
Business Suitability Principles
for

Workflow Modelling∗

A.P. Barros1, A.H.M. ter Hofstede1, H.A. Proper2, P.N. Creasy1

1Department of Computer Science 2Faculty of Information Technology
The University of Queensland Queensland University of Technology

Brisbane, QLD 4072 GPO Box 2434, Brisbane QLD 4001
Australia Australia

e-mail: E.Proper@acm.org

Keywords: Conceptual Modelling, Workflow, Business Modelling,
Object-Oriented Analysis

PUBLISHED AS:

A.P. Barros, A.H.M. ter Hofstede, H.A. Proper, and P.N. Creasy. Business Suitability Prin-
ciples for Workflow Modelling. Technical Report 380, Department of Computer Science,
University of Queensland, Brisbane, Australia, August 1996.

Abstract

By incorporating aspects of coordination and collaboration, workflow implementations of in-
formation systems require a sound conceptualisation of business processing semantics. Tradition-
ally, the success of conceptual modelling techniques has depended largely on the adequacy of
conceptualisation, expressive power, comprehensibility and formal foundation. An equally impor-
tant requirement, particularly with the increased conceptualisation of business aspects, is business
suitability.

In this paper, the focus is on the business suitability of workflow modelling for a commonly
encountered class of (operational) business processing, e.g. those of insurance claims, bank loans
and land conveyancing. A general assessment is first conducted on some integrated techniques
characterising well-known paradigms - structured process modelling, object-oriented modelling,
behavioural process modelling and business-oriented modelling. Through this, an insight into busi-
ness suitability within the broader perspective of technique adequacy, is gained. A specific business
suitability diagnosis then follows using a particular characterisation of business processing, i.e. one
where the intuitive semantics and inter-relationship of business services and business processes
are nuanced. As a result, five business suitability principles are elicited. These are proposed for a
more detailed understanding and (synthetic) development of workflow modelling techniques. Ac-
cordingly, further insight into workflow specification languages and workflow globalisation in open
distributed architectures may also be gained.

∗Part of this work has been supported by CITEC, a business unit of the Queensland Government’s Department of Public
Works and Housing (formerly the Administrative Services Department).

1

1 Introduction

The workflow concept, proliferated through the recently emergent computer supported cooperative
work (CSCW) systems and workflow systems (see surveys in [FYW94, WW93, Rod91] and [GHS95]
respectively), advances information systems (IS) implementation models by incorporating aspects of
collaboration and coordination in business processes. Under traditional implementation models, appli-
cations are partitioned into discrete units of functionality, with (typically) operational procedures used
to describe how human and computerised actions of business processes combine to deliver business
services. Through an endowment of business process execution semantics, workflows permit a greater
organisational fit of ISs. Moreover workflows are specified at a level above traditional applications,
enabling program binding and access to a loosely-coupled set of databases and files. Therefore, newer
applications may be developed out of existing applications to reflect reengineered business processes.

Crucial to the specification of any IS implementation is the conceptual level. This, of course, orients the
analysis of a given domain towards its essence (deep-structure) rather than to aspects of implementation
(physical-structure) or representation (surface-structure). It is a well-known fact the later problems and
inadequacies are detected in specifications, the greater the expense of correction [Dav90].

For workflows, the standardisation of concepts is progressing through the Workflow Management
Coalition1 . While the set of terms and references defined so far characterise sufficiently the notion
of workflow, e.g. event, process (including pre-conditions, post-conditions and state transitions) and
organisational (or actor) role, much of the focus is geared towards workflow management systems and
their specification languages. The emphasis is on part of business processing, namely process execution
semantics: sequence, repetition, choice, parallelism and synchronisation. A sound conceptualisation re-
quires not only this but also that process semantics, e.g. the messaging, database updates and retrievals
involved, to be explicitly captured.

In general, for the conceptual level, techniques are available under different paradigms, for the mod-
elling of different aspects of a business domain (see e.g. [OHM+88]). When integrated into well-
formed methods, integrated IS specifications - result. A number of paradigms may be discerned for
workflow modelling: process-centric, e.g. [DB91]; state-centric, e.g. [DP95]; and actor-centric, e.g.
[Die94] (based on the speech-act theory synthesis of [FL80]). Moreover the use of business (or enter-
prise) models, e.g. as deployed in requirements engineering methods [BB95, LK95, AMP94], in design
methods [Ram94] and in CAiSE tools e.g. AD/CYCLE [MMNR90], provides an organisational em-
bedding whereby a workflow model’s components may be backtracked to its real-world counterparts.

Although, the field of conceptual modelling has become fairly mature, the application of techniques,
has, by and large, followed the intuition of the developers of models. This, of course, involves an in-
formal to formal transition. With workflow specifications, this transition is reduced, however a greater
alignment is required between the workflow modelling cognition and business processing cognition.
Beyond the qualification of fundamental modelling concepts (e.g. process) with organisational at-
tributes (e.g. business service), the business processing semantics need to be infused into the semantics
of a technique such that a workflow may be expressed and communicated adequately using that tech-
nique. In absence of a universal organisational theory, much uncertainty exists as to how effective
conceptual modelling techniques are for business workflows; whether, given the diversity of business
processing, any generable prescription of business processing cognition is in fact possible or desirable.

1Refer to http://www.aiai.ed.ac.uk/WfMC/index.html for more details.

2

This paper addresses some of this uncertainty. It recognises that there are a basic set of requirements
which conceptual modelling techniques should fulfill in order to be effective. These requirements are
based on the well-known conceptual modelling principles of [ISO87]. If not properly catered for, the
development of workflow specifications may be problematic.

First and foremost, in accordance with the Conceptualisation Principle, a technique should focus on
essential detail only. The focal aspects of business models and workflow specification languages can
deflect and sometimes dictate the quality of conceptualisation. Conversely, following the One Hundred
Percent Principle, techniques should provide a sufficient expressive power so that a full conceptual-
isation is in fact possible. If the expressiveness of a workflow specification language exceeds that of
a technique, where only a partial conceptualisation results, the remainder has to be addressed at the
implementation level. This problem is known in software engineering jargon as the waterfall. Such
a disjointness of analysis precludes a sound understanding of the problem, leading to premature im-
plementations. Conceptual models also need to be communicated and validated with a diverse set of
stakeholders and so mechanisms are required for an effective comprehensibility. An effective graphical
presentation together with abstraction/decomposition mechanisms facilitates this. At the same time,
a formal foundation is required to prevent interpretation ambiguities and to enable formal reasoning.
That a recent survey on workflow technology [GHS95] cited the problem that “workflow models and
process methodologies do not explicitly support the specification of what it means for a workflow to be
correct” is symptomatic of a lack of formal semantics. Together with a formal syntax, this constitutes
formal foundation. Finally and most relatedly to the issue of the paper, since a “silver bullet” for all
types of domains is considered unrealistic (see e.g. [BS87, Bro87, ML83]), techniques should be suit-
able for their problem domains. This means a close connection between the modelling concepts and
features, and those required by the domain.

Of significance for business processing domains is the business suitability of techniques. Since there
are many types of organisations and many types of business processing [DO85], particular attention
is drawn to that type of (operational) business processing which exhibits precise execution paths. As
examples, the processing of insurance claims, bank loans and land conveyancing, are mission-critical in
nature and are rarely undertaken without strict operational procedure. Also, multiple interactions with
clients and external organisations are typically needed to fulfill service requests. Given their closer
connection with database technology, workflow systems are considered more appropriate for this type
of business processing over CSCW [McC92, GHS95]. These notions of business processing, workflow
and workflow systems are assumed hereafter.

Following the constructivist approach, notably as advocated for IS concept development in [FHL+98],
a number of integrated conceptual modelling techniques - are assessed using the aforementioned re-
quirements. Attention then turns to determining common problems of business suitability, and in turn,
the formulation of a number of principles. The result is five principles. The Organisational Embedding
Principle describes how a model should be backtracked to organisational elements. The Scenario Val-
idation Principle identifies the need for scenarios, and in particular, a business transaction, as distinct
from business process and business service, for workflow cognition. The Service Information Hiding
Principle requires that business processing undertaken for business service requests should be insulated
from the requests, and in so doing, motivates the need for an explicit treatment of business services
within conceptual modelling. The Cognitive Sufficiency Principle requires that all concepts involved
in workflow model enactment be simultaneously present in the model. Simultaneously absent in the
assessed techniques were the combination of structural and behavioural aspects of workflows, human
to computer interaction and temporal aspects. Finally, the Execution Resilience Principle identifies

3

the need for operational error handling to be catered for at the conceptual level, thereby incorporat-
ing the recovery management focus of transactional workflows into a general exception handling. An
improved insight into the assessment and development of workflow modelling techniques, is claimed.
Also the proposed separation of business service, business process and business transaction, can lead to
a more effective globalisation of workflows, where, for example, within open distributed environments
(e.g. the Web), services involving workflows can be “mixed and matched”.

The paper is organised as follows. In section 2, techniques characteristic of the different paradigms -
structured process modelling, object-oriented modelling, behavioural process modelling and business-
oriented modelling - are assessed. In section 3, the problems and business suitability principles are
defined. In section 4, the paper is concludes with an epilogue.

2 An assessment of integrated conceptual modelling techniques

In this section, an insight into the capabilities of techniques to support a sound conceptualisation of
business processing for workflow specifications is sought. For this, an assessment of some integrated
conceptual modelling techniques is conducted using the general conceptual modelling requirements
(described in section 1). These are: conceptualisation, expressive power, formal foundation, compre-
hensibility and business suitability. The techniques are drawn from the well recognised paradigms of:

• structured process modelling (section 2.1)

• object-oriented modelling (section 2.2)

• behavioural process modelling (section 2.3)

• business-oriented modelling (section 2.4)

The approach to the assessment is qualitative, reflecting its motivation. For this, the key areas of obser-
vation include integration strategy, integration structure and the mechanisms used to adapt concepts and
features for the business level. An integration strategy reflects the cognitive dependency of a technique’s
partial models for an overall understanding of a business domain. Process modelling techniques cen-
tralise processes with respect to data flow, control flow and data repositories, and so a process-centric
integration with data models follows. The dual of this is a state-centric integration, where object mod-
elling techniques centralise object states with respect to processes involved in state transitions, and so
process modelling follows.

An integration structure relates to the definition of concepts in the partial models. In a tightly-coupled
structure, all concepts are bound to a single logical definition. In a loosely-coupled structure, each par-
tial model has a separate definition, and some concepts may be integrated for basic consistency. Clearly,
a tight-coupling permits a stronger expressive power and formal foundation. However, a loose-coupling
provides greater flexibility - particularly for “contingency frameworks” [AW91] - where different tech-
niques may be selected depending on the analysis “situation”. Since a (relatively) specific business
processing situation underscores this paper, the former is preferred in the assessment.

4

2.1 Structured Process Modelling

Structured process modelling, for example Structured Analysis [GS86, You89, DeM78] and ISAC
[LGN81] have had widespread use, providing both top-down process analysis and software design
mapping. With the prevalence of database technology, a number of extensions have been proposed, e.g.
[Sho91, You89], to incorporate data modelling techniques. In particular, process models are often used
for the higher levels of analysis, and the identified data repositories lead to data modelling; clearly a
process-centric integration strategy.

Data Flow Diagrams (DFD), associated with Structured Analysis, are a popular - arguably the most
popular - structured process modelling technique. A DFD is a directed graph where the nodes represent
external entities, processes and data stores, and where the edges represent data flows between the nodes.
A process may be decomposed into another DFD, provided the DFD contains at least that process’s data
flows. At the lowest level, each process has a detailed Structured English specification. Specifications
for data flows and stores are contained in a data dictionary.

Figure 1 illustrates a process-centric integration of process and data models for a library domain using
[You89]. The data model is based on an Entity Relationship Model (ERM) technique. For brevity, the
data dictionary and process specifications have been omitted.

The DFD models the processing of loan requests and orders, viz: borrowers (an external entity) send
loan requests (data flow) for items to LOAN (process). A loan (an update) is issued in items (data
store) and the item is passed to the borrower. When the loaned item is returned to LOAN, a return is
issued to the items data store to indicate that the item is available for loaning again. Borrowers also
make purchase requests (for an item) to the ORDER process. For this, order details are stored in
orders, and item details are stored in items. An order is sent to a publisher who supplies the ordered
item. Once supplied, the item is updates to be available.

The data dictionary provides the integration between DFDs and ERMs. This is achieved using syntac-
tic correspondences. A correspondence is required between data stores and entity types, indicated by
alphabets in Figure 1. The integration structure is therefore loosely-coupled. Furthermore, it is clear
that the degree of integration is coarse. For instance, no correspondence exists for relationship types,
unless they are aggregated. Sometimes processes, data flows and data stores indicate relationship types
as indicated by (a) and (b). However, the absence of formal semantics - an omission widely observed
in most DFD techniques (see e.g. [BW89, OS93] - makes a detailed correspondence difficult. Care
should also be taken when directly corresponding multi-object data stores since unnaturally aggregated
entity types may result. One methodological implication is to delay ERM modelling until sufficiently
detailed DFDs are drawn. Alternatively, [BCN92] proposes a joint methodology which uses mutually
influential decompositions in both ERMs and DFDs.

Process specifications utilise data dictionary elements to maintain consistency with DFDs and ERMs.
However, the expressive power of Structured English is restricted by the basic level of integration.
Business rules including those expressed through object lifecycles are implicit in process specifications.
Process dependencies are determined in an ad-hoc manner solely for the purpose of systems design.

Clearly the strength of a DFD lies in its simple and general concepts. Together with the decomposition
feature, this allows an effective comprehensibility, particularly for the early phases of analysis where
the broader context of a system and its scope needs to understood. Additionally, a large DFD may be
partitioned by external events, permitting horizontal views for validation. Like most classical process

5

publishers

item

request

item

item

borrowers

order

orders

items

loan
available

details

return

1.
LOAN

2.
ORDER

Level 1 DFD

details

item

borrower order

publisher

on

placed

providesloan

ER Diagram

Data Dictionary Process Specifications

a

a

a

b

(a)

(b)

(b)

(b)

b

b

purchase request

loaned

loaned

loan

item

order

purchased

Figure 1: Process and data model integration for the library domain in Structured Analysis

modelling techniques, DFDs may be applied to several domains including real-time processing and
text processing. For business domains, its methodology recommends the modelling of organisational
processing structure first, from which essential DFDs are determined. In this regard, its simplicity and
generality can compromise the business suitability of the technique, e.g. the relationship with organ-
isational processing structure is arbitrary and only basic aspects of business processes are modelled.
Moreover, the procedural style of expression for DFDs and process specifications imposes an impera-
tive rather than a declarative conceptualisation. At lower levels of abstraction, DFDs can prescribe im-
plementation, thereby compromising conceptualisation. Further problems of DFDs are cited in [OS93].

2.2 Object-oriented modelling

An object-oriented approach to programming, and in recent years, to analysis and design (OOA/D),
stems from the premises that objects provide a closer semblance with reality and are less prone to
change than processes. Along with static properties, objects include in their classification, dynamic
properties - operations, implemented as methods on classes. In keeping with tightly-coupled object

6

models, conventional OOA/D techniques, [SM88, Boo91, CY90, RBP+91, JCJO92] advocate princi-
pally a state-centric integration of conceptual models. Object structure is modelled using techniques
adapted, for the most part, from data modelling techniques, e.g. ERM based [EGH+92] and Object-
Role Model (ORM) based [CP96]. Object behaviour is modelled using techniques based on formalisms
like finite state machines (FSM) [HU79] and Petri nets [Pet81, Rei85].

Since object behaviour models describe the intra-object dynamics, a higher modelling context is re-
quired in domains where object interaction is significant. Process modelling and hence a process-centric
integration can be useful for this. For example, DFDs are used in many OOA/D techniques including
[Shu91, SJ91, SI90], despite the paradigmal differences which are sometimes regarded as incompati-
ble [EJW95, Fir91]. Alternatively, other mechanisms, e.g. use cases or scenarios as in [PD94, JCJO92],
have been developed to preserve a high-level state-centric context.

A popular OOA/D technique, Object Modelling Technique (OMT) [RBP+91], incorporates both a
state- and process-centric integration strategy. It accommodates the data, process and behaviour per-
spectives through an object model (ERM), a function model (DFD) and a dynamic model (FSM which
includes nesting), respectively. Figure 2 illustrates a state-centric model integration for the library do-
main.

publisher

Object Model

borrower order

loan

check *

1+

placed

provides

on

*

create *

ordered available

loaned

return item

Dynamic Model (for item)

create check
loan return

item
call no title
type loan date
due date b name

b name type
subscrib date

call no title
type loan date
due date b name

call no title
type loan date
due date b name

ordered item arrives/create order

returned item arrives/

order requested [check borrower]/create order

loan request arrives [check borrower AND
check item]/loan item

Figure 2: Object and dynamic model integration for the library domain in OMT

In the object model, attributes are listed in the middle portion of the object class diagrams and methods

7

are listed in the lower portion. Each object type has a dynamic model associated with it. The dynamic
model contains a partial order of behaviour states as nodes. States are defined by “exclusive” predicates
and are orthogonal to the object type specialisations (a structural classification). The edges represent
state transitions. A state transition embodies an event which triggers an action if a condition (optional)
is satisfied. The significant result of the action is, of course, the change to the next state.

In Figure 2 for example, the event order requested triggers the action create order to create an order
object (having no previous state) in the state ordered if some check(s) on borrowers are satisfied2. A
large class of business rules may be captured using state transitions. In fact, event-condition-action
(ECA) paradigm for rule-based languages is adopted in active database technology, e.g. in context
with object-oriented databases [CN90], and object-oriented conceptual specification languages, e.g. as
defined in the ESPRIT3 project TEMPORA [LMS+91].

Digressing for a moment to another example, Figure 3, taken from [SM88] (pp. 40), illustrates a more
complicated object lifecycle. An interesting feature of this example is the primary importance of state-
centric integration for the domain. That is, the object behaviour model is pivotal to understanding the
broader context of the domain. The pseudo code for state-transitions includes alternatives (illustrated)
and iterations (not illustrated), improving the expressive power over ECA languages. In general, with-
out a conceptual specification language, techniques either omit detailed specifications or convolute the
graphical aspect of the model.

Returning to OMT, Figure 4 illustrates a process-centric integration of the function and object models
for the library domain. Process-centric integration rules require that the function model’s leaf processes
correspond to object class methods. This is not straightforward since a single leaf process may involve
more than one object type. Clearly, the principal object type referred to in OMT as the target, needs to be
identified. Targets are contained in data flows, data stores and actors (represented by a DFD’s external
entity symbol). A target may be identified by determining a “client-server” relationship between the
object types. An object type is a target if it invokes requests from other object types for some purpose
related to none other of those object types. Hence the (lettered) correspondences in Figure 4; a loosely-
coupled integration structure.

Like other classical OOA/D techniques, OMT provides a simple and general set of concepts for several
types of domains. For business domains, comprehensibility and suitability gains of the dynamic model
are useful on a per object basis. The function model addresses the “bigger picture”, however process
control can only be derived from the collective set of dynamic models. Despite claims of the “natural”
occurrence of objects, the technique’s generality can present ambiguities in the analysis of organisa-
tional processing structures. For detailed specifications, a combined cognition of the models can help
resolve difficult design decisions. For example, the function model provides further insight into the
aggregation of complex object types, while the dynamic and function models provide a collective in-
sight into method identification. The lack of formal semantics (particularly for the function model) and
expressive power restricts the effectiveness of these gains. In general, no evidence of formal semantics
was found in the referenced OOA/D techniques.

2Textual aliases, in this case check borrower, have been used to denote condition predicates.
3ESPRIT is an acronym for European Strategic Program for Research in Information Technology.

8

Pay out balance
If this is the last account
for this customer
 Generate C99: Last
 account closed
 (Customer ID)

account

Create new account

A1: Open account(Customer ID, amount)

A2: Make deposit (Account ID, amount)

A2: Make deposit (Account ID, amount)

1. Creating

2. Taking
deposit

3. In good
standing

A3: Account OK (Account ID)

Add amount to Account.Balance
If Account.Balance < 0
 Generate A6: Overdrawn (Account ID)
else
 Generate A3: Account OK
 (Account ID)

4. Closed

7. Overdrawn Cheque
6. Considering 5. Considering

withdrawal

amount)
(Account ID,
deposit
A2: Make

A6: Overdrawn (Account ID)
(Account ID)

A3: Account OK

A5: Cheque
submitted
(Account ID,
amount)

A4: Withdrawal submitted
(Account ID, amount)

A99: Close account
(Account ID)

(Account ID)
A3: Account OK

A6: Overdrawn (Account ID)

If amount < balance then
 pay cheque and reduce
 balance by amount
else
 return cheque
 reduce balance by bounced
 cheque fee
If Account.Balance < 0 the
 Generate A6: Overdrawn
 (Account ID)
else Generate A3: Account OK (Account ID)

If amount > balance then
 reject withdrawal
else
 reduce balance by
 amount and pay out
 amount
 Generate A3: Account OK
 (account ID)

with new Account ID,
Account.Customer ID = Customer ID
and Account.Balance = 0

Generate A2: Make deposit (Account ID, amount)

Figure 3: Object lifecycle for accounts of the bank domain in Shlaer & Mellor

2.3 Behavioural process modelling

The enhanced suitability which results from behavioural (or control) aspects of process models has
already been identified in the preceding sections. Integrated techniques such as IML Inscribed Petri
Nets [RD82] and Activity-Behaviour Modelling [SK86] pioneered the inclusion of behavioural process
modelling in at least one level of process model decomposition. Behavioural aspects include process
sequence, repetition, parallelism and synchronisation. Accordingly, collaborative aspects of processes
can be modelled and problems such as deadlock, livelock and starvation may be determined prior to
implementation.

Classical Petri nets, Condition/Event-nets and Place/Transition-nets, have been adapted for process be-
havioural specification [DZ81] but are limited in the degree of formal interpretation and real-world
practicality [HL91]. High-level Petri nets such as Predicate/Transition nets (PrT-nets) [Gen87] and
Coloured Petri nets (CP-nets) [Jen91] were proposed to overcome these problems by the provision
of declarations and net inscriptions, expressed in a formal language (based on first-order predicate

9

Object Model

Function Model

publisher

*

loan provides

order

create *

borrower

check *

1+

on

placed

f
b

a

d

c

e

CHECK
BORROWER

1.2

CHECK
ITEM

1.3

LOAN
ITEM

1.4

RETURN
 ITEM

borrower

request
item

items

loan return

borrowers

request

1.1, 2.1

2.2

CREATE
ORDER

status

orders

2.3

CREATE
ITEM

publisher

request

details

order

b

c

e

f

request request

a
d

loaned

loan

borrower

purchase

loan loan

item status

purchase

order

item details

ordered item

returned item

create check
loan return

item
call no title
type loan date
due date b name

b name type
subscrib date

call no title
type loan date
due date b name

call no title
type loan date
due date b name

Figure 4: Function and object model integration for the library domain in OMT

logic for PrT-nets and a functional programming language for CP-nets). The incorporation of formal
semantics leads to executable process specifications, e.g. in tools such as ExSpect [HSV89] (hierarchi-
cal CP-nets) and Income/Star [JOS93] (Fuzzy Nets). [Ver93] formally demonstrates an integration of
an object-oriented modelling technique, Simcon, and PrT-nets. The combination of both state-centric
and process-centric constructs into a single model, however, makes even high-level Petri nets difficult
to comprehend. Different strategies are used to maintain comprehensibility without losing expressive
power.

The Behaviour Network Model (BNM) [Kun93] transfers behavioural aspects from higher levels of ab-
straction into the lowest level. In it, DFDs are used at higher levels, and at the lowest level, each process
is transformed into a PrT-net which is tightly-coupled with an ER schema. Thus, PrT-net specifications

10

replace traditional Structured English. At all levels of abstraction, model integration is process-centric.
As an example, Figure 5 illustrates a DFD, PrT-net and ERM integration for the library’s CHECK
BORROWER process.

bid

renew-date

call-no loan-date

due-date

item-id

u
loan request

v Z

C

1.1

items
BORROWER

CHECK

request

status
borrowers

loan

borrower

rejected
request

loan
request

Process ModelData Model
period

u

rejected request

u

loan request

Behaviour Model

=

=

= =

=

BC1

BC2

Figure 5: Data, process and behaviour model integration for the library domain in BNM

The DFD specifies that the conjunction (black dot) of loan request and borrower status are required
by CHECK BORROWER so that a disjunction (white dot) of either loan request or rejected re-
quest4 is produced. Data flows are message carriers which may be associated with ERM object types.
In a PrT-net, input flows, in this case loan request, connect to places (i.e. u, v and Z) which in turn
connect to transitions (i.e. BC1 and BC2). Individual (element-of sign) or sets (equality sign) of in-
stances of ERM entity types are linked to PrT-nets via places. Transitions, representing elementary
actions, use entity and data flow instances as operands in pre- and post-condition rules.

In the example, two rules are specified for CHECK BORROWER; note the declarative rule specifi-
cation possible through Petri nets compared to the imperative approach of Structured English. Firstly
BC1, that a loan request becomes a rejected request if either the borrower has an overdue item or
will not be registered during the loan period:

pre ¬∃z∈Z [u.bid = z.bid ∧ z.loan-date > $TODAY]∨

u.bid = v.bid ∧ v.renew-date < DATE($TODAY,v.period)

post u.msg = ‘Loan request rejected’

and secondly BC2, to ensure that a loan request is accepted (the negation of BC1). The specification
for this is not provided. Note, the variable $TODAY and the function DATE are introduced.

4This data flow has been introduced to allow for model execution.

11

Compared to Structured Analysis, BNM’s DFD technique is as suitable, though improved in compre-
hensibility. The use of PrT-nets for the conceptualisation of process specifications improves expressive
power and provides a basis for formal foundation. Process pre- and post-conditions allow a further
range of business rules to be specified compared to object lifecycles. Object lifecycles however, are
implicit in one or more PrT-nets, and so the related class of business rules are specified implicitly.

In Hydra [Hof93], behavioural aspects are defined in process models, task structures [HN93], at all
levels of decomposition. The data modelling technique, PSM [HW93] - an ORM variant, also pro-
vides decomposition for object types (schema object types decompose into schemas). Process-centric
integration is applied at at all levels of decomposition. A conceptual specification language, LISA-D
[HPW93], is used to express detailed process specifications and database constraints. Figure 6 illus-
trates a decomposed task structure for CHECK BORROWER and the associated PSM schema.

Process model

CHECK BORROWER

reject loan
request

BC1?

(date-code)
date

(item-id)
item

loaned-on

requires-
re-registration-
on

loaned-by loans

due-on

Data Model

(bid)
borrowerperiod

(days)

loaned-forrelated-to

y n

Figure 6: A task structure for CHECK BORROWER and the PSM schema

The contrast with the BNM model for the process model (Figure 5) is striking. The omission of state-
based concerns simplifies considerably the process model. At the same time, sequence (arrows), de-
cisions (circles) and synchronisations (not illustrated) provide the same expressive power as Petri net
based approaches (in [HN93], a translation from Petri nets to Task Structures in provided). Of course,
more complicated task structures are possible than the one bourne out by Figure 5.

Task pre- and post-conditions and decisions are specified in LISA-D. For example, the LISA-D predi-
cate for the outgoing positive arc y) of BC1 is:

borrower B loans item due-on date > $TODAY

12

OR

borrower requires re-registration on date > $TODAY + period related-to item I

LISA-D expressions are formulated against the database using an attached schema. A schema is defined
for the highest level task which is visible to all its decompositions. Buffers (not illustrated) and variables
(B, I and $TODAY) may also be defined for temporary storage during task processing. A schema type
is attached to each buffer.

A positive outcome results in a termination of execution returning control to the calling task whereas a
negative outcome results in the reject loan request being executed. Recall (from the BNM example
that this should send a message through the rejected request data flow. Hydra does not have explicit
data flows and so this cannot be specified. Note LISA-D’s expressiveness does warrant the introduction
of a DATE function since the addition operator is domain sensitive.

The chief strenght of Hydra is its expressive power and formal foundation, both exceeding that of
previously assessed techniques. The formal semantics for Task Structures are described in Process Al-
gebra [HN93]. A high comprehensibility, particularly for behavioural process modelling is also clear.
A major drawback is business suitability which results from the previously discussed problem of gen-
erality. This together with the lack of data flow (including messaging) and data store constructs raises
uncertainty about its effectiveness at the business level.

2.4 Business-oriented modelling

As the name suggests, business-orientation does not displace the essential nature of conceptual mod-
elling, but rather that conceptual modelling is oriented towards an increased conceptualisation of busi-
ness aspects. This shifts the general (and compromised) suitability of classical techniques, to one which
is specialised for business domains. Given the lack of a standard inter-subjective world-view, the strate-
gies for business-orientation vary significantly.

Earlier attempts at business-orientation focussed on providing some aspects of organisational process-
ing structure, so that an organisational embedding5 of conceptual models into different business world-
views is possible. [RV85] was among the first to use organisational concepts such as actors and the
cooperative processing of Petri nets to capture the semantics of business processes. Earlier attempts at
office modelling were based on completely process-centric techniques, e.g. [Bot89, DB91]. The popu-
larity of object concept has resulted in adaption of OOA/D techniques. In IOOM [DP95] for example, a
purely state-centric approach is proposed using the office modelling concepts from the ESPRIT project
OSSAD. Object types are defined for business resource (actors, data or documents) and business pro-
cesses, and roles define their permissable states and constraints.

The use of business (or enterprise) models as contexts for conceptual models provide a particular world-
view. Typically business plans [DO85] describe an organisation’s operational and strategic structure
through qualitative descriptions of mission, goals, objectives, critical success factors, market sectors,
competitive and quality management strategies). These qualify the business services provided and or-
ganisational processing structure designed to carry out the business services, often occupying signif-
icantly sized documents. Business models abstract from this detail, describing concepts such as goal-

5This name was chosen as a result of communication with members of IFIP WG 8.1 Task Group FRISCO, a body
commissioned to create a FRamework of Information Systems COncepts.

13

rooted organisational units, business services, activities, tasks, actors and actor roles (for processes)
and resources (information and material).

[Ram94] provides an integrated executable specification framework both for business and IS modelling.
At the strategic level of the business model, the problem solving for business services is carried out.
At the operational level, concepts exist for activities and tasks, and information, material and actor
resources. These are anchored into organisational units. Tasks are undertaken by a (primary) actor and
possibly other actors. They consist of a partial order of elementary actions. An action is undertaken
by a (primary) actor and possibly other actors. Actions apply to information/material objects. Figure 7
illustrates a part of an (operational) business model for the library domain.

...

loan
(requested)borrowers items

create loan

item set [M]
(created)

loan

loan
(rejected)

(loaned)
item set

(completed)
loan

return item

(loaned)

(available)
item set [M]

(available)
item set

Loans

Orders
(Purchase

Clerk)

Repairs
(Service
Officer)

Actions

Tasks

(Librarian)

ITEMS ACTIVITY

Figure 7: Operational business modelling for library example in [Ram94]

Figure 7 describes the action processing for the Items activity’s Loans task which is undertaken by the

14

Librarian actor. Task modelling is CP-net based. The semantics of each action are as follows: an action
is triggered when the precondition of all the input resources (actors and objects) being in the right state
and a business rule (optional) is satisfied, the postcondition of resources being moved into the required
states results. create loan is a composition for two exclusive actions which accept or reject the loan.
A rule language augments action specifications although it is not as expressive as that in Hydra. In
the example for instance, it is not possible to de-reference objects, items, within complex objects,
loan. The business model is effectively developed through a process-centric integration, featuring the
decomposition of an organisational processing structure. A number of views may be projected from
the business model: data, process (note, not conceptually equivalent to structured process models),
behaviour, object-based (with actions as methods), and the information systems in the broader sense
(ISN) and information systems in the narrower sense (ISN) views motivated in [VR92].

The IS level is object-based and therefore adopts state-centric integration. Those object types which
are selected to be computerised are refined at the IS level (associated actions having a computerised
co-actor are defined as methods). The behavioural aspects of object types are defined through event
precedences which trigger state transitions or perform retrievals. Event processing is also CP-net based
with an ECA language. Three categories of object types are defined. Domain object types are normal IS
object types, refined from computerised business information object types. View object types aggregate
domain object types at human-to-computer interaction points (HCI) points which are derived through
actions involving human and computerised co-actors. View object types trigger events on domain object
types, therefore classifying application transactions. User object types simulate users, triggering events
on view object types. Like the business level, a number of views may be projected: data, process
(derived through inter-object event triggering, but not equivalent to structured process models), object-
based, analysis and design.

Of contributory significance [Ram94] demonstrates that through the increased conceptualisation of
business aspects, increased conceptualisation at the IS level is possible. As a result, application design
mapping - an area of difficulty traditionally - is described. That is, through domain object type refine-
ment, a business model is mapped to a conceptual IS model while through both view and user object
type refinements, a business model is mapped to an external IS model. Two problems, both related to
the business modelling technique, exist. The first is that the particular organisational processing struc-
ture is likely to restrict the suitability of the technique for any given business domain. The second,
and more serious, is the basic treatment of an organisation’s interaction with its external environment.
Specifically, the interaction with the clients and other organisations is understood through the internal
execution of tasks. Tasks form the only context from which actions are triggered. Events, including
external events, are modelled at the IS level only.

To provide an abstraction from organisation processing structures, a new class of techniques, sometimes
referred to as communication-based techniques, has been spawned by the work of [FL80] based on
the speech-act theory of [Sea69]. The speech-act revisions of [Hab84] have been adopted by more
recent such techniques, e.g. the Actor-Bank-Channel communication modelling technique [Die94] of
the DEMO method. In it, the pattern of performative (state changing) conversations between actors is
used to derive interaction structures for communication units known as essential6 transactions. That
is: the request for something, say a business service, results in an actagenic (or an action planning)
conversation; followed by an essential action; and finally a factagenic (or fact generating) conversation,
stating the results of the action. The actor initiating the actagenic conversation, i.e. initiator, is the same

6In DEMO the term essential qualifies non-computerisable processing despite the possibility of computerised support.

15

as the one terminating the factagenic conversation, i.e. executor. Conversely, the actor terminating the
actagenic conversation is the same as the one initiating the factagenic conversation. For the execution
of essential actions, actors generate plans involving communicative (e.g. information retrieval) actions
from other actors in order to fulfill the essential action.

The same interaction structure applies to external transaction types, i.e. the initiator and the executor
are external actors (in the environment), internal transaction types, i.e. the initiator and the executor are
internal actors (in the business domain), and interface transaction types, i.e. the initiator is an external
actor and the executor is an internal actor. A communication model is developed by building different
transaction types into an interaction structure and including interstriction details (external data sources).
A behaviour model is developed through the definition of execution and communication rules for per-
formative conversations carried out by each actor. Significantly, different behaviour specifications may
apply to different actors for the same object types.

The comparitive advantage of DEMO lies in its actor-centric basis for business process redesign. This
formalises the otherwise ad-hoc socio-technical mechanisms in IS methods. Clearly, its most benefitial
application lies in “fuzzy” business processing where the execution paths are uncertain, infrequent and
highly fluctuating - i.e. ones which are difficult to document in operational procedure. This is well-
recognised as a domain for CSCW. The benefit for the class of business processing addressed in this
paper, given its overhead remains uncertain. Moreover, its impact at the detailed design level seems
limited (compared to [Ram94]).

2.5 Summary

In this section, the findings of the assessment are generalised for the paradigms: structured process
modelling, object-oriented modelling, behavioural-process modelling and business-oriented modelling.

Structured process modelling

Structured process modelling techniques provide a top-down process analysis where data flows and
stores provide a process-centric integration with data modelling techniques. The simple and general set
of concepts together with the feature of decomposition are applicable for different types of domains.
At higher levels of analysis, models such as DFDs are easy to comprehend and can be adapted for
business domains. A precise definition of what aspects of organisational processing structure should
be modelled and how, is not available. That only basic aspects of business processes can be modelled
is indicative of an insufficient business suitability. At the lowest level where the focus is on detailed
design, pseudo-code is used to specify processes. The loosely-coupled integration structure, however,
restricts expressive power. In general, the procedural style of conceptualisation forces a more impera-
tive and less declaritive approach to specifications (than in behavioural process modelling techniques).
Also process execution dependencies are not considered other than the process sequencing implicit in
module design mapping. A major defficiency is the lack of a formal foundation, allowing ambiguities
and inaccuracies in process models.

16

Object-oriented modelling

OOA/D techniques tightly-couple object structure and behaviour into an object model, citing as a mo-
tivation the “natural” occurence of objects in most types of domains. A state-centric integration is
advocated principally, whereby an easily comprehensive object lifecycle (typically FSMs) is defined
for each object type. In domains where object interaction is high, as tends to be the case in business
domains, higher level contexts through state-centric (e.g. user cases and scenarios) or process-centric
models (e.g. DFDs), are required. These extensions further necessitate an overall formal foundation,
however little evidence of formal semantics was found in the surveyed OOA/D techniques. The resolu-
tion of difficult design decisions such as complex object aggregation and method classification through
higher level models is therefore intuitive. Again, generality inhibits business suitability, although a
large class of business rules can be specified through object lifecycles. In this regard, a conceptual
specification language is required to augment ECA specifications.

Behavioural process modelling

The behavioural aspect of process models fundamentally concerns execution dependencies between
processes, i.e. control flow. This includes the sequence, repetition, parallelism and synchronisation
of processes. Despite generality, these features allow greater semantics of business processes to be
captured. Traditionally, given their precise and graphically communicable operational semantics, Petri
nets have been used to develop behavioural process modelling techniques. As such, model validation
through execution is also possible. The inclusion of states in process models - note, still process-centric
- provides a declaritive approach to process specifications, and therefore to a further class of busi-
ness rules. However, the impact on the graphical representation is problematic, with process models
becoming cluttered for even basic specifications. Strategies to alleviate this include the use of abstrac-
tion/decomposition and the use of conceptual specification languages for detailed specifications. The
use of formalisms like Petri nets does not guarantee a formal foundation; formal semantics still have
to be defined. Algebraic systems (such as Process Algebra) provide an alternate mechanism for the
definition of formal semantics.

Business-oriented modelling

Business-oriented techniques specialise conceptual modelling so that a precisely defined business suit-
ability is achieved. For this, an alignment of concepts with organisational processing structure and a
provision of colloborative processing are required. Unless otherwise addressed, the quality of concep-
tualisation, expressive power, comprehensibility and formal foundation are inherited from the “under-
lying” classical techniques. Some techniques cater for a divergent set of business world-views through
a basic, but not necessarily complete set of business constructs. Other techniques prescibe a partic-
ular world-view - a business model. In integrated specification environments, IS models are refined
from business models and so the formal semantics of the IS model should relate closely to that of the
business model. Also, the structural dependency of IS models on business models can occur, therefore
violating the Conceptualisation principle. Communication-based techniques focus on organisational
communication (a speech-act synthesis of actor communication). This leads to a more essential insight
into business process redesign.

17

3 Business suitability principles

In this section, a diagnosis of the business suitability of workflow modelling is presented. Recall from
section 1, attention is confined to mission-critical business processing which is amenable to strict op-
erational procedure. Both business services and business processes are essential components of this
business processing. Although highly inter-related, they require (as diagnosed) a careful modelling
distinction.

A discussion of the common problems follows, together with an elicitation of business suitability to
alleviate these. The list of principles are:

• Organisational embedding (section 3.1)

• Scenario validation (section 3.2)

• Service information hiding (section 3.3)

• Cognitive sufficiency (section 3.4)

• Execution resilience (section 3.5)

3.1 Organisational embedding

The first problem relates to the relationship between business models and conceptual models. On the
one hand, the adaption of classical techniques with some business-oriented constructs leaves room for
an arbitrary relationship. On the other hand, the incorporation of business models might well lead to
the situation where organisation processing structure prescribes the essential structure of the conceptual
model; e.g. when an IS model is decomposed hierarchically from a business model. This, of course, is
a violation of the Conceptualisation Principle. Moreover, it may lead to an inflexibility in IS design

In [Ram94] for example, it was observed that computerised task actions are mapped directly into object
methods. While an IS design specification may be decomposed legitimately in this fashion, there are
other situations where IS modules are designed from a composition of tasks, possibly drawn from
multiple organisations. The point is that such an abstraction should be reflected at the IS level, and not
the business level since no such (single) business task exists. The task composition serves an IS design
purpose only.

To avoid these problems, the following principle is proposed:

Principle – Organisational Embedding
A technique should embed all concepts in a conceptual model, directly or indirectly, but without
redundancy, into organisational elements. 2

Note, the principle does not prescribe the use of business models. Rather, it states that any modelling
concepts be backtracked to organisational elements (whatever form of their definition). In above ex-
ample, the dependency of IS models on business models is replaced by an inter-dependency. That is,
IS and business models are permitted their own modelling autonomies, and a consistency between the
two is required. The consistency does not preclude mechanisms such as networked decompositions.
Therefore, business task compositions are permitted for IS process design.

18

3.2 Scenario validation

The second problem stems from the observation that all techniques deal, at best, only partially with
the validation of models. Validation is concerned with ensuring that a conceptual model is indeed a
model of a business domain. Beyond the validation of partial models, no support was evident for an
organisationally embedded validation mechanism which “cuts across” the partial models, drawing their
concepts into a unified cognition. Both the suitability and comprehensibility of a technique are impor-
tant factors in model validation, and it was evident in the survey that different integration strategies
offered different advantages.

In classical techniques it was observed that triggering sources such as external events are used to trace
the execution paths in models. In process-oriented techniques the resultant process execution sequence
is determined implicitly in structural process models and explicitly in behavioural process models. The
validation of execution paths is also advanced in behaviour process models through synchronisation
and decision constructs. In OOA/D techniques, process sequences apply when object interactivity is
high while object state sequences (in accordance with object lifecycles) apply when object interactivity
is low. In business-oriented techniques, it was quite clear that organisational processing structures or
organisation communication provide focal units for business processing.

A common theme for model validation is the notion of event. At discrete points within a timeline, it
can be seen that an event triggers actors to execute business processes, through which information may
be accessed, and further events, possibly invoking some processing in the environment (i.e. outside the
business domain), may result. Intrinsic to the initial event is some defined purpose which motivates
an execution path all the way to the final event. The final event signifies the (logical) termination of
processing; i.e. representing the organisation’s recognition that no further processing should proceed.
Such an execution path is referred to as a scenario. For the purposes of model validation therefore, the
following principle is proposed:

Principle – Scenario Validation
A technique should provide an explicit notion of scenario for model validation. 2

Note, the principle does not exclude other forms of model validation, e.g. the validation of constraints
in a data model. Rather, it requires that scenarios, amongst other possible forms of validation, be sup-
ported by a technique. At the same time, is should be pointed out that since a scenario provides a
systematic means by which execution paths are traced, it should lead to different parts of conceptual
submodels, from which further validation may then follow. Hence, scenarios should provide a more
effective completeness check than partial model checks.

Of issue is the organisational embedding of a scenario. An obvious choice is the notion of a business
transaction, drawn from a Macroeconomics perspective of organisations [BM91]. Business transac-
tions concern the exchange of (goods and) services using business transactions as the fundamental
(accounting) unit. Clearly, the determination of a business transaction cost requires an understanding
of the processing undertaken. It may be simple involving a low interactivity: a small set events and busi-
ness processes. Or it may be complex involving a high-interactivity over a “long” temporal duration: a
large set of events and business processes, typically involving multiple organisations.

At a first glance, it may seem that the choice of business service over business transaction as a sce-
nario is arbitrary. Certainly, both terms tend to be used interchangeably in IS research. A cause-effect

19

distinction however, leads to the preference of business transactions. That is, business services are a
cause reflecting, more than anything else, client requirements of the organisation whereas business
transactions are the effect; in effect, the scenario which results. In this sense, the concept of business
transaction as an organisational artefact may be unified with the concept of workflow as an IS design
and implementation artefact, i.e. business transaction workflow. In stating this, it should be understood
that that class of business transactions involving uncertain, indeed “fuzzy” execution paths, has been
excluded from the scope of this paper (section 1).

3.3 Service information hiding

Following from the preceding discussion, the third problem lies in the relationship between events,
business processes and business services. Recall, events trigger process execution for some ultimate
intention. Moreover, a number of events may be related to the same intention. In a business sense,
intentions are denoted by business services.

In classical modelling techniques, no explicit service concept exists. Business services are therefore
dealt with in an arbitrary fashion. In process modelling techniques for instance, services are qualified
(informally) in event descriptions and therefore directly trigger processes (see examples in [You89]).
Similarly in OOA/D techniques, events directly trigger methods in object types (recall Figure 3). Since
business-oriented techniques adapt classical techniques, their treatment of business services is also ar-
bitrary. For example in [Ram94], business services (functions) are related to business processes (tasks),
but this is no more than a reference; i.e. triggering relates directly to business processes.

The common problem in these approaches is the direct triggering of processes (or methods) given the
context of triggering. From the point of view of the environment or from different parts of an organisa-
tion, the actual business processes triggered for some business service request are inconsequential for
the formulation of the request. That is, the request is issued for a business service and as a result some
internal mechanism is used to determine what action to take. The implication is that when processes
are reengineered, the actual request is not affected.

It may be recognised that the above paragraph reflects the Information Hiding principle for (software)
module design which requires that internal aspects of modules be insulated from other modules. When
applied to a technique’s treatment of business service triggering, it can be seen that a service concept
should explicitly be supported to coordinate the execution of number of processes and insulate them
from service requests. Or in a more general form, the following principle results:

Principle – Service Information Hiding
A technique should allow the formulation of service requests to be independent of their actual
processing. 2

3.4 Cognitive sufficiency

The fourth problem is fairly general in its diagnosis. It addresses the missing constructs in techniques
which yield collectively a sufficient cognition7 of a business processing model, i.e. business transaction
model. Fundamental areas of variance are discussed below.

7A pragmatic rather than a theoretical diagnosis is presented. This is based on the comparative differences in the assessed
techniques and their advantages on model cognition.

20

Process modelling cognition

The process modelling in most techniques was observed to incorporate essentially either structural
(data flows) or behavioural (control flows) aspects, but not both. In BNM, DFDs and PrT-nets are both
used, but at different levels of abstraction. In [Ram94], a process model view is derived from process
behaviour, and so it is not structural. Specifically, the data flows are a set of attribute values rather
than identifiable containers of those values, while data stores are object states rather than identifiable
repositories of data. In Hydra, a ‘middle ground’ is apparent where process behaviour is combined with
some structural aspects: process decomposition and a notion of data stores (temporary storage). At the
other extreme, in Structured Analysis, process behaviour is altogether omitted from DFDs except for
process sequencing (only) defined as part of software design mapping.

Structural and behavioural aspects of process models serve distinctly different aspects of analysis. Data
flows, stores and transformations from the structural aspect lead to an understanding of data dependen-
cies, from which business processes and data stores may be redesigned. As examples, common patterns
of data flow in different process types indicate the need for process reclassification, while dependen-
cies on a number of data stores for a data transformation function indicate the need for data relocation.
Process sequence, repetition, parallelism and synchronisation from the behavioural aspect, on the other
hand, lead to an understanding of process dependencies from which the problems of deadlock, livelock
and starvation may be identified. As a result, execution paths may be optimised or processes them-
selves may be reclassified. Interestingly, the strategies defined in [Ham90] indicate that a combination
of both - simultaneously - is required for business processing reengineering. This indicates that both
are required to sufficiently capture and understand a business transaction’s semantics.

HCI

Another area of cognitive insufficiency is the ad-hoc conceptualisation of HCIs (recall human to com-
puter interactions). For HCI, two issues are apparent [DMHB90], namely the point (process) at which a
HCI is required and the dialogue which determines the screen/form design. Under classical analysis, as
evident from the discussions of process and object modelling techniques, HCIs are determined as part
of systems design where application services, which typically encapsulate one or more screens/forms,
are determined intuitively from conceptual models. This situation, as remarked more than once, leads to
a waterfall since the backtracking of specifications may be difficult. In [Ram94], it was seen that busi-
ness model semantics, in this case the actor types involved, can be used to derive HCI points. [Die94]
synthesises actor-actor communication so that dialogues go beyond HCI where it is argued, systems
design including HCI, may be better understood.

Temporal aspects

Finally, the treatment of temporal aspects is partial despite the (obvious) impact of time in business
domains. In Structured Analysis and other DFD techniques, a “clock” symbol is introduced to indicate
time triggers on processes, e.g. end of the week. This however is only a comprehensibility feature. In
[Ram94], time triggers are incorporated into the event specification language for object types, thereby
extending the concern to expressive power. Further to expressive power, the need for time functions
and variables was indicated in the discussions of BNM and Hydra (recall the preconditions of BC1). A

21

survey of techniques (including TEMPORA) dealing with time [TL91], demonstrates the incorporation
of time on action preconditions, and relatedly dynamic constraints on object type specifications.

It is clear that these incorporations of temporal aspects relate to the specification of process precondi-
tions. Of course, time should also be important in postconditions, e.g. as motivated by event scheduling
requirements in [Bri90]. This of course further qualifies process dependency since a number of pro-
cesses may be required to execute at the at some time simultaneously (parallelism) or within a time
duration of each other (sequence). Also a process may execute repeatedly within a certain time period
(repetition), until some condition is satisfied. It is interesting to note that some model-based formal
specification languages e.g. [Zav86], specification languages e.g. Real-Time Process Algebra [BB91],
and Petri net based approaches e.g. ExSpect [HSV89], all address temporal aspects in process specifi-
cations. Indeed, the traditional domain for this consideration has been in real-time systems. The need of
temporal specification, is nonetheless, evident in business domains. For example in law courts, matters
are scheduled and adjourned at designated times, and in doing so, the availability of required docu-
mentation is requested (to outside organisations and parties) within a certain duration prior to the court
hearing.

Principle – Cognitive Sufficiency
A technique should provide a sufficient cognition of a model such that the need for fundamental
business process execution assumptions is eliminated. 2

3.5 Execution resilience

The fifth problem relates to error handling at the conceptual level. Of course at the conceptual level,
database constraints and process pre- and post-conditions define an error free IS state. Moreover, spec-
ifications may be verified to eliminate erroneous specifications. However, operational errors can still
occur beyond the control of an IS. For example, in a library domain, the existence of an overdue item
(over different categories of duration) is an operational error(s) caused by a borrower. Similarly, a
missing enrollment confirmation in the required time since an initial enrollment, is caused by a student.
Finally, a system crash is one of several examples of operational errors resulting in non-deterministic
processing failures.

A sound conceptualisation of business transaction semantics requires the the inclusion of operational
error handling. However, no evidence in the assessed techniques indicated an explicit consideration of
this. In most cases, an expressive power is available for dealing with errors like the first two examples.
In process-centric techniques for example, error handling processes may be defined to scan a database
for problematic object states (overdue item, unconfirmed enrollment). In state-centric techniques, an
error handling process may be fired as a result of an object’s transition into a problematic state.

The treatment of non-deterministic failures has recently become the subject of workflow implementa-
tion specifications. In particular, the traditional transaction model (more recently and comprehensively
described in [GR93]) with its ACID properties (atomicity, consistency, isolation and consistency) has
been extended for workflow execution semantics. Under the traditional model, a transaction binds a set
of database operations into an atomic unit of execution. Following the requirement of failure atomicity,
a transaction’s changes to a database(s) are committed if the execution is successful or rolled-back if
not. Following the requirement of execution-atomicity, the concurrent execution of transactions should
have the same effect as if they were executed in a serialisable order.

22

Workflows are more complex structures than traditional transactions, and it is unacceptable that the fail-
ure of any one of its tasks results in the rollback of the entire workflow. The application of transaction
models to workflows, typically through a relaxation of ACID, are surveyed in [Kim94] (pp.596-598).
Under an ACID relaxation, a failure atomicity is defined for each task. This involves either an undo,
possibly through the execution of some other task, i.e. a compensation, or a redo, possibly through a
contingent task execution. Committed tasks are therefore not re-executed. Committed tasks, however,
may update data objects and release locks, allowing other tasks and transactions to “see” the updates.
Hence the need for compensations, which either logically undo the updates or provide some notification
of update invalidity. Of course, compensating tasks should not, themselves, fail.

The lack of explicit support for operational error handling is indicative of the traditional IS devel-
opment approach which prefers this treatment at the the implementation level. A certain amount of
this detail is, afterall, implementation-oriented (e.g. checking for a DBMS-defined deadlock error code
after an update to determine whether a retry should be issued). Yet it should be recognised that oper-
ational error handling is an inherent part of a business transaction’s semantics. Where the previously
described conceptualisation aspects relate to the Cognitive Sufficiency of normal execution semantics,
the conceptualisation of operational error handling relates to execution resilience semantics. As repeat-
edly discussed, the partial conceptualisation of some aspects and not others, can distort the overall
understanding of the business transaction semantics.

Significantly, the support of model execution in a large number of techniques, means that execution
resilience can actually be validated and “tested” at the conceptual level. Given the disjointness (and
complexity) of operational error handling - best presented as a separate layer to preserve a model’s
general cognition - model execution is considered critical. Therefore the following principle results:

Principle – Execution Resilience
A technique should support the handling of operational errors, so that a resilient execution of the
conceptual model results. 2

Ultimately, such support addresses a workflow’s execution resilience. This of course does not guarantee
execution resilience since operational errors, e.g. crashes, can (and do) happen.

4 Epilogue

General problem

Conceptual modelling techniques haven proven to be invaluable for early and critical phases of analysis
and design. When “bundled” into well-formed IS methods, a navigation from organisational analysis
to implementation specifications is possible. For an essential problem-solving insight into different as-
pects of business domains, techniques should demonstrate a conceptualisation, expressive power, com-
prehensibility, formal foundation and business suitability. In the last of these aspects, the absence of a
universal organisational theory has meant that techniques can only increase in technical effectiveness
as newer insights are obtained from practical experience, and as the functionality of IS platforms ex-
pands. This makes it difficult to assess the adequacy of techniques to support a sound conceptualisation
of business domains.

23

Focus of paper

In this paper, the business suitability of workflow modelling was diagnosed for that class of business
processing which is mission-critical in nature and which is amenable to strict operational procedure.
The approach taken was two-fold. First, the general capabilities of techniques characteristic of well-
known paradigms were assessed using the general requirements. Second, the extent to which workflows
scale out to a business suitability - “constructed” from the business processing inter-relationship of
business service and business processes - this combination providing a new insight in our opinion -
was diagnosed. As a result, five new business suitability principles were formulated.

General assessment

The findings of the general assessment were as follows. Classical techniques, i.e. process (structured
and behavioural) and object modelling, offer general concepts and features which are applicable to
several types of domains. Where they differ is in the cognitive dependencies of their integration strate-
gies. Process-centricity emphasises data flow transformations (structured) and process control depen-
dencies (behavioural). Both are useful for describing the flow of business processing. State-centricity
emphasises data object states and the transitions between them. This is useful for focusing event (sig-
naling/messaging) and their impacts on business processing. Since an object lifecycle deals only with
one object type, a number of OOA/D techniques also incorporate some form of process-centricity.
In general, the need for a trade-off between comprehensibility and expressive power was conspicuous
throughout the assessment. Techniques biasing the former (e.g. DFDs) tend to be weak in the latter (e.g.
pseudo-code), conversely those biasing the latter (e.g. Petri net based approaches) tend to be weak in the
former (e.g. cluttered diagrams). Also an adequate formal foundation, in particular formal semantics,
was notably absent in most techniques. This raises ambiguities in the application of techniques, and in
turn makes it impossible to prove certain properties about their models. In this regard, the absence of
correctness checking in workflow specifications (noted in section 1) is striking.

Business-oriented modelling adapt combinations of classical techniques within the context of some
inter-subjective business world-view. This may be partial, i.e. the incorporation of some (key) business
concepts, or it may be complete, i.e. the incorporation of a business model. The use of essential busi-
ness modelling concepts such as business services, processes (of various specialisations), actors and
actor roles, organisational units and resources (material and information) has become popular, particu-
larly through integrated specification environments such as CAiSE tools and requirements engineering
methods. Several approaches adopt a decomposition of organisational processing structure. In so do-
ing, a more automatic application design mapping is demonstrated compared to classical techniques.
Recently proposed communication-based techniques abstract from organisational processing structure
and analyse human speech-acts as a basis for understanding business processing (amongst other forms
of processing). This allows more detailed aspects of workflow interaction to be understood, however
the extent of its applicability to the class of business processing we considered was not clear.

Business suitability principles

The detailed diagnosis of business suitability led to the identification of the following problems, for
which associated principles were defined:

24

• A hierarchical decomposition from a business model to an IS model can result in a violation
of the Conceptualisation Principle whereby an essential structure of the IS model is prescribed.
For example, a hierarchical decomposition does not allow IS processes to be composed out of
distinct organisational processing structures, say from more than one organisation. To provide
techniques with their own abstraction autonomy, hierarchical decomposition is replaced by the
Organisational Embedding Principle. It simply requires a link of any given IS concept, whether
direct or indirect, into organisational elements. As a result, the inter-dependency between the
business and IS levels does not impact the conceptualisation at these levels.

• Inherent in business processing is a scenario, i.e. an execution sequence which occurs over a time
duration for some particular intention. Scenarios are important since they provide a domain se-
mantic interpretation, i.e. validation, of a model. Support for scenarios per se, is absent in classi-
cal techniques, and present in some form, through either organisational processing structures and
organisation communication, in business-oriented techniques. The need for explicit support was
defined through the Scenario Validation Principle. The notion of business transactions, recog-
nised within Macroeconomics theory, further qualified the business service and business process
inter-relationship as a scenario. That is, the triggering of a business service for a request, and any
subsequent triggering, including those on business processes and business services resulting in
(some defined) satisfaction of the request, constitutes a business transaction; an essential scenario
concept.

• Related to the above, all techniques directly or potentially lead the knowledge of “internal” pro-
cessing required during the formulation of a service request. This, of course, violates the well-
known Information Hiding Principle. To alleviate this, the Service Information Hiding Principle
was defined. As such, service requests are completely insulated from subsequent triggering. Put
simply, services coordinate process execution.

• General omissions were identified which restricted the cognition of a business transaction model.
These included: the support of either structured (e.g. data flow) or behavioural (e.g. control flow)
aspects for process modelling, but not both; the ad-hoc conceptualisation of HCIs; and finally
(and surprisingly) the partial support for temporal aspects (e.g. not considered in process postcon-
ditions). When not supported by a technique, erroneous assumptions can result. The Cognitive
Sufficiency Principle was defined to ensure that such fundamental assumptions are eliminated.

• Operational errors are those which occur during IS operation, but outside control of the IS. Al-
though most techniques have an expressive power to support some types of operational error
handling specifications, and although the handling of non-deterministic operational failures is
considered crucial in workflow specifications, no explicit support is provided by the techniques.
When specified at the implementation, level, the overall context of business processing semantics
may be lost. Furthermore, any model validation through execution is partial, bypassing opera-
tional errors. The Execution Resilience Principle was defined to ensure that operational errors
are specified at the conceptual level, so that a model may be “tested” for execution resilience.
This addresses the execution resilience of an IS ultimately.

25

Conclusion

To conclude, the business suitability principles address an important yet not often salient aspect of IS
conceptual modelling. Of course, we focussed the diagnosis on a particular aspect of business domains,
namely a particular class of business processing, characterised in a particular way, and intended for a
particular implementation model - namely that based on the workflow concept. Undoubtedly, further
considerations of this and other aspects of business domains are still required. Importantly, our char-
acterisation of business processing is well-recognised, and the conceptual level of diagnosis imparts
relevance to traditional implementation models as well. Moreover by describing rather than prescrib-
ing the principles, we seek to position our work more effectively with other such developments.

The major benefit lies in assessing techniques, whereby immediate attention may be drawn to the
general areas of deficiency we encountered. To overcome these and other deficiencies, it should now be
clear that enhancing a technique requires a simultaneous consideration of all the conceptual modelling
requirements. Given the large number of useful contributions in the field, we advocate a synthetic rather
than analytic approach to developing techniques.

Another benefit lies in the insight gained for workflows involving global access (e.g. via the Web),
inter-organisational collaboration and reuse of application services. A clear separation between busi-
ness service, business process and business transaction not only improves the conceptual modelling
but may well have far reaching implications for workflow specification languages and, ultimately, for
(middleware) description languages of open distributed architectures.

Future work will deal with the development of a kernel of concepts and features for workflow modelling
along the lines of the principles.

References
[AMP94] A.I. Anton, W.M. McCraken, and C. Potts. Goal decomposition and scenario analysis in business process reengineering.

In G. Wijers, S. Brinkkemper, and I. Wasserman, editors, Proceedings of the Sixth International Conference CAiSE’94 on
Advanced Information Systems Engineering, volume 811 of Lecture Notes in Computer Science, pages 94–104, Utrecht, The
Netherlands, June 1994. Springer-Verlag.

[AW91] D.E. Avison and A.T. Wood-Harper. Information Systems Development Research: An Exploration of Ideas in Practice. The
Computer Journal, 34(2):98–112, April 1991.

[BB91] J.C.M. Baeten and J.A. Bergstra. Real Time Process Algebra. Formal Aspects of Computing, 3:142–188, 1991.

[BB95] A.T. Berztiss and J.A. Bubenko. A software process model for business reengineering. In Proceedings of Information Sys-
tems Development for Decentralized Organizations (ISDO95), an IFIP 8.1 Working Conference, pages 184–200, Trondheim,
Norway, August 1995. Chapman & Hall.

[BCN92] C. Batini, S. Ceri, and S.B. Navathe. Conceptual Database Design - An Entity-Relationship Approach. Benjamin Cummings,
Redwood City, California, 1992.

[BM91] W. Boyes and M. Melvin. Macroeconomics. Houghton Mifflin, Boston, Massachusetts, 1991.

[Boo91] G. Booch. Object-Oriented Design with Applications. Benjamin Cummings, Redwood City, California, 1991.

[Bot89] P.W.G. Bots. An Environment to Support Problem Solving. PhD thesis, Delft University of Technology, Delft, The Netherlands,
1989.

[Bri90] S. Brinkkemper. Formalisation of Information Systems Modelling. PhD thesis, University of Nijmegen, Nijmegen, The Nether-
lands, 1990.

[Bro87] F.P. Brooks Jr. No silver bullet: essence and accidents of software engineering. IEEE Computer, 20(4):10–19, April 1987.

26

[BS87] D. Benyon and S. Skidmore. Towards a Tool Kit for the Systems Analyst. The Computer Journal, 30(1):2–7, 1987.

[BW89] P. D. Bruza and Th.P. van der Weide. The semantics of data flow diagrams. In N. Prakash, editor, Proceedings of the In-
ternational Conference on Management of Data (CISMOD), pages 66–78, Hyderabad, India, 1989. McGraw-Hill Publishing
Company.

[CN90] S. Chakravarthy and S. Nesson. Making an object-oriented DBMS active: design implementation and evaluation of a prototype.
In Proceedings of the International Conference on Extended Database Technology (EDBT), Venice, Italy, April 1990.

[CP96] P.N. Creasy and H.A. Proper. A Generic Model for 3-Dimensional Conceptual Modelling. Data & Knowledge Engineering,
20(2):119–162, 1996.

[CY90] P. Coad and E. Yourdon. Object-Oriented Analysis. Yourdon Press, New York, New York, 1990.

[Dav90] A.M. Davis. Software Requirements: Analysis & Specification. Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

[DB91] R.C.J. Dur and P.W.G. Bots. Dynamic Modelling of Organizations Using Task/Actor Simulation. In R.L. Crosslin and H.G.
Sol, editors, Proceedings of the Second International Working Conference on Dynamic Modelling of Information Systems,
pages 49–71, Amsterdam, The Netherlands, 1991. Elsevier Science Publishers.

[DeM78] T. DeMarco. Structured Analysis and System Specification. Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[Die94] J. Dietz. Business modelling for business redesign. In Proceedings of the 27th International Conference on System Sciences,
pages 723–732, Honolulu, Hawaii, August 1994.

[DMHB90] E.J.T. van Dinter, M.P.W. Martens, A.H.M. ter Hofstede, and S. Brinkkemper. A Support Tool for Integrated Dialogue Specifi-
cation. In R. Norman and R. van Gendt, editors, Proceedings of the Fourth International Workshop on CASE, pages 290–301,
Irvine, California, December 1990. IEEE Computer Science Press.

[DO85] G.B. Davis and M.H. Olson. Management Information Systems: Conceptual Foundations, Structure and Development.
McGraw-Hill, New York, New York, 1985.

[DP95] V. De Antonellis and B. Pernici. Reusing specifications through refinement levels. Data & Knowledge Engineering, 15(2):109–
133, April 1995.

[DZ81] V. De Antonellis and B. Zonta. Modelling Events in Database Application Design. In C. Zanioli and C. Delobel, editors,
Proceedings of the 7th VLDB Conference, pages 23–31, Cannes, France, August 1981.

[EGH+92] G. Engels, M. Gogolla, U. Hohenstein, K. Hülsmann, P. Löhr-Richter, G. Saake, and H-D. Ehrich. Conceptual modelling of
database applications using an extended ER model. Data & Knowledge Engineering, 9(4):157–204, 1992.

[EJW95] D.W. Embley, R.B. Jackson, and S.N. Woodfield. OO Systems Analysis: Is It or Isn’t It? IEEE Software, 12(3):19–33, July
1995.

[FHL+98] E.D. Falkenberg, W. Hesse, P. Lindgreen, B.E. Nilsson, J.L.H. Oei, C. Rolland, R.K. Stamper, F.J.M. Van Assche, A.A. Verrijn-
Stuart, and K. Voss, editors. A Framework of Information Systems Concepts. IFIP WG 8.1 Task Group FRISCO, 1998. ISBN
3-901-88201-4

[Fir91] D. Firesmith. Structured analysis and object-oriented development are not compatible. ACM Ada Letters, 11(9):56–66, 1991.

[FL80] F. Flores and J.J. Ludlow. Doing and Speaking in the Office. In Decision Support Systems: Issues and Challenges. Pergamon,
1980.

[FYW94] G. Fitzpatrick, Y. Yang, and J. Welsh. Supporting Cooperative Work Processes - A Survey of Systems and Issues. Technical
Report 304, Department of Computer Science, University of Queensland, Brisbane, Australia, June 1994.

[Gen87] H. Genrich. Predicate/Transition Nets. In W. Brauer, W. Reisig, and G. Rozenberg, editors, Petri Nets: Central Models and
Their Properties, Advances in Petri Nets 1986 Part I, volume 254 of Lecture Notes in Computer Science, pages 207–247.
Springer-Verlag, Berlin, Germany, 1987.

[GHS95] D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Management: From Process Modelling to Workflow
Automation Infrastructure. Distributed and Parallel Databases, 3(2):119–153, April 1995.

[GR93] J. Gray and A. Reuter, editors. Transaction Processing: Concepts and Techniques. Morgan Kaufmann, San Mateo, California,
1993.

27

[GS86] C. Gane and T. Sarson. Structured System Analysis: Tools and techniques. IST Databooks. MacDonald Douglas Corporation,
St. Louis, 1986.

[Hab84] J. Habermas. The Theory for Communicative Action: Reason and Rationalization of Society, volume 1. Boston Beacon Press,
Boston, Massachusetts, 1984.

[Ham90] M. Hammer. Re-engineering work: don’t automate, obliterate. Harvard Business Review, 68(4):104–112, April 1990.

[HL91] X. He and J.A.N. Lee. A Methodology for Constructing Predicate Transition Net Specifications. Software Practice & Experi-
ence, 21(8):845–875, August 1991.

[HN93] A.H.M. ter Hofstede and E.R. Nieuwland. Task structure semantics through process algebra. Software Engineering Journal,
8(1):14–20, January 1993.

[Hof93] A.H.M. ter Hofstede. Information Modelling in Data Intensive Domains. PhD thesis, University of Nijmegen, Nijmegen, The
Netherlands, 1993.

[HPW93] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Formal definition of a conceptual language for the description and
manipulation of information models. Information Systems, 18(7):489–523, October 1993.

[HSV89] K.M. van Hee, L.J. Somers, and M. Voorhoeve. Executable Specifications for Distributed Information Systems. In E.D.
Falkenberg and P. Lindgreen, editors, Information System Concepts: An In-depth Analysis, pages 139–156. North-Holland/IFIP,
Amsterdam, The Netherlands, 1989.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading,
Massachusetts, 1979.

[HW93] A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data modelling. Data & Knowledge Engineering,
10(1):65–100, February 1993.

[ISO87] Information processing systems – Concepts and Terminology for the Conceptual Schema and the Information Base, 1987.
ISO/TR 9007:1987.
http://www.iso.org

[JCJO92] I. Jacobson, M. Christerson, M. Jonsson, and P. van Overgaard. OO Software Engineering, A Use Case Driven Approach.
Addison-Wesley, Reading, Massachusets, 1992.

[Jen91] K. Jensen. Coloured Petri Nets: A High Level Language for System Design and Analysis. In G. Rozenberg, editor, Advances in
Petri Nets 1990, volume 483 of Lecture Notes in Computer Science, pages 342–416, Berlin, Germany, 1991. Springer-Verlag.

[JOS93] P. Jaeschke, A. Oberweis, and W. Stucky. Deriving Complex Structured Object Types for Business Process Modelling. In
P. Loucopoulos, editor, Proceedings of the 13th International Conference on the Entity-Relationship Approach, Lecture Notes
in Computer Science, pages 28–45, Manchester, United Kingdom, December 1993. Springer-Verlag.

[Kim94] W. Kim, editor. Modern Database Systems: The Object Model, Interoperability and Beyond. Addison-Wesley, Reading,
Massachusetts, 1994.

[Kun93] D.C. Kung. The Behaviour Network Model for Conceptual Information Modelling. Information Systems, 18(1):1–21, 1993.

[LGN81] M. Lundeberg, G. Goldkuhl, and A. Nilsson. Information Systems Development - A Systematic Approach. Prentice-Hall,
Englewood Cliffs, New Jersey, 1981.

[LK95] P. Loucopoulos and E. Kavakli. Enterprise modelling and the teleological process design and database design. International
Journal of Cooperative Information Systems, 4(1):45–79, January 1995.

[LMS+91] P. Loucopoulos, P. McBrien, F. Schumaker, B. Theodoulidis, V. Kopanas, and B. Wangler. Integrating database technology,
rule based and temporal reasoning for effective information systems. Journal of Information Systems, 1:129–152, February
1991.

[McC92] S. McCready. There is more than one kind of work-flow software. Computerworld, November 1992.

[ML83] J.L. Malouin and M. Laundry. The Mirage of Universal Methods in Systems Design. Journal of Applied Systems Analysis,
10:47–62, 1983.

[MMNR90] V.J. Mercurio, B.F. Meyers, A.M. Nisbet, and G. Radin. AD/CYCLE strategy and architecture. IBM Systems Journal, 28:170–
187, 1990.

28

[OHM+88] T.W. Olle, J. Hagelstein, I.G. Macdonald, C. Rolland, H.G. Sol, F.J.M. van Assche, and A.A. Verrijn-Stuart. Information
Systems Methodologies: A Framework for Understanding. Addison-Wesley, Reading, Massachusetts, USA, 1988. ISBN 0-
201-54443-1

[OS93] A.L. Opdahl and G. Sindre. A taxonomy for real-world modelling concepts. Information Systems, 19(3):229–241, 1993.

[PD94] L.F. Pollacia and L.M.L. Delcambre. The object flow model: a formal framework for describing dynamic construction, de-
struction and interaction of complex objects. In P. Loucopoulos, editor, Proceedings of the 14th International Conference on
the Entity Relationship Approach, Lecture Notes in Computer Science, pages 1–12, Manchester, United Kingdom, December
1994. Springer-Verlag.

[Pet81] J.L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[Ram94] G.J. Ramackers. Integrated Object Modelling, an Executable Specification Framework for Business Analysis and Information
System Design. PhD thesis, University of Leiden, Leiden, The Netherlands, 1994.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorenson. Object-Oriented Modeling and Design. Prentice-Hall,
Englewood Cliffs, New Jersey, 1991.

[RD82] G. Richter and R. Durchholz. IML-Inscribed High-Level Petri Nets. In T.W. Olle, H.G. Sol, and A.A. Verrijn-Stuart, editors,
Information Systems Design Methodologies: A Comparative Review, pages 335–368. North-Holland/IFIP WG8.1, Amsterdam,
The Netherlands, EU, 1982.

[Rei85] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin,
Germany, 1985.

[Rod91] T. Rodden. A survey of CSCW systems. Interacting with Computers, 3(3):319–353, 1991.

[RV85] G. Richter and K. Voss. Towards a comprehensive office model integration information and resources. In Advances in Petri
Nets, volume 222 of Lecture Notes in Computer Science, pages 401–417. Springer-Verlag, 1985.

[Sea69] J.R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press, Cambridge, United Kingdom,
1969.

[Sho91] P. Shoval. An integrated methodology for functional analysis, process design and database design. Information Systems,
16(1):49–64, 1991.

[Shu91] K. Shumate. Structured analysis and object-oriented design are compatible. ACM Ada Letters, 9(4):78–90, 1991.

[SI90] P. Sully and D. Ince. The synthesis of object-oriented designs from the products of structured analysis. In P.A.V. Hall, editor,
Proceedings of Software Engineering 90, pages 404–432, 1990.

[SJ91] S.C. Solsi and E.L. Jones. Simple yet complete heuristics for transforming data flow diagrams into Booch style diagrams. ACM
Ada Letters, 9(2):115–127, March 1991.

[SK86] A. Sølvberg and C.H. Kung. On Structural and Behavioural Modelling of Reality. In T.B. Steel Jr and R. Meersman, editors,
Database Semantics (DS-1), pages 145–171. North-Holland/IFIP, Amsterdam, The Netherlands, 1986.

[SM88] S. Shlaer and S.J. Mellor. Object-Oriented Systems Analysis: Modeling the World in Data. Yourdon Press, New York, New
York, 1988.

[TL91] C.I. Theodoulidis and P. Loucopoulos. The Time Dimension in Conceptual Modelling. Information Systems, 16(3):273–300,
1991.

[Ver93] P.A.C. Verkoulen. Integrated Information System Design - An Approach Based on Object-Oriented Concepts and Petri Nets.
PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 1993.

[VR92] A.A. Verrijn-Stuart and G.J. Ramackers. Model Integration of Information Planning Tools. In P. Loucopoulos, editor, Proceed-
ings of the Fourth International Conference CAiSE’92 on Advanced Information Systems Engineering, volume 593 of Lecture
Notes in Computer Science, pages 481–493, Manchester, United Kingdom, May 1992. Springer-Verlag.

[WW93] D.G. Wastell and P. White. Using process technology to support cooperative work: Prospects and design issues. In D. Daiper
and C. Sanger, editors, CSCW in Practice: An Introduction and Case Studies, pages 105–126. Springer-Verlag, London, United
Kingdom, 1993.

[You89] E. Yourdon. Modern Structured Analysis. Printice-Hall, Englewood Cliffs, New Jersey, 1989.

[Zav86] P. Zave. Salient Features of an Executable Specification Language and Its Environment. IEEE Transactions on Software
Engineering, 12(2):312–325, 1986.

29

