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Abstract 

Flat graphical, conceptual modeling techniques are widely accepted as visually effective ways in which to specify 
and communicate the conceptual data requirements of an information system. Conceptual schema diagrams 
provide modelers with a picture of the salient structures underlying the modeled universe of discourse, in a form 
that can readily be understood by and communicated to users, programmers and managers. When complexity and 
size of applications increase, however, the success of these techniques in terms of comprehensibility and 
communicability deteriorates rapidly. 

This paper proposes a method to offset this deterioration, by adding abstraction layers to flat conceptual 
schemas. We present an algorithm to recursively derive higher levels of abstraction from a given (flat) conceptual 
schema. The driving force of this algorithm is a hierarchy of conceptual importance among the elements of the 
universe of discourse. 

Keywords: Conceptual data modelling; Schema abstraction; ORM; ER; NIAM 

1. Introduction 

Conceptual schemas play an important, and recognized role in the development life cycle of 
an information system [28]. They serve both as a means by which the salient structures of the 
underlying universe of discourse (UoD) can be captured, and as a communication tool among 
the designers, programmers, users and managers [32]. Conceptual schema modeling tech- 
niques, such as Entity Relationship (ER) modeling [1, 12] and Object Role Modeling (ORM) 
[17] are widely acknowledged as being visually effective ways in which to specify and 
communicate the conceptual data requirements of an information system. 
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However,  as database application requirements increase in size and complexity, the 
comprehensibility and maintainability of the specification degrades rapidly [28]. Simsion 
identified the problem of representing large data models as 'one of the most serious limitations 
of data modeling in practice' [30]. It is claimed in Feldman and Miller [13] that the 'usefulness 
of any diagram is inversely proportional to the size of the model depicted'. This problem, 
which has been referred to as the Database Comprehension Problem [8], is shared by all flat 
data models. In the specification of a flat conceptual schema, each object type is viewed at 
only one level of abstraction in a single diagram and all object types are considered to be of 
equal importance within the application [7]. While this is satisfactory for small, academic 
examples, when conceptual schemas of a moderate to large size are involved, this feature 
reduces the rate of comprehension of the application. 

The Database Comprehension Problem in flat data models has motivated several authors to 
try to find successful methods by which to form abstractions on a given flat conceptual schema 
[8, 10, 13-15, 26, 27-29, 31-33]. In 1983, Vermeir [32] described a number of abstraction 
techniques including viewpoint relative abstraction, which displays the portion of the schema 
within a particular distance of a focal object type, and the absolute abstraction hierarchy, 
which iteratively removes non-key concepts from successive layers of abstraction. 

An abstraction technique which is quite popular in the literature is Entity-Relationship 
Model Clustering. An ER Model Cluster Diagram is 'a hierarchy of successively more detailed 
Entity Relationship diagrams, with a lower-level diagram appearing as a single entity type on 
the next higher level diagram' [13]. Martin developed an ER clustering procedure based on 
l : m  relationship between entities, which is simple, but rather arbitrary and judgmental [27]. 
ER model clustering was then applied to the Whitbread Corporate Data Architecture in June 
1983 in order to test the theory on a significant practical application. As an outcome, in 1986, 
Feldman and Miller proposed a semi-algorithmic approach to ER model c lus t e r ing -one  
which still relies heavily on human direction and judgment. 

In 1989, Carlson and Ji [8] proposed the Nested Entity Relationship (NER) model as an 
extension to the multi-level ER clustering techniques of Feldman and Miller. NER supports 
traditional abstraction techniques such as aggregation, generalization and association, as well 
as allowing ER diagrams at one level to be abstracted into either complex entities or complex 
relationships at the next higher level. In that same year, Teorey et al. [31] introduced a set of 
ER model clustering rules. In this publication, entities were grouped recursively, based on a 
list of grouping operations prioritized according to the cohesion (or internal strength) among 
the entities involved. Once again, the algorithm proposed is largely based on arbitrary human 
judgment. This work was taken further by Huffman and Zoeller in 1989, who confirmed the 
feasibility of using a rule-based system to automate the ER clustering process of Teorey et al. 
[26]. 

A number of other abstraction techniques have been introduced in the years since. In 1991, 
Czejdo and Embley proposed the management of large complex data models using views and 
a number of functions to manipulate those views [10]. Moody [28] proposed a representation 
scheme for abstraction based on the organization of a street directory, using various levels of 
detail and intermap references and overlap between scopes. A new abstraction mechanism for 
typed graphs, called Caves, which allows the designer to selectively 'amplify or diminish' parts 
of the conceptual model, was presented by Walko [33] in 1992. The techniques available 
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through Caves include: Filtration, which removes extraneous details and constraints; Perspec- 
tive which presents only the local vicinity of a selected focal point; and Comprehension, which 
folds the schema into a smaller version. 

The common element of many of the abstraction techniques throughout the literature is the 
selection of a set of important elements within a conceptual schema. Many different names 
have been given to these objects which are considered to be of importance within the 
application domain, including key concepts [32], major entity types [13], maximal objects [8] 
and dominant objects [26, 31]. In this paper (as in [5-7]) we call these the major object types. 
In order to briefly highlight the differences between these similar concepts throughout the 
literature, we will refer to a small example conceptual schema shown in Fig. 1 ([17, p. 402]) 
(This diagram uses Object Role Modeling notation which is explained in Section 2). 

The abstraction techniques described by Vermeir in [32] are based on the notion of a key 
concept. Key concepts are those objects within a conceptual schema which are considered to 
be of higher semantic importance because they keep the graph connected. In the example in 
Fig. 1, therefore, the object types 'Movie', 'Person', MoneyAmt'  and 'Country' would be 
considered, in [32], to be the key concepts. It is quite apparent to a human, however, that 
'MoneyAmt '  is not one of the most semantically important object types in the example 
Universe of Discourse. In fact, Vermeir himself observes that the definition of 'key concept' is 
too simplistic, and many cases arise in which the abstractions produced are not intuitive [32]. 

Feldman and Miller consider the most important entity types to be those that appear in 
more than one branch at any particular level of their clustering hierarchy and call these objects 
major entity types [13]. Using Feldman and Miller's algorithm [13], every object type in the 
schema (Movie, Title. Person, MoneyAmt, Country, Date) would be classified as a candidate 
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to be a major entity type, after which human intuition is required to narrow down the choice. 
Nested Entity Relationship models give a stronger theoretical foundation than previous 
multi-level ER approaches, though the concept of maximal objects [8]. However, no attempt 
is made to automate the selection of maximal objects in a conceptual schema. Teorey et al. 
[31] and Huffman and Zoeller [26] base their ER model clustering rules around what they call 
the dominant objects. The only dominant object that results from the automatic algorithm 
presented in [26] is 'Movie'. Identifying other dominant objects to, once again, necessitate the 
use of human judgment. While Huffman and Zoeller's results were loosely comparable to 
those produced using human intuition, it was acknowledged by the authors that some aspects 
of the clustering algorithm were too simplistic for complex cases. Referring back to the 
conceptual schema in Fig. 1, it is most likely that a human would intuitively decide that the 
major object types in this Universe of Discourse are 'Movie' and 'Person'. None of the 
algorithms reviewed in the literature arrive at this result automatically. 

The first goal of this paper, therefore, is to formalize a method for the strictly automatic 
selection of major object types. What sets our approach apart from others is that our approach 
considers the detailed conceptual semantics hidden in the constraints and also the manner in 
which the facts within the domain are verbalized. In particular, our approach utilizes the 
detailed constraint specifications and verbalizations provided by Object Role Modeling. It is 
believed that a lot of the human intuition (conceptual semantics) is contained in these 
constraints and verbalizations. We, therefore, claim that our approach more accurately 
imitates human intuition than previous methods. As a second goal, this paper also aims to 
utilize these selected major object types in an algorithm to derive abstractions for a fiat 
conceptual schema. 

In Section 2, we begin by introducing a formal description of Object Role Modeling, which 
will be used as the foundation of the algorithms presented. Section 3 extends the semantics of 
Object Role Modeling by introducing the notion of conceptual anchors, which are required for 
the detection of major object types. An automated method for selecting anchors is presented. 
The selection of anchors is based on the semantics of constraints defined on surrounding 
relationship types. The semantics of these constraints, in terms of populations, allows us to 
make this selection. The notion of major object types and abstraction levels is then introduced 
in Section 4, together with a method for automatically determining them. Section 5 illustrates 
how this automated abstraction process is performed on a small case study; and conclusions 
are reached in Section 6. 

2. Object Role Modeling 

Object Role Modeling (ORM) views the world as a collection of objects which play roles 
and, unlike Entity-Relationship Modeling, makes no initial use of the attribute construct. 
Every elementary type of fact which occurs between an object type in the Universe of 
Discourse (UoD) is verbalized and displayed on a conceptual schema diagram. Object Role 
Modeling also allows a wide variety of data constraints to be specified on the conceptual 
schema, including mandatory role, uniqueness, exclusion, equality, subset and occurrence 
frequency. 
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The high level of detail displayed on an ORM diagram allows Object Role Modeling to 
offer a correspondingly high level of expressiveness. Unfortunately, this high level of detail 
also tends to promote the degradation in comprehensibility and communicability in large 
conceptual schemas. An ER diagram, through of its use of attributes, can already be thought 
of as an abstraction (or summary) of a corresponding ORM diagram. In this way, traditional 
Entity Relationship modeling can postpone the immediate effects of the Database Comprehen- 
sion Problem until a larger Universe of Discourse is required. It is not uncommon in practice, 
however, for abstractions (or summaries) of ER diagrams themselves to be required. While 
the scale of the problem, therefore, differs slightly between ORM and ER, the Database 
Comprehension Problem, nonetheless, is universally shared by all flat modeling techniques. 

For the purposes of this paper, we plan to consider the more detailed of the two most 
common data modeling techniques (Object Role Modeling) and introduce a method to 
control the schema's visual complexity during the information system development. As argued 
before in [7, 5, 17], an Entity Relationship model can be considered comparable with the first 
of the abstraction levels on an ORM model. 

The following subsections outline a formalization of some fundamental ORM structures and 
constraints which will be required in Sections 3 and 4 to describe our abstraction methods. The 
formalization of ORM as presented in this article inherits a rich and well published history, 
full of constant refinements and additions. The evolution of this particular ORM formalization 
started out from the PM/PSM version of ORM [2, 20, 23]. More 'modernized' versions of 
ORM formalizations can be found in [20, 3] and the most recent developments are discussed 
in [9]. Alternative formalizations can be found in [11, 16]. 

While formalizations of ORM have been published before, this paper needs to describe the 
formalization again in order to be self-contained. In this formalization, we limit ourselves to 
syntactical issues only. Issues regarding the associated semantics can be found in the 
referenced publications. Furthermore, the formalization presented in this paper is based on a 
limited number of basic concepts to provide us with only what is needed for the purposes of 
abstraction. For a detailed description of the methodology associated with Object Role 
Modeling, refer to [17]. 

2.1. Information structure 

The cornerstone of a conceptual schema is formed by the so-called 'Information Structure'. 
This structure is concerned with the object types and their interrelationships in the modeled 
Universe of Discourse. The information structure of a conceptual schema is described in the 
following subsection. In doing so, we assume that the reader has some basic working 
knowledge of the concepts underlying ORM or ER. 

2.1.1. Flat conceptual modeling 
In [9] an ORM version is proposed which extends ORM with both top-down abstraction 

mechanisms as well as aspects from object oriented conceptual modeling techniques. The 
relation between that article and this article is that here we are concerned with an algorithm to 
'reverse engineer' the abstraction layers from an existing flat conceptual model, whereas [9] 
provides the extensions to ORM needed to add abstractions in a top-down way, which is 
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necessarily a manual process. The output  of the algorithm presented in this article can indeed 
be seen as a 3-dimensional ORM model fitting the top-down abstraction framework. 

As a warning to readers of [9], it should be noted that what we call a flat conceptual schema 
in this article is in fact not a primitive, flat conceptual schema, as described in [9]. In this 
article our starting point is a schema consisting of object types, relationship types and 
objectified relationship types. Objectified relationship types are also referred to as nested 
object types, and as its second name suggests, it already introduces depth into a conceptual 
schema. It is well known that objectifications can be replaced by so-called co-referenced 
object types. As an example of this, consider Fig. 2(a). This schema fragment is equivalent to 
the fragment depicted in Fig. 2(b). Depending on the universe of discourse that is being 
modeled,  it may be more natural to use either one of the co-referenced or objectified 
representations. In the abstraction algorithms, the choice between a co-referenced object type 
and an objectified relationship type is honored by treating them slightly differently. 

2.1.2. Typing scheme 
An ORM conceptual schema, row, is presumed to consist of a set of conceptual types, 3-~. 

These types are divided into three main subclasses. The first class is the set of object types, 
~'~. Within this class a subclass of value types, rF~, can be distinguished. Instances from value 
types usually originate from some underlying domain such as strings, natural numbers ,  audio, 
video, etc. A separate class of types, the relationship types ~)q~, contain those types used to 
describe the relationship between one or more object types. Those object types which are not 
value types are called non-value types: ?¢~V ~ © ~ -  T'~. In the formalization used in this 
paper,  we allow types to belong to both the set of object types, and the set of relationship 
types. We refer to these later types as nested object types or objectified relationship types. 
Relationship types which are objectified do not belong to the set of value types. That  is: 

~ 5  ° N ~ L  g = Q 

These types also have a number  of structural properties which we now consider. 

2.1.3. Roles in relationship types 
Each relationship type in ~5~ contains a collection of roles. We refer to the set of all roles, 

in an RM conceptual schema, as ~¢'. The roles in ~ 0  are distributed among the relationship 
types by the function Roles: ~7--->9+(5~C), which should provide a partition of the set of 
roles. (Note that ~a+(5~0 ') yields all non-empty subsets of ~ ' . )  Each role has exactly one 

(a) 

Enrolment 

is enrolled in 

(b) 

Is In I 
Fig. 2. (a) Nested object type; (b) co-referenced object type. 
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object type participating in it. This object type can be obtained by applying the function 
Player: ~G--> ~ to the relevant role. If the participants of a set of role is required, we use a 
generalization of this function, Players" ga(~)- - -~9(Y~) ,  which is defined as: 

Players(v) ~- {Player(p) I p E v} 

To determine the relationship type to which a given role belongs, the inverse of the Roles 
function (Rel" ~ 0 - - - ~ )  is used: 

Rel(s) a = p such that s E Roles(p) 

In this formalization, the collection of roles contained in a relationship type is considered to 
have a predefined default order. This order, embedded in the verbalization of the relationship 
types, is provided by the domain experts during the initial analysis phase. As such, the PosN 
function is one of the knowledge sources from which we will try to mine the conceptual 
semantics hidden in the schema. The function PosN: ~----~ N + is used to assign a position to 
each role. 

The predicate Rels: ga(~)---~ g a ( ~ )  is a generalization of the Rel function to sets of roles. 
It returns all relationship types involved in a given set of roles: 

Rels(v) __a {Rel(p) ] p E v} 

Similarly, the Roles function can be extended to accept a set of relationship types and return 
all roles involved in any of the given relationship types (Roles: go(;~5~)-->¢(~)): 

Roles(v) ~ {Roles(p) J p E v} 

To conveniently access the roles involved in the same relationship type as a given role, we 
define the function CoRoles" ~ G - - ~ o ( ~ 6 ) ,  as: 

CoRoles(v) ~ Roles(Rel(v)) 

Similarly to Roles and Rel, CoRoles can be extended to perform the same operation on a set 
of roles: 

CoRoles(v) =" Roles(Rels(v)) 

If we require those roles in the same relationship type as a given role, excluding the given 
role, we use the function OtherRoles  ~G--~go(~C), which is defined as: 

OtherRoles(p) ~ CoRoles(p) - {p} 

2.1.4. Subtyping 
The specialization relationship between a subtype and a supertype is captured by the 

relationship SubOf _C G~ x C~. The intuition is that when x SubOf y, the population of x is a 
definable subset of the population of y. Each subtype hierarchy (defined by SubOf) 
corresponds to a directed acyclic graph which adheres to the laws of transitivity and 
irreflexivity: The relation Top(x, y) is defined such that y is a top of x in the associated 
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subtype hierarchy. The hierarchies we consider must always have one single top; so we can 
write T o p ( x ) = y  to refer to that unique top. 

Given a set of object types in a subtype hierarchy, we can try to find the common 
supertypes in this hierarchy that are closest to these object types. To this end, we first need to 
find all common supertypes. This is done using the function CommonSup: ~o(Cg3)~((~'50), 
which is defined as: 

CommonSup(w) ~- {x E ©'~ [ V.v~w[y SubOfx]} 

The next step is to select those common supertypes that are closest to the given set of object 
types. We therefore introduce the notion of a lowest common supertype. The lowest common 
supertypes are those common supertypes which do not have any other common supertype as a 
subtype. A set of object types can actually have more than one lowest common supertype. 
The function LowestCSup : ~o(C~ ) ~ ~a(C~ ) is defined by: 

LowestCSup(w) ~ {w ~ CommonSup(w)[~3.,,~cornrnonsup~.,l[y SubOfx]} 

Given an object type x in a subtype hierarchy, we can determine the set of subtypes of this 
object type. This is done using the function SubHierarchy: G~--~ ~(©'~ ), which is defined as: 

SubHierarchy(x) ~ {y]y SubOfx} 

Consider,  for example, the subtype hierarchy defined in Fig. 3. The supertypes of 'Bicycle' are 
'Car or Bicycle' and 'Vehicle'. The supertypes of 'Car' are 'Car or Bicycle', 'Motorized 
Vehicle' and 'Vehicle'. The common supertypes (CommonSup)  of 'Car' and 'Bicycle' are 'Car 
or Bicycle' and 'Vehicle' and the lowest common supertype (LowestCSup)  of 'Car' and 
'Bicycle' is 'Car or Bicycle'. 

2.1.5. Type relatedness 
Intuitively, object types may, for several reasons, have values in common in some 

populations. Two types are considered type related if their populations may share instances. 
Type relatedness, which we denote by x - y ,  is a property held only by object types which are 
in the same subtype hierarchy. For more detailed rules on type relatedness, refer to [18, 23]. 

id) 

Motorized) G ~" 
Vehicle ar or Bicycle 

~ icycle 

J 
Fig. 3. Example of a specialization hierarchy. 
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Two roles are type related if their players are type related; so if p,  q E ~G, then: 

p - q = Player(p)  ~ Player(q) 

2.1.6. Complete information structure 
We can now define the basic information structure 5~5 e of a conceptual schema ~5 e in terms 

of the following components:  

o¢ow = { C~, 7/'~, ~ ,  ~0  ~, Roles, PosN, SubOf, Player) 

2.2. Conceptual schema 

Besides the information structure, a conceptual schema consists of constraints and deriva- 
tion rules. For this article, only a limited class of constraints is of interest. The constraint 
classes we discuss, together with PosN, will be used as a source of information to decide which 
object types are major. 

2.2.1. Mandatory constraint 
To specify the requirement  that instances of a particular object type must always participate 

in at least one of some set of roles, we use the mandatory constraint, Mand C_ ~ ( ~ )  (also 
referred to as 'total role constraint'  in [23]). A mandatory constraint specifies that the union of 
the populations of the constrained set of roles must equal the total population of their 
player(s). All roles contained in a mandatory constraint must be type related. Therefore,  we 
should have: 

Mand(v) ~ V,,,qc,,[p - q] 

A basic rule for ORM models (as defined in [17]) states that every instance of an object type 
must participate in at least one (fact type) role. In Subsection 2.2.6 we will see that the only 
exception to this rule are the so-called lazy object types. This results in a mandatory role being 
implied over each set of type related roles. We identify the mandatory constraints which can 
be inferred in this way, InferMand c_~(Y~C), with the following derivation rule: 

InferMand(v) ~ V l, c v [ p  - q ¢:> q E v fq ~ ] A v :/: fJ 

Note that o%~ (the fact type roles) is the subset of ~C which is not used in the identification of 
any object type in the schema. This is more formally defined later in the paper. For 
abstraction purposes, we only consider those mandatory constraints which are not directly 
inferable. 

2.2.2. Uniqueness constraint 
To introduce the concept of uniqueness, we use the predicate Unique Cca(~6~). A 

uniqueness constraint requires each tuple in the projection of the join of the given roles 
(based on asserted join conditions) to appear only once. A uniqueness constraint which 
involves roles from only one predicate is referred to as an internal uniqueness constraint 
(~°U). 
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J ~  "~ {Unique(v) l Vp,qEv[Rel(p ) = R e l ( q ) ] }  

An internal uniqueness constraint simply specifies that each tuple instance for that predicate 
will have a unique value combination for the constrained roles. If more than one predicate is 
involved in the uniqueness constraint, then the constraint is classified as an external 
uniqueness constraint ( ~ ) .  

~ & {Unique(v) I Vp,q~v[Rel(p ) # Rel(q)]} 

In this case, the predicates involved must be joinable via common object types [19]. The 
general interpretation of a uniqueness constraint is formulated in the Uniquest Algorithm 
provided in [34]. 

2.2.3. Primary uniqueness constraint 
For every object type in the data schema, there must be some way in which to uniquely 

identify each instance of that object type. In other words, we insist that every object-type is 
identifiable. 

To identify the instances of non-value types (J~#7/), one uniqueness constraint must be 
selected to be the primary means of identification for that object type. We call the set of such 
uniqueness constraints 'PUnique' and require that PUnique(v) ::# Unique(v). If this uniqueness 
constraint only involves one role, the identification scheme is often collapsed into a reference 
mode for graphical convenience. The reference mode of an object type is placed in brackets 
under the object type name. For example, Fig. 4(b) shows the graphical abbreviation for the 
explicit identification scheme represented in Fig. 4(a). 

The algorithms in this paper do not consider this graphical abbreviation. Instead, they 
presume that all reference schemes are explicitly represented through uniqueness constraints. 
For more information about primary uniqueness constraints refer to [17]. For more detailed 
formal requirements on identification in ORM schemas, refer to [19, 23]. Every non-value 
object type must have exactly one primary identification scheme. That is: 

VxEx~ :1 !~ [PUnique(v) A x E Identifies(v)] 

where Identifies is defined as: 

(a) 

is IdentifLd by " 

(b) @ 
Fig. 4. (a) Explicit identification scheme; (b) implicit identification scheme. 
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Identifies(v) ___a SubHierarchy(LowestCSup({Player(p) [ p E OtherRoles(v)})) 

The set of roles which are contained in the primary uniqueness constraint of a given non-value 
type is given by PIdRoles: ~/T'---~ ~ o ( ~ )  such that: 

PIdRoles(x) __a {p I :iv[p ~. v ^ x E Identifies(v)]} 

The set of predicates which are used to identify a given non-value type is given by the function 
PIdRels: JVT'--, ~ ( ~ )  such that: 

PIdRels(x) ___a {Rel(r)  I r ~ PIdRoles(x)} 

2.2.4. Occurrence frequency constraint 
Uniqueness constraints are used to specify that instances of object types may play a certain 

combinat ion of roles at most once. Occurrence frequency constraints specify the more  general 
condition that the number  of times that object instances may play a combination of roles is 
restricted to within a fixed range. The condition that the instances of a set of roles o- must 
occur at least n and at most m times is denoted by Frequency(~r, n, m). The semantics of 
Frequency are fully defined in [19]. 

The function MaxFreq returns the maximum number  of times an object type instance may 
participate in the given role. MaxFreq: ~G---~ [~ is defined as: 

{ ~  ifUnique({r}) 
MaxFreq(r) =~ if Frequency({r}, n, m) 

otherwise 

Note that when taking set types, sequence types, etc. into consideration, Unique(o-) should be 
replaced by Unique(o-)v ExUnique(o-), where ExUnique(o-) is the class of existensional 
uniqueness constraints. This later constraint class is crucial in defining complex types such as 
set types [25], [24]. 

2.2.5. Set-comparison constraints 
Set-comparison constraints (which we will refer to as 'set constraints') are used to specify 

conditions which apply between the population sets of two role sequences. If X is a set, then 
X + denotes the set of sequences built from elements of X. For sequences, we presume that 
the operation z[i] returns the ith element  of sequence z. Set(z) coerces a sequence z into a set 
of elements,  so: 

Set(z) __a {x 13i[z[ i ]  = x]} 

We use p ~ z as an abbreviation for ::li[z[i ] = p ]  while Izl denotes the length of sequence z. To 
determine which position a particular element occupies in a given sequence, we use the 
function Pos. For sequences where no two elements appear more than once in the sequence,  
we can define Pos as: 

P o s ( p ,  z) __a such that z[i] = p  

The relations Subset ,  Equality, Exclusion each apply to an ordered pair of role sequences (we 



50 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 

do not consider an n-ary form of exclusion constraint in this paper). The subset constraint 
(defined by relation Subset  c_ 5~G+x 5~¢ ~+ species that the population of the first role 
sequence is necessarily a subset of the population of the second role sequence; the equality 
constraint (Equality c_ 5~C+x 5~0 +) specifies that the population of the first role sequence 
must be exactly equal to the population of the second role sequence; while the exclusion 
constraint (Exclusion c_ ~ 6  + x ~ f f+)  specifies that the population of the first role sequence 
does not contain any tuple which is in the population of the second role sequence. For a more 
formal definition of these constraints, please refer to [19, 23]. 

From their definitions, it is easy to infer an implied subset constraint between every optional 
role and every mandatory role played by the same object type. Similarly it is possible to infer 
an implied equality constraint between every mandatory role played by the same object type. 
We will not consider set constraints which are inferable in this manner.  That is: 

Vp, q: Subset((/, ), (q)) v Equality((p), ( q ) ) [ 7  Mand(q) A (Mand(p) =) Player(p)SubOf Player( q))] 

From Subset, Equality and Exclusion, we derive the more generic predicate SetCon using the 
following rules: 

SC(v, w) =_a Subset(v, w) v Equality(v, w) v Exclusion(v, w) 

SetCon(v, w) =~ SC(v, w) v SC(w, v) 

The underlying intuition is that if SetCon(v, w), then some set constraint exists which involves 
the roles in v and w. 

From these rules, we can specify an even more generic definition for SetCon with only a 
single parameter.  If SetCon(v) then some set constraint exists which involves the roles in v. 

SetCon(v) & 3w[SetCon(v, w)] 

2.2.6. Refinements to the type classification 
Relationship types can now be partit ioned into two important  subclasses - the fact types and 

the reference types. Reference types (5~-)  are those relationship types which are used within 
the primary identification scheme of some non-value type: 

~,~ =A (Rel(p) ] =lxE~,~[ p E PIdRoles(x)]} 

Fact types ( , ~ - )  are those relationship types which are not used within the primary 
identification scheme of a basic entity type or subtype. 

The set ~5~ C_ ~©~ is used to refer to those roles which are contained within a fact type. That 
is: 

Most object types can only be instantiated by instances which participate in some fact type 
( ~ 3 ) .  Instances of lazy object types, however, can exist without participating in any fact type. 
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(c) @,,, known 

°° I 
• I 

Fig. 5. 'Country' object type represented as: (a) non-lazy; (b) lazy; (c) implied lazy. 

We graphically represent a lazy object type by concatenating an exclamation mark to the end 
of the object type name (x!). As an example, consider Fig. 5(a). Only countries which border 
another country can be recorded. In Fig. 5(b), however, countries may be recorded even if 
they do not border (by land) any other country (e.g. Australia). 

A lazy entity type's behavior can be compared to that of an object type that mandatorily 
participates in a unary (one roled) fact type which represents its existence (as depicted in Fig. 
5(c)). For the purposes of this paper, we consider a lazy entity type to be a graphical 
simplification to conveniently represent those entity types which participate in a single, 
mandatory unary role. No special consideration is therefore necessary for lazy entity types in 
the ensuing algorithms. 

As stated before, other complex types like set types and sequence types are not discussed in 
full detail in this article, however, we will briefly return to this issue. 

2.3. Summary 

A conceptual schema c~ow can now be defined in terms of both the information structure .~ow 
and the basic constraints which apply to this information structure. 

Row = (5~5 ~, Mand, Unique, PUnique, Frequency, Subset, Equality, Exclusion) 

Conceptual schemas can have many other components, including ring constraints, subtype 
definitions, derived fact types and other extraneous constraints. None of these, however, will 
be considered in this paper, because they do not impact on the abstraction algorithms 
presented. 

An example ORM conceptual schema can be found in Fig. 6. Entity types are depicted as 
named, solid ellipses. Value types are shown as named, broken ellipses. Predicates are shown 
as named sequences of role boxes, with the predicate name located in or beside the first role 
of the predicate. A nested object type is shown as a frame around a predicate (e.g. 'Request ') .  
Arrow-tipped bars over one or more role boxes indicate an internal uniqueness constraint over 
these roles. A black dot at the base of a connector between an object type and a role indicates 
a mandatory constraint. Other constraints are represented as defined in [17]. As an example, 
consider the conceptual schema depicted in Fig. 6. In this schema we have EmailAddress E 
~V~, Preference E 0~3, and requests E ~ .  This schema is used as the running example 
throughout this article. 
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3. Anchoring fact types 

In the following sections, we introduce a method by which we can view an ORM conceptual 
schema at various levels of abstraction. At each subsequently higher level of abstraction, we 
show only the most conceptually important (major) object types from the previous level, 
thereby creating a procedure that generates an incremental summary of the schema based on 
conceptual relevance. To this end, we first provide a mechanism by which the major types in a 
given schema can be derived. 

Throughout this paper, sets of conceptual objects from the current conceptual schema ~Se 
will be denoted as belonging to a particular abstraction view by subscripting the set with the 
abstraction level. For example, 3-~ i refers to the set of types in ~Se which appear at 
abstraction level i. 

3.1. Definitions 

To define the notion of a major object type (relative to a particular abstraction level i) we 
consider each fact type individually and decide which object type(s) is (are) the most 
conceptually important participants in this fact type. We say that a role anchors a fact type to 
its player at the current abstraction level, if that player is (one of) the conceptually most 
important participants in the fact type. Conceptual importance is, to a certain degree 
subjective. However,  a reasonable (and often measureable) indicator of conceptual impor- 
tance is the proportion of the population of each object type that participates in the fact type. 

The conceptual importance of role p played by object type X in fact type predicate F can be 
indicated by: 

{ [Pop(%,:)l 
[Pop(X)[ if I{qE ~ IPlayer(q) = X}l > 1 

0 otherwise 

where Pop is the population function and 7rpF indicates the projection on role p of fact type F. 
Consider, for example, a fact type 'Subject is lectured by Academic'. Suppose we know that a 
greater percentage of 'Subjects' are lectured by an 'Academic' than the percentage of 
'Academics'  who lecture a 'Subject'; so: 

[ Pop(Tr l ('Subject is lectured by Academic'))l 
IPop(Subject)[ 

] Pop(fr2('Subject is lectured by Academic'))l 
IPop(Academic) l 

It is obvious that, as a result, a particular 'Subject' is more likely to be participating in the fact 
type than a particular 'Academic'.  It can also be observed that the fact type 'Subject is 
lectured by Academic' is more likely to be accessed in relation to a particular 'Subject' than in 
relation to a particular 'Academic'.  We therefore consider 'Subject' to be the more 'con- 
ceptually important participant' and consider 'Subject is lectured by Academic' to be anchored 
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on the role played by 'Subject'. This reasoning will, in general, only be useful when we have 
access to a typical population of a conceptual schema. When only the conceptual schema is 
available, we must rely on the conceptual constraints to derive such information from the type 
level. This is the approach taken in this paper. 

The fact that a given role is an anchor, at abstraction level i, captured by the predicate: 
Anchor i C_ o ~ i ,  where ~ i  represents the fact type roles which are present at abstraction level 
i. For convenience, we also introduce the infix predicate AnchoredTo/_c ~S ,  x 6'N, which 
indicates that the given role is anchored to the given object type (at abstraction level i): 

A 

r A n c h o r e d T o  i x = A n c h o r i ( r  ) / x  P l a y e r ( r )  = x 

When considering anchors, it is important to do so in their proper context, i.e. at a particular 
level of abstraction. For example a role which receives one hundred percent participation (i.e. 
a mandatory role), may become implied mandatory at a higher level of abstraction and 
consequently lose 'conceptual importance'. As an example, consider the schema fragments in 
Fig. 7. In Fig. 7(a), 'Subject' mandatorily participates in 'Employee teaches Subject' and 
'Department '  mandatorily participates in 'Employee works for Department ' .  Because these 
object types have one hundred percent participation, the corresponding roles are therefore 
considered to be anchors in Fig. 7(a). In Fig. 7(b), which shows the next highest level of 
abstraction, however, the same roles (played by 'Subject' and 'Department ' )  are only 
mandatory by implication. The roles played by 'Subject' and 'Department ' ,  therefore, lose 
their conceptual importance. 

Anchors for fact types are selected by comparing the conceptual importance of the roles 
involved. To this end, we introduce the notion of the weight of role, to indicate how firmly the 
role is attached to its player: 

has 

Fig. 7. (a) Abstraction level n; (b) abstraction level n + 1. 
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Weighti  : ff~t~--~ t~ 

The weight function is used as a rough indicator of both the importance of each role within a 
fact type and of the relative importance of anchors between fact types. A role is considered to 
be an anchor if its weight is the highest (or equal highest) weight of any role in the same fact 
type. An anchor can therefore be defined in terms of the role weights, as such: 

Anchor~(r) a__ Weights(r) > 0 A Weighti(r) = max{Weight~(p) I P ~E CoRoles(r)} 

A corollary which ensues is: 

Corollary 3.1. 

(Weighti(r) < Weighti(p) A p • CoRoles(r)) =), 7Anchori(r ) 

The particular weight associated with each anchor is defined by the WeightSchema procedure, 
which is introduced in the next subsections. 

We consider a fact type predicate to be anchored (Anchored/c_ ~ )  if it contains a role 
which anchors that fact type predicate to an object type: 

Anchored/(s) a =lr~Roles(s)[Anchor~(r)] 

or in other words, if the sum of the weights of each of its roles is greater than zero: 

Corollary 3.2. 

Anchored/(s) __a ~ Weighti(r) > 0 
rERoles(s) 

We refer to an object type, which has at least one fact type anchored to it, as an 
AnchorPoint i c_ O~i: 

AnchorPointi(x ) =a :lr~.~i[Player(r ) _ x/x Anchori(r)] 

For an abstraction level i to be completely anchored, every fact type within the schema must 
be anchored: 

AnchoredSchema( i )  ~ Vs~%[Anchoredi(s)] 

This is the goal for this section. 

3.2. Weighting a schema 

The procedure called WeightSchema,  shown below, automatically assigns default weights to 
each fact-type role, based on the given semantic constraints within the associated conceptual 
domain.  Weight is a total function. Since there will always be some subjective qualities that 
cannot be captured by such an automatic procedure,  it is important  that the user has the 
ability to override some automatic weighting decisions that may be questionable. For this 
reason, and because the user will usually only want to express such alternative preferences 
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once, we allow our automatic abstraction procedure to take previous user-driven weightings 
into account. 

The automatic weighting is defined by a set of weighting rules that associate a weight to 
each fact type role, based on the context of these roles. The weighting algorithm works by 
continuously trying to increase the weight of the roles. This is a repetitive process, as increases 
of weights in one part of the schema may lead to further increases in other parts of the 
schema. 

We will refer to the weightings, which were explicitly generated by a user decision, through 
the function UserWeight: ~ - - ,  N. The weights that are derived automatically from the 
underlying schema are provided by the function AutoWeight: N x , ~ - - ~  N. This function is 
introduced in the next subsection by a set of derivation rules. We employ the notation 
AutoWeighti(p) rather than AutoWeight(i, p) because of the fact the index i is used as a label 
rather than carrying any specific semantics. 

Once WeightSchema has been automatically performed,  the user would have a further 
opportunity to alter the UserWeights by modifying the set of anchors produced in accordance 
with an appropriate set of modification rules. 

WeightSchema: ~5~--> ( ~  --> IN) 

WeightSchema(~)  

VAR 
Weight: ~ --> IN ; 

p : ~  ; 

BEGIN 

{ I n i t i a l i z e  a n c h o r s }  

FOR EACH p E o~ DO 

Weight(p):= UserWeight(p) ; 

END ; 

WHILE 3i,p[AutoWeighti(p) > Weight(p)] 

Weigh t (p ) :=  max{AutoWeighti(p) I (i, p )  E dom(AutoWeight)) ; 

END ; 

RETURN Weight ; 

END WeightSchema ; 

This algorithm will always terminate. From the condition on the WHILE loop we can see it 
terminates if -n3i, p [AutoWeight~(p) > Weight(p)]. In the next subsection we will also see that 
the maximum value returned by AutoWeight is fixed to 10. From the body of the WHILE loop 
follows that we never reduce the Weight of a role. This means that for any role p once 
Weight(p) ~> 10 we cannot find a rule labeled i such that AutoWeiohti(p) > Weight(p).  Which 
means the loop must eventually terminate. 
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3.3. Rules for  role weighting 

The following paragraphs describe each of the twelve rules that together define AutoWeight. 
The resulting weightings returned by these rules serve as a comparative guide, and should at 
some stage be refined based on empirical testing in practical situations• The existing rules have 
been formulated after studying a number of cases to observe the effect of particular 
constraints on the associated populations and on the conceptual importance of surrounding 
object types. 

Rule 1 - Mandatory roles 
All non-implied mandatory roles have, by definition, full participation by the population of 

the player(s). Therefore, any fact type role which is involved in a mandatory role constraint 
(even if this is a disjunctive mandatory constraint) should be weighted, unless the mandatory 
role constraint is implied (as described in InferMind). This is the only rule which can cause a 
fact type predicate to be anchored more than once. 

= max Mand(v)  A p E v A -qlnferMand(v) U {0 

A role can be involved in a number of mandatory role constraints. The simplest case would be 
where the role itself is mandatory, which would lead to a weight of 10. However,  a role may 
be involved in a disjunctive mandatory role. This means that the instances of the participating 
object type must play at least one of the roles involved in the disjunctive mandatory role. In 
this latter case, the weight of 10 is 'shared' among the involved roles. As one role may be 
involved in a number of mandatory role constraints, we take the weight to be the maximum of 
the possible weights that would follow from these involvements. 

For example, rule 1 would cause each fact type in Fig. 8 to be anchored towards the 
non-implied mandatory role played by Employee. 

This rule can also be considered in the broader context of complex types like sequence 
types, bag types, etc. We can now discuss why these complex types to not require special 
provisions in our algorithm. In Fig. 9(a) we show an example of a set type: namely 'Convoy'. 
A convoy consists of a set of ships, each of which is commanded by a unique captain. Both a 
ship and its captain are each individually identified by a name. A convoy, however, is 
identified by a set of ships. 

In Fig. 9(b), this set type is modeled in terms of more elementary relationships using the 
existensional uniqueness constraint (represented by the encircled EU symbol) [24, 25]. The 

h a s  " • . . . . . .  - 

Fig. 8. All non-implied mandatory roles are weighted. 
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(a) 
Convoy 

(b) < ~  

Fig. 9. A convoy of ships modeled using (a) a complex set type; (b) elementary relationships. 

AutoWeight rules that we are defining, can therefore be directly applied to the elementary 
representation of the complex types. 

Rule 2 -Unary  roles 
The player of the only role in a unary predicate must obviously be 'the most important 

participant' in that predicate. All roles in unary predicates are therefore weighted. 
It should be remembered that, for the purposes of this algorithm, lazy object types are 

treated like non-lazy object types which play a mandatory unary predicate representing the 
existence of the instances. 

AutoWeight2(p) ~ if CoRoles(p) = {p} then 10 else 0 

Fig. 10 shows an example subschema in which every unary predicate is anchored on its one 
role. 

Rule 3 - Non-leaf object types 
A leaf facttype role (Leaf c_ ~ )  is one which has a player that plays only that fact type 

role. That is: 

Leaf(p) ~ 7=lu~,~ [Player(p) = Player(q) A Rel(p) ~ Rel(q)] 

is manaoer 

or~s o 

Fig. 10. All unary roles are anchored. 
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If only one role in a fact type is played by a non-leaf object type, then this role is considered 
'conceptually important '  enough to be given a strong weighting. 

AutoWeight3(p) _x i f  L e a f ( p ) / x  Vq~Othernoles~p~[keaf(q)] then 9 else 0 

This rule as such is rather straightforward. The reason to assign only a weight of 9, instead of 
10, is that mandatory non-leaf roles are considered to be conceptually more important  than 
optional non-leaf roles. 

In the example subschema in Fig. 11, rule 3 would be fired, causing both fact types to be 
anchored towards the Employee object type. Notice that 'Room'  is actually a leaf object type 
because, while it participates in three roles, it only participates in one fact type role. ' R o o m  is 
in Building'  and ' R o o m  has R o o m # '  are not considered in the weighting procedure as they 
are both reference types. 

Rule  4 - Smallest  m a x i m u m  frequency  
The maximum frequency of the population of a role can be determined from one of two 

constraints. A single role uniqueness constraint indicates that the role has a maximum 
frequency of one. Alternatively, an occurrence frequency constraint often explicitly specifies 
the maximum frequency of a role. If exactly one role within a fact type predicate has a smaller 
maximum frequency than all other roles in that fact type, then this role should be anchored. 

A u t o W e i g h t 4 ( p )  A . = i f  Vq~ot.erRoJes ~ 1,~[MaxFreq(p) < MaxFreq(q) ]  then 

2 + VMaxFreq(p )  else0 

The closer the maximum frequency of a role is to 1, the higher the weighting. The maximum 
AutoWeight of 8 is applied in those cases in which a uniqueness constraint holds on the role, 
causing MaxFreq to be 1. If the maximum frequency is higher than 1, the AutoWeight will 
become lower and lower, down to a minimum of 2. However,  because increments in MaxFreq 
should have less effect if the frequency is already high, we have taken the division of the 
square root of the MaxFreq value. For example, the increment from a MaxFreq of 8 to one of 
9 will have less effect on the AutoWeight than an increment from 1 to 2. The result is a curve 
that drops down quickly from a maximum Weight of 8, but starts to level out when it gets 
closer to 2. 

The example in Fig. 12 depicts a subschema in which the fact type 'Project is managed by 

"'° ) -  

Fig. 11. Non-leaf object types may indicate automatic anchorage. 



L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 60 

Fig. 12. Roles with the smallest maximum frequency may be anchored. 

Employee' is anchored due to a uniqueness constraint, and the fact type 'Employee works on 
Project for Duration' is anchored due to a frequency constraint. 

Rule 5 -  Non-value types 
If exactly one role in a fact type is played by a non-value type, then the fact type should be 

anchored on this role. 

AutoWeights(p) ,a i f  P laye r (p )~  °k"~ A Vqcotheraoles~p)[Player(q ) E 7/'~] then 7 else 0 

The rationale behind this is that value types are by definition conceptually less important  than 
non-value types. 

In the example shown in Fig. 13, rules 1 to 4 fail to determine an appropriate anchorage for 
either fact type. Rule 5, however, triggers the obvious conclusion that both fact types should 
be anchored towards 'Employee' .  

Rule 6 - Anchor points 
As we have already discussed, those object types which serve as anchor points to fact types 

are considered to possess a relatively high conceptual importance. Therefore,  if exactly one 
role in a given fact type is played by an object type which became an anchorpoint  via rules 1 to 
5, the fact type is anchored on this role. For this purpose we introduce the notion of a 'heavy 
role' as: 

HeavyRole(p) -~ 3,:Weight(s)~ 7[ p ~ S] 

The Auto  Weight rule then becomes: 

AutoWeight6(p) ~ if HeavyRole(p) A Vq~otherao,es(p)[-qHeavyRole(q)] then 6 else 0 

In the example subschema of Fig. 14, the uniqueness constraint on 'Employee is managed by 
Project' causes rule 4 to anchor the upper fact type towards 'Project ' .  Since 'Project '  is now 

has at h0mo 
Fig. 13. Roles played by non-value-types may become automatically anchored. 
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. . .  ' h ' U I l ~ '  I d l l  . , .  l U l  , , .  

Fig. 14. Roles played by anchorpoints may become automatically anchored. 

the only participant in the ternary fact type which is an anchorpoint,  the lower fact type is 
anchored on 'Project ' .  

Rule 7 -  Single-role set constraints 
If a fact type is involved in exactly one single-role set constraint (i.e. subset, equality or 

exclusion constraint),  and the role at the other end of the set constraint is anchored,  then the 
constrained role in the given fact type is anchored. 

AutoWeightT(p) __a if ~ls:Anchor(,,. )[setcOn((s), (p )  )] A VqeOtherRoles(p)[-ISetCon( ( q ) )] then 
5 else 0 

In Fig. 15, the fact type 'Employee is a supervisor in Project' is anchored to 'Employee '  by 
rule 4, as a result of the simple uniqueness constraint. Since the role played by 'Employee '  in 
the ternary fact type is connected to this anchored role via a single-role subset constraint, this 
role is consequently anchored by rule 7. 

It is important  to consider the case in Fig. 16, in which the single role set constraints 
contradict each other. In this case, rule 7 could not produce a determinant  anchorage for the 

. . .  v w v i n ~  v i i  , , .  i v l  , . .  

Fig. 15. A role connected to an anchored role by single role set constraints is anchored. 

has expected 

is supervisor in 
Fig. 16. Rule 7 does not consider cases in which a single-role set constraint contradicts another. 
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predicate 'works on'. We therefore ensure that this rule only fires on non-anchored fact types 
which are only involved in one single-role set constraint. 

It is also important  to realize why we chose not to require the contradicting set constraint to 
necessarily have an anchor assigned. It would have been inadequate to require the following 
condition on the other roles in p 's  fact type: 

V q~=OtherRoles(p) "-'13 s:AnchOr(s)[setCOn( (s ), (q )  )] 

We illustrate this, by considering the case shown in Fig. 17. If we assume that the above 
condition is adequate, (i.e. that rule 7 is fired as long as no other role in the fact type 
participates in an anchored single role subset constraint), then two possible scenarios are 
possible for the schema fragment below. Firstly, rule 7 could cause 'Person owns Car' to be 
anchored towards 'Person';  which would then cause 'Person has driven Car' to also be 
anchored towards 'Person'.  Alternatively, rule 7 could first cause 'Person caused crash of Car' 
to be anchored towards 'Car'; which would then cause 'Person has driven Car' to also be 
anchored towards 'Car'. As a result, 'Person has driven Car' could be anchored in either 
direction, depending on the order in which the rule was fired. 

For this reason, we only allow fact types to be anchored on a role, p,  if no other role in its 
fact type is involved in any kind of single-role set constraint (as defined in AutoWeightT(p) ). 
The definition of rule 7 will, therefore anchor all fact types in Fig. 17, except for 'Person has 
driven Car'. 

Rule  8 - Multi-role set constraints 
If a fact type is involved in exactly one (possibly multi-role) set constraint (i.e. subset, 

equality, or exclusion constraint), and exactly one of the roles in the fact type is in the 
corresponding position within the set constraint as an anchored role, then this role is itself 
anchored. 

AutoWeigh ts (p )  __a i f  ::1 ..... setcon(v, w)[P E v/~ A n c h o r ( w [ P o s ( p ,  v) ] )  

/x SingleSetCon(v, p)] then 4 else 0 

'r'v'° I *: 

u . d  

was last repaired by 

Fig. 17. Rule 7 requires that p's fact type participates in n o  other single-role subset constraint. 
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. , .  W U I I ~ , ~  V I I  , , ,  I k l l  , , ,  

Fig. 18. Roles connected by multi-role set constraints are anchored.  

where SingleSetCon(v,  p) enforces the singularity of the set constraint v with respect to role 
p: 

SingleSetCon(v,  p) ~ Vx:SetCon(x)[U ~& X ~ OtherRoles(p)  fq Set(x) = • ]  

In the example in Fig. 18, the fact type 'Employee is supervisor in Project' is anchored to 
'Employee '  by rule 4, as a result of the simple uniqueness constraint. Since the role played by 
'Employee '  in the ternary fact type is connected to this anchored role via a multi-role subset 
constraint, this role is consequently anchored by rule 8. 

Similarly to rule 7, it is important  to consider the case in Fig. 19, in which the multi-role set 
constraints contradict each other. In this case, rule 8 would not produce a determinant  
anchorage for the predicate 'works on'. We therefore only use this rule on non-anchored fact 
types which are only involved in one multi-role set constraint. 

Rule 9 -Se t  constraints and anchor points 
If there exists a non-implied set constraint in which one of the roles involved in the 

constraint is the only involved role in its fact type to be played by an anchorpoint  and the fact 
type of the role corresponding to it in the other role sequence is not anchored,  then this role 
should become an anchor. If a set constraint v anchors a role p in this sense, then we refer to 
this as Anchors(p ,  v): 

Anchors(v p)  ~ , = p ~ v A AnchorPoin t i (P layer (p) )  

The resulting AutoWeight rule is then: 

has primary 
interest in 

i~ supervisor in ~" 

Fig. 19. Rule 8 does not consider cases in which a multi-role set constraint contradicts another.  
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is supervisor in has budget of 

.~. wo rks  on ... for  .., 

Fig. 20. Roles played by major object types and involved in multi-role set constraints are anchored. 

AutoWeightg(p) ~- if :l.:setco~(.~[Anchors@. p) A VrEOtherRoles(p)[-TAnchors(r. v)] 
A SingleSetCon(u, p)] then 3 else 0 

For example, in Fig. 20, the firing of rule 1 causes 'Project has budget of MoneyAmt '  to be 
anchored towards 'Project'. Since 'Project',  consequently, becomes the only player of a role 
involved in the subset constraint to be an anchorpoint, rule 9 causes both of the other fact 
types to also be anchored towards 'Project'. 

Rule 10 - Joining roles o f  set constraints 
For this rule, we consider each role sequence which is involved in a set constraint and which 

spans more than one fact type. In these cases, a join condition must be specified (or inferred) 
to define the manner by which the populations of the involved fact types are related. We call 
those roles which are involved in the join condition of such a role sequence, the join roles for 
that role sequence, and define them through the function: doinRoles: ~ 0  ~+--->~a(5~O), such 
that: 

JoinRoles(v) & {p E OtherRoles(v) [ 3q,rEv,,cCoRo.es(r~[Rel(q) # Rel(r) A Rel(p) = 

Rel(q)/x p - s]} 

AutoWeight Rule 10 anchors those unanchored fact types, in which only one role is the join 
role for some set constraint role sequence: 

JoinSingleSetCon(p) ~ 3v:SetCen(v)[ p ~ JoinRoles(v)] 

This join role becomes the anchor: 

AutoWeight1,,(p) ~ ifdoinSingleSetCon(p) A V.~Othe~Ro~es(p~[~doinSingleSetCon(q)] 
then 2 else 0 

Fig. 21 shows an example to which this rule is applicable. The 'works for' predicate is first 
anchored to 'Employee'  when Rule 1 (mandatory roles) is fired. The 'involved in' predicate is 
then anchored to 'Employee'  by the activation of Rule 8 (multi-set constraint with single 
anchor). Lastly, rule 10 causes the 'sponsors' predicate to be anchored to 'Department ' ,  since 
the role played by 'Department '  is the one which is used to join together the target role 
sequence of the subset constraint. 

Rule 11 -F irs t  role o f  set constraints 
If there is a multi-role, non-implied set constraint (i.e. subset, equality or exclusion 
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Fig. 21. Roles involved in the join condition of a multi-predicate set constraint role sequence are anchored. 

constraint) and one of the involved roles has the lowest sequence position within one of the 
constraint 's role sequence (for its predicate), then this role should become an anchor. 

A 

A u t o W e i g h t l l ( p  ) = i f  3,,:setcon(v~VsecoRoJes(p)nSet(v)[AnchorPoinli(Player(s)) 
Pos (p ,  v) ~< Pos(s, o)] then 1 else 0 

This choice is based on the semantics which is derivable from the order in which the modeler  
chose to initially verbalize the fact type. An example of such a situation is depicted in Fig. 22. 

Similarly to rules 7 and 8, it is important to consider the case in Fig. 23, in which the 
multi-role set constraints contradict each other. In this case, rule 11 would not produce a 

~ ~  supervisor in ~ . ~  

I 

... w a s  s ~ e n t  b y  ... o n  ... ~ 

Fig. 22. Roles  which appear  first in se t -const ra int  role sequences  are anchored .  

has primary 
interest in 

i~ supervisor in ; 
Fig. 23. Rule  11 does  not  consider  cases in which a mult i - role  set cons t ra in t  cont radic ts  ano the r .  
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Fig. 24. Roles which are positioned in the first 'keyed'  position are anchored. 

determinant  anchorage for the predicate 'works on'. We therefore only use this rule on 
non-anchored fact types which are only involved in one multi-role set constraint. Note, that in 
Fig. 23 we denote the role sequence order by specifying the sequence of role numbers  that are 
involved at the 'source' of the set constraint. 

Rule 12 - First role of  internal uniqueness constraint 
Any fact type, which is not already anchored, should be anchored,  by default, on the first 

role that is involved in an internal uniqueness constraint. This choice is based on the semantics 
which is derived from the order in which the modeler  chose to initially verbalize the fact type. 

AutoWeight~2(p ) ~ if PosN(p) = min{PosN(q) 1 3v[Unique(v ) • 5~°// A q E V]} then 1 else 0 

Fig. 24 shows an example in which rule 12 is triggered. 

4. Deriving abstraction levels 

When a conceptual schema is abstracted, each progressively higher level of abstraction 
includes all the most conceptually important  components  from the previous level. To define an 
abstraction level, we must therefore first select the major object types and major fact types. 
We refer to those major  types which form the foundation for an abstraction view at level i as 
5'{~5~ i (which will be defined formally below). 

Once the kernel of an abstraction level has been calculated, there are still a number  of steps 
which must be performed before the abstraction is complete.  Firstly, any fact type predicate in 
which every role is played be a major object type is included in the abstraction. We do not 
include these predicates in the kernel itself, because we do no want these fact types to effect 
the outcome of future abstraction levels. Secondly, we include the identification scheme of all 
object types which appear in the abstraction. Finally, we restore the connectivity of o u r  
abstracted conceptual schema. This involves retaining both the connectivity of subtyping 
hierarchies, and the connectivity of non-type related object types. 

The following subsections formally describe these steps in the abstraction process. 

4.1. Major types 

In a conceptual schema at a particular level of abstraction (i), the set of object types which 
do not  have the lowest conceptual significance are referred to as the major object types 
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(MajorOTi). Those object types which are of least conceptual significance are referred to as 
minor. We identify the major object types as the set of object types which have a higher total 
object type weight (OTWeioht) than the minimum total object type weight for the current 
schema level. 

Each object type also has an object type weight (OTWeioht) associated with it at a 
particular abstraction level. The object type weight represents the sum of the weights of those 
fact type roles which are anchored to it; i.e." 

OYWeighti(x) =a ~ Weight~(r) 
r : 3 y [  A n c h o r e d R o l e (  r ,  y ) ^ y - x  ] 

where AnchoredRole c_ o ~  x G~ is true when the given fact type role is in ~/{g~ and is 
anchored to an object type which is type related to the given object type; i.e." 

AnchoredRole~(r, x) __a Player(r) - x A Anchori(r) ^ Rel(r) E Kg;~; 

An object type is considered to be major at a particular level of abstraction (MajorOT C G~ ) 
if its OTWeight is greater than the minimum weight for object types in the kernel at that level. 
Formally, MajorOT is defined as: 

MajorOTi(x ) =a OTWeight~(x) > min{OTWeighti(y) I y E ~'t'g~} 

The major fact types at a particular abstraction level (MajorFT i c_ ~-3-) are defined as those 
fact types which bridge between more than one subtyping hierarchy and in which every 
participant is a major object type at that level: 

MajorFT i(x) __a V,e Ro,es(x)[MajorOT;(Player(s))] ^ =ls,,e Roles(x)[S / t] 

4.2. Algorithm for determining next abstraction level 

We refer to the set of component types and constraints included in the level i abstraction 
view of conceptual data schema USe as cg5¢/. In the level 1 conceptual schema, ~Se 1 (often 
abbreviated to cg5¢), all component elements are present. Increasing the level of abstraction 
will never increase the number of populatable types visible in the conceptual schema: 

~ ' ~ i  ~ ~-~bi + 1 

Of even greater importance, though, increasing the level of abstraction will necessary strictly 
decrease the number of populatable types within the abstraction kernel: 

~ / ~ i  D ffgcc~ i + 1 

As described previously, each progressively higher level of abstraction includes all the most 
conceptually important components from the kernel of the previous level. For this reason, at 
each level of abstraction, we include all the major fact types from the previous level, plus all 
the major object types which participate in at least one of these major fact-types. Formally, 
we define the abstraction kernel at level i + l(ggg~i+l) as: 

~ g ~ ; + ,  _a__ {x I MajorFT/(x)} O {Player(p) I MajorFTi(Rel(p)) } 
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Notice that this definition does not necessarily include every major object type of one 
abstraction level in the kernel of the next level. The kernel at a particular level of abstraction 
will only include those major object types which participate in some fact type role contained in 
the kernel. This conforms to the standard rules of conceptual schema design, as defined in 
[17]. 

The definition of Y { ~  removes all objectified relationship types which neither participate in 
a major fact-type, nor are major types themselves (as shown in Fig. 25, below). 

It is interesting to compare the differences in the way objectified fact types and co- 
referenced object types are treated. Consider the examples shown in Fig. 26. 

In Fig. 26(a), the objectified fact type (identified by the participating A and B) is included in 
the next higher level of abstraction, because it is considered to be a major fact type. In Fig. 
26(b), however, the co-referenced object type (AB) is not included in the next higher level of 
abstraction, because it does not participate in any fact types at this level. AB may, however, 
be added to ~ + 1  if it is required for connectivity. We justify the difference in treatment of 
objectified fact types and co-referenced object types by the observation that an objectified fact 
type can, itself be thought of as a type of abstraction on a co-referenced fact type, which must, 
itself be 'unwrapped' [9]. 

4.3. Ring fact types 

At this stage, the kernel only contains fact types which bridge between subtyping 
hierarchies. The kernel does not retain those (ring) fact types for which every participant is a 
type-related object type because we do not want these fact types to perpetually cause their 
player to be an anchor point. The user, however, is probably interested in viewing all fact 
types which are played entirely by major object types at the previous level. This includes the 
ring fact types. To this end, we therefore apply the procedure AddRingF'l's to the types in the 
kernel. 

Kernel at Level/ Kernel at Level i+1 

Fig. 25. Removal of objectified relationship types. 
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Kernel at Level i Kernel at Level i+1 
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(b) 
Kernel at Level i 

%% 

Fig. 26. (a) Objectified fact type; (b) co-referenced object type. 

Kernel at Level i+1 

d> 
q> 

AddRingFTs: ~(G~ ) --~ ~(G~ ) 

AddRingFTs( Types) 
BEGIN 

RETURN Types U {r E ~J- [ Vs,t@Player(r)[S , t ~ Types A S ~ t]} ; 

ENDAddRingFTs ; 

4.4. Object type identification schemes 

Since the identification scheme of an object type is often important for its understanding, we 
ensure that the identification scheme of every object type is included in each abstraction level. 
To this end, we define that relation, IsldReIc_ ~5¢ x ~(3-~),  which is true when the given 
relationship type is involved the primary identification of some object type in the given set of 
types. 

IsldRel(r, z) =~ :l~,~z[r ~E PIdRels(x) - z] 
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The function IdentifiedSchema: ~,(3-~)---~(3-~) takes the types in the current abstraction 
level and adds to them, those types that are required to identify the input types. 

IdentifiedSchema( Types) 
VAR 

r : ~ 3 -  ; 

BEGIN 

WHILE ::]r[r ~ Types A IsldRel(r, Types)] DO 

LET r BE SUCH THAT ryEf Types ^ IsldRel(r, Types) ; 

Types + = {r} U {Player(s) I s ~ Roles(r)} ; 

END WHILE ; 

RETURN Types ; 
END Ident i f iedSchema. 

It is interesting to consider the effect that this algorithm has on the subtyping hierarchies of 
the abstracted schema. In Fig. 27, the only major object types in ~ i ,  which participate in a 
major fact type, are C and F. C and F are therefore the only object types to appear in 
~ ; + ~ .  Since C inherits its identification from its (indirect) supertype A, however, A is 
included in IdentifiedSchema(E{W~i+~) as the player of C's identifying relationship type. 

Notice that the subtyping arrows in the various schema fragments adapt automatically to the 
set of object types included in the diagram. This is possible because of the fact that subtyping 
relationships are inherently transitive, with only the non-implied arrows being displayed on 
the diagram. 

4.5. Connectivity 

Since we wish to retain the connectivity of our conceptual schema throughout each level of 
abstraction, w e  must define the concept of connectivity. We begin by defining a connected 
path (~M) through a conceptual schema. A path is a sequence of types in which each element 
(except the first) is either a relationship type of which the previous conceptual type is a player, 
or is one of the object types which plays the previous conceptual type. Note that a path does 
not necessarily define a unique traversal through a relationship type, since an object type may 
play more than one role in the same relationship type. 

~M a= {x @ f f~  + I Vl<~i<lxl[Connected(x[i], x[ i  + 1])]} 

where Connected identifies whether or not the given conceptual types are connected (in that 
one participates in the other): 

Connected(y ,  z) _a_ 3peR.o,es~y)[Player(p ) _ z] v 3p~Roles(z)[Player(p) - y] 

The predicate PathBetween c ~M × ~-~ × J-~, holds exactly when the given path exists, 
starting at conceptual type x and ending at conceptual type y. 
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Fig. 27. The primary identification of subtype C is inherited from supertype A. 

PathBetween(v, x,  y )  __a v[1]  = x ^ v [ I v l ]  = y 

ShortestPaths(x,  y) returns the set of paths which start at type x and end at type y, which 
contain the least number  of conceptual types in between (Shor tes tPa ths :  3-~ × 
~-~ ~ ~ ( ~ ) ) .  

ShortestPaths(x, y) ~ {v ~ ~,~ I PathBetween(v, x, y) ^ 

= min{lwl [ PathBetween(w, x, y)}} 

Ano the r  type of connectivity which is useful to maintain is the connectivity of subtyping 
hierarchies. To this end, each set of unconnected,  type-related types in 
Ident i f iedSchema(E{~i+ 1 are reconnected via the lowest common supertype which has its 
own identification scheme. The notion of a lowest common  identified supertype is therefore 
introduced.  A set of object types can actually have more than one lowest c o m m o n  identified 
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supertype, in the case in which the subtyping hierarchy forms a lattice. The function 
LowestCIdObjs: ~ ( ~ ) - - - ,  ~(3-~)  is defined on a set of type-related object types as: 

LowestCIdObjs(w) ~ {x E CommonlDSup(w) [ "73ycCornmoo,DS.p~.,)[y SubOf x]} 

where CommonlDSup(w) ~ CommonSup(w) N Players(OtherRoles(PIdRoles(w))). Notice 
that the only case in which the lowest common identified supertype for a set of object types will 
be the same as the lowest common supertype, defined previously, is when the lowest common 
supertype has an identification scheme directly attached to it. 

The function Connec tSchema  is used to add those types which are required to connect the 
given set of types by means of subtyping hierarchies and shortest paths. 

ConnectSchema: ~(g~ ) --~ ~(3"-~ ) 

ConnectSchema( Types ) 
# Pos tCond i t i on :  Vx..~,eTypes[PathBetween(x , y)] 

BEGIN 

1. WHILE ::]x.yeTypes[X - -y  A 73zeTyp~,[Z E CommonSup({x ,  y})]] DO 

Types + = LowestCldObs({s I s -  x} ) ;  

2. WHILE 3x.ycTyp~s[-7PathBetween(x, y)] DO 

Types + = U Set(c) ;  
c@ShortestPath(x, v) 

Types:= IdentifiedSchema( Types) ; 

END 2 ; 

END 1 ; 

RETURN Types ; 

END ConnectSchema ; 

The first loop (marked 1.) ensures that all type related object types are connected via a 
subtyping hierarchy in the abstraction schema. The second loop (marked 2.) ensures that the 
non-type related object types are connected via relationship types in the resulting set of types. 
Notice that IdentifiedSchema is reapplied during ConnectSchema to ensure that any newly 
added types are also identifiable in the abstraction schema. 

Fig. 28 shows an example in which IdentifiedSehema(3'fg~i+ 1) is disconnected, despite the 
fact that its components  contain type related object types. In order to connect the two schema 
fragments in IdentifiedSchema(YC~i+l), ConnectSchema adds A to the set of included 
types. Object  type A represents the lowest common supertype of G and C which has its own 
identification scheme. In this case, C and G have their own identification scheme. However,  in 
order  to retain the notion that the instances of C and G come from a common domain,  we 
include in the abstraction the lowest common supertype which is directly attached to a unique 
identification scheme for this domain. 
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Fig. 28. Connecting the kernel by means of the subtype hierarchy. 

4,6. Complete abstraction of conceptual schema 

The complete set of abstraction levels for a given conceptual schema, %%e, can now be 
defined. The level i abstraction view, ~ ,  of a given conceptual schema, ~5  ~, includes the 
types in JC-gS~s, the types required for connectivity and identification, and all constraints from 
the original schema in which these included types are involved. We, therefore, formally define 
~ .  as follows: 

~Se I ~ (5~5 e, Mand, Unique, PUnique, Frequency, SetCon, Weight) 

~ ~ (J~., Mand, Unique~, PUniquei, Frequency,, SetCop~, Weight~)for i > 1 

where 

~¢~-~ (J-~i, ~ ,  Rolesi, PosN, SubOf~, Player) 

~-~i & ConnectSchema(IdentifiedSchema(AddRingFTs(YCg~i))) 

~, .  ~ {p E ~ I ael(p) E 9-~,.} 
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SubOf~ 

Mand~ .__a 

Unique~ = 

Frequencyi = 

SetCone =a 

{ {X, y ) (~ ~-~J)i x ~-~b i Ix SubOf,_, y } 

{x E ,#(~d'i) I Mand(x) A 3pc..~, V q~x[ p ~ q /x p,Ef.x]} 

{x E #(~G,.) ] Unique(x)} 

{x E #(~(7~) I Frequency(x)} 

{ { v, w) ~ ~G ~ x 5~7 + I SetCon(u, w) } 

4.7. Relation to clusters 

The definitions so far allow us to take a flat ORM conceptual schema and derive a number  
of abstraction layers for this flat ORM schema. Each of these layers is still essentially a flat 
subsection of the original ORM schema. Therefore,  we now introduce the glue that actually 
holds these layers of abstraction together. 

The idea is to view each major object type as becoming the centre for a clustering of 
surrounding minor object types. As a result, the object types in each K ~  i are clusterings of 
types from Y{~5~ i_ 1. This idea of using clustering as a binding mechanism for abstraction layers 
for ORM schemas was proposed previously in [5-7]. In [9] a possible formalization of the 
clustering mechanism is presented. 

In this subsection, we show how to derive a clustering of minor object types for each major 
object type. The presented style of clustering conforms to the requirements given in [9]. This 
means that when applying the abstraction algorithm discussed in this article, together with the 
clustering mechanism presented below, a three-dimensional ORM schema results that is in 
line with the 3-Dimensional Conceptual Modeling Kernel as proposed in [9]. 

The clustering mechanism is defined as a set of derivation rules. An actual clustering is 
given as a function Cluster: IN x O~3 --, go(,3-V) ~ ). The intuition is that if x E Cluster(i, y), then at 
abstraction level i type x has been grouped into the cluster surrounding object type y. 

The first derivation rule clusters all fact types which have disappeared since the last level of 
abstraction towards the object type to which they were anchored. 

Anchori_ ~(r)/x Rel(r) E ,7{~5~ i F Rel(r) • Cluster(i, Player(r)) [CL1] 

where Y { ~  ; ~ Y{'~i- i  - f f L e ~ i  for i > 1 . 
Object types which participate in any relationship type included in a cluster should, 

obviously, be included in the same cluster: 

x ~ Cluster(i, c)/x y E Players(x) t- y ~ Cluster(i, c) [CL2] 

Please note that an object type could occur in more than one clustering if it is involved in 
relationship types anchored to different major object types. As a result, the clustering is not a 
partition of the types. 

The following two rules are concerned with subtyping. If an object type in a type hierarchy 
is removed from the kernel (i.e. it is in 5~{~ i), we must still cluster those fact types that were 
anchored to it. We anchor such fact types towards the lowest supertype which remains in the 
kernel (LowestKernelSup).  
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x E Y { ~  ; A y LowestKernelSup x A r AnchoredToi_ ix I- Rel(r) E Cluster(i, y) [CL3] 

where y LowestKernelSup x indicates that y is the lowest supertype of x which remains in the 
abstraction kernel. That is: 

y LowestKernelSup x ~ = x SubOf y A y E ~7{~  A "-13zcjt-~o:~i[X SubOfz SubOfy] 

If no supertype remains in the kernel, however, the relationship types anchored towards a 
disappearing subtype can be clustered towards the nearest subtype which remains in the 
kernel. 

x C 27{~ I A -a:lz[z LowestKernelSup x] A y HighestKernelSub x 

A r AnchoredTo i_ ~x I- Rel(r) E Cluster(i, y) [CL4] 

where y HighestKernelSub x indicates that y is the highest subtype of x which remains in the 
abstraction kernel. That is: 

A 

y HighestKernelSub x = y SubOf x / x  y E Y { ~  A - ~ 3 z E . ~ , [ y  SubOf z SubOf x] 

The remaining derivation rules are completeness rules on clusters. Clustered types are 
inherited between layers of abstraction. So we have: 

x C Cluster(i, c) kx E Cluster(i + 1, c) ICE5] 

The reference types needed to identify any of the types in a cluster are also included: 

x E Cluster(i, c) A y ~ PIdRels(x) I- y E Cluster(i, c) [CL6] 

The above definition of cluster is a 'maximally complete '  one. However,  when displaying 
clusters to a user, for example, one may choose to only show those clustered types which are 
part of Y { ~  i. That is: 

Cluster(i, x) - Cluster(i - 1, x) 

It may also be decided to only show the clusters for those types which appear in Y{'~i,  and 
ignore the clusters for those object types which were major at the previous level, but do not 
participate in a fact types in YC-d~. Choices like this are up to the designer of the actual 
abstraction tool and often depend solely upon the purpose for which the abstraction and 
clustering was created. 

5. Case study 

Now that we have developed a theory for the creation of abstractions for a conceptual 
schema, it is time to study the effect that such a mechanism has on an application example. 
Applying WeightSchema to the conceptual schema shown in Fig. 6, we achieve the anchored 
schema shown in Fig. 29. As in previous examples, we have shaded the major object types and 
indicated the anchors by an arrowed role connector line. For the purposes of our example 
application, we have also included the Weight assigned to each anchor (e.g. " .9.") .  This will 
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hopefully help the reader to retrace the AutoWeight rules that have been fired to achieve this 
result. 

Applying WeightSchema to our application example of Fig. 6 helps us identify the major 
object types in the Universe of Discourse. In this case, they are 'Motel',  'Committee ' ,  
'Institution', 'Country',  'Request ' ,  'Person', 'Paper',  'Accepted Paper',  'Paper Slot', 'Room' ,  
'Lab or Lecture Room',  'Lecture Room' and 'Laboratory'. This follows our own intuition of 
the most 'conceptually important object types'. 

It is important to notice that the relationship types 'Room is in Building' and 'Room has 
R o o m # '  are not anchored. This is because they are part of the primary identification scheme 
for 'Room',  and are therefore reference types. Only fact types are anchored. 

Among the anchored fact types are 'Person chairs Committee',  which is anchored towards 
'Committee' .  The maximum frequency of 2 on the role played by 'Committee'  causes 
AutoWeight rule 4 to assign a Weight of 7 to this role. AutoWeight rule 8 is responsible for 
anchoring the fact type 'Person presents Accepted Paper' towards 'Accepted Paper',  due to 
the fact that it is associated via a set constraint to a fact type already anchored towards 
'Paper' .  

Fig. 30 shows the kernel types which form the foundation of the second level of abstraction 
for our example conceptual schema. Notice that no ring fact types or identification schemas 
are included in the kernel, and that the kernel is actually disconnected. 

When we apply AddRingFTs, IdentifiedSchema and ConnectSchema to the kernel types in 
Fig. 30, add the constraints that are still relevant and re-apply WeightSchema, we achieve the 
complete weighted, second level abstraction schema shown in Fig. 31. 

Notice that the major object types of q~5¢ 2 are 'Request ' ,  'Person', 'Institution', 'Paper' ,  
'Accepted Paper' and 'Paper Slot'. Because these object types are major at both the first and 
second level of abstraction, we consider them to be more 'conceptually important' than those 
object types which are only major at the first level of abstraction. In fact, we gauge an object 
type's degree of majorness (DegreeMajor: G~---,N) by calculating the highest level of 
abstraction at which that object type is major. We define: 

DegreeMajor(x) ~ max({ilMajorOTi(x)} 13 {0}) 

and we know that: 

MajorOT~(x) ::> DegreeMajor(x)/> i 

For example, so far we know that: 

DegreeMajor('Rating' ) = 0 ; DegreeMajor('Motel'  ) = 1 and DegreeMajor( 'Person ') >I 2 

Conceptual importance, or conceptual relevance (as indicated by DegreeMajor) plays a key 
role in a number of areas. For example, in computer supported query formulation conceptual 
importance is used to help select between alternative interpretations of queries ([4, 21, 22]). 

It is important to understand how the schema abstraction in Fig. 30 was obtained. The 
object types 'Room',  'Building', 'Room# '  and 'Preference' were all added by the Iden- 
t ifiedSchema procedure, because they are used in the identification of some kernel object 
type. The fact types 'Lab or Lecture Room is close to Lab or Lecture R o o m '  and 'Person 
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Fig. 30. Y{g~2: The kernel for abstraction level 2. 

requests placement with Person' were added during AddRingFTs, and are not actually part of 
Y{~2.  This explains why we do not consider these fact types to be anchored. 

There are a few interesting things to observe with respect to the anchorage of ~Se 2. Firstly, 
notice that 'Institution is located in Country', in contrast to c¢5el, is not anchored towards 
'Country ' .  This is because at abstraction level 2, this role becomes implied mandatory.  
Secondly, the anchor on 'Person chairs Committee' was on the role played by 'Commit tee '  in 
~Se 1, but has now moved to the role  played by 'Person'.  This is because 'Commit tee '  has 
become a leaf object type, causing the role played by 'Person' to gain a new weight of .9.. The 
fact type 'Person referees Paper' also has a change in anchorage. In the previous level of 
abstraction, it was anchored by Rule 12. Since it is now only associated with a single set 
constraint, however,  Rule 8 rmw triggers a weight of .4. on the role played by Paper. Lastly, 
notice that the weight of the anchor on 'PaperSlot uses Lab or Lecture Room'  has increased 
from .8. to .9. because 'Lab or Lecture Room'  is now a leaf object type, triggering rule 3. 
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Fig. 31. WeightSchema(~2): Abstraction level 2. 

Fig. 32 depicts a different view of our second level abstraction. In Fig. 32, we explicitly 
show the clusterings that have occurred during the abstraction process. We have chosen to 
represent those object types which are repeated in more than one cluster by surrounding them 
with a second ellipse; and have shown only those constraints which are completely within or 
completely external to a clustering. It is particularly interesting to observe the subtype 
clustering that has occurred around the object type 'Lab or Lecture Room'.  

Taking things one step further, we can easily extend our results from Figs. 3l and 32 to 
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show a corresponding Entity Relationship (ER) representation of the application. Fig. 33 
shows this ER view. There are many notations used for ER modeling. The one presented here 
uses rounded rectangles to represent entities, named lines to represent relationship types, 
crow feet to indicate that the opposite entity can play that role many times, a double rectangle 
to represent a 'weak entity type', and the letters 'ID' placed on its identifying relationship. 
Attributes are not shown in this diagram. 

It is important to realize that the version of ER used above allows multi-valued and 
composite attributes. Making this assumption allows us to achieve an intuitive overview of the 
original ORM diagram using ER notation. We also allow relationships to have attributes. For 
example, the relationship 'Person rated Paper' has the attribute 'Rating'. Notice that 
relationships, such as this one, which have attributes do not appear in the ORM abstraction 
since some of their participants are minor. Also note that 'Request'  is represented as a weak 
entity because its identification scheme involves both an attribute ( 'Preference')  and a 
relationship to an entity ( 'Person'). 

We now take the second level abstraction shown in Fig. 31 and abstract again. Fig. 34 
illustrates the third level of abstraction, ~ .  When we apply WeightSchema to ~ ,  the only 
changes in anchorage that can be seen from the previous abstraction are in 'Paper Slot is 
reserved for Accepted Paper' (as 'Paper Slot' becomes a leaf) and 'Person is from Institution" 
(as the role played by 'Institution' becomes implied mandatory). We can now determine that 
the degree of majorness for 'Institution' and 'Request'  is 2, and for 'Person', 'Paper' ,  
'Accepted Paper' and 'Paper Slot' is greater than, or equal to three. 

The highest level of abstraction that can be reached for our example application is four. Fig. 
35 shows ~5e4 . No higher level of abstraction can be reached, because there are no major fact 
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types in ~ow4, and therefore no conceptual types would be present at a higher level of 
abstraction. We can now conclude that the most conceptually important object type in our 
Universe of Discourse is 'Paper' (and 'Accepted Paper') ,  with a degree of majorness equal to 
four. 

6. Conclusions 

In this article, we have presented an algorithm to derive layers of abstraction for a given fiat 
conceptual schema. The cornerstone of this abstraction algorithm is the notion of a major 

requests = 
placement with 

SUBTYPE DEFINITIONS 
each Accepted Paper Is a Paper that has Status 'accept' 

Fig. 35. WeightSchema(~5~4): Abstraction level 4. 
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object type. We have defined a prioritized set of derivation rules to assist in the selection of 
these major object types at each level of abstraction. In comparison to other approaches which 
determine the major object types of a conceptual schema, our approach considers more of the 
semantics that are hidden in the constraints and verbalizations. Alternative approaches have 
instead relied more heavily on user input. 

The paper presents an iterative method for using the major object types to determine the 
kernel types in each subsequent abstraction level. This kernel is then embellished with 
additional conceptual types to enhance its comprehensibility, by incorporating identification 
schemes, ring predicates and connectivity. The result of these processes, together with the 
constraints applicable to the included types, form the resulting abstraction schema, which is 
demonstrated on a concrete case study in Section 5. 

In addition to this, we have also shown how the resulting layers of abstraction provide a 
three dimensional view of the underlying fiat conceptual schema, where object types at each 
level of abstraction can be regarded as clusterings of object types from a lower level of 
abstraction. 

Future plans include the tuning of priorities and weights in the derivation rules, which 
currently reflect the intuition of the authors, to be based on empirical evidence gained through 
concrete testing. Because the derivation rule approach taken in this paper allows a very 
modular approach to be taken in its implementation, the tuning of the priority and weighting 
values can be performed locally. 

Other topics for future research include investigating how bottom up abstraction (as 
described in this paper) and top down abstraction mechanisms can complement each other in a 
single conceptual schema design procedure; and investigating how the algorithms presented in 
this paper impact on other types of conceptual schema abstraction. 
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