
Transforming Transaction Models into
ArchiMate

Sybren de Kinderen1, Khaled Gaaloul1, and H.A. (Erik) Proper1,2

1 CRP Henri Tudor
L-1855 Luxembourg-Kirchberg, Luxembourg

sybren.dekinderen, khaled.gaaloul, erik.proper@tudor.lu
2 ICIS, Radboud University Nijmegen

P. O. BOX 9010 6500, GL Nijmegen, The Netherlands

Abstract. ArchiMate, a language for modelling an organisation from a
holistic perspective, lacks guidelines and techniques for exploring each of
its perspectives in depth. To partly address this issue, we propose to use
the DEMO modelling technique and toolset as a front-end for ArchiMate.
In particular, DEMO adds to ArchiMate a conceptual clarity, as well as
tools and techniques for modelling business processes.
Specifically, in this paper we contribute a formal model transformation
from DEMO to ArchiMate, and show how this model transformation
can be used to transform DEMO models into ArchiMate models. In addi-
tion, we provide a software implementation of this model transformation,
based on the ATL model transformation environment.
Our model transformation approach is illustrated by a fictitious but re-
alistic case study from the insurance domain.
Keywords: ArchiMate, DEMO, meta model, model transfor-
mation

1 Introduction

ArchiMate, a language for expressing Enterprise Architectures, allows for mod-
elling an enterprise from a holistic perspective, showing amongst others an or-
ganisation’s products, how these products are realised by business processes, and
how in turn these processes are supported by information systems. This holistic
perspective on an enterprise helps guide change processes [1], provides insight
into cost structures [2], and more.

However, because of the holistic nature of ArchiMate, for each of the per-
spectives that ArchiMate models, it lacks the specific tools and techniques to
explore these perspectives in-depth. For example, ArchiMate lacks guidelines for
process modelling. Moreover, as pointed out by [3] ArchiMate lacks conceptual
clarity. This lacking clarity is of course logical given the coarse-grained, holistic
nature of ArchiMate. Nevertheless, as a result, different modellers create dif-
ferent models. To address the above issues, it has already been suggested that
ArchiMate could benefit from the integration of other languages to explore each
of its perspectives in depth [2, 3]. One such language is DEMO.

DEMO, short for Design and Engineering Methodology for Organizations,
is a comprehensive set of conceptual modelling techniques focused on modelling



the ontological aspects of an organisation [4, 5]. With ontological, we mean that
DEMO models the essential, implementation-independent aspects of an organi-
sation only: it abstracts away from implementation-specific details, such as the
information systems present in a business collaboration. Also, DEMO has proven
itself practically by, amongst others, (1) aiding in the standardisation of message
exchange formats in construction sector [6], (2) acting, in a governmental body,
as a point of departure for business process modelling [7], and, by (3) foster-
ing, in the aerospace industry, a shared understanding of fragmented strategic
concerns, and a link of these strategic concerns to design principles [8].

In our work, DEMO forms a forms interesting complement to ArchiMate be-
cause (1) DEMO provides a clear-cut, unambiguous definition of its grammar.
If used as a front-end to ArchiMate, this largely disambiguates ArchiMate’s ar-
tifacts [3], and (2) DEMO provides transaction patterns, process-based patterns
that aid in eliciting the main steps carried out in the business processes of an
organisation.

The contribution of this paper is two-fold: (1) a formal mapping of the DEMO
and ArchiMate meta models underlying these techniques, and (2) a systematic
application of these meta models to map a model created in DEMO to a model of
an enterprise architecture in ArchiMate. In doing so, we use a running example
of an insurance scenario to illustrate our ideas. Moreover, we discuss a software
tool, based upon our proposed meta models, that interfaces between two existing
software environments for modelling with, respectively, DEMO and ArchiMate.
This interfacing software tool provides for partial computational validation of
the proposed model integration.

As this paper builds upon work wherein DEMO is used as a bridge between
e3value and ArchiMate [9], we focus only on the ontological layer of DEMO,
and not its datalogical and infological layers (roughly stated, the latter two
layers focus on message exchanges). Fig. 1 depicts this focus. Here, we see that
we consider DEMO as a project level language that supplements ArchiMate as
an enterprise architecture language, meaning that DEMO focuses on modelling
one specific aspect of an organisation, supplementing the holistic ArchiMate
language. Moreover, referring to Fig. 1, we see that we focus on DEMO to
support ArchiMate on the ontological level, independent from implementation-
specific concerns such as the supporting IT infrastructure.

Yet, relating the infological and datalogical perspectives of DEMO to Archi-
Mate is interesting as well, in particular because the data- and infological layers
aid in modelling ArchiMate’s IT infrastructure. However, mapping the info- and
datalogical DEMO perspectives to ArchiMate means that we also have to over-
come the difference between an implementation-specific perspective (the Archi-
Mate IT infrastructure layer) and ontological perspective (DEMO’s info- and
datalogical layers) on the organization at hand. Therefore, we opt to focus on
mapping DEMO’s ontologial perspective only, and to later on expand this with
DEMO’s datalogical and infological perspectives.

The remainder of this paper is structured as follows. Sect. 2 briefly dis-
cusses the transformation between DEMO and ArchiMate. Subsequently, this



ArchiMate

(ICT/app.)

ArchiMate 

UML, 

BPMN,

...

DEMO, 

ARIS.

...

Implementation

level

Ontological

level

Enterprise 

Architecture

Language

Project level 

Language

Fig. 1. This paper: DEMO supports ArchMate from an ontological perspective only,
not ArchiMate’s implementation specific ICT-perspective

transformation is discussed in further detail. First, illustrated by the insur-
ance case, we show exactly how we use DEMO as a front-end to ArchiMate (in
Sect. 3). Therafter, we show how to transform a DEMO model into an Archi-
Mate model(Sect. 4), and discuss our implementation of this transformation in a
software tool (Sect. 5). Sect. 6 presents related work. Finally, Sect. 7 concludes.

2 Transforming DEMO transaction models into
ArchiMate

In this section, we show the model transformation of DEMO into ArchiMate
(see Fig. 2). In line with [3], we use DEMO as a front-end for ArchiMate. First,
based on the DEMO meta model, we explore an organisation, starting from
the high-level transactions that it performs, and gradually refining these into
detailed business processes that realise these processes. So, conform to Fig. 2,
we create a DEMO instantiation for a DEMO meta model. Thereafter, from a
ruleset for mapping the DEMO and ArchiMate meta models (the transformation
definition) and a specific application of these rules to the DEMO meta model
(specified by the transformation engine), we derive an ArchiMate meta model,
and a meta model instantiation.

ArchiMate

DEMO
instantiation

ArchiMate
instantiation

DEMO Transformation
 definition

Transformation
engine

Fig. 2. Transforming DEMO transaction models into ArchiMate, adapted from [10]



3 Modelling insurance transactions and processes in
DEMO

In this section, we create a model according to the DEMO meta model and its
accompanying tools, so that we have a solid basis for creating an Enterprise Ar-
chitecture model in ArchiMate (which we discuss in Sect. 4). First, in Sect 3.1,
we introduce the running insurance case that will be used for illustrating our
application of DEMO and, later on, the transformation into ArchiMate. There-
after, we apply DEMO to our running case. First, we create a high-level DEMO
model that focuses on organisational transactions (in Sect. 3.2). Following this,
we detail the business processes realising these organisational transactions (in
Sect. 3.3).

3.1 Archinsurance: selling car insurance via insurance brokers

For illustration purposes, we use the insurance company Archinsurance as a
fictitious but realistic use case. This case is grounded in the insurance case that
is used to illustrate the ArchiMate modelling language [1, 11], as well as a paper
on the function of insurance intermediaries [12].

For this paper we focus on car insurance, an insurance product that Archin-
surance sells via insurance brokers. The main reason for selling insurance via
brokers is to reduce the risk of adverse risk profiles [12], incomplete or faulty
risk profiles of customers that lead insurance companies to sell inappropriate
insurance packages. To mitigate adverse risk profiles, insurance companies may
therefore rely on insurance brokers, whose core business it is to match customer
profiles to appropriate packages.

3.2 The DEMO’ meta model and transaction model

We use DEMO to model the sale of car insurance by Archinsurance. As stated,
DEMO aims at modelling the ontological, implementation-independent aspects
of an organisation only. DEMO achieves its focus on ontological aspects by per-
ceiving of an organisation as a social system of actors, that collaborate to achieve
a common goal. Chief to this collaboration are acts: production acts, and com-
munication acts. Production acts bring about (part of) a good or service, and
directly contribute to achieving the organisation’s common goal. In the Archin-
surance case, a production act is for example ‘Find matching insurance package’,
as executed by the insurance broker on behalf of the customer. Communication
acts, then, serve to coordinate among the actors that either receive results from,
or execute, the production acts. In the Archinsurance case, ‘Apply for insur-
ance’ is for example a communicative act used by the customer to indicate to
the insurance broker the interest in an insurance package.

In this paper, we use only a subset of the DEMO conceptualisation and
techniques, referred to as DEMO’, or DEMO derived. DEMO’ borrows from
DEMO a subset of concepts, to which we refer as the DEMO’ meta model, and
the DEMO standard transaction pattern.



The DEMO’ meta model is depicted in figure 5. For the Archinsurance case,
Fig. 3 presents an instantiation of this meta model, referred to as a DEMO’ trans-
action model. Here, we see the high-level transactions that together implement
the selling of car insurance via an insurance broker. First, the transaction ‘create
customized insurance package’, whereby the broker matches a customer profile
to a fitting insurance package and, second, the transaction ‘contracting’, whereby
the car insurance department within Archinsurance - based on the risk profile
that it receives from the broker - underwrites the insurance. This (underwriting)
means that the car insururance department creates an insurance package for the
customer, and calculates the associated premium. These transactions are car-
ried out by physical subjects (for example, the ‘Car insurance department’) that
carry out an organisational role (for example: the ‘Car insurance department’
fulfills the role ‘underwriter’).

Note however, that a DEMO’ transaction model does not show in detail the
business processes that realise the modelled transactions.

Create customized

insurance package

Customer 

(Customer)

Insurance broker

(Insurance broker)

Insurer (Servinsurance)

Contracting

Underwriter

(Car 

insurance)

Transaction

Actor

Executes

Legend

(Subject)

Fig. 3. DEMO transaction model of Archinsurance

3.3 From an Archinsurance transaction model to a process model

To elucidate the business processes underlying the DEMO’ transactions, DEMO’
borrows from DEMO transaction patterns. The DEMO’ standard transaction
pattern focuses on a process-based pattern of (instantiations of) DEMO’ meta
model concepts, showing the sequence of acts that always needs to be executed
to realise an economic transaction. So, here we see again DEMO’s emphasis
on the ontological aspect of an organisation: no matter what the domain, if we
perceive of an organisation as a social entity, then we see a pattern of generic acts



that always occurs in carrying out a transaction [5]. So, for example, one actor
always has to initiate a transaction by performing the act ‘request’ (which in the
Archinsurance case may translate to the act ‘Apply for insurance’ as carried out
by a customer), while another actor has to always perform the ‘execute’ act in
order to produce the good or service that the initiating actor is interested in (in
the Archinsurance case, this may translate to the act ‘Find matching package’
which, as mentioned before, is executed by the insurance broker).

Fig. 4 shows an instantiation of the DEMO’ standard transaction pattern for
the Archinsurance case. Note here in particular that the illocutionary acts from
the transaction patterns, such as request, promise and accept, aid in detailing
exactly what business process steps- or: DEMO’ acts - together realise the trans-
actions in Archinsurance’s transaction model (see Fig. 3). For example, for the
Archinsuranc case, the act ‘request’ translates to the act ‘Apply for insurance’,
an act carried out by the customer to trigger the insurance process, while the
act ‘execute’ translates to the act ‘find matching package’ as carried out by the
insurance broker.

4 Translating DEMO’ process models to ArchiMate

In this section, we introduce the ArchiMate modelling language and focus on
its business layer meta model. Thereafter, we present the mapping between the
DEMO’ and the ArchiMate business layer meta models. Subsequently, we apply
this mapping to transform the DEMO’ process model of Archinsurance to an
ArchiMate model.

4.1 The ArchiMate business layer meta model

We rely on the ArchiMate modelling language to model the enterprise archi-
tecture of the Archinsurance case. ArchiMate has been transferred to the Open
Group, where it is slated to become the standard for architectural description ac-
companying the Open Group’s architecture framework TOGAF [13]. As stated,
ArchiMate offers a coherent, holistic, description of the enterprise architecture
to enable communication among stakeholders, and to guide change processes
within Archinsurance.

We identify the main concepts for architectural descriptions that can be
placed in the business layer of the ArchiMate meta model. Fig. 5 gives an excerpt
(ArchiMate’) of the business layer concepts and their relationships. The business
layer refers to the static structure of an organisation, in terms of the entities that
make up the organisation and their relationships [1].

4.2 Mapping the DEMO’ meta model to the ArchiMate’ meta
model

For mapping DEMO’ to ArchiMate, we use the meta model mapping technique
described in [14] where authors distinguished different types of mappings, the



Customer Insurance broker

Create customized
insurance package

Rq
Pm

Personal info

Eligibility check

Ex

Find matching
package

St
Ac

Propose matched
package

Accept matched
package

Rq

Apply for
insurance

Pm

Acceptance notification

Ex

Matched package

Transaction

Initiator

Executor

Act

Fact

Legend

Acceptance notification

(insurance broker)(Customer)

Insurer

Rq

Complete risk profile

Contracting

(Servinsurance)

Underwriter
(Car insurance)

Underwrite insurance

Ac

St

Ac

Send insurance
request

Pm

Eligibility check

Ex

St
Ac

Propose matched
package

Accept matched
package

Rq

Pm

Acceptance notification

Ex

Matched package

St

Tailored insurance
 package proposition

Tailored insurance
 package proposition

Rq

Acceptance notification

Fig. 4. DEMO Business process model, detailing the Archinsurance transaction model



most relevant for our work being (1) class-to-class mappings, which relates a
concept from meta model A to a concept from meta model B (e.g., a ‘Subject’
from DEMO’ relates to an ‘Actor’ from ArchiMate’). And (2) relation-to-relation
mappings, which relates concept relationships from meta model A with concept
relationships from meta model B (e.g., ‘performs role’ between the concepts
Subject and Actor from DEMO’ relates to the ArchiMate relation ‘assigned to’
between the concepts Actor and Business role).

[14] also distinguishes between different types of relations, the most important
for us being: equivalence, generalisation of, and its inverse is specialisation of,
and no relation.

Now that we have explained the main ideas behind ArchiMate and presented
an excerpt of the business layer meta model, we translate a DEMO process
model for Archinsurance into an ArchiMate business layer model. We do this
in two main steps: (1) Translate the concepts from a DEMO process model
to an ArchiMate process model, which we can do given that, looking at the
concept definitions, the holistic ArchiMate language subsumes DEMO’s social
perspective, (2) Define a (partial) enterprise architecture model from a business
perspective that focuses on the DEMO’ process model. Here, we construct an
ArchiMate model from the mapped DEMO’ concepts. As we now actually con-
struct an ArchiMate model, we take here into consideration (a) the difference in
abstraction level between DEMO and ArchiMate, and (b) additional ArchiMate
constructs not present in DEMO’, for example for depicting an IT perspective
on the organisation at hand.

Step 1: Horizontal integration via meta model mapping The first step will apply
our mapping between the DEMO’ meta model and the ArchiMate’ business layer
meta model. Here, we make a mapping on a purely horizontal level (cf. [14]),
meaning that we consider only differences between aspects modelled in DEMO
and ArchiMate on the same abstraction level. In doing so, we apply the DEMO’
- ArchiMate’ meta model mapping from Fig. 5, and the corresponding rationale
of our meta model mapping (i.e., Table 4.2). In Fig. 5, we define a specialisation
relation between the mapped concepts from DEMO’ to ArchiMate’ concepts.
Here, we assume - based on the concept definitions from DEMO and ArchiMate
- that the holistic ArchiMate language encompasses the specific social perspective
emphasised by DEMO’.

For Archinsurance, we apply this mapping as follows. For reference, see the
Archinsurance ArchiMate model in Fig. 6, and the Archinsurance DEMO’ pro-
cess model in Fig. 4.

– Subjects from DEMO’ map to business actors in ArchiMate’. We define a
mapping relation from DEMO’ to ArchiMate’ concepts where a subject per-
forming a role in DEMO’ is an actor in ArchiMate’. For instance, we map
the subject ‘car insurance’ (a department within Archinsurance specialised
in car insurances) to the business actor ‘car insurance’ in ArchiMate’.

– Actors in DEMO’ map to business role in ArchiMate’. An actor performing
an act in DEMO’ is the associated role to a business actor in ArchiMate’. For



instance, we map the actor ‘Underwriter’, an associated role to the subject
‘car insurance’, to the role ‘Underwriter’ in ArchiMate’.

– An act from DEMO’ is mapped to a set of business behaviour/events in
Archimate’. An act performed by an actor in DEMO’ maps to a business
process step in ArchiMate’. For instance, we map the act ‘Find matching
package’ to the same business step in ArchiMate’.

– Transactions in DEMO’ map to business interactions in Archimate’. A trans-
action is a collection of acts in DEMO’ and a business interaction includes
a set of business steps performed within a collaboration in ArchiMate’. For
instance, we map the transaction ‘Create customized insurance package’ to
the business interaction in ArchiMate’.

In addition, we perform relation-to-relation mapping between DEMO’ and
ArchiMate (see Table 5). As such, we relate:

– The relation (Subject)performs role(Actor) from DEMO’ to the relation (Busi-
ness actor)assigned to(Business role) from ArchiMate. For example, in both
DEMO’ and ArchiMate, the department ‘Car insurance’ performs the role
of ‘Underwriter’.

– The relation (Transaction)consists of(Act) from DEMO’ to the relation (Busi-
ness collaboration)triggers(Business event/business behaviour) from Archi-
Mate. For instance, both in DEMO and ArchiMate, ‘Create customised in-
surance package’ consists of the more elementary acts ‘apply for insurance’
and ‘find matching package’.

– The relation (Actor)performs(Act) from DEMO’ to the relation (Role)assigned to
(Business event/business behaviour) from ArchiMate. For example, in both
DEMO’ and ArchiMate, the underwriter carries out the act ‘Underwrite
insurance’.

Step 2: Vertical integration: defining an appropriate abstraction level in Archi-
Mate The second step consists of defining an enterprise architecture model using
ArchiMate to represent a DEMO’ process model.

First, in addition to the horizontal differences in Step 1, we now consider
also the vertical differences between DEMO’ and ArchiMate’. This means that
we remove from the ArchiMate model any elements that are too detailed for
depicting a holistic perspective on the organisation at hand. For example: for
the the Archinsurance case, we thus remove the business objects ‘acceptance
notification’ (which ArchiMate inherits from the DEMO process model in Fig.
4), since they are too detailed for the high-level model overview provided by
ArchiMate.

Second, we supplement the model elements inherited from DEMO’ with
ArchiMate constructs. This we do to fully express a holistic perspective on the
organisation at hand, most prominently in terms of the supporting IT infras-
tructure. For example, as we can see in Fig. 6, for Archinsurance we model that
the business process activities ‘eligibility check’ and ‘underwrite insurance’ are



0
..
n

0
..
n

p
e
rf
o
rm

s

1

1

re
s
u
lt
s
 i
n
 

0
..
n

1
c
o
n
s
is
ts
 o
f

R
e
q
u
e
s
t
D
e
c
lin
e
P
ro
m
is
e

D
e
c
lin
e
P
ro
m
is
e

..
.

e
x
e
c
u
te
s

1
..
n

2
..
n

c
o
n
s
is
ts
 o
f

p
e
rf
o
rm

s
_
ro
le

1
..
n

1
..
n

0
..
n

in
it
ia
te
s

1
..
n

1
..
n

S
u
b
je
c
t

T
ra
n
s
a
c
ti
o
n

F
a
c
t

B
u
s
in
e
s
s
 R
o
le

B
u
s
in
e
s
s

In
te
ra
c
ti
o
n

B
u
s
in
e
s
s

B
e
h
a
v
io
u
r

O
rg
a
n
is
a
ti
o
n
a
l 

S
e
rv
ic
e

tr
ig
g
e
rs

0
..
n

0
..
n

a
s
s
ig
n
e
d
 t
o

B
u
s
in
e
s
s
 

C
o
ll
a
b
o
ra
ti
o
n

0
..
n

0
..
n

a
s
s
ig
n
e
d
 t
o

0
..
n

0
..
n

a
s
s
ig
n
e
d
 t
o

0
..
n

0
..
n

re
a
li
s
e
s

0
..
n

0
..
n

re
a
li
s
e
s

B
u
s
in
e
s
s

E
v
e
n
t

B
u
s
in
e
s
s
 A
c
to
r

tr
ig
g
e
rstr
ig
g
e
rs

0
..
n

0
..
n

a
s
s
ig
n
e
d
 t
o

B
u
s
in
e
s
s

O
b
je
c
t

0
..
n

0
..
n

a
c
c
e
s
s
e
s

0
..
n

0
..
n

a
c
c
e
s
s
e
s

D
E
M
O
'

A
rc
h
iM
a
te
' 
B
u
s
in
e
s
s
 L
a
y
e
r

A
c
to
r

A
c
t

R
e
q
u
e
s
t

..
.

In
it
ia
to
r

E
x
e
c
u
to
r

1
..
n

Fig. 5. Mapping of DEMO’ and ArchiMate’ meta models



DEMO’ concepts ArchiMate’ concepts Mapping rationale

Actor Business role In DEMO, an actor refers to a social role played by a
subject in an organisation. Such a social role corresponds
to the definition of a business role in ArchiMate where
roles are typically used to distinguish responsibilities.

Subject Business actor A DEMO subject is an organisational entity - person, de-
partment or otherwise - that can fulfil an organisational
role. This corresponds to a business actor in ArchiMate,
which is an organisational entity that performs some be-
haviour (cf. [1]), thus it can also fulfil a role.

Act Business be-
haviour/event

An act is performed by a subject in a social role. Its
scope is about contribution/coordination for services. In
the ArchiMate context, it corresponds to the realisation
of an organisational service via a business process or a
function (business behaviour) or a business event (e.g.,
an external request).

Transaction Business interaction For DEMO transactions, the initiation and execution are
performed by different actors. This emphasises the in-
teraction aspect that we can find in ArchiMate, where
a business interaction is carried out by more than one
actor.

Fact Business object A fact is any object that results from performing an
act. In ArchiMate’, this corresponds to a business ob-
ject, which ‘represent the important concepts in which
the business thinks about a domain’ [1].

Table 1. DEMO’ - ArchiMate’ meta model concept mapping relations

DEMO’ relation ArchiMate’ relation Mapping rationale

performs role assigned to In both DEMO and ArchiMate, one relates a real world
entity (e.g., Archinsurance) to a role played by that entity
(e.g., the role of insurer in the case of Archinsurance).

consists of triggers As transactions map to business interactions, and acts
map to business events and business behaviour, the rela-
tion ‘consists of’ between transactions and acts in DEMO
maps logically to the relation ‘triggers’ between business
interactions and business events/business behaviour in
ArchiMate.

performs assigned to While both use different nomenclature, in both DEMO
and ArchiMate, a role - not the real-world entity behind
it - carries out acts.

Table 2. DEMO’ - ArchiMate’ meta model relations mapping



supported by a risk assessment application, and that both the business collab-
oration ‘create customized insurance package’ is supported by administrative
applications from both the insurance broker and Archinsurance.

Fig. 6. (Partial) enterprise architecture model based on DEMO process

5 Tool implementation

We have implemented our DEMO to ArchiMate mapping in ATL 3, an Integrated
Development Environment for implementing model transformations that is built
on top of the eclipse platform. This mapping conforms exactly to the mapping
defined in Fig. 5: no concepts are added, modified, or removed.

3 http://www.eclipse.org/atl/



 

Fig. 7. Mapping DEMO to ArchiMate in the ATL model transformation environment
(excerpt)

Table 5 shows a sample of model instantiations in XML, for DEMO (left)
and ArchiMate (right). ATL can produce an ArchiMate instantiation in XML,
given: (1) the DEMO and ArchiMate meta models, defined in an ECORE syntax;
(2) a meta model mapping, defined in ATL (see fig. 7), and of course: (3) an
instationation of the DEMO meta model, defined in XML.

DEMO’ instantation ArchiMate instantation

<BusinessActor name="Insurance Broker">
<assigned_to
name="Insurance Broker Role"/>

</BusinessActor>
<BusinessActor name="Customer">

<assigned_to
name="Customer Role"/>

<Subject name="Insurance Broker">
<performs_role name="Insurance Broker Role"/>
</Subject>
<Subject name="Customer">
<performs_role name="Customer Role"/>
</Subject>

Table 3. Sample of the XML instantiations for the Archinsurance case, in DEMO
(ex-ante model transformation) and ArchiMate (ex-post model transformation)

6 Related Work

The e3alignment approach provides tools for actually creating business-ICT
alignment. It does so by ensuring that conceptual models depicting a strategic,



value, process and ICT perspectives respectively on the value web at hand are
consistent with one another [15]. However, this approach works only on a syn-
tactic level. For instance, if the concept of an actor in e3value and the concept
of a swim lane in an UML activity diagram means the same is not a consid-
eration. Derzsi et al. enable profitability calculations of an ICT-infrastructure
by providing a meta model that links an IT infrastructure modelled in UML to
e3value [16]. This approach has more formality than e3alignment , yet it focuses
on a link between IT and value only. As a result, business processes are not a
consideration while these are realistically cost carriers as well.

Ontological merging approaches address the semi-automated integration of
system models [17]. System models are created in terms of modelling language,
which in itself is based on a meta model. Syntactic and semantic mapping be-
tween pairs of meta models has been facilitated by the application of existing
approaches for ontology mapping [18, 19]. Ontologies improve not only the se-
mantics of a meta model but also provide a potential way in which these meta
models can be bridged with each other to be integrated within a common context
[20]. However, ontology mapping approaches such as [18, 19] focus on providing
an approximation of a mapping between two ontologies. Yet, in our research
we require a precise mapping. Since our starting point are ontologies, such as
DEMO with relatively few concepts (compared to larger ones such as found in
the medical domain), it seems better to perform mapping/integration manually
and as such, avoid an approximation of a mapping.

7 Conclusion and Future Work

In this paper, we used DEMO as a front end for ArchiMate. Using a case from
the insurance domain, introduced a mapping between DEMO and ArchiMate,
and showed how this mapping can be applied to translate a DEMO model into
an ArchiMate model. Also, we showed why such a mapping makes sense, in
particular by using the transaction patterns from DEMO for constructing a
business process that is later transformed into ArchiMate. Finally, we discussed
an implementation of our mapping in the model transformation language ATL.

For further research, we will also consider the data- and infological layers of
DEMO, more specifically how these compare to the implementation-specific ICT-
infrastructure layer of ArchiMate. Also, we will look into enriching ArchiMate
itself with other techniques, by for example borrowing concepts from e3value to
add expressivity from a value perspective. This naturally introduces a number
of research challenges, such as how to balance model integration - changing
ArchiMate itself - with model transformation - leaving a concern to a specifc
technique, and import results into ArchiMate.

References

1. H. Jonkers, M.M. Lankhorst, R. van Buuren, S.J.B.A. Hoppenbrouwers, M. Bon-
sangue, and L. Van der Torre. Concepts for Modeling Enterprise Architectures.
International Journal of Cooperative Information Systems, 13(3):257–288, 2004.



2. R. van Buuren, J. Gordijn, and W. Janssen. Business case modelling for e-services.
In 18 th Bled eConference eIntegration in Action, 2005.

3. R. Ettema and J.L.G. Dietz. Archimate and demo–mates to date? Advances in
Enterprise Engineering III, pages 172–186, 2009.

4. J.L.G. Dietz. Enterprise ontology: theory and methodology. Springer Verlag, 2006.
5. J.L.G. Dietz. The deep structure of business processes. Communications of the

ACM, 49(5):58–64, 2006.
6. Stichting DEMO kenniscentrum. Demo: The visi case,

http://www.demo.nl/practical-case-studies/why-visi. last accessed on 5 De-
cember.

7. M. Op ’t Land, K. Middeljans, and V. Buller. Enterprise Ontology based Applica-
tion Portfolio Rationalization at Rijkswaterstaat. In The 4th Dutch Championship
ICT Architecture, 2007.

8. Stichting DEMO kenniscentrum. Demo: The klm case,
http://www.demo.nl/attachments/article/21/080610 Klantcase KLM.pdf. last
accessed on 5 December.

9. S. de Kinderen, K. Gaaloul, and E. Proper. Integrating value and transacton
modelling into archimate. 2011.

10. K. Czarnecki and S. Helsen. Feature-based survey of model transformation ap-
proaches. IBM Systems Journal, 45(3):621–645, 2006.

11. M.M. Lankhorst, H.A. Proper, and H. Jonkers. The Architecture of the ArchiMate
Language. Enterprise, Business-Process and Information Systems Modeling, pages
367–380, 2009.

12. J.D. Cummins and N.A. Doherty. The economics of insurance intermediaries. The
Journal of Risk and Insurance, 73(3):359–396, 2006.

13. H. Jonkers, H.A. Proper, and M. Turner. TOGAF and ArchiMate: A Future
Together. White Paper W192, The Open Group, November 2009.

14. S. Zivkovic, H. Kuhn, and D. Karagiannis. Facilitate modelling using method
integration: An approach using mappings and integration rules. 2007.

15. V. Pijpers, J. Gordijn, and H. Akkermans. e3alignment: Exploring inter-
organizational alignment in networked value constellations. International Journal
of Computer Science & Applications, page 59, 2009.

16. Z. Derzsi, J. Gordijn, and K. Kok. Multi-perspective assessment of scalability of
it-enabled networked constellations. In Ralph H. Sprague, editor, Proceedings of
the 41st Annual Hawaii International Conference on System Sciences, page 492.
IEEE CS, 2008.

17. V. Devedzić. Understanding ontological engineering. Commun. ACM, 45:136–144,
April 2002.

18. M. Ehrig and S. Staab. Qom–quick ontology mapping. The Semantic Web–ISWC
2004, pages 683–697, 2004.

19. N.F. Noy and M.A. Musen. The prompt suite: interactive tools for ontology merg-
ing and mapping. International Journal of Human-Computer Studies, 59(6):983–
1024, 2003.

20. H. Happel and S. Seedorf. Applications of ontologies in software engineering. In
In 2nd International Workshop on Semantic Web Enabled Software Engineering
(SWESE 2006), held at the 5th International Semantic Web Conference (ISWC
2006), 2006.


