
ELSFWIER Data & Knowledge Engineering 20 (1996) 39-85

I DATA & KNOWLEDGE
ENGINEERING

Conceptual schemas with abstractions
Making flat conceptual schemas more comprehensible

L.J. Campbell a'*, T.A. Halpin b, H.A. Proper c

aDepartment of Computer Science, University' of Queensland 4072, Australia
~Asymetrix Corporation, Bellew~e WA, USA

CCooperative Information Systems Research Centre, Faculty of Information Technology,
Queensland University of Technology, GPO Box 2434, Brisbane, 4001, Australia

Received 30 August 1995: revised 7 November 1995; accepted 5 January 1996

Abstract

Flat graphical, conceptual modeling techniques are widely accepted as visually effective ways in which to specify
and communicate the conceptual data requirements of an information system. Conceptual schema diagrams
provide modelers with a picture of the salient structures underlying the modeled universe of discourse, in a form
that can readily be understood by and communicated to users, programmers and managers. When complexity and
size of applications increase, however, the success of these techniques in terms of comprehensibility and
communicability deteriorates rapidly.

This paper proposes a method to offset this deterioration, by adding abstraction layers to flat conceptual
schemas. We present an algorithm to recursively derive higher levels of abstraction from a given (flat) conceptual
schema. The driving force of this algorithm is a hierarchy of conceptual importance among the elements of the
universe of discourse.

Keywords: Conceptual data modelling; Schema abstraction; ORM; ER; NIAM

1. Introduction

Conceptual schemas play an important, and recognized role in the development life cycle of
an information system [28]. They serve both as a means by which the salient structures of the
underlying universe of discourse (UoD) can be captured, and as a communication tool among
the designers, programmers, users and managers [32]. Conceptual schema modeling tech-
niques, such as Entity Relationship (ER) modeling [1, 12] and Object Role Modeling (ORM)
[17] are widely acknowledged as being visually effective ways in which to specify and
communicate the conceptual data requirements of an information system.

* Corresponding author. Email: linda@cs.uq.oz.au

0169-023X/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved
SSDI: 0 1 6 9 - 0 2 3 X (9 6) 0 0 0 0 5 - 5

40 L.J. Campbell et al. / Data & Knowledge Engineering 20 (I990) 39-85

However, as database application requirements increase in size and complexity, the
comprehensibility and maintainability of the specification degrades rapidly [28]. Simsion
identified the problem of representing large data models as 'one of the most serious limitations
of data modeling in practice' [30]. It is claimed in Feldman and Miller [13] that the 'usefulness
of any diagram is inversely proportional to the size of the model depicted'. This problem,
which has been referred to as the Database Comprehension Problem [8], is shared by all flat
data models. In the specification of a flat conceptual schema, each object type is viewed at
only one level of abstraction in a single diagram and all object types are considered to be of
equal importance within the application [7]. While this is satisfactory for small, academic
examples, when conceptual schemas of a moderate to large size are involved, this feature
reduces the rate of comprehension of the application.

The Database Comprehension Problem in flat data models has motivated several authors to
try to find successful methods by which to form abstractions on a given flat conceptual schema
[8, 10, 13-15, 26, 27-29, 31-33]. In 1983, Vermeir [32] described a number of abstraction
techniques including viewpoint relative abstraction, which displays the portion of the schema
within a particular distance of a focal object type, and the absolute abstraction hierarchy,
which iteratively removes non-key concepts from successive layers of abstraction.

An abstraction technique which is quite popular in the literature is Entity-Relationship
Model Clustering. An ER Model Cluster Diagram is 'a hierarchy of successively more detailed
Entity Relationship diagrams, with a lower-level diagram appearing as a single entity type on
the next higher level diagram' [13]. Martin developed an ER clustering procedure based on
l : m relationship between entities, which is simple, but rather arbitrary and judgmental [27].
ER model clustering was then applied to the Whitbread Corporate Data Architecture in June
1983 in order to test the theory on a significant practical application. As an outcome, in 1986,
Feldman and Miller proposed a semi-algorithmic approach to ER model c lus t e r ing -one
which still relies heavily on human direction and judgment.

In 1989, Carlson and Ji [8] proposed the Nested Entity Relationship (NER) model as an
extension to the multi-level ER clustering techniques of Feldman and Miller. NER supports
traditional abstraction techniques such as aggregation, generalization and association, as well
as allowing ER diagrams at one level to be abstracted into either complex entities or complex
relationships at the next higher level. In that same year, Teorey et al. [31] introduced a set of
ER model clustering rules. In this publication, entities were grouped recursively, based on a
list of grouping operations prioritized according to the cohesion (or internal strength) among
the entities involved. Once again, the algorithm proposed is largely based on arbitrary human
judgment. This work was taken further by Huffman and Zoeller in 1989, who confirmed the
feasibility of using a rule-based system to automate the ER clustering process of Teorey et al.
[26].

A number of other abstraction techniques have been introduced in the years since. In 1991,
Czejdo and Embley proposed the management of large complex data models using views and
a number of functions to manipulate those views [10]. Moody [28] proposed a representation
scheme for abstraction based on the organization of a street directory, using various levels of
detail and intermap references and overlap between scopes. A new abstraction mechanism for
typed graphs, called Caves, which allows the designer to selectively 'amplify or diminish' parts
of the conceptual model, was presented by Walko [33] in 1992. The techniques available

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 41

through Caves include: Filtration, which removes extraneous details and constraints; Perspec-
tive which presents only the local vicinity of a selected focal point; and Comprehension, which
folds the schema into a smaller version.

The common element of many of the abstraction techniques throughout the literature is the
selection of a set of important elements within a conceptual schema. Many different names
have been given to these objects which are considered to be of importance within the
application domain, including key concepts [32], major entity types [13], maximal objects [8]
and dominant objects [26, 31]. In this paper (as in [5-7]) we call these the major object types.
In order to briefly highlight the differences between these similar concepts throughout the
literature, we will refer to a small example conceptual schema shown in Fig. 1 ([17, p. 402])
(This diagram uses Object Role Modeling notation which is explained in Section 2).

The abstraction techniques described by Vermeir in [32] are based on the notion of a key
concept. Key concepts are those objects within a conceptual schema which are considered to
be of higher semantic importance because they keep the graph connected. In the example in
Fig. 1, therefore, the object types 'Movie', 'Person', MoneyAmt' and 'Country' would be
considered, in [32], to be the key concepts. It is quite apparent to a human, however, that
'MoneyAmt ' is not one of the most semantically important object types in the example
Universe of Discourse. In fact, Vermeir himself observes that the definition of 'key concept' is
too simplistic, and many cases arise in which the abstractions produced are not intuitive [32].

Feldman and Miller consider the most important entity types to be those that appear in
more than one branch at any particular level of their clustering hierarchy and call these objects
major entity types [13]. Using Feldman and Miller's algorithm [13], every object type in the
schema (Movie, Title. Person, MoneyAmt, Country, Date) would be classified as a candidate

~ e / has '

r-~Inetted

was directed by

I •

' Title
~ s s

M~le Pe rson

starred

 was
born born
in on

Country

Fig. 1. Example conceptual schema.

Date
(dmy)

42 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

to be a major entity type, after which human intuition is required to narrow down the choice.
Nested Entity Relationship models give a stronger theoretical foundation than previous
multi-level ER approaches, though the concept of maximal objects [8]. However, no attempt
is made to automate the selection of maximal objects in a conceptual schema. Teorey et al.
[31] and Huffman and Zoeller [26] base their ER model clustering rules around what they call
the dominant objects. The only dominant object that results from the automatic algorithm
presented in [26] is 'Movie'. Identifying other dominant objects to, once again, necessitate the
use of human judgment. While Huffman and Zoeller's results were loosely comparable to
those produced using human intuition, it was acknowledged by the authors that some aspects
of the clustering algorithm were too simplistic for complex cases. Referring back to the
conceptual schema in Fig. 1, it is most likely that a human would intuitively decide that the
major object types in this Universe of Discourse are 'Movie' and 'Person'. None of the
algorithms reviewed in the literature arrive at this result automatically.

The first goal of this paper, therefore, is to formalize a method for the strictly automatic
selection of major object types. What sets our approach apart from others is that our approach
considers the detailed conceptual semantics hidden in the constraints and also the manner in
which the facts within the domain are verbalized. In particular, our approach utilizes the
detailed constraint specifications and verbalizations provided by Object Role Modeling. It is
believed that a lot of the human intuition (conceptual semantics) is contained in these
constraints and verbalizations. We, therefore, claim that our approach more accurately
imitates human intuition than previous methods. As a second goal, this paper also aims to
utilize these selected major object types in an algorithm to derive abstractions for a fiat
conceptual schema.

In Section 2, we begin by introducing a formal description of Object Role Modeling, which
will be used as the foundation of the algorithms presented. Section 3 extends the semantics of
Object Role Modeling by introducing the notion of conceptual anchors, which are required for
the detection of major object types. An automated method for selecting anchors is presented.
The selection of anchors is based on the semantics of constraints defined on surrounding
relationship types. The semantics of these constraints, in terms of populations, allows us to
make this selection. The notion of major object types and abstraction levels is then introduced
in Section 4, together with a method for automatically determining them. Section 5 illustrates
how this automated abstraction process is performed on a small case study; and conclusions
are reached in Section 6.

2. Object Role Modeling

Object Role Modeling (ORM) views the world as a collection of objects which play roles
and, unlike Entity-Relationship Modeling, makes no initial use of the attribute construct.
Every elementary type of fact which occurs between an object type in the Universe of
Discourse (UoD) is verbalized and displayed on a conceptual schema diagram. Object Role
Modeling also allows a wide variety of data constraints to be specified on the conceptual
schema, including mandatory role, uniqueness, exclusion, equality, subset and occurrence
frequency.

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 43

The high level of detail displayed on an ORM diagram allows Object Role Modeling to
offer a correspondingly high level of expressiveness. Unfortunately, this high level of detail
also tends to promote the degradation in comprehensibility and communicability in large
conceptual schemas. An ER diagram, through of its use of attributes, can already be thought
of as an abstraction (or summary) of a corresponding ORM diagram. In this way, traditional
Entity Relationship modeling can postpone the immediate effects of the Database Comprehen-
sion Problem until a larger Universe of Discourse is required. It is not uncommon in practice,
however, for abstractions (or summaries) of ER diagrams themselves to be required. While
the scale of the problem, therefore, differs slightly between ORM and ER, the Database
Comprehension Problem, nonetheless, is universally shared by all flat modeling techniques.

For the purposes of this paper, we plan to consider the more detailed of the two most
common data modeling techniques (Object Role Modeling) and introduce a method to
control the schema's visual complexity during the information system development. As argued
before in [7, 5, 17], an Entity Relationship model can be considered comparable with the first
of the abstraction levels on an ORM model.

The following subsections outline a formalization of some fundamental ORM structures and
constraints which will be required in Sections 3 and 4 to describe our abstraction methods. The
formalization of ORM as presented in this article inherits a rich and well published history,
full of constant refinements and additions. The evolution of this particular ORM formalization
started out from the PM/PSM version of ORM [2, 20, 23]. More 'modernized' versions of
ORM formalizations can be found in [20, 3] and the most recent developments are discussed
in [9]. Alternative formalizations can be found in [11, 16].

While formalizations of ORM have been published before, this paper needs to describe the
formalization again in order to be self-contained. In this formalization, we limit ourselves to
syntactical issues only. Issues regarding the associated semantics can be found in the
referenced publications. Furthermore, the formalization presented in this paper is based on a
limited number of basic concepts to provide us with only what is needed for the purposes of
abstraction. For a detailed description of the methodology associated with Object Role
Modeling, refer to [17].

2.1. Information structure

The cornerstone of a conceptual schema is formed by the so-called 'Information Structure'.
This structure is concerned with the object types and their interrelationships in the modeled
Universe of Discourse. The information structure of a conceptual schema is described in the
following subsection. In doing so, we assume that the reader has some basic working
knowledge of the concepts underlying ORM or ER.

2.1.1. Flat conceptual modeling
In [9] an ORM version is proposed which extends ORM with both top-down abstraction

mechanisms as well as aspects from object oriented conceptual modeling techniques. The
relation between that article and this article is that here we are concerned with an algorithm to
'reverse engineer' the abstraction layers from an existing flat conceptual model, whereas [9]
provides the extensions to ORM needed to add abstractions in a top-down way, which is

44 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

necessarily a manual process. The output of the algorithm presented in this article can indeed
be seen as a 3-dimensional ORM model fitting the top-down abstraction framework.

As a warning to readers of [9], it should be noted that what we call a flat conceptual schema
in this article is in fact not a primitive, flat conceptual schema, as described in [9]. In this
article our starting point is a schema consisting of object types, relationship types and
objectified relationship types. Objectified relationship types are also referred to as nested
object types, and as its second name suggests, it already introduces depth into a conceptual
schema. It is well known that objectifications can be replaced by so-called co-referenced
object types. As an example of this, consider Fig. 2(a). This schema fragment is equivalent to
the fragment depicted in Fig. 2(b). Depending on the universe of discourse that is being
modeled, it may be more natural to use either one of the co-referenced or objectified
representations. In the abstraction algorithms, the choice between a co-referenced object type
and an objectified relationship type is honored by treating them slightly differently.

2.1.2. Typing scheme
An ORM conceptual schema, row, is presumed to consist of a set of conceptual types, 3-~.

These types are divided into three main subclasses. The first class is the set of object types,
~'~. Within this class a subclass of value types, rF~, can be distinguished. Instances from value
types usually originate from some underlying domain such as strings, natural numbers , audio,
video, etc. A separate class of types, the relationship types ~)q~, contain those types used to
describe the relationship between one or more object types. Those object types which are not
value types are called non-value types: ?¢~V ~ © ~ - T'~. In the formalization used in this
paper, we allow types to belong to both the set of object types, and the set of relationship
types. We refer to these later types as nested object types or objectified relationship types.
Relationship types which are objectified do not belong to the set of value types. That is:

~ 5 ° N ~ L g = Q

These types also have a number of structural properties which we now consider.

2.1.3. Roles in relationship types
Each relationship type in ~5~ contains a collection of roles. We refer to the set of all roles,

in an RM conceptual schema, as ~¢'. The roles in ~ 0 are distributed among the relationship
types by the function Roles: ~7--->9+(5~C), which should provide a partition of the set of
roles. (Note that ~a+(5~0 ') yields all non-empty subsets of ~ ' .) Each role has exactly one

(a)

Enrolment

is enrolled in

(b)

Is In I
Fig. 2. (a) Nested object type; (b) co-referenced object type.

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 45

object type participating in it. This object type can be obtained by applying the function
Player: ~G--> ~ to the relevant role. If the participants of a set of role is required, we use a
generalization of this function, Players" ga(~)- - -~9(Y~) , which is defined as:

Players(v) ~- {Player(p) I p E v}

To determine the relationship type to which a given role belongs, the inverse of the Roles
function (Rel" ~ 0 - - - ~) is used:

Rel(s) a = p such that s E Roles(p)

In this formalization, the collection of roles contained in a relationship type is considered to
have a predefined default order. This order, embedded in the verbalization of the relationship
types, is provided by the domain experts during the initial analysis phase. As such, the PosN
function is one of the knowledge sources from which we will try to mine the conceptual
semantics hidden in the schema. The function PosN: ~----~ N + is used to assign a position to
each role.

The predicate Rels: ga(~)---~ g a (~) is a generalization of the Rel function to sets of roles.
It returns all relationship types involved in a given set of roles:

Rels(v) __a {Rel(p)] p E v}

Similarly, the Roles function can be extended to accept a set of relationship types and return
all roles involved in any of the given relationship types (Roles: go(;~5~)-->¢(~)):

Roles(v) ~ {Roles(p) J p E v}

To conveniently access the roles involved in the same relationship type as a given role, we
define the function CoRoles" ~ G - - ~ o (~ 6) , as:

CoRoles(v) ~ Roles(Rel(v))

Similarly to Roles and Rel, CoRoles can be extended to perform the same operation on a set
of roles:

CoRoles(v) =" Roles(Rels(v))

If we require those roles in the same relationship type as a given role, excluding the given
role, we use the function OtherRoles ~G--~go(~C), which is defined as:

OtherRoles(p) ~ CoRoles(p) - {p}

2.1.4. Subtyping
The specialization relationship between a subtype and a supertype is captured by the

relationship SubOf _C G~ x C~. The intuition is that when x SubOf y, the population of x is a
definable subset of the population of y. Each subtype hierarchy (defined by SubOf)
corresponds to a directed acyclic graph which adheres to the laws of transitivity and
irreflexivity: The relation Top(x, y) is defined such that y is a top of x in the associated

46 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

subtype hierarchy. The hierarchies we consider must always have one single top; so we can
write T o p (x) = y to refer to that unique top.

Given a set of object types in a subtype hierarchy, we can try to find the common
supertypes in this hierarchy that are closest to these object types. To this end, we first need to
find all common supertypes. This is done using the function CommonSup: ~o(Cg3)~((~'50),
which is defined as:

CommonSup(w) ~- {x E ©'~ [V.v~w[y SubOfx]}

The next step is to select those common supertypes that are closest to the given set of object
types. We therefore introduce the notion of a lowest common supertype. The lowest common
supertypes are those common supertypes which do not have any other common supertype as a
subtype. A set of object types can actually have more than one lowest common supertype.
The function LowestCSup : ~o(C~) ~ ~a(C~) is defined by:

LowestCSup(w) ~ {w ~ CommonSup(w)[~3.,,~cornrnonsup~.,l[y SubOfx]}

Given an object type x in a subtype hierarchy, we can determine the set of subtypes of this
object type. This is done using the function SubHierarchy: G~--~ ~(©'~), which is defined as:

SubHierarchy(x) ~ {y]y SubOfx}

Consider, for example, the subtype hierarchy defined in Fig. 3. The supertypes of 'Bicycle' are
'Car or Bicycle' and 'Vehicle'. The supertypes of 'Car' are 'Car or Bicycle', 'Motorized
Vehicle' and 'Vehicle'. The common supertypes (CommonSup) of 'Car' and 'Bicycle' are 'Car
or Bicycle' and 'Vehicle' and the lowest common supertype (LowestCSup) of 'Car' and
'Bicycle' is 'Car or Bicycle'.

2.1.5. Type relatedness
Intuitively, object types may, for several reasons, have values in common in some

populations. Two types are considered type related if their populations may share instances.
Type relatedness, which we denote by x - y , is a property held only by object types which are
in the same subtype hierarchy. For more detailed rules on type relatedness, refer to [18, 23].

id)

Motorized) G ~"
Vehicle ar or Bicycle

~ icycle

J
Fig. 3. Example of a specialization hierarchy.

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 47

Two roles are type related if their players are type related; so if p, q E ~G, then:

p - q = Player(p) ~ Player(q)

2.1.6. Complete information structure
We can now define the basic information structure 5~5 e of a conceptual schema ~5 e in terms

of the following components:

o¢ow = { C~, 7/'~, ~ , ~0 ~, Roles, PosN, SubOf, Player)

2.2. Conceptual schema

Besides the information structure, a conceptual schema consists of constraints and deriva-
tion rules. For this article, only a limited class of constraints is of interest. The constraint
classes we discuss, together with PosN, will be used as a source of information to decide which
object types are major.

2.2.1. Mandatory constraint
To specify the requirement that instances of a particular object type must always participate

in at least one of some set of roles, we use the mandatory constraint, Mand C_ ~ (~) (also
referred to as 'total role constraint' in [23]). A mandatory constraint specifies that the union of
the populations of the constrained set of roles must equal the total population of their
player(s). All roles contained in a mandatory constraint must be type related. Therefore, we
should have:

Mand(v) ~ V,,,qc,,[p - q]

A basic rule for ORM models (as defined in [17]) states that every instance of an object type
must participate in at least one (fact type) role. In Subsection 2.2.6 we will see that the only
exception to this rule are the so-called lazy object types. This results in a mandatory role being
implied over each set of type related roles. We identify the mandatory constraints which can
be inferred in this way, InferMand c_~(Y~C), with the following derivation rule:

InferMand(v) ~ V l, c v [p - q ¢:> q E v fq ~] A v :/: fJ

Note that o%~ (the fact type roles) is the subset of ~C which is not used in the identification of
any object type in the schema. This is more formally defined later in the paper. For
abstraction purposes, we only consider those mandatory constraints which are not directly
inferable.

2.2.2. Uniqueness constraint
To introduce the concept of uniqueness, we use the predicate Unique Cca(~6~). A

uniqueness constraint requires each tuple in the projection of the join of the given roles
(based on asserted join conditions) to appear only once. A uniqueness constraint which
involves roles from only one predicate is referred to as an internal uniqueness constraint
(~°U).

48 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

J ~ "~ {Unique(v) l Vp,qEv[Rel(p) = R e l (q)] }

An internal uniqueness constraint simply specifies that each tuple instance for that predicate
will have a unique value combination for the constrained roles. If more than one predicate is
involved in the uniqueness constraint, then the constraint is classified as an external
uniqueness constraint (~) .

~ & {Unique(v) I Vp,q~v[Rel(p) # Rel(q)]}

In this case, the predicates involved must be joinable via common object types [19]. The
general interpretation of a uniqueness constraint is formulated in the Uniquest Algorithm
provided in [34].

2.2.3. Primary uniqueness constraint
For every object type in the data schema, there must be some way in which to uniquely

identify each instance of that object type. In other words, we insist that every object-type is
identifiable.

To identify the instances of non-value types (J~#7/), one uniqueness constraint must be
selected to be the primary means of identification for that object type. We call the set of such
uniqueness constraints 'PUnique' and require that PUnique(v) ::# Unique(v). If this uniqueness
constraint only involves one role, the identification scheme is often collapsed into a reference
mode for graphical convenience. The reference mode of an object type is placed in brackets
under the object type name. For example, Fig. 4(b) shows the graphical abbreviation for the
explicit identification scheme represented in Fig. 4(a).

The algorithms in this paper do not consider this graphical abbreviation. Instead, they
presume that all reference schemes are explicitly represented through uniqueness constraints.
For more information about primary uniqueness constraints refer to [17]. For more detailed
formal requirements on identification in ORM schemas, refer to [19, 23]. Every non-value
object type must have exactly one primary identification scheme. That is:

VxEx~ :1 !~ [PUnique(v) A x E Identifies(v)]

where Identifies is defined as:

(a)

is IdentifLd by "

(b) @
Fig. 4. (a) Explicit identification scheme; (b) implicit identification scheme.

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 49

Identifies(v) ___a SubHierarchy(LowestCSup({Player(p) [p E OtherRoles(v)}))

The set of roles which are contained in the primary uniqueness constraint of a given non-value
type is given by PIdRoles: ~/T'---~ ~ o (~) such that:

PIdRoles(x) __a {p I :iv[p ~. v ^ x E Identifies(v)]}

The set of predicates which are used to identify a given non-value type is given by the function
PIdRels: JVT'--, ~ (~) such that:

PIdRels(x) ___a {Rel(r) I r ~ PIdRoles(x)}

2.2.4. Occurrence frequency constraint
Uniqueness constraints are used to specify that instances of object types may play a certain

combinat ion of roles at most once. Occurrence frequency constraints specify the more general
condition that the number of times that object instances may play a combination of roles is
restricted to within a fixed range. The condition that the instances of a set of roles o- must
occur at least n and at most m times is denoted by Frequency(~r, n, m). The semantics of
Frequency are fully defined in [19].

The function MaxFreq returns the maximum number of times an object type instance may
participate in the given role. MaxFreq: ~G---~ [~ is defined as:

{ ~ ifUnique({r})
MaxFreq(r) =~ if Frequency({r}, n, m)

otherwise

Note that when taking set types, sequence types, etc. into consideration, Unique(o-) should be
replaced by Unique(o-)v ExUnique(o-), where ExUnique(o-) is the class of existensional
uniqueness constraints. This later constraint class is crucial in defining complex types such as
set types [25], [24].

2.2.5. Set-comparison constraints
Set-comparison constraints (which we will refer to as 'set constraints') are used to specify

conditions which apply between the population sets of two role sequences. If X is a set, then
X + denotes the set of sequences built from elements of X. For sequences, we presume that
the operation z[i] returns the ith element of sequence z. Set(z) coerces a sequence z into a set
of elements, so:

Set(z) __a {x 13i[z[i] = x]}

We use p ~ z as an abbreviation for ::li[z[i] = p] while Izl denotes the length of sequence z. To
determine which position a particular element occupies in a given sequence, we use the
function Pos. For sequences where no two elements appear more than once in the sequence,
we can define Pos as:

P o s (p , z) __a such that z[i] = p

The relations Subset , Equality, Exclusion each apply to an ordered pair of role sequences (we

50 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

do not consider an n-ary form of exclusion constraint in this paper). The subset constraint
(defined by relation Subset c_ 5~G+x 5~¢ ~+ species that the population of the first role
sequence is necessarily a subset of the population of the second role sequence; the equality
constraint (Equality c_ 5~C+x 5~0 +) specifies that the population of the first role sequence
must be exactly equal to the population of the second role sequence; while the exclusion
constraint (Exclusion c_ ~ 6 + x ~ f f+) specifies that the population of the first role sequence
does not contain any tuple which is in the population of the second role sequence. For a more
formal definition of these constraints, please refer to [19, 23].

From their definitions, it is easy to infer an implied subset constraint between every optional
role and every mandatory role played by the same object type. Similarly it is possible to infer
an implied equality constraint between every mandatory role played by the same object type.
We will not consider set constraints which are inferable in this manner. That is:

Vp, q: Subset((/,), (q)) v Equality((p), (q)) [7 Mand(q) A (Mand(p) =) Player(p)SubOf Player(q))]

From Subset, Equality and Exclusion, we derive the more generic predicate SetCon using the
following rules:

SC(v, w) =_a Subset(v, w) v Equality(v, w) v Exclusion(v, w)

SetCon(v, w) =~ SC(v, w) v SC(w, v)

The underlying intuition is that if SetCon(v, w), then some set constraint exists which involves
the roles in v and w.

From these rules, we can specify an even more generic definition for SetCon with only a
single parameter. If SetCon(v) then some set constraint exists which involves the roles in v.

SetCon(v) & 3w[SetCon(v, w)]

2.2.6. Refinements to the type classification
Relationship types can now be partit ioned into two important subclasses - the fact types and

the reference types. Reference types (5~-) are those relationship types which are used within
the primary identification scheme of some non-value type:

~,~ =A (Rel(p)] =lxE~,~[p E PIdRoles(x)]}

Fact types (, ~ -) are those relationship types which are not used within the primary
identification scheme of a basic entity type or subtype.

The set ~5~ C_ ~©~ is used to refer to those roles which are contained within a fact type. That
is:

Most object types can only be instantiated by instances which participate in some fact type
(~ 3) . Instances of lazy object types, however, can exist without participating in any fact type.

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 51

L o,°o+ o j L oo,°o, oo j

(c) @,,, known

°° I
• I

Fig. 5. 'Country' object type represented as: (a) non-lazy; (b) lazy; (c) implied lazy.

We graphically represent a lazy object type by concatenating an exclamation mark to the end
of the object type name (x!). As an example, consider Fig. 5(a). Only countries which border
another country can be recorded. In Fig. 5(b), however, countries may be recorded even if
they do not border (by land) any other country (e.g. Australia).

A lazy entity type's behavior can be compared to that of an object type that mandatorily
participates in a unary (one roled) fact type which represents its existence (as depicted in Fig.
5(c)). For the purposes of this paper, we consider a lazy entity type to be a graphical
simplification to conveniently represent those entity types which participate in a single,
mandatory unary role. No special consideration is therefore necessary for lazy entity types in
the ensuing algorithms.

As stated before, other complex types like set types and sequence types are not discussed in
full detail in this article, however, we will briefly return to this issue.

2.3. Summary

A conceptual schema c~ow can now be defined in terms of both the information structure .~ow
and the basic constraints which apply to this information structure.

Row = (5~5 ~, Mand, Unique, PUnique, Frequency, Subset, Equality, Exclusion)

Conceptual schemas can have many other components, including ring constraints, subtype
definitions, derived fact types and other extraneous constraints. None of these, however, will
be considered in this paper, because they do not impact on the abstraction algorithms
presented.

An example ORM conceptual schema can be found in Fig. 6. Entity types are depicted as
named, solid ellipses. Value types are shown as named, broken ellipses. Predicates are shown
as named sequences of role boxes, with the predicate name located in or beside the first role
of the predicate. A nested object type is shown as a frame around a predicate (e.g. 'Request ') .
Arrow-tipped bars over one or more role boxes indicate an internal uniqueness constraint over
these roles. A black dot at the base of a connector between an object type and a role indicates
a mandatory constraint. Other constraints are represented as defined in [17]. As an example,
consider the conceptual schema depicted in Fig. 6. In this schema we have EmailAddress E
~V~, Preference E 0~3, and requests E ~ . This schema is used as the running example
throughout this article.

52 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

:....

o

"E

.i

+--

0 t ~'~

, - . ~0
i E ' ~= D
t I,LI "0 i

o

o

o

i ~ o t*
i c E I

= l a l i
i o i ',(~ z/

=

F-1

I E t

\. /

B

o

©

o - -

, I o > ,E

.-'~o__ 9 =_=~o

a .E o ~ . . ~

<

..~

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 53

3. Anchoring fact types

In the following sections, we introduce a method by which we can view an ORM conceptual
schema at various levels of abstraction. At each subsequently higher level of abstraction, we
show only the most conceptually important (major) object types from the previous level,
thereby creating a procedure that generates an incremental summary of the schema based on
conceptual relevance. To this end, we first provide a mechanism by which the major types in a
given schema can be derived.

Throughout this paper, sets of conceptual objects from the current conceptual schema ~Se
will be denoted as belonging to a particular abstraction view by subscripting the set with the
abstraction level. For example, 3-~ i refers to the set of types in ~Se which appear at
abstraction level i.

3.1. Definitions

To define the notion of a major object type (relative to a particular abstraction level i) we
consider each fact type individually and decide which object type(s) is (are) the most
conceptually important participants in this fact type. We say that a role anchors a fact type to
its player at the current abstraction level, if that player is (one of) the conceptually most
important participants in the fact type. Conceptual importance is, to a certain degree
subjective. However, a reasonable (and often measureable) indicator of conceptual impor-
tance is the proportion of the population of each object type that participates in the fact type.

The conceptual importance of role p played by object type X in fact type predicate F can be
indicated by:

{ [Pop(%,:)l
[Pop(X)[if I{qE ~ IPlayer(q) = X}l > 1

0 otherwise

where Pop is the population function and 7rpF indicates the projection on role p of fact type F.
Consider, for example, a fact type 'Subject is lectured by Academic'. Suppose we know that a
greater percentage of 'Subjects' are lectured by an 'Academic' than the percentage of
'Academics' who lecture a 'Subject'; so:

[Pop(Tr l ('Subject is lectured by Academic'))l
IPop(Subject)[

] Pop(fr2('Subject is lectured by Academic'))l
IPop(Academic) l

It is obvious that, as a result, a particular 'Subject' is more likely to be participating in the fact
type than a particular 'Academic'. It can also be observed that the fact type 'Subject is
lectured by Academic' is more likely to be accessed in relation to a particular 'Subject' than in
relation to a particular 'Academic'. We therefore consider 'Subject' to be the more 'con-
ceptually important participant' and consider 'Subject is lectured by Academic' to be anchored

54 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-8.5

on the role played by 'Subject'. This reasoning will, in general, only be useful when we have
access to a typical population of a conceptual schema. When only the conceptual schema is
available, we must rely on the conceptual constraints to derive such information from the type
level. This is the approach taken in this paper.

The fact that a given role is an anchor, at abstraction level i, captured by the predicate:
Anchor i C_ o ~ i , where ~ i represents the fact type roles which are present at abstraction level
i. For convenience, we also introduce the infix predicate AnchoredTo/_c ~S , x 6'N, which
indicates that the given role is anchored to the given object type (at abstraction level i):

A

r A n c h o r e d T o i x = A n c h o r i (r) / x P l a y e r (r) = x

When considering anchors, it is important to do so in their proper context, i.e. at a particular
level of abstraction. For example a role which receives one hundred percent participation (i.e.
a mandatory role), may become implied mandatory at a higher level of abstraction and
consequently lose 'conceptual importance'. As an example, consider the schema fragments in
Fig. 7. In Fig. 7(a), 'Subject' mandatorily participates in 'Employee teaches Subject' and
'Department ' mandatorily participates in 'Employee works for Department ' . Because these
object types have one hundred percent participation, the corresponding roles are therefore
considered to be anchors in Fig. 7(a). In Fig. 7(b), which shows the next highest level of
abstraction, however, the same roles (played by 'Subject' and 'Department ') are only
mandatory by implication. The roles played by 'Subject' and 'Department ' , therefore, lose
their conceptual importance.

Anchors for fact types are selected by comparing the conceptual importance of the roles
involved. To this end, we introduce the notion of the weight of role, to indicate how firmly the
role is attached to its player:

has

Fig. 7. (a) Abstraction level n; (b) abstraction level n + 1.

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 55

Weighti : ff~t~--~ t~

The weight function is used as a rough indicator of both the importance of each role within a
fact type and of the relative importance of anchors between fact types. A role is considered to
be an anchor if its weight is the highest (or equal highest) weight of any role in the same fact
type. An anchor can therefore be defined in terms of the role weights, as such:

Anchor~(r) a__ Weights(r) > 0 A Weighti(r) = max{Weight~(p) I P ~E CoRoles(r)}

A corollary which ensues is:

Corollary 3.1.

(Weighti(r) < Weighti(p) A p • CoRoles(r)) =), 7Anchori(r)

The particular weight associated with each anchor is defined by the WeightSchema procedure,
which is introduced in the next subsections.

We consider a fact type predicate to be anchored (Anchored/c_ ~) if it contains a role
which anchors that fact type predicate to an object type:

Anchored/(s) a =lr~Roles(s)[Anchor~(r)]

or in other words, if the sum of the weights of each of its roles is greater than zero:

Corollary 3.2.

Anchored/(s) __a ~ Weighti(r) > 0
rERoles(s)

We refer to an object type, which has at least one fact type anchored to it, as an
AnchorPoint i c_ O~i:

AnchorPointi(x) =a :lr~.~i[Player(r) _ x/x Anchori(r)]

For an abstraction level i to be completely anchored, every fact type within the schema must
be anchored:

AnchoredSchema(i) ~ Vs~%[Anchoredi(s)]

This is the goal for this section.

3.2. Weighting a schema

The procedure called WeightSchema, shown below, automatically assigns default weights to
each fact-type role, based on the given semantic constraints within the associated conceptual
domain. Weight is a total function. Since there will always be some subjective qualities that
cannot be captured by such an automatic procedure, it is important that the user has the
ability to override some automatic weighting decisions that may be questionable. For this
reason, and because the user will usually only want to express such alternative preferences

56 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

once, we allow our automatic abstraction procedure to take previous user-driven weightings
into account.

The automatic weighting is defined by a set of weighting rules that associate a weight to
each fact type role, based on the context of these roles. The weighting algorithm works by
continuously trying to increase the weight of the roles. This is a repetitive process, as increases
of weights in one part of the schema may lead to further increases in other parts of the
schema.

We will refer to the weightings, which were explicitly generated by a user decision, through
the function UserWeight: ~ - - , N. The weights that are derived automatically from the
underlying schema are provided by the function AutoWeight: N x , ~ - - ~ N. This function is
introduced in the next subsection by a set of derivation rules. We employ the notation
AutoWeighti(p) rather than AutoWeight(i, p) because of the fact the index i is used as a label
rather than carrying any specific semantics.

Once WeightSchema has been automatically performed, the user would have a further
opportunity to alter the UserWeights by modifying the set of anchors produced in accordance
with an appropriate set of modification rules.

WeightSchema: ~5~--> (~ --> IN)

WeightSchema(~)

VAR
Weight: ~ --> IN ;

p : ~ ;

BEGIN

{ I n i t i a l i z e a n c h o r s }

FOR EACH p E o~ DO

Weight(p):= UserWeight(p) ;

END ;

WHILE 3i,p[AutoWeighti(p) > Weight(p)]

Weigh t (p) := max{AutoWeighti(p) I (i, p) E dom(AutoWeight)) ;

END ;

RETURN Weight ;

END WeightSchema ;

This algorithm will always terminate. From the condition on the WHILE loop we can see it
terminates if -n3i, p [AutoWeight~(p) > Weight(p)]. In the next subsection we will also see that
the maximum value returned by AutoWeight is fixed to 10. From the body of the WHILE loop
follows that we never reduce the Weight of a role. This means that for any role p once
Weight(p) ~> 10 we cannot find a rule labeled i such that AutoWeiohti(p) > Weight(p). Which
means the loop must eventually terminate.

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 57

3.3. Rules for role weighting

The following paragraphs describe each of the twelve rules that together define AutoWeight.
The resulting weightings returned by these rules serve as a comparative guide, and should at
some stage be refined based on empirical testing in practical situations• The existing rules have
been formulated after studying a number of cases to observe the effect of particular
constraints on the associated populations and on the conceptual importance of surrounding
object types.

Rule 1 - Mandatory roles
All non-implied mandatory roles have, by definition, full participation by the population of

the player(s). Therefore, any fact type role which is involved in a mandatory role constraint
(even if this is a disjunctive mandatory constraint) should be weighted, unless the mandatory
role constraint is implied (as described in InferMind). This is the only rule which can cause a
fact type predicate to be anchored more than once.

= max Mand(v) A p E v A -qlnferMand(v) U {0

A role can be involved in a number of mandatory role constraints. The simplest case would be
where the role itself is mandatory, which would lead to a weight of 10. However, a role may
be involved in a disjunctive mandatory role. This means that the instances of the participating
object type must play at least one of the roles involved in the disjunctive mandatory role. In
this latter case, the weight of 10 is 'shared' among the involved roles. As one role may be
involved in a number of mandatory role constraints, we take the weight to be the maximum of
the possible weights that would follow from these involvements.

For example, rule 1 would cause each fact type in Fig. 8 to be anchored towards the
non-implied mandatory role played by Employee.

This rule can also be considered in the broader context of complex types like sequence
types, bag types, etc. We can now discuss why these complex types to not require special
provisions in our algorithm. In Fig. 9(a) we show an example of a set type: namely 'Convoy'.
A convoy consists of a set of ships, each of which is commanded by a unique captain. Both a
ship and its captain are each individually identified by a name. A convoy, however, is
identified by a set of ships.

In Fig. 9(b), this set type is modeled in terms of more elementary relationships using the
existensional uniqueness constraint (represented by the encircled EU symbol) [24, 25]. The

h a s " • -

Fig. 8. All non-implied mandatory roles are weighted.

58 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

(a)
Convoy

(b) < ~

Fig. 9. A convoy of ships modeled using (a) a complex set type; (b) elementary relationships.

AutoWeight rules that we are defining, can therefore be directly applied to the elementary
representation of the complex types.

Rule 2 -Unary roles
The player of the only role in a unary predicate must obviously be 'the most important

participant' in that predicate. All roles in unary predicates are therefore weighted.
It should be remembered that, for the purposes of this algorithm, lazy object types are

treated like non-lazy object types which play a mandatory unary predicate representing the
existence of the instances.

AutoWeight2(p) ~ if CoRoles(p) = {p} then 10 else 0

Fig. 10 shows an example subschema in which every unary predicate is anchored on its one
role.

Rule 3 - Non-leaf object types
A leaf facttype role (Leaf c_ ~) is one which has a player that plays only that fact type

role. That is:

Leaf(p) ~ 7=lu~,~ [Player(p) = Player(q) A Rel(p) ~ Rel(q)]

is manaoer

or~s o

Fig. 10. All unary roles are anchored.

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 59

If only one role in a fact type is played by a non-leaf object type, then this role is considered
'conceptually important ' enough to be given a strong weighting.

AutoWeight3(p) _x i f L e a f (p) / x Vq~Othernoles~p~[keaf(q)] then 9 else 0

This rule as such is rather straightforward. The reason to assign only a weight of 9, instead of
10, is that mandatory non-leaf roles are considered to be conceptually more important than
optional non-leaf roles.

In the example subschema in Fig. 11, rule 3 would be fired, causing both fact types to be
anchored towards the Employee object type. Notice that 'Room' is actually a leaf object type
because, while it participates in three roles, it only participates in one fact type role. ' R o o m is
in Building' and ' R o o m has R o o m # ' are not considered in the weighting procedure as they
are both reference types.

Rule 4 - Smallest m a x i m u m frequency
The maximum frequency of the population of a role can be determined from one of two

constraints. A single role uniqueness constraint indicates that the role has a maximum
frequency of one. Alternatively, an occurrence frequency constraint often explicitly specifies
the maximum frequency of a role. If exactly one role within a fact type predicate has a smaller
maximum frequency than all other roles in that fact type, then this role should be anchored.

A u t o W e i g h t 4 (p) A . = i f Vq~ot.erRoJes ~ 1,~[MaxFreq(p) < MaxFreq(q)] then

2 + VMaxFreq(p) else0

The closer the maximum frequency of a role is to 1, the higher the weighting. The maximum
AutoWeight of 8 is applied in those cases in which a uniqueness constraint holds on the role,
causing MaxFreq to be 1. If the maximum frequency is higher than 1, the AutoWeight will
become lower and lower, down to a minimum of 2. However, because increments in MaxFreq
should have less effect if the frequency is already high, we have taken the division of the
square root of the MaxFreq value. For example, the increment from a MaxFreq of 8 to one of
9 will have less effect on the AutoWeight than an increment from 1 to 2. The result is a curve
that drops down quickly from a maximum Weight of 8, but starts to level out when it gets
closer to 2.

The example in Fig. 12 depicts a subschema in which the fact type 'Project is managed by

"'°) -

Fig. 11. Non-leaf object types may indicate automatic anchorage.

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 60

Fig. 12. Roles with the smallest maximum frequency may be anchored.

Employee' is anchored due to a uniqueness constraint, and the fact type 'Employee works on
Project for Duration' is anchored due to a frequency constraint.

Rule 5 - Non-value types
If exactly one role in a fact type is played by a non-value type, then the fact type should be

anchored on this role.

AutoWeights(p) ,a i f P laye r (p)~ °k"~ A Vqcotheraoles~p)[Player(q) E 7/'~] then 7 else 0

The rationale behind this is that value types are by definition conceptually less important than
non-value types.

In the example shown in Fig. 13, rules 1 to 4 fail to determine an appropriate anchorage for
either fact type. Rule 5, however, triggers the obvious conclusion that both fact types should
be anchored towards 'Employee' .

Rule 6 - Anchor points
As we have already discussed, those object types which serve as anchor points to fact types

are considered to possess a relatively high conceptual importance. Therefore, if exactly one
role in a given fact type is played by an object type which became an anchorpoint via rules 1 to
5, the fact type is anchored on this role. For this purpose we introduce the notion of a 'heavy
role' as:

HeavyRole(p) -~ 3,:Weight(s)~ 7[p ~ S]

The Auto Weight rule then becomes:

AutoWeight6(p) ~ if HeavyRole(p) A Vq~otherao,es(p)[-qHeavyRole(q)] then 6 else 0

In the example subschema of Fig. 14, the uniqueness constraint on 'Employee is managed by
Project' causes rule 4 to anchor the upper fact type towards 'Project ' . Since 'Project ' is now

has at h0mo
Fig. 13. Roles played by non-value-types may become automatically anchored.

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 61

. . . ' h ' U I l ~ ' I d l l . , . l U l , , .

Fig. 14. Roles played by anchorpoints may become automatically anchored.

the only participant in the ternary fact type which is an anchorpoint, the lower fact type is
anchored on 'Project ' .

Rule 7 - Single-role set constraints
If a fact type is involved in exactly one single-role set constraint (i.e. subset, equality or

exclusion constraint), and the role at the other end of the set constraint is anchored, then the
constrained role in the given fact type is anchored.

AutoWeightT(p) __a if ~ls:Anchor(,,.)[setcOn((s), (p))] A VqeOtherRoles(p)[-ISetCon((q))] then
5 else 0

In Fig. 15, the fact type 'Employee is a supervisor in Project' is anchored to 'Employee ' by
rule 4, as a result of the simple uniqueness constraint. Since the role played by 'Employee ' in
the ternary fact type is connected to this anchored role via a single-role subset constraint, this
role is consequently anchored by rule 7.

It is important to consider the case in Fig. 16, in which the single role set constraints
contradict each other. In this case, rule 7 could not produce a determinant anchorage for the

. . . v w v i n ~ v i i , , . i v l , . .

Fig. 15. A role connected to an anchored role by single role set constraints is anchored.

has expected

is supervisor in
Fig. 16. Rule 7 does not consider cases in which a single-role set constraint contradicts another.

62 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-8.5

predicate 'works on'. We therefore ensure that this rule only fires on non-anchored fact types
which are only involved in one single-role set constraint.

It is also important to realize why we chose not to require the contradicting set constraint to
necessarily have an anchor assigned. It would have been inadequate to require the following
condition on the other roles in p 's fact type:

V q~=OtherRoles(p) "-'13 s:AnchOr(s)[setCOn((s), (q))]

We illustrate this, by considering the case shown in Fig. 17. If we assume that the above
condition is adequate, (i.e. that rule 7 is fired as long as no other role in the fact type
participates in an anchored single role subset constraint), then two possible scenarios are
possible for the schema fragment below. Firstly, rule 7 could cause 'Person owns Car' to be
anchored towards 'Person'; which would then cause 'Person has driven Car' to also be
anchored towards 'Person'. Alternatively, rule 7 could first cause 'Person caused crash of Car'
to be anchored towards 'Car'; which would then cause 'Person has driven Car' to also be
anchored towards 'Car'. As a result, 'Person has driven Car' could be anchored in either
direction, depending on the order in which the rule was fired.

For this reason, we only allow fact types to be anchored on a role, p, if no other role in its
fact type is involved in any kind of single-role set constraint (as defined in AutoWeightT(p)).
The definition of rule 7 will, therefore anchor all fact types in Fig. 17, except for 'Person has
driven Car'.

Rule 8 - Multi-role set constraints
If a fact type is involved in exactly one (possibly multi-role) set constraint (i.e. subset,

equality, or exclusion constraint), and exactly one of the roles in the fact type is in the
corresponding position within the set constraint as an anchored role, then this role is itself
anchored.

AutoWeigh ts (p) __a i f ::1 setcon(v, w)[P E v/~ A n c h o r (w [P o s (p , v)])

/x SingleSetCon(v, p)] then 4 else 0

'r'v'° I *:

u . d

was last repaired by

Fig. 17. Rule 7 requires that p's fact type participates in n o other single-role subset constraint.

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 63

. , . W U I I ~ , ~ V I I , , , I k l l , , ,

Fig. 18. Roles connected by multi-role set constraints are anchored.

where SingleSetCon(v, p) enforces the singularity of the set constraint v with respect to role
p:

SingleSetCon(v, p) ~ Vx:SetCon(x)[U ~& X ~ OtherRoles(p) fq Set(x) = •]

In the example in Fig. 18, the fact type 'Employee is supervisor in Project' is anchored to
'Employee ' by rule 4, as a result of the simple uniqueness constraint. Since the role played by
'Employee ' in the ternary fact type is connected to this anchored role via a multi-role subset
constraint, this role is consequently anchored by rule 8.

Similarly to rule 7, it is important to consider the case in Fig. 19, in which the multi-role set
constraints contradict each other. In this case, rule 8 would not produce a determinant
anchorage for the predicate 'works on'. We therefore only use this rule on non-anchored fact
types which are only involved in one multi-role set constraint.

Rule 9 -Se t constraints and anchor points
If there exists a non-implied set constraint in which one of the roles involved in the

constraint is the only involved role in its fact type to be played by an anchorpoint and the fact
type of the role corresponding to it in the other role sequence is not anchored, then this role
should become an anchor. If a set constraint v anchors a role p in this sense, then we refer to
this as Anchors(p , v):

Anchors(v p) ~ , = p ~ v A AnchorPoin t i (P layer (p))

The resulting AutoWeight rule is then:

has primary
interest in

i~ supervisor in ~"

Fig. 19. Rule 8 does not consider cases in which a multi-role set constraint contradicts another.

6 4 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

is supervisor in has budget of

.~. wo rks on ... for ..,

Fig. 20. Roles played by major object types and involved in multi-role set constraints are anchored.

AutoWeightg(p) ~- if :l.:setco~(.~[Anchors@. p) A VrEOtherRoles(p)[-TAnchors(r. v)]
A SingleSetCon(u, p)] then 3 else 0

For example, in Fig. 20, the firing of rule 1 causes 'Project has budget of MoneyAmt ' to be
anchored towards 'Project'. Since 'Project', consequently, becomes the only player of a role
involved in the subset constraint to be an anchorpoint, rule 9 causes both of the other fact
types to also be anchored towards 'Project'.

Rule 10 - Joining roles o f set constraints
For this rule, we consider each role sequence which is involved in a set constraint and which

spans more than one fact type. In these cases, a join condition must be specified (or inferred)
to define the manner by which the populations of the involved fact types are related. We call
those roles which are involved in the join condition of such a role sequence, the join roles for
that role sequence, and define them through the function: doinRoles: ~ 0 ~+--->~a(5~O), such
that:

JoinRoles(v) & {p E OtherRoles(v) [3q,rEv,,cCoRo.es(r~[Rel(q) # Rel(r) A Rel(p) =

Rel(q)/x p - s]}

AutoWeight Rule 10 anchors those unanchored fact types, in which only one role is the join
role for some set constraint role sequence:

JoinSingleSetCon(p) ~ 3v:SetCen(v)[p ~ JoinRoles(v)]

This join role becomes the anchor:

AutoWeight1,,(p) ~ ifdoinSingleSetCon(p) A V.~Othe~Ro~es(p~[~doinSingleSetCon(q)]
then 2 else 0

Fig. 21 shows an example to which this rule is applicable. The 'works for' predicate is first
anchored to 'Employee' when Rule 1 (mandatory roles) is fired. The 'involved in' predicate is
then anchored to 'Employee' by the activation of Rule 8 (multi-set constraint with single
anchor). Lastly, rule 10 causes the 'sponsors' predicate to be anchored to 'Department ' , since
the role played by 'Department ' is the one which is used to join together the target role
sequence of the subset constraint.

Rule 11 -F irs t role o f set constraints
If there is a multi-role, non-implied set constraint (i.e. subset, equality or exclusion

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 65

works for

%%%%

/

/ I

/
/

/
/

)onsors

Project
4 D- (code)
involved in

Fig. 21. Roles involved in the join condition of a multi-predicate set constraint role sequence are anchored.

constraint) and one of the involved roles has the lowest sequence position within one of the
constraint 's role sequence (for its predicate), then this role should become an anchor.

A

A u t o W e i g h t l l (p) = i f 3,,:setcon(v~VsecoRoJes(p)nSet(v)[AnchorPoinli(Player(s))
Pos (p , v) ~< Pos(s, o)] then 1 else 0

This choice is based on the semantics which is derivable from the order in which the modeler
chose to initially verbalize the fact type. An example of such a situation is depicted in Fig. 22.

Similarly to rules 7 and 8, it is important to consider the case in Fig. 23, in which the
multi-role set constraints contradict each other. In this case, rule 11 would not produce a

~ ~ supervisor in ~ . ~

I

... w a s s ~ e n t b y ... o n ... ~

Fig. 22. Roles which appear first in se t -const ra int role sequences are anchored .

has primary
interest in

i~ supervisor in ;
Fig. 23. Rule 11 does not consider cases in which a mult i - role set cons t ra in t cont radic ts ano the r .

66 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

Fig. 24. Roles which are positioned in the first 'keyed' position are anchored.

determinant anchorage for the predicate 'works on'. We therefore only use this rule on
non-anchored fact types which are only involved in one multi-role set constraint. Note, that in
Fig. 23 we denote the role sequence order by specifying the sequence of role numbers that are
involved at the 'source' of the set constraint.

Rule 12 - First role of internal uniqueness constraint
Any fact type, which is not already anchored, should be anchored, by default, on the first

role that is involved in an internal uniqueness constraint. This choice is based on the semantics
which is derived from the order in which the modeler chose to initially verbalize the fact type.

AutoWeight~2(p) ~ if PosN(p) = min{PosN(q) 1 3v[Unique(v) • 5~°// A q E V]} then 1 else 0

Fig. 24 shows an example in which rule 12 is triggered.

4. Deriving abstraction levels

When a conceptual schema is abstracted, each progressively higher level of abstraction
includes all the most conceptually important components from the previous level. To define an
abstraction level, we must therefore first select the major object types and major fact types.
We refer to those major types which form the foundation for an abstraction view at level i as
5'{~5~ i (which will be defined formally below).

Once the kernel of an abstraction level has been calculated, there are still a number of steps
which must be performed before the abstraction is complete. Firstly, any fact type predicate in
which every role is played be a major object type is included in the abstraction. We do not
include these predicates in the kernel itself, because we do no want these fact types to effect
the outcome of future abstraction levels. Secondly, we include the identification scheme of all
object types which appear in the abstraction. Finally, we restore the connectivity of o u r
abstracted conceptual schema. This involves retaining both the connectivity of subtyping
hierarchies, and the connectivity of non-type related object types.

The following subsections formally describe these steps in the abstraction process.

4.1. Major types

In a conceptual schema at a particular level of abstraction (i), the set of object types which
do not have the lowest conceptual significance are referred to as the major object types

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 67

(MajorOTi). Those object types which are of least conceptual significance are referred to as
minor. We identify the major object types as the set of object types which have a higher total
object type weight (OTWeioht) than the minimum total object type weight for the current
schema level.

Each object type also has an object type weight (OTWeioht) associated with it at a
particular abstraction level. The object type weight represents the sum of the weights of those
fact type roles which are anchored to it; i.e."

OYWeighti(x) =a ~ Weight~(r)
r : 3 y [A n c h o r e d R o l e (r , y) ^ y - x]

where AnchoredRole c_ o ~ x G~ is true when the given fact type role is in ~/{g~ and is
anchored to an object type which is type related to the given object type; i.e."

AnchoredRole~(r, x) __a Player(r) - x A Anchori(r) ^ Rel(r) E Kg;~;

An object type is considered to be major at a particular level of abstraction (MajorOT C G~)
if its OTWeight is greater than the minimum weight for object types in the kernel at that level.
Formally, MajorOT is defined as:

MajorOTi(x) =a OTWeight~(x) > min{OTWeighti(y) I y E ~'t'g~}

The major fact types at a particular abstraction level (MajorFT i c_ ~-3-) are defined as those
fact types which bridge between more than one subtyping hierarchy and in which every
participant is a major object type at that level:

MajorFT i(x) __a V,e Ro,es(x)[MajorOT;(Player(s))] ^ =ls,,e Roles(x)[S / t]

4.2. Algorithm for determining next abstraction level

We refer to the set of component types and constraints included in the level i abstraction
view of conceptual data schema USe as cg5¢/. In the level 1 conceptual schema, ~Se 1 (often
abbreviated to cg5¢), all component elements are present. Increasing the level of abstraction
will never increase the number of populatable types visible in the conceptual schema:

~ ' ~ i ~ ~-~bi + 1

Of even greater importance, though, increasing the level of abstraction will necessary strictly
decrease the number of populatable types within the abstraction kernel:

~ / ~ i D ffgcc~ i + 1

As described previously, each progressively higher level of abstraction includes all the most
conceptually important components from the kernel of the previous level. For this reason, at
each level of abstraction, we include all the major fact types from the previous level, plus all
the major object types which participate in at least one of these major fact-types. Formally,
we define the abstraction kernel at level i + l(ggg~i+l) as:

~ g ~ ; + , _a__ {x I MajorFT/(x)} O {Player(p) I MajorFTi(Rel(p)) }

68 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

Notice that this definition does not necessarily include every major object type of one
abstraction level in the kernel of the next level. The kernel at a particular level of abstraction
will only include those major object types which participate in some fact type role contained in
the kernel. This conforms to the standard rules of conceptual schema design, as defined in
[17].

The definition of Y { ~ removes all objectified relationship types which neither participate in
a major fact-type, nor are major types themselves (as shown in Fig. 25, below).

It is interesting to compare the differences in the way objectified fact types and co-
referenced object types are treated. Consider the examples shown in Fig. 26.

In Fig. 26(a), the objectified fact type (identified by the participating A and B) is included in
the next higher level of abstraction, because it is considered to be a major fact type. In Fig.
26(b), however, the co-referenced object type (AB) is not included in the next higher level of
abstraction, because it does not participate in any fact types at this level. AB may, however,
be added to ~ + 1 if it is required for connectivity. We justify the difference in treatment of
objectified fact types and co-referenced object types by the observation that an objectified fact
type can, itself be thought of as a type of abstraction on a co-referenced fact type, which must,
itself be 'unwrapped' [9].

4.3. Ring fact types

At this stage, the kernel only contains fact types which bridge between subtyping
hierarchies. The kernel does not retain those (ring) fact types for which every participant is a
type-related object type because we do not want these fact types to perpetually cause their
player to be an anchor point. The user, however, is probably interested in viewing all fact
types which are played entirely by major object types at the previous level. This includes the
ring fact types. To this end, we therefore apply the procedure AddRingF'l's to the types in the
kernel.

Kernel at Level/ Kernel at Level i+1

Fig. 25. Removal of objectified relationship types.

(a)

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

Kernel at Level i Kernel at Level i+1

69

(b)
Kernel at Level i

%%

Fig. 26. (a) Objectified fact type; (b) co-referenced object type.

Kernel at Level i+1

d>
q>

AddRingFTs: ~(G~) --~ ~(G~)

AddRingFTs(Types)
BEGIN

RETURN Types U {r E ~J- [Vs,t@Player(r)[S , t ~ Types A S ~ t]} ;

ENDAddRingFTs ;

4.4. Object type identification schemes

Since the identification scheme of an object type is often important for its understanding, we
ensure that the identification scheme of every object type is included in each abstraction level.
To this end, we define that relation, IsldReIc_ ~5¢ x ~(3-~), which is true when the given
relationship type is involved the primary identification of some object type in the given set of
types.

IsldRel(r, z) =~ :l~,~z[r ~E PIdRels(x) - z]

70 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

The function IdentifiedSchema: ~,(3-~)---~(3-~) takes the types in the current abstraction
level and adds to them, those types that are required to identify the input types.

IdentifiedSchema(Types)
VAR

r : ~ 3 - ;

BEGIN

WHILE ::]r[r ~ Types A IsldRel(r, Types)] DO

LET r BE SUCH THAT ryEf Types ^ IsldRel(r, Types) ;

Types + = {r} U {Player(s) I s ~ Roles(r)} ;

END WHILE ;

RETURN Types ;
END Ident i f iedSchema.

It is interesting to consider the effect that this algorithm has on the subtyping hierarchies of
the abstracted schema. In Fig. 27, the only major object types in ~ i , which participate in a
major fact type, are C and F. C and F are therefore the only object types to appear in
~ ; + ~ . Since C inherits its identification from its (indirect) supertype A, however, A is
included in IdentifiedSchema(E{W~i+~) as the player of C's identifying relationship type.

Notice that the subtyping arrows in the various schema fragments adapt automatically to the
set of object types included in the diagram. This is possible because of the fact that subtyping
relationships are inherently transitive, with only the non-implied arrows being displayed on
the diagram.

4.5. Connectivity

Since we wish to retain the connectivity of our conceptual schema throughout each level of
abstraction, w e must define the concept of connectivity. We begin by defining a connected
path (~M) through a conceptual schema. A path is a sequence of types in which each element
(except the first) is either a relationship type of which the previous conceptual type is a player,
or is one of the object types which plays the previous conceptual type. Note that a path does
not necessarily define a unique traversal through a relationship type, since an object type may
play more than one role in the same relationship type.

~M a= {x @ f f~ + I Vl<~i<lxl[Connected(x[i], x[i + 1])]}

where Connected identifies whether or not the given conceptual types are connected (in that
one participates in the other):

Connected(y , z) _a_ 3peR.o,es~y)[Player(p) _ z] v 3p~Roles(z)[Player(p) - y]

The predicate PathBetween c ~M × ~-~ × J-~, holds exactly when the given path exists,
starting at conceptual type x and ending at conceptual type y.

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 71

IdentifiedSchema (Kernel at Level/) Kernel at Level i+1

'1

J Abst ract ion
p,,.- F ~

J

t ent,,ica,ion

IdentifiedSchema (Kernel at Level i+1)

Fig. 27. The primary identification of subtype C is inherited from supertype A.

PathBetween(v, x, y) __a v[1] = x ^ v [I v l] = y

ShortestPaths(x, y) returns the set of paths which start at type x and end at type y, which
contain the least number of conceptual types in between (Shor tes tPa ths : 3-~ ×
~-~ ~ ~ (~)) .

ShortestPaths(x, y) ~ {v ~ ~,~ I PathBetween(v, x, y) ^

= min{lwl [PathBetween(w, x, y)}}

Ano the r type of connectivity which is useful to maintain is the connectivity of subtyping
hierarchies. To this end, each set of unconnected, type-related types in
Ident i f iedSchema(E{~i+ 1 are reconnected via the lowest common supertype which has its
own identification scheme. The notion of a lowest common identified supertype is therefore
introduced. A set of object types can actually have more than one lowest c o m m o n identified

72 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

supertype, in the case in which the subtyping hierarchy forms a lattice. The function
LowestCIdObjs: ~ (~) - - - , ~(3-~) is defined on a set of type-related object types as:

LowestCIdObjs(w) ~ {x E CommonlDSup(w) ["73ycCornmoo,DS.p~.,)[y SubOf x]}

where CommonlDSup(w) ~ CommonSup(w) N Players(OtherRoles(PIdRoles(w))). Notice
that the only case in which the lowest common identified supertype for a set of object types will
be the same as the lowest common supertype, defined previously, is when the lowest common
supertype has an identification scheme directly attached to it.

The function Connec tSchema is used to add those types which are required to connect the
given set of types by means of subtyping hierarchies and shortest paths.

ConnectSchema: ~(g~) --~ ~(3"-~)

ConnectSchema(Types)
Pos tCond i t i on : Vx..~,eTypes[PathBetween(x , y)]

BEGIN

1. WHILE ::]x.yeTypes[X - -y A 73zeTyp~,[Z E CommonSup({x , y})]] DO

Types + = LowestCldObs({s I s - x}) ;

2. WHILE 3x.ycTyp~s[-7PathBetween(x, y)] DO

Types + = U Set(c) ;
c@ShortestPath(x, v)

Types:= IdentifiedSchema(Types) ;

END 2 ;

END 1 ;

RETURN Types ;

END ConnectSchema ;

The first loop (marked 1.) ensures that all type related object types are connected via a
subtyping hierarchy in the abstraction schema. The second loop (marked 2.) ensures that the
non-type related object types are connected via relationship types in the resulting set of types.
Notice that IdentifiedSchema is reapplied during ConnectSchema to ensure that any newly
added types are also identifiable in the abstraction schema.

Fig. 28 shows an example in which IdentifiedSehema(3'fg~i+ 1) is disconnected, despite the
fact that its components contain type related object types. In order to connect the two schema
fragments in IdentifiedSchema(YC~i+l), ConnectSchema adds A to the set of included
types. Object type A represents the lowest common supertype of G and C which has its own
identification scheme. In this case, C and G have their own identification scheme. However, in
order to retain the notion that the instances of C and G come from a common domain, we
include in the abstraction the lowest common supertype which is directly attached to a unique
identification scheme for this domain.

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 73

(J

IdentifiedSchema (Kernel at Level i) IdentifiedSchema (Kernel at Level i+1)

D)

"-7-;
E /~

I I
Abst rac t ion t , , . ~ ~ _ _

"2--:." . ~

l den t i f i ca t ion

ConnectSchema (IdentifiedSchema (Kernel at Level i +1))

(--;--

Fig. 28. Connecting the kernel by means of the subtype hierarchy.

4,6. Complete abstraction of conceptual schema

The complete set of abstraction levels for a given conceptual schema, %%e, can now be
defined. The level i abstraction view, ~ , of a given conceptual schema, ~5 ~, includes the
types in JC-gS~s, the types required for connectivity and identification, and all constraints from
the original schema in which these included types are involved. We, therefore, formally define
~ . as follows:

~Se I ~ (5~5 e, Mand, Unique, PUnique, Frequency, SetCon, Weight)

~ ~ (J~., Mand, Unique~, PUniquei, Frequency,, SetCop~, Weight~)for i > 1

where

~¢~-~ (J-~i, ~ , Rolesi, PosN, SubOf~, Player)

~-~i & ConnectSchema(IdentifiedSchema(AddRingFTs(YCg~i)))

~, . ~ {p E ~ I ael(p) E 9-~,.}

74 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

SubOf~

Mand~ .__a

Unique~ =

Frequencyi =

SetCone =a

{ {X, y) (~ ~-~J)i x ~-~b i Ix SubOf,_, y }

{x E ,#(~d'i) I Mand(x) A 3pc..~, V q~x[p ~ q /x p,Ef.x]}

{x E #(~G,.)] Unique(x)}

{x E #(~(7~) I Frequency(x)}

{ { v, w) ~ ~G ~ x 5~7 + I SetCon(u, w) }

4.7. Relation to clusters

The definitions so far allow us to take a flat ORM conceptual schema and derive a number
of abstraction layers for this flat ORM schema. Each of these layers is still essentially a flat
subsection of the original ORM schema. Therefore, we now introduce the glue that actually
holds these layers of abstraction together.

The idea is to view each major object type as becoming the centre for a clustering of
surrounding minor object types. As a result, the object types in each K ~ i are clusterings of
types from Y{~5~ i_ 1. This idea of using clustering as a binding mechanism for abstraction layers
for ORM schemas was proposed previously in [5-7]. In [9] a possible formalization of the
clustering mechanism is presented.

In this subsection, we show how to derive a clustering of minor object types for each major
object type. The presented style of clustering conforms to the requirements given in [9]. This
means that when applying the abstraction algorithm discussed in this article, together with the
clustering mechanism presented below, a three-dimensional ORM schema results that is in
line with the 3-Dimensional Conceptual Modeling Kernel as proposed in [9].

The clustering mechanism is defined as a set of derivation rules. An actual clustering is
given as a function Cluster: IN x O~3 --, go(,3-V) ~). The intuition is that if x E Cluster(i, y), then at
abstraction level i type x has been grouped into the cluster surrounding object type y.

The first derivation rule clusters all fact types which have disappeared since the last level of
abstraction towards the object type to which they were anchored.

Anchori_ ~(r)/x Rel(r) E ,7{~5~ i F Rel(r) • Cluster(i, Player(r)) [CL1]

where Y { ~ ; ~ Y{'~i- i - f f L e ~ i for i > 1 .
Object types which participate in any relationship type included in a cluster should,

obviously, be included in the same cluster:

x ~ Cluster(i, c)/x y E Players(x) t- y ~ Cluster(i, c) [CL2]

Please note that an object type could occur in more than one clustering if it is involved in
relationship types anchored to different major object types. As a result, the clustering is not a
partition of the types.

The following two rules are concerned with subtyping. If an object type in a type hierarchy
is removed from the kernel (i.e. it is in 5~{~ i), we must still cluster those fact types that were
anchored to it. We anchor such fact types towards the lowest supertype which remains in the
kernel (LowestKernelSup).

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 75

x E Y { ~ ; A y LowestKernelSup x A r AnchoredToi_ ix I- Rel(r) E Cluster(i, y) [CL3]

where y LowestKernelSup x indicates that y is the lowest supertype of x which remains in the
abstraction kernel. That is:

y LowestKernelSup x ~ = x SubOf y A y E ~7{~ A "-13zcjt-~o:~i[X SubOfz SubOfy]

If no supertype remains in the kernel, however, the relationship types anchored towards a
disappearing subtype can be clustered towards the nearest subtype which remains in the
kernel.

x C 27{~ I A -a:lz[z LowestKernelSup x] A y HighestKernelSub x

A r AnchoredTo i_ ~x I- Rel(r) E Cluster(i, y) [CL4]

where y HighestKernelSub x indicates that y is the highest subtype of x which remains in the
abstraction kernel. That is:

A

y HighestKernelSub x = y SubOf x / x y E Y { ~ A - ~ 3 z E . ~ , [y SubOf z SubOf x]

The remaining derivation rules are completeness rules on clusters. Clustered types are
inherited between layers of abstraction. So we have:

x C Cluster(i, c) kx E Cluster(i + 1, c) ICE5]

The reference types needed to identify any of the types in a cluster are also included:

x E Cluster(i, c) A y ~ PIdRels(x) I- y E Cluster(i, c) [CL6]

The above definition of cluster is a 'maximally complete ' one. However, when displaying
clusters to a user, for example, one may choose to only show those clustered types which are
part of Y { ~ i. That is:

Cluster(i, x) - Cluster(i - 1, x)

It may also be decided to only show the clusters for those types which appear in Y{'~i, and
ignore the clusters for those object types which were major at the previous level, but do not
participate in a fact types in YC-d~. Choices like this are up to the designer of the actual
abstraction tool and often depend solely upon the purpose for which the abstraction and
clustering was created.

5. Case study

Now that we have developed a theory for the creation of abstractions for a conceptual
schema, it is time to study the effect that such a mechanism has on an application example.
Applying WeightSchema to the conceptual schema shown in Fig. 6, we achieve the anchored
schema shown in Fig. 29. As in previous examples, we have shaded the major object types and
indicated the anchors by an arrowed role connector line. For the purposes of our example
application, we have also included the Weight assigned to each anchor (e.g. " .9.") . This will

76 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

o o

L L L I ' ~ I

"5

H ~

g
E

m

i s

~0

----1

o
~ o

T

z,- ~'~ 0

, ~ - b ~

o > , E

._~

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 77

hopefully help the reader to retrace the AutoWeight rules that have been fired to achieve this
result.

Applying WeightSchema to our application example of Fig. 6 helps us identify the major
object types in the Universe of Discourse. In this case, they are 'Motel', 'Committee ' ,
'Institution', 'Country', 'Request ' , 'Person', 'Paper', 'Accepted Paper', 'Paper Slot', 'Room' ,
'Lab or Lecture Room', 'Lecture Room' and 'Laboratory'. This follows our own intuition of
the most 'conceptually important object types'.

It is important to notice that the relationship types 'Room is in Building' and 'Room has
R o o m # ' are not anchored. This is because they are part of the primary identification scheme
for 'Room', and are therefore reference types. Only fact types are anchored.

Among the anchored fact types are 'Person chairs Committee', which is anchored towards
'Committee' . The maximum frequency of 2 on the role played by 'Committee' causes
AutoWeight rule 4 to assign a Weight of 7 to this role. AutoWeight rule 8 is responsible for
anchoring the fact type 'Person presents Accepted Paper' towards 'Accepted Paper', due to
the fact that it is associated via a set constraint to a fact type already anchored towards
'Paper' .

Fig. 30 shows the kernel types which form the foundation of the second level of abstraction
for our example conceptual schema. Notice that no ring fact types or identification schemas
are included in the kernel, and that the kernel is actually disconnected.

When we apply AddRingFTs, IdentifiedSchema and ConnectSchema to the kernel types in
Fig. 30, add the constraints that are still relevant and re-apply WeightSchema, we achieve the
complete weighted, second level abstraction schema shown in Fig. 31.

Notice that the major object types of q~5¢ 2 are 'Request ' , 'Person', 'Institution', 'Paper' ,
'Accepted Paper' and 'Paper Slot'. Because these object types are major at both the first and
second level of abstraction, we consider them to be more 'conceptually important' than those
object types which are only major at the first level of abstraction. In fact, we gauge an object
type's degree of majorness (DegreeMajor: G~---,N) by calculating the highest level of
abstraction at which that object type is major. We define:

DegreeMajor(x) ~ max({ilMajorOTi(x)} 13 {0})

and we know that:

MajorOT~(x) ::> DegreeMajor(x)/> i

For example, so far we know that:

DegreeMajor('Rating') = 0 ; DegreeMajor('Motel') = 1 and DegreeMajor('Person ') >I 2

Conceptual importance, or conceptual relevance (as indicated by DegreeMajor) plays a key
role in a number of areas. For example, in computer supported query formulation conceptual
importance is used to help select between alternative interpretations of queries ([4, 21, 22]).

It is important to understand how the schema abstraction in Fig. 30 was obtained. The
object types 'Room', 'Building', 'Room# ' and 'Preference' were all added by the Iden-
t ifiedSchema procedure, because they are used in the identification of some kernel object
type. The fact types 'Lab or Lecture Room is close to Lab or Lecture R o o m ' and 'Person

78 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

I ,.quos,
Is for

chairs authors]

ed

t USeS

Fig. 30. Y{g~2: The kernel for abstraction level 2.

requests placement with Person' were added during AddRingFTs, and are not actually part of
Y{~2. This explains why we do not consider these fact types to be anchored.

There are a few interesting things to observe with respect to the anchorage of ~Se 2. Firstly,
notice that 'Institution is located in Country', in contrast to c¢5el, is not anchored towards
'Country ' . This is because at abstraction level 2, this role becomes implied mandatory.
Secondly, the anchor on 'Person chairs Committee' was on the role played by 'Commit tee ' in
~Se 1, but has now moved to the role played by 'Person'. This is because 'Commit tee ' has
become a leaf object type, causing the role played by 'Person' to gain a new weight of .9.. The
fact type 'Person referees Paper' also has a change in anchorage. In the previous level of
abstraction, it was anchored by Rule 12. Since it is now only associated with a single set
constraint, however, Rule 8 rmw triggers a weight of .4. on the role played by Paper. Lastly,
notice that the weight of the anchor on 'PaperSlot uses Lab or Lecture Room' has increased
from .8. to .9. because 'Lab or Lecture Room' is now a leaf object type, triggering rule 3.

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 79

{1 ..3}

Motel
(name) J

is for
est

requests ~

.15

~ ((7 o ~ e e ~ l i j ~ l ~ Committee • ~- .9.

1-2 chairs . 1 0 ~
{'Org', 'Prog'} / /

/
~ isfr°m I I

"

requests
'is
! located
in

/tr,r I ' " / e e % .,0.

presents

placement with

Country fBu i ld ing
(code)) ~ . t~

~ , : is in

has Room

,for

uses

SUBTYPE DEFINITIONS
each Accepted Paper Is a Paper that has Status 'accept'
each LabOrLecRoom is a Room that is of RoomType in {'lab','lec')

 T ose Ito

o ir

Fig. 31. WeightSchema(~2): Abstraction level 2.

Fig. 32 depicts a different view of our second level abstraction. In Fig. 32, we explicitly
show the clusterings that have occurred during the abstraction process. We have chosen to
represent those object types which are repeated in more than one cluster by surrounding them
with a second ellipse; and have shown only those constraints which are completely within or
completely external to a clustering. It is particularly interesting to observe the subtype
clustering that has occurred around the object type 'Lab or Lecture Room'.

Taking things one step further, we can easily extend our results from Figs. 3l and 32 to

80 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

• . ._ , '~ ' ,

f

v

o

k

o i 0

i_.

o~~'!

0

e -

.=_

0

c ' q

<

o ')

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

Motel (name)

I Committee (code)

C Institution (name)

Ilcated

Country (code)

/ID

I
I requests
I

theirs
Person (name) rel,re., Paper (0)

7.?g0~

IS from ~ " ~ " T
I " ~ j presents ~
~wit. // "~ Accepted Paper

J -,,
//L$ \ \

(..O or ..o, r. ,ooo } - - , : (

I| reserved for

PeperSlot(elot#)

Fig. 33. An ER View of the example application.

81

show a corresponding Entity Relationship (ER) representation of the application. Fig. 33
shows this ER view. There are many notations used for ER modeling. The one presented here
uses rounded rectangles to represent entities, named lines to represent relationship types,
crow feet to indicate that the opposite entity can play that role many times, a double rectangle
to represent a 'weak entity type', and the letters 'ID' placed on its identifying relationship.
Attributes are not shown in this diagram.

It is important to realize that the version of ER used above allows multi-valued and
composite attributes. Making this assumption allows us to achieve an intuitive overview of the
original ORM diagram using ER notation. We also allow relationships to have attributes. For
example, the relationship 'Person rated Paper' has the attribute 'Rating'. Notice that
relationships, such as this one, which have attributes do not appear in the ORM abstraction
since some of their participants are minor. Also note that 'Request' is represented as a weak
entity because its identification scheme involves both an attribute ('Preference') and a
relationship to an entity ('Person').

We now take the second level abstraction shown in Fig. 31 and abstract again. Fig. 34
illustrates the third level of abstraction, ~ . When we apply WeightSchema to ~ , the only
changes in anchorage that can be seen from the previous abstraction are in 'Paper Slot is
reserved for Accepted Paper' (as 'Paper Slot' becomes a leaf) and 'Person is from Institution"
(as the role played by 'Institution' becomes implied mandatory). We can now determine that
the degree of majorness for 'Institution' and 'Request' is 2, and for 'Person', 'Paper' ,
'Accepted Paper' and 'Paper Slot' is greater than, or equal to three.

The highest level of abstraction that can be reached for our example application is four. Fig.
35 shows ~5e4 . No higher level of abstraction can be reached, because there are no major fact

82 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

e ree~)
, •

Institution
(name)

is from

r4equests
placement with

authors~
I
I

presents
9.

:~:] is
reserved
for

SUBTYPE DEFINITIONS
each Accepted Paper is a Paper that has Status 'accept'

Fig. 34. W e i g h t S c h e m a (~) : Abstraction level 3.

types in ~ow4, and therefore no conceptual types would be present at a higher level of
abstraction. We can now conclude that the most conceptually important object type in our
Universe of Discourse is 'Paper' (and 'Accepted Paper') , with a degree of majorness equal to
four.

6. Conclusions

In this article, we have presented an algorithm to derive layers of abstraction for a given fiat
conceptual schema. The cornerstone of this abstraction algorithm is the notion of a major

requests =
placement with

SUBTYPE DEFINITIONS
each Accepted Paper Is a Paper that has Status 'accept'

Fig. 35. WeightSchema(~5~4): Abstraction level 4.

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 83

object type. We have defined a prioritized set of derivation rules to assist in the selection of
these major object types at each level of abstraction. In comparison to other approaches which
determine the major object types of a conceptual schema, our approach considers more of the
semantics that are hidden in the constraints and verbalizations. Alternative approaches have
instead relied more heavily on user input.

The paper presents an iterative method for using the major object types to determine the
kernel types in each subsequent abstraction level. This kernel is then embellished with
additional conceptual types to enhance its comprehensibility, by incorporating identification
schemes, ring predicates and connectivity. The result of these processes, together with the
constraints applicable to the included types, form the resulting abstraction schema, which is
demonstrated on a concrete case study in Section 5.

In addition to this, we have also shown how the resulting layers of abstraction provide a
three dimensional view of the underlying fiat conceptual schema, where object types at each
level of abstraction can be regarded as clusterings of object types from a lower level of
abstraction.

Future plans include the tuning of priorities and weights in the derivation rules, which
currently reflect the intuition of the authors, to be based on empirical evidence gained through
concrete testing. Because the derivation rule approach taken in this paper allows a very
modular approach to be taken in its implementation, the tuning of the priority and weighting
values can be performed locally.

Other topics for future research include investigating how bottom up abstraction (as
described in this paper) and top down abstraction mechanisms can complement each other in a
single conceptual schema design procedure; and investigating how the algorithms presented in
this paper impact on other types of conceptual schema abstraction.

Acknowledgments

We would like to thank the anonymous referees for their comments and suggestions, which
have led to improvements of the original article. Furthermore, we would particularly like to
thank A.H.M. ter Hofstede for his comments on the first drafts of this article.

References

[1] C. Batini, S. Ceri and S.B. Navathe, Conceptual Database Design- An Entity-Relationship Approach
(Benjamin Cummings, Redwood City, California, 1992).

[2] P. van Bommel, A.H.M. ter Hofstede and Th.P. van der Weide. Semantics and verification of object-role
models, Information Systems 16(5) (October 1991) 471-495.

[3] G.H.W.M. Bronts, S.J. Brouwer, C.L.J. Martens and H.A. Proper, A unifying object role modelling
approach, Information Systems 20(3) (1995) 213-235.

[4] C.A.J. Burgers, H.A. Proper and Th.P. van der Weide, An information system organized as stratified
hypermedia, in: N. Prakash, ed., CISMOD94, Int. Conf. on Information Systems and Management of Data,
Madras, India (October 1994) 159-183.

[5] L.J. Campbell, Adding a new dimension to flat conceptual modelling, in: T.A. Halpin and R. Meersman,
eds., Proc. First Int. Conf. on Object-Role Modelling (ORM-1), Magnetic Island, Australia (July 1994)
294-309.

84 L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85

[6] L.J. Campbell and T.A. Halpin, Automated support for conceptual to external mapping, in: S. Brinkkemper
and F. Harmsen, eds., Proc. Fourth Workshop on the Next Generation of CASE Tools, Paris, France (June
1993) 35-51.

[7] L.J. Campbell and T.A. Halpin, Abstraction techniques for conceptual schemas, in: R. Sacks-Davis, ed.,
Proc. 5th Australasian Database Conference, 16 (Global Publications Services, Christchurch, New Zealand,
January 1994) 376-388.

[8] C.R. Carlson, W. Ji and A.K. Arora, The nested Entity-Relationship model, in: F.H. Lochovsky, ed., Proc.
Eighth Int. Conf. on Entity-Relationship Approach, Entity-Relationship Approach to Database Design and
Querying (Elsevier Science Publishers, Toronto, Canada, 1990) 43-57.

[9] P.N. Creasy and H.A. Proper, A generic model for 3-dimensional conceptual modelling, Technical Report
342, Submitted for publication, Department of Computer Science, University of Queensland, Australia, July
1995. Electronically available as: http://www.icis.qut.edu.au/-erikp/articles/ConDaMo.ps.Z.

[10] B. Czejdo and D.W. Embley, View specification and manipulation for a semantic data model, Information
Systems 16(4) (1991) 28-44.

[11] O.M.F. De Troyer, A logical formalization of the binary Object-Role model, in: T.A. Halpin and R.
Meersman, eds., Proc. First Int. Conf. on Object-Role Modelling (ORM-I) Magnetic Island, Australia (July
1994) 28-44.

[12] R. Elmasri and S.B. Navathe, Fundamentals of Database Systems, 2nd edition (Benjamin Cummings,
Redwood City, California, 1994).

[13] P. Feldman and D. Miller, Entity model clustering: Structuring a data model by abstractions, Computer J.
29(4) (1986) 348-360.

[14] C. Francalanci and B. Pernici, Abstraction levels for Entity-Relationship schemas, in: P. Loucopoulos, eds.,
Proc. Fourth Int. Conf. CAiSE'92 on Advanced Information Systems Engineering, Lecture Notes in Computer
Science, 593 (Springer-Verlag, UK, 1992) 456-473.

[15] M. Ghandi, E.L. Robertson and D.V. Gucht, Leveled Entity Relationship model, in: P. Loucopoulos, ed.,
Proc. Fourth Int. Conf. CAiSE'92 on Advanced Information Systems Engineering, Lecture Notes in Computer
Science 593 593 (Springer-Verlag, UK, May 1992) 420-436.

[16] T.A. Halpin, A logical analysis of information systems: Static aspects of the data-oriented perspective, Ph.D.
thesis, University of Queensland, Brisbane, Australia, 1989.

[17] T.A. Halpin, Conceptual Schema and Relational Database Design, 2nd edition (Prentice-Hall, Sydney,
Australia, 1995).

[18] T.A. Halpin and H.A. Proper, Subtyping and polymorphism in Object-Role modelling, Data & Knowledge
Eng., 15 (1995) 251-281.

[19] A.H.M. ter Hofstede, Information modelling in data intensive domains. Ph.D. thesis, University of Nijmegen,
Nijmegen, The Netherlands, 1993.

[20] A.H.M. ter Hofstede, H.A. Proper and Th.P. van der Weide, Formal definition of a conceptual language for
the description and manipulation of information models, Information Systems 18(7) (October 1993) 489-523.

[21] A.H.M. ter Hofstede, H.A. Proper and Th.P. van der Weide, Computer supported query formulation in an
evolving context, in: R. Sacks-Davis and J. Zobel, eds., Proc. Sixth Australasian Database Conference,
ADC'95, Volume 17(2) of Australian Computer Science Communications, Adelaide, Australia (January 1995)
188-202.

[22] A.H.M. ter Hofstede, H.A. Proper and Th.P. van der Weide, Query formulation as an information retrieval
problem, Joint Technical Report UQ-321 and CSI-9502, Submitted for publication, Department of Computer
Science, University of Queensland, Australia, and Computing Science Institute, University of Nijmegen,
Nijmegen, The Netherlands, January 1995. Electronically available as: http://www.icis.qut.edu.au/-erikp/
articles/CSQF.ps.Z.

[23] A.H.M. ter Hofstede and Th.P. van der Weide, Expressiveness in conceptual data modelling, Data &
Knowledge Eng. 10(1) (February 1993) 65-100.

[24] A.H.M. ter Hofstede and Th.P. van der Weide, Deriving identity from extensionality, .Technical Report
CSI-R9416, Computing Science Institute, University of Nijmegen, Nijmegen, The Netherlands, December
1994. Electronically available as: ftp:l/ftp.cs.kun.nl/pub/SoftwEng.InfSyst/articles/IdentityExt.ps.Z.

L.J. Campbell et al. / Data & Knowledge Engineering 20 (1996) 39-85 85

[25] A.H.M. ter Hofstede and Th.P. van der Weide, Fact orientation in complex object role modelling techniques,
in: T.A. Halpin and R. Meersman, eds., Proc. First Int. Conf. on Object-Role Modelling (ORM-1),
Townsville, Australia (July 1994) 45-59.

[26] S. Huffman and R.V. Zoeller, A rule-based system tool for automated ER model clustering, in: F.H.
Lochovsky, ed., Proc. Eighth Int. Conf. on Entity-Relationship Approach, Entity-Relationship Approach to
Database Design and Querying (Elsevier Science Publishers, Toronto, Canada, 1990) 221-236.

[27] J. Martin, Strategic Data Planning Methodologies (Prentice-Hall, Englewood Cliffs, NJ, 1982).
[28] D. Moody, A practical methodology for the representation of enterprise data models, in: Proc. 2nd Annual

Conf. on Information Systems and Database Special Interest Group, Sydney, Australia, 1991.
[29] A.H. Seltviet, An abstraction-based approach to large-scale information system development, in: C. Rolland,

F. Bodart and C. Cauvet, eds., Proc. Fifth Int. Conf. CAiSE'93 on Advanced Information Systems
Engineering, Lecture Notes in Computer Science 685 (Springer-Verlag, 1993, Paris, France).

[30] G.C. Simsion, A structured approach to data modelling, The Australian Computer J. 21(3) (August 1989).
[31] T.J. Teorey, G. Wei, D.L. Bolton and J.A. Koenig, ER model clustering as an aid for user communication

and documentation in database design, Communications of the ACM 32(8) (August 1989) 975-987.
[32] D. Vermeir, Semantic hierarchies and abstractions in conceptual schemata, Information Systems 8(2) (1983)

117-124.
[33] L.A. Walko, Caves: Visualization and abstraction mechanism for object-oriented databases, in: Proc. 3rd

Australian Database Conference (World Scientific, Melbourne, Australia, 1992) 10-35.
[34] Th.P. van der Weide, A.H.M. ter Hofstede and P. van Bommel, Uniquest: Determining the semantics of

complex uniqueness constraints, Computer J., 35(2) (April 1992) 148-156.

Linda J. Campbell is a Ph.D. stu-
dent, and member of the Asymetrix
Research Laboratory in the Comput-
er Science Department of the Uni-
versity of Queensland, Brisbane,
Australia.
She received her Bachelor of Infor-
mation Technology degree with first
class Honours and a University
Medal at the University of Queens-
land in 1992. Miss Campbell is cur-
rently finalizing her doctoral thesis
entitled "Reverse Engineering from a

Relational Database System to a 3 Dimensional Conceptual
Schema". She is also involved in both lecturing and tutoring
roles at the University.
Her main research interests include data abstraction, reverse
engineering, the automation of forward engineering, CASE-
tool technology and conceptual modelling.

Terry A. ttalpin is a Senior Lecturer,
and Director of the Asymetrix Re-
search Laboratory, in the Depart-
ment of Computer Science at The
University of Queensland, Australia.
He holds the following degrees from
this University: BSc, DipEd, BA,
MLitStud, Ph.D. His Masters thesis
dealt with computer assisted and
automated reasoning in formal logic,
and his doctoral thesis provided a
formalization of Object-Role Model-
ing within the context of NIAM. His

major research interests include conceptual modeling of
information systems, conceptual query languages, schema
transformation and mapping, and CASE tool support for
information systems engineering.
Dr. Halpin is a member of several technical committees
dealing with information systems, and has an extensive
publication record. His latest book is the second edition of

Conceptual Schema and Relational Database Design, Pren-
tice Hall, Sydney. Currently he is on extended leave from his
University position, and is working as Head of Research,
Database Products Division, Asymetrix Corporation, Belle-
vue WA, USA.

It.A. (Erik) Proper is currently a
lecturer at the School of Information
Systems from the Queensland Uni-
versity of Technology, Brisbane.
Australia. He is a member of the
Cooperative Information Systems
Research Centre from that Universi-
ty. He is also a member of the
Distributed Systems Technology
Centre (DSTC); one of the Coopera-
tive Research Centres funded by the
Australian government, Australian
Universities, and a number of multi-

national companies.
Dr. Proper received his Master's degree from the Universi-

ty of Nijmegen, the Netherlands in May of 1990, and
received his Ph.D, from the same University in April 1994.
In his Doctoral thesis he developed a theory for conceptual
modelling of evolving application domains, yielding a formal
specification of evolving information systems, From May
1994 to September 1995 he worked as a Research Fellow at
the Computer Science Department of the University of
Queensland, Brisbane, Australia. During that period he also
conducted research in the Asymetrix Research Lab at that
University for Asymetrix Corp, Bellevue, Washington.

Dr. Proper has co-authored several journal papers and
conference publications. His main research interests include
resource discovery, conceptual modelling, linguistics, and
conceptual query languages.

