes which when executed terminate complex decision
processing. Decisions D and E have these. Furthermore, note the differences in decision dependency.
D is triggered by an outcome of A, while E is triggered by outcomes of B or C (and therefore may be
invoked twice). On the other hand, outcomes from both A and B are required for F. The Task Structures
synchroniser construct (triangle) caters for this.

y n

y n

D
y n

D

y n yy n n

A B C

F

Figure 8: An example of a decision network based on a complex decision

A further extension to decision processing is the accommodation of messaging. In Figure 7, most de-
cisions require data from messages for the decision rules. Also the messaging of “remote” services
(boxes attached to the messaging arrows) is illustrated. Unlike the previously discussed form of mes-
saging which was asynchronous, the depicted messages are synchronous. That is, a message is sent out
and an incoming message is anticipated (hence two embedded arrows). From the time that the message
is sent out to the time that the message is received, no execution proceeds. Again through LISA-D, we
illustrate how highly expressive conceptual specification languages allow quite sophisticated decision
rules to be formulated. In general, LISA-D expressions are built from paths between object type names
and role names. The following decision rule pertains to the positive outcome of Previous Application?
(assuming a two year threshold):

LET previous-app BE Application(has-as-parent-block Parcel CONTAINING Lot
elementary-surveyed-unit-of Parcel
has-road-area-related-to Current-App
AND ALSO
received-on Date < Date marks-receipt-of Current-App
AND ALSO
received-on Date ≥ Date marks-receipt-of Current-App − 2 years)

Like a simple decision, the result of a complex decision is either a positive or negative outcome. In this
example, a negative outcome results in the execution of Suspend Processing which is depicted in
Figure 9. In brief, it either results in a rejection of the Application or a request for further information,
both of which result in the appropriate outgoing notifications sent to the Interested Stakeholders.
Rejecting an Application not only means updating the state of object, but ultimately terminating the
workflow associated with the Application instance. In section section 3.5, the subject of our treate-
ment of the Execution Resilience Principle, we discuss how this type of operational error and other
types, are handled. An interesting feature of this example is the use of recursive decomposition, i.e.
Suspend Processing invokes itself. Unlike a pure structured decomposition as adopted in structured
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process modeling techniques (e.g. Data Flow Diagrams), the control-flow nature of this technique per-
mits this.
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Figure 9: An example of recursive decomposition

Returning to Initial review passed? in Figure 6, its positive outcome results in the Preparation for
a detailed investigation of the Application. This involves publication of the road closure intention in
the Government Gazette; done through the Gazettal service (external to the department). The de-
partment seeks the views of stakeholders if it is required to do so. This is done through Seek Views,
depicted in Figure ??. First the Candidate Stakeholders need to be determined. These are obtained
through Parcel Info (an external service which accesses a cadastral database identifying the surround-
ing parcels, utilities etc.). Then the contents of the message needs to be inserted into the Candidate Stakeholders
object store. As an alternative to performing this through a HCI, as would ordinarily be the case, it is
possible to automate the message transfer. This requires that the target object store schema and the
source message schema both be compatible. The message’s schema is illustrated in Figure 10.

Using the fact type denotations, Contact and Location, both of which also apply for the Candidate Stakeholders
object store, the following LISA-D statement illustrates the automatic message transfer:

ADD Contact IN Candidate Stakeholders TO Contact
ADD Location IN Candidate Stakeholders TO Location
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Figure 10: Schema associated with the Candidate Stakeholders message

A Notice of Road Closure is then sent to each Stakeholder, illustrating how bulk messaging (the
analogue of bulk database updates) can be incorporated in LISA-D:

SEND Notice of the Road Closure TO EACH Person is-contact-for Stakeholder s
AT Address is-contact-for Stakeholder s

Now the sending of the messages is required to occur no later than one day after the date of gazettal.
This illustrates the need for a temporal constraint in the postcondition in Seek Views:

END-DATE(Seek Views) ≤ Date is-gazetted-date-of Application Curr-Application + 1

As an example of a temporal constraint on preconditions, a Site Inspection is not allowed to occur
more than prior to two months before the intention for road closure has been “gazetted”:

START-DATE(Road Inspection) ≥ Date is-gazetted-date-of Application Current-App + 2 months

START-DATE and END-DATE indicate the need for temporal functions which provide the start and
end dates (times) of process object execution. This implies that certain execution statistics about pro-
cess objects should be maintained. This allows time durations to also be used within constraints, for
example, for “timeouts”. Also process execution dependency can further be qualified through tempo-
ral constraints. For example: run a number of processes at some time, simultaneously (parallelism); or
within a time duration of each other (sequence); run a process repeatedly within a certain time period or
cyclically at time points (repetition). Such constraints can apply to messaging as well, e.g. contingent
service access for process objects if messages have not returned within certain times.

3.4 Service Model

So far features of Aquino’s object and process modelling techniques have been presented. In this sec-
tion, the last and most pivotal of the models, the service model is described. The service modelling
technique of Aquino is entirely a new proposal. It allows business services to be explicitly modelled
such that, in accordance with the Service Information Hiding Principle, service requests are insulated
from the resultant business processing. Recall (from section 2.3) that the key determinant of what busi-
ness processing is required for a given service request, is the state of the service. In turn, a particular
service state is dependent on the success of the elapsed business processing. Of course, the states of a
service should describe the lifecycle of a service in a way which is meaningful to its stakeholders, and
should not be used as a business processing “log”.
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It can be seen that a convenient way to model a service is an object. Objects, afterall, encapsulate
processes, and their behaviour is described through a lifecycle of states and state transitions (see e.g.
[RBP+91, SM88]). That is, for a given state, an object reacts to a set of events through the activation
of actions, possibly if certain conditions are satisfied. Applied to business services, service requests
are specified as events while the actions represent business processes. In general, events represent
occurrences which signify changes of state in the business scope. Examples of events include the receipt
of a message, changes in time and the termination of process/decision and the occurrence of an abort.
A business service’s state-dependent reaction to an event includes the triggering of a process model
object. Process model objects, of course, trigger other such objects, produce messages or effect updates
and retrievals from object stores. As the workflow progresses, different events are raised, and again, the
service object may react to these, further propagating processing.

It can be seen that in Aquino, the state-centric modelling cognition of the service model complements
the process-centric modelling cognition of the process-model. This, in effect, represents a declaritive
versus imperative appropriation in specifications to effectively capture business processing semantics.
That is to say, the higher levels of business processing are described declaritively through service
models wheras at lower levels are decribed (more) imperatively through process models. The exclusive
adoption of one dynamic modelling paradigm is considered unsuitable. A complete state-centricity
leads to complete object-orientation which has the disadvantage of turning each process model object
into an “island” specification. On the other hand, a complete process-centricity would result in complex
business service specifications, given the permutations of exceptions of process invocations for the
different events.

The service model for the road closures business transaction is depicted in Figure 11. The service
model consists of: normal states (large polygons), e.g. Lodged, Initial review passed and Application
rejected; special states indicating the “birth” of a service (small unshaded polygon) and the “death” of
a service (small black-shaded polygon); and state transitions (arcs). The special states allow transitions
to the first possible state(s) (Lodged) and last possible state(s) (Application rejected and Title issued)
to be specified within the same service context (otherwise some global service would be required to
undertake these). Of course, this issue relates to the suitability and comprehensibility rather than the
expressive power of the technique.

The event-condition-action (ECA) paradigm which has been adopted for active rule specification in
database systems, e.g. [CN90], and conceptual specification languages, e.g. [LMS+91], is adapted for
event specifications. These, of course, are attached to the service object state transitions.

The first event is the arrival of the message Application Documents. This is an example of a messag-
ing event. It is distinguished from an actual external event e.g. the signing of a contract for an estate
development. In general, the inclusion of such external events do not seem necessary for workflow
specifications, although they could be captured through an event dependency formalism separate to
the workflow specification. This first event leads to the service object (instance) creation in the “birth
state”. Upon this creation, it sends the message to Application Entry thereby triggering the workflow
described in Figure 4:

WHEN Application Documents RECEIVED
THEN SEND Application Documents TO PROCESS Application Lodgement

The transition to the Lodged state occurs when the Application object is first entered into the Applica-
tion Database (2) - an example of a database state event. The expression is formulated using LISA-D
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Figure 11: Service Model for Road Closures

demonstrating how conceptual data specification languages can be used by ECA languages. The pred-
icate, in this case, is an arbitrary fact type with a mandatory role since this will evaluate to “true” after
the Application is stored in the database. No THEN part follows since the workflow execution still
continues (without the need for invoking further processing). This further illustrates the importance of
service states capturing the required perceptions of service stakeholders, independent of the underlying
workflow execution:

WHEN Application received-on Date

A problem may be found in the Application (this relates to the internal checks done as part of the
decision Initial review passed? described in Figure 7). In this case, a Request Further Action/
Information may executed. Its issue of a Notice of Further Action/Information message - a messaging
event but this time outgoing - is detected by the service object for the next state transition (3):

WHEN Notice for Further Action/Information SENT

The subsequent Correspondence, like all incoming messages from the environment, is sent to the
service object, and so the service object further activates processing. The Correspondence should be
examined, and so no state change results (4):

WHEN Correspondence RECEIVED
THEN SEND Correspondence TO PROCESS Examine a Correspondence
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Although not included in the process model description, Correspondence may not be satisfactory in
which case the Suspend Processing may be reinvoked with the Minister’s Delegate’s decision to
Reject Application? - a processing event involving negative decision termination:

WHEN DECISION Reject Application? REJECTED

or a positive decision termination resulting in the transition to the Application rejected state (6):

WHEN DECISION Reject Application? ACCEPTED

The above ECA rules provide some indication of the types of events which a service can react to. In the
full case study, the need for the following further events types was identified, e.g. when: process objects
commence execution; process objects fail to commence execution over a range of times; terminating
aborts occur. Also for temporal constraints, we have identified the need for the START-DATE and
START-TIME of service states, the SENT-DATE, SENT-TIME, RECEIVED-DATE and RECEIVED-TIME
of messages. (Recall the START-DATE, START-TIME, END-DATE and END-TIME of processes
are also required to be known). Nevertheless, we recognise that the expressive completeness and suit-
ability of service ECA language are an open issue.

3.5 Exception modelling

In Figure 12, an example of a rollback recovery is depicted for road closures. In it, the workflow has
progressed to the point where an abort has been raised to reject the Application during Process Views.
The elapsed workflow includes the initial investigation and the preparation, the seeking of views and
the processing of one incoming and problematic view (e.g. a stakeholder’s rejection of the application
is not reconcilable). A rollback therefore has to occur. The rollback specification of each process object
is presented in the table. It indicates whether a rollback is required, and if so whether a particular
compensation applies.

From the table, it appears that decisions do not require rollbacks. This seems intuitively acceptable
since decisions are simple processes. In a complex decision having a terminating abort, other decisions
are merely terminated. Also, of course, when no rollback is to be performed, no compensation applies.
However, when a rollback is required, a compensation may apply (when the process is not in the current
commit grain and therefore when an undo cannot be performed). In this example, the rollback strategy
is running Closure Rejection Notification involving messaging containing corrective information and
Revert Preparation involving an idempotent database update. This illustrates how error handling can
be localised into process objects as opposed to the traditional approach which centralises error handling
into a single routine; clearly a gain in comprehensibility and suitability.

The modelling of rollforward recovery is not discussed.

4 An integrated conceptual modelling kernel

Following the motivation and illustration of Aquino’s modelling concepts and techniques, its definition
including a formal syntax is now provided. In Section 4.1, the main concepts are described and placed

20



Department to seek
views?

ROLLBACK?   COMPENSATION

-

Y Revert Preparation

- -

Y

Preparation

Initial review passed?

Determine
Stakeholders

Correspondence
Examine a

Problem?

Reject application?

Notification
Closure Closure Rejection

Notification

N

-

-

N -

-

-

-

-

Figure 12: Rollback recovery example for road closures

into the context of the business scope. The process modelling technique is described in section 4.2
while the service modelling technique is described in section 4.3. The object modelling technique has
not been changed from that described in [CP96], and so no definition is provided here. Axioms for
inter-model consistency are not provided, nor is a definition of the formal semantics. Both are the
subject of future research.

4.1 Business Scope

In its broadest sense, Aquino provides a set of kernel techniques which allow the domains of business
transaction workflows to be modelled in an integrated fashion. The techniques involve object, process
and service modelling. The notion of kernel means that the techniques are not necessarily concrete
techniques, although they may be applied as such. Rather they provide a set of abstract concepts and
features from which concrete techniques may be specialised and further developed.

At the outset, we consider it important to establish the various scopes from which the concepts belong.
This serves to discern a technique’s highest level of perception of a domain; an important factor during
the initial phases of analysis. In other words, the basis for organisational embedding should be clear.
For Aquino, the highest possible scope is a business scope. It is partitioned into a business domain,
which is the focus of the modelling, and the business environment, which is required so that the business
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domain’s external interaction may be modelled. A business scope is, in itself, a concept, aggregrating
all other concepts. It exists within an absolute scope - a universal space say - which may contain other
types of scopes. The set of concepts which are relevant to Aquino, are not only bounded “vertically” by
a business scope and all the possible concepts relevant to a business scope, but also “horizontally” to
type of phenonemon of relvance. This, of course, is that type processing which we have characterised as
operational business transaction workflows. As depicted in Figure 13, the intersection of this “vertical”
and “horizontal” universal space represents the set CP of concepts relevant to Aquino.
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processing �������

�������
�������
�������
�������
�������
�������
�������

Scope

Universal spacePhenomenon

Business
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Figure 13: Framing Aquino’s concepts within universal space

The concepts that we begin with are those which assist in Aquino’s organisational embedding. In other
words, these concepts are enterprise (or business) concepts which may be refined into further concepts
within the specific technqiues. As an example, the enterprise concept process is refined into process,
decision and synchroniser in the processing modelling technique. At the same time, it should be un-
derstood that there is no fundamental difference in the concepts used for the enterprise and detailed IS
modelling, as in, for example, [Ram94]. Rather we follow an observation made by the FRISCO Group
[FHL+98], that ISs are organisational (sub)systems, and so the conceptual basis for IS modelling is
also relevant for organisational (sub)systems; and an IS implementation platform, workflows reduce
the traditional gaps of their respective cognitions.

A convenient mechanism for determining the set of concepts which belong in a business scope, a
business domain and a business environment, is the set of organisational units OU ⊆ CP . This is
because organisational units are the means by which processing and storage entities are dispersed
within an organisation. This is defined through the relation Structure ⊆ OU ×CP . An organisational
hierarchy is structured as a rooted directed acyclic graph of organisational units where the “top” of each
graph is an organisation. The relation SubOf ⊆ OU ×OU allows parts of a number of organisations to
be pertinent for a workflow, and so represents a “forest”. As scopes over the “forest”, a business scope
BS, a business domain BD and a business environment BE are all subsets of business concepts. This is
depicted in Figure ??.

The degree of workflow modelling in a business domain is whole while that in the business environment
is only partial. This is alluded to by the Service Information Hiding Principle which aims to encapsulate
workflow specifications where possible. Of course, some concepts may be used in both the business
domain and the business environment. For this, a concept qualified as internal means that it exists in
the business domain while that qualified as external means that it exists in the business environment.

The remaining types of concepts are:
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1. A set AC of actors. An actor is instrumental in undertaking business transactions. Actors, as such,
do not undertake the processing, but (as described below) do so in roles. Only internal actors are
of relevance6 ..

2. A set RL of roles. A role is a particular functional charter required for one or more business
transactions. Actors are assigned to roles. This is given through the relation Assign ⊆ AC ×RL).
As with actors, the only roles of relevance are the internal ones.

3. A set PR of processes. Processes are prescriptive units of functionality which allow business
transaction processing, among others, to be described. Typically, processes involve human(manual)
actions, computerisable actions such as reading, writing and updating data and undertaking dia-
logues whether human or computerised. As directly apparent from the Service Information Hid-
ing Principle, the only processes of relevance are the internal ones.

Actor roles are required for to undertake processes. This is described by the relation Undertake ⊆
RL×PR). Moreover, actors should only be allocated to roles required by processes which are
in organisational units that the actors are assigned to. This is defined using the following axiom,
noting that ◦ represents a relation composition:

Assign ◦ Undertake ◦ Structure ⊆ Structure

4. A set SV of services. Services are descriptive units of functionality which allow business trans-
action processing, among others, to be described. In fact, a service represents a mechanism by
which business transactions are accessed, without, as described by the Service Information Hid-
ing Principle, knowledge of how the business transactions are undertaken. It follows that both
internal and external services are of relevance.

5. A set OB of object types. Object types are either informational or material. An informational ob-
ject, e.g.Application is abstract having static (but not behavioural) properties. A material object,
e.g. Application Files, is tangible having no further properties of interest. The only object types
of relevance are the internal ones.

Although we have not provided the definition of Aquino’s object modelling technique, it goes
without saying that an object belongs to a schema definition(s). This is given by the function
Schema:OB→℘+(SCH), where SCH is the set of schema names.

6. A set OS of object stores. Object stores provide a persistant, structured storage for objects. Of
course, they may store material object types, e.g. a car pool, or informational object types, e.g. a
paper general ledger or a database, but not both. Some object stores are distributed e.g. distributed
databases, and so may reside in a number of fragments. This is given by the partial function
Fragment:OS �FG where FG is the name of the fragment.

The only object stores of relevance are the internal ones. Note, the fragments of a distributed
database which lie outside the boundary of an organisation, are considered to still be part of
a business domain. This is because a distributed database is a single logical entity. This is not
true of a federation of databases accessed by a given process. Any database in the set may be
autonomous and may reside outside the business domain. Access to any such external database
should occur through services.

6This is philosophical rather than fundamental. For example, this view would be not be acceptable for techniques adopting
actor-centric paradigms
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7. A set ME of message types. Messages are used to transfer data during processing. They may
contain structured data (objects) or unstructured data. Both internal and external messages of
relevance; the relevance of external messages follows that of external services.

8. A set MB of message buffers. Message buffers provide a transient, unstructured storage of mes-
sages, e.g. an in-tray, an electronic mail box or a set of “pigeon holes”. Message buffers may be
allocated to particular message types, given by the relation MesAlloc ⊆ MB×ME .

The storage (retrieval) of messages to (from) a message buffer follows a message protocol. This
is given by the function MesgPro:MB→MP , where MP is the set of message protocol names.
Instances of it include FIFO and FILO queues, a random order or an order specified by a predi-
cate.

9. A set EV of events. An event is a discrete and instantaneous occurrence representing a change
of state within the business scope. In its broadest sense, events result from: interactions between
processeses producing, or produced during, business transaction execution; changes in time and
changes in object states (as a result of database updates). Interactions are discussed in more detail
in section 4.2.

It follows that the events which a domain can perceive are internal to the domain, since these re-
sult from interactions on processes (recall, only internal). So, for example, the event of an arrival
of an Application and not its caused event of the establishing of a contract for the development
of an estate, is perceived by the Road Closures domain.

In general, the name of a concept is determined through the function Name: CP → V , where V is the
set of names.

4.2 Process modelling technique

The process modelling technique, allows the prescriptive aspects of business transaction processing to
be modelled. This means that processing which results directly or indirectly from service requests. In
its broadest sense, a process model consists of a set PM of processing entities, a set SE of storage
entities and their interactions between these which characterise the modelling of the processing.

Processing entities and interactions

PM generalises not only processes (which are visible at the business level) but also concepts which
refine processes, namely decisions and synchronisers. In fact, PR, DS and SY partition PM. Decisions
allow “moments” of processing uncertainty where a (possibly non-deterministic) choice of execution
paths may be followed, depending on the outcome of the decision. Synchronisers allow “moments”
of synchronisation. A common example of synchronisation, like that depicted in Figure ??, requires a
number of execution paths to be reached, prior to further processing being executed. A further appli-
cation of a synchroniser is depicted by the example of a share purchasing process of Figure 14. Here,
a decision is made to determine whether Sufficient funds? (from a “dynamically” updated account)
are available to Purchase a share portfolio (shares from a number of types). If not, basic shares are
purchased, i.e. Purchase shares. In either case, when the processes are “forked” off for the purchase,
control is returned to the decision to ensure that the purchasing process is continuous.
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Figure 14: Implementing a “fork” using a synchroniser

Interactions between processing entities are specialised as triggering and messaging. Triggering serves
to activate execution, i.e. control flow. This is defined through the relation Trig ⊆ PM×PM, where
xTrigy means that x is triggered by y.

Messaging, as (just) described above, serves as a communication mechanism, i.e. data flow. In partic-
ular, it involves the sending or receiving of messages, which while having some effect on execution
control, is an issue orthogonal to it. Only processes and decisions may be involved in messaging, hence
the definition of the set of non-synchronisers NS = PM−SY . Figure 15 illustrates the different
messaging modes.

Execution line

(a) Asynchronous inbound
messaging

(b) Asynchronous outbound
messaging

(c) Synchronous messaging

Figure 15: Messaging modes

Asynchronous messaging involves the sending (a) or or receiving (b) of a message at some stage
during the execution of a processing entity afterwhich execution continues. Messaging may also be
synchronous in which case a message is sent and execution is suspended until a message is received
(c). Note, any messaging involving a message receipt first, is automatically asynchronous since no
suspension of execution relates to it. In other words, synchronous messaging involves message sending
first only.
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Three disjoint subsets of non-synchronisers involved in messaging are defined: the set NSIA involving
asynchronous inbound messaging, the set NSOA involving asynchronous outbound messaging and the
set NSS involving synchronous messaging. The function Message:NSIA∪NSOA ∪NSS →℘+(ME)
yeilds the messages involved; the power set signifies the fact the multiple messages may be involved.
Moreover, messages are received either from the service local to the non-synchroniser or from another
non-synchroniser in the same process model. In other words, messages received from the environment
are always received via the local service. Messages may be sent to other non-synchronisers in the pro-
cess model, the local service or remote services. Figure 16 depicts this scope of messaging interaction.
The function Mesg:PM∪SV→PM∪SV describes the messaging interaction.

Process Model

Local Service

Remote Services

Figure 16: Scope of messaging interaction

(??? Interaction points which have dialogue specifications and protocol - and types HH, CC and HC ???
Should structural aspect of dialogue specifications have a schema defintion much like “view” objects).

Decomposition

A feature of process models is decomposition where processes and decisions may be refined in detail.
Hydra allowed processes to be decomposed, however the decomposition of a decision, i.e. a complex
decision, is a new proposal. We illustrated complex decisions in Figure 7 and Figure 8.

In general, decompositions allow parts of a process model to be modularised and reused. For this the
partial function Sup:PM� V is defined to provide the name of the decomposition that the processing
entity belongs to. If Sup(x) = v, this means that processing entity x is part of the decomposition of v.
Of course, the names of decisions and processes at the same level of decomposition should not be the
same:

x ∈ PR∧y ∈ DS⇒Name(x) 6= Name(y)

Also, unlike a process decomposition, a decision decomposition is only permitted to have decisions:

Sup(x) = v ∧ ∃d∈V [Name(d) = v]⇒ x ∈ DS

So that processing entities are “rooted”, a process model is required to have a unique process at the top
of the decomposition heirarchy:

∃!p∈PR [Sup(t)↑]

Within each decomposition, a process model is required to have a set of initially executed entities (if
more than one, parallel execution follows). For this, the partial function Init ⊆ Sup∩PM is defined.
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Decomposition hierarchies do not have a cyclic constraint (e.g. the “downwards” only decomposition
of data flow diagrams), but may include recursive decomposition. Figure 9 contained an example of
this. Two contraints apply to interactions across decompositions. Firstly, triggers should not cross de-
composition boundaries:

x1Trigx2 ⇒Sup(x1) = Sup(x2)

Secondly and similarly, intra-service messaging should not cross decomposition boundaries:

x1Mesgx2 ⇒Sup(x1) = Sup(x2)

where x1, x2 ∈ NS .

Storage entities

Storage entities SE are used to generalise messages, message stores and object stores. ME , MB and
OS partition SE . A schema provides a definition, pertinentto the storage entities. For messages and
object stores, it represents the information grammar. For message buffers, it incorporates characteristics
about the message stores, e.g. types of messages permissible, message quantities. A partial function,
Schema:SE �SCH, provides the schema definition.

Of course, processes and decisions access data through storage entities. Following from the above dis-
cussion, direct storage entity access implies storage entities within the same level of decomposition. For
convenience, the decomposition names are distinguished from V as those having at least one processing
entity in them:

Vd =
{

v ∈ V
∣

∣ ∃x∈PM [Sup(x) = v]
}

Storage entities can then be assigned to decompositions having at least one processing entity through
the function Locse:Vd →℘(V ar). To assist in the expressive power of the processing, local variables
may also be defined within a decomposition, hence the function Locvar: Vd →℘(Var). Processes and
decisions may access those storage entities and variables within their level of decomposition and lower.
They cannot access those in higher levels of decomposition. Hence, storage entities and variables have
a scope in the same sense as scopes of variables in programming languages such as ALGOL (see
e.g. [WMP+76]). To avoid naming conflicts, the names of local variables and storage entities in that de-
composition should differ, i.e. Locvar(v)∩ Locse(v) = ∅. Also, processes may reference and change
data but decisions are only permitted reference (this is formalised in the respective sections below).

In addition to variables, data may be passed between processes through message buffers. Messages
may be consumed from, or produced into, a message store. This is defined through the functions
Cons:PR→℘(Var) and Prod:PR→℘(Var) respectively. If v ∈ Cons(p), then process p con-
sumes from message store v. Note that if a process p does not consume from any message store, then
Cons(p) = ∅. Processes may only consume from, and produce for, message stores which are part of
the same decomposition:

Cons(p)∪Prod(p) ⊆ Locse(Sup(p))
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Processes

The assignments, reads, writes and updates which typify process specifications are expressed in LISA-
D. In Hydra, a sequence of these may be assigned into a LISA-D transaction classified as the LISA-D
syntactic category Transaction. This should be extended to include Aquino’s message sends oustide
the decomposition scope (as distinct from producing messages in message stores within the decompo-
sition). Since processes may be composed, only atomic processes are assigned a LISA-D transaction,
i.e. Trans:V \Vd →Transaction.

Sometimes, processes should not be able to start or terminate when certain conditions are not fulfilled.
These conditions can be expressed by means of pre-condition and postcondition. Pre- and postcon-
ditions are expressed by means of LISA-D predicates which in Hydra are classified into the LISA-D
Predicate category. Hence the functions Pre:→Predicate and Post:→Predicate respectively. The
predicates may reference the names of storage entities and local variables. Also the special LISA-D
predicate true can be used to indicate that there is no pre- and post-condition.

Exclusive processes (called transaction tasks in Hydra) are processes which run isolation, i.e. no other
process can run when an exclusive process is running. Hence the set E ⊆ PR. The notion of exclusive
processing should not be confused with exclusive locking which does allow a concurrent execution
of procceses albeit that an exclusive lock on an object blocks any other lock until the exclusive lock
is released. Typical examples of exclusive processes are systems maintenance jobs involving database
checkpoints and systems backups, or systems configuration involving installations and upgrades. Prior
to starting an exclusive process, all active processing entities should be quiesced. This, of course, is an
issue of formal semantics.

Decisions

To allow “moments” of uncertainty to be specified, decisions have output triggers - one for a postive
outcome and one for a negative outcome - which are are assigned LISA-D predicates. These decision
rules can be compared to guarded commands as introduced in [Dij75]. As with guarded commands
the decision rules of a decision are not necessarily disjoint. Therefore, nondeterministic choices can be
modelled.

The predicates may refer to values of variables and object instances of object stores and messages.
Synchronous and asynchronous messaging is allowed by decisions so that object instances of messages
may be referenced. The output triggers of a decision may terminate, hence the subset DS t ⊆ DS . Some
decisions signal an abort message which signify the intention to terminate a complex decision, hence
the subset DS t a ⊆ DSt. For those decisions which do not terminate, a processing entity can only be
triggered by a decision if a trigger exists from that decision to that processing entity while the associated
decision rule evaluates to true.

Decision rules are recorded by the function:

Choice: ((DS ×PM)∩Trig)∪(DS t ×
{

(

}

)→Predicate

Choice(k,() = d means that k is a terminating decision that may lead to termination if d is fulfilled.
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Recovery

To fulfill the Execution Resilience Principle, the detection of operational errors are signalled by two
forms of abort messages. The first is a failure abort, which as the name suggests, results from failures
such as system crashes. The second is non-failure aborts which are (deliberately) produced within a
business transaction e.g. by a process, decision or service. Note, aborts used to terminate decisions are
not a type of non-failure aborts. Their function is more restrictive. The denotation of these aborts is
described in

{

‘F-Abort’, ‘NF-Abort’
}

⊆ Name(ME).

As described in section 2.5, the recovery strategy for the errors involving failure aborts is a rollforward
recovery whereby a redo operation is applied to a “crashed” processing entity. If the processing entity
does not start after numbers of restart attempts, after time periods or after combinations thereof, other
processing entities should be started. Another processing entity is called a contingency. Rollforward
recovery is captured through the irreflexive function Rollf :NS→

{

‘Redo’
}

×NS . Contingencies are
defined through the relation Cont = NS ×NS × INI ∩Rollf. This denotes the fact that a contingency
for a processing entity x is another processing entity y, i.e. x 6= y, if x has failed to start n times.
Depending on the number, a number of contingencies are possible. If n equals infinity, then then x is
said to be forcible, i.e. it has to start at some stage. Forcibility is a requirement in distributed transaction
processing, particularly for compensations (see below).

The recovery strategy for failures involving non-failure generated aborts is a rollback recovery whereby
an either an undo or a compensation or in fact nothing is applied to each processing entity within the
execution path of that service state. An undo simply removes object store updates provided that they
are uncommitted, i.e. the process was not committed on completion of its execution. A compensation
is required if a commit occurred. Nothing occurs if the effect of the process is considered uncritical.
Rollback is defined through the irreflexive function Rollf:NS→

{

‘Undo’, ‘Null’
}

×NS ×NS . Com-
pensations are defined through the relation Comp = NS ×NS ∩Rollf.

4.3 Service Model

A service model allows the descriptive aspects of a business transaction workflow to be modelled. Said
otherwise, services encapsulate business transaction workflows. Services are modelled as objects where
object behaviour modelling enables a declaritive approach for service specification.

Services have a set ST of states which define its lifecycle, e.g. Lodged, Initial review passed. Of
course, states are named, given by the function SName:ST →SN . States are used to determine what
processing entities of the workflow are triggered for given events. As a result of that part of the work-
flow being executed, a transition between the states occurs. In general, transitions are defined through
the relation Transition ⊆ ℘+(ST xST ). The powerset indicates that multiple transitions can exist
between the same set of states (recall states (4) and (5).

Attached to each transition is an ECA rule. This represents an event specification.

5 Conclusion

The Application Database being absorbed into the Tenures Administration System
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